
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Wireless Sensor Networks / Lazarescu, MIHAI TEODOR; Lavagno, Luciano - In: Handbook of Hardware/Software
Codesign / Soonhoi Ha, Jürgen Teich. - ELETTRONICO. - Dordrecht, Netherlands : Springer Netherlands, 2017. - ISBN
978-94-017-7358-4. - pp. 1-42 [10.1007/978-94-017-7358-4_38-1]

Original

Wireless Sensor Networks

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-94-017-7358-4_38-1

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-94-017-7358-4_38-1

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2682957 since: 2020-10-22T22:13:57Z

Springer Netherlands

v

Handbook of Hardware/Software Codesign
Soonhoi Ha and Jürgen Teich

Contents

38 Wireless Sensor Networks . 1
Mihai Lazarescu and Luciano Lavagno
38.1 Introduction . 1
38.2 Past Work . 3

38.2.1 Programming languages and tools . 4
38.2.2 Middleware and operating system . 7
38.2.3 Model-Driven Design . 9

38.3 Model-based WSN application design . 11
38.3.1 Development flow overview . 11
38.3.2 Component structure . 11
38.3.3 Design flow . 14

38.4 Automated WSN application composition . 20
38.4.1 Development flow using automated application

composition . 20
38.5 Case studies . 28

38.5.1 Full custom WSN gateway . 30
38.5.2 WSN sensor node for air quality monitoring 34

38.6 Conclusion . 37
References . 38

Index . 41

vii

Acronyms

API Application Programming Interface
CAN Controller Area Network
DMA Direct Memory Access
FSM Finite State Machine
HAL Hardware Abstraction Layer
IP Intellectual Property
MAC Media Access
OS Operating System
RF Register File
RTOS Real-Time Operating System
UML Universal Modeling Language
UART Universal Asynchronous Receiver Transmitter
XML Extensible Markup Language
6LoWPAN IPv6 over Low Power Wireless Personal Area Network
ADC Analog-to-Digital Converter
ADM Abstract Design Module
API Application Program Interface
ASCII American Standard Code for Information Interchange
BOM Bill of Materials
CAN Controller Area Network
CRC Cyclic Redundancy Check
DMA Direct Memory Access
DSML Domain-Specific Modeling Language
EEPROM Electrically Erasable Programmable Read-Only Memory
EMF Eclipse Modeling Framework
FSM Finite-State Machine
GPIO General-Purpose Input/Output Pin
GPRS General Packet Radio Service
GPT General Purpose Timer
HAL Hardware Abstraction Layer
I/O Input/Output

ix

x Acronyms

I2C Inter-Integrated Circuit
ICU Input Capture Unit
ID Identifier
IP Intellectual Property
ISR Interrupt Service Routine
IoT Internet of Things
MAC Media Access Control
MBD Model-Based Design
MMC/SD Multimedia/Secure Digital Card
NVIC Nested Vectored Interrupt Controller
OS Operating System
PWM Pulse-Width Modulation
QOS Quality of Service
RAM Random-Access Memory
RC Resistor-Capacitor
RFID Radio-Frequency Identification
RF Radio Frequency
RTC Real-Time Clock
RTOS Real-Time Operating System
SDC Secure Digital Card
SPI Serial Peripheral Interface
TCP/IP Transmission Control Protocol/Internet Protocol
TWI Two Wire Interface
UART Universal Asynchronous Receiver/Transmitter
UML Unified Modeling Language
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
WSDL Web Service Definition Language
WSN Wireless Sensor Network
XMI XML Metadata Interchange
XML Extensible Markup Language

Chapter 38
Wireless Sensor Networks

Mihai Lazarescu and Luciano Lavagno

Abstract Versatile and effective, Wireless Sensor Networks (WSNs) witness a con-
tinuous expansion of their application domains. Yet, their use is still hindered by
issues such as reliability, lifetime, overall cost, design effort and multidisciplinary
engineering knowledge, which often prove to be daunting for application domain
experts. Several WSN design models, tools and techniques were proposed to solve
these contrasting objectives, but no single comprehensive approach has emerged.
With these criteria in mind we review several of the most representative ones, then
we focus on two of the most effective hardware/software co-design flows. Both offer
high-level design entry interfaces based on StateCharts. One allows manual module
composition in a full application, and automates its mapping on a user-defined archi-
tecture for fast high-level design space exploration. The other flow automates mod-
ule composition starting from the application specification and by reusing library
modules. It can generate the hardware specification and the software to program
and configure the WSN nodes. For these we show the typical use for the develop-
ment of some representative applications, to evaluate their effectiveness.

38.1 Introduction

WSNs already cover a broad range of applications in a variety of domains, which is
continuously expanding thanks to advances in research and technology. The range
of requirements and problems that WSN designers must address are considerably
more diversified today than when the Internet of Things (IoT) paradigm was coined

Mihai Lazarescu
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy, e-mail: mihai.
lazarescu@polito.it

Luciano Lavagno
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: luciano.
lavagno@polito.it

1

mihai.lazarescu@polito.it
mihai.lazarescu@polito.it
luciano.lavagno@polito.it
luciano.lavagno@polito.it

2 Mihai Lazarescu and Luciano Lavagno

Field

WSN Application

Complete WSN Platform

S
e

n
s

o
rs

User

HW FW SW

Power

OS

Stds.

I/F

Proc.

MAC

Prot.

Power
I/F

MEMS

SoC

Assem.

uC

RF
Linux GIS

RTLS

AJAX

Proc.Web2.0

XML

HA

Cloud

Proprietary and Open: Technology, Standardization, Scientific Advances

DB

System Integrators

WSN Customers

Partial Value Partial Value Partial Value

WasteE
ff

o
rt Value

Figure 38.1: Value flow for a WSN application and platform.

by Kevin Ashton [3] more than 15 years ago. It is increasingly difficult to define
“typical” application requirements for WSN hardware and software [31], since both
must continuously adapt to very diverse WSN application requirements and oper-
ating conditions. Moreover, WSN platform reusability for a wide class of derived
applications is becoming more important to lower development effort and time to
delivery, and to increase reliability.

Existing high-level WSN programming support of any kind is still seldom used
for applications deployed in real-world [24]. System and application development
and deployment using state of the art WSN technologies involve several different
and complementary views, yet lacking mature separation of competencies between
typical stakeholders and the various engineering disciplines that cover the WSN
domain. For various practical reasons, WSN deployments are typically developed
at a level very close to the embedded Operating System (OS), which often requires
mastering a mix of low-level system and distributed protocols competencies that
are seldom found among WSN application domain experts. Fig. 38.1 shows how
such development flows divert significant development efforts from the application
logic, thus contributing to increase development time and cost, and lowering overall
reliability.

Another factor limiting WSN widespread use are the difficulties faced when port-
ing an implementation to a different hardware platforms. They effectively reduce
programmers’ choices in terms of hardware platforms to those that are explicitly
supported by each tool, which often is a narrow range.

High level programming tools for WSN applications generally lack composabil-
ity and the ability to be reused as building blocks. Code written according to a given
programming abstraction can typically be used within a single framework because

38 Wireless Sensor Networks 3

the collaboration between frameworks is still very limited. Although most frame-
works are well suited for specific application domains, they can rarely be extended
or composed with others. Consequently, their use is severely limited.

These are important aspects that limit the productivity of WSN application de-
signers, lead to suboptimal or ineffective designs, increase the development time,
cost and risk, reduce the WSN application reliability which, ultimately, increases
maintenance cost.

In this context, we explore in detail two innovative tools for WSN application de-
sign. One is a model-based design framework for distributed WSN application de-
velopment, design space exploration, network simulation (including hardware in the
loop), and fast prototyping. It has a MATLAB Stateflow R©-based [22] user-friendly
interface for architecture-independent application entry, composition and simula-
tion, and is based on an abstract service-based specification model for the applica-
tion architecture. The framework can automatically map the application on several
very different node platforms, and it can generate the simulation and implementa-
tion code for popular WSN simulators and operating systems. Hence, it hides most
low-level implementation details from the developer in order to increase its usability
by application domain experts and to allow fast high-level design space exploration.

The second toolset aims to further accelerate the development cycle and stimulate
component reuse by automating the module selection and composition phases based
on a high-level application specification. This flow does not make any assumption on
the language or format of the behavior specification. Instead, it makes use of meta-
data that describe the behavior, interface and requirements of each library module, as
well as the application specification. Besides simulation and implementation code,
the system composition engine can generate non-functional requirements, such as
a bill of materials and specifications for the target hardware or for the compilation
toolchain.

Both frameworks are used to create several representative applications, in order
to evaluate their effectiveness.

38.2 Past Work

As we discussed above, WSN design must satisfy two contrasting requirements:

1. Short design time with as little electronics and telecommunications expertise
as possible. Many applications today are relatively small-scale and low-margin,
hence the non-recurrent engineering costs should be kept as low as possible.
Moreover, since application-specific aspects dominate both the difficulty and the
gains, the most useful design resources are the domain experts.

2. Produce a very optimized implementation, especially for cost, power and relia-
bility. This is in order to minimize also the recurrent cost, both to procure the
nodes, to deploy them, and to keep them running in the field.

4 Mihai Lazarescu and Luciano Lavagno

The only way to satisfy both requirements is through design automation of some
sort. As a result, the literature on WSN design is very rich of design aids, both in the
form of design languages and their compilers, and in the form of support software,
such as middleware, operating systems and so on. In this section we review some of
this work, in particular by referring to existing survey articles.

38.2.1 Programming languages and tools

A first excellent survey of programming languages and tools for WSNs, by Sugihara
and Gupta, appeared in [34]. They classify devices and networks according to three
orthogonal aspects:

1. Node power consumption, which is of course also related to the computational
power, ranging from workstation-class computers, found typically at the “cen-
ter” of the network, where the most complex elaboration takes place, to small
battery-powered microcontrollers that have some ability to compute and route
data, to tiny nodes (e.g., Radio-Frequency Identifications (RFIDs)) which scav-
enge energy from the environment. Most of the programming tools, including
those discussed in this chapter, apply to the middle group, where resources are
scarce but computations are non-trivial.

2. Node observables, which range from just the data and an “address” (a node iden-
tifier), to the time and to the location of the observation. Satisfying real-time
constraints and being able to reason about the location of the node add to the
complexity of both the programming language and of the underlying middle-
ware.

3. Size of the network, which ranges from tens to potentially millions of nodes, and
which may require significant middleware support to ensure scalability.

At the lowest level of abstraction, namely the individual node, the article lists sev-
eral examples of operating systems and programming languages, classifying them
according to the paradigm used for modularization: (1) message passing among
statically “bound” software components, as in nesC [13] and TinyOS [17], (2)
dynamic association between messages and services, as in SNACK [14], or (3)
lightweight threads, as in Mantis OS [1]. Static binding requires the least resources,
but goes against flexibility and reconfigurability. Moreover, thread-based program-
ming is more familiar to most developers, but requires significantly larger memory
resources. Virtual Machines have also been considered in this context, although their
portability advantages must be carefully weighed against their performance and en-
ergy cost.

The next layer of abstraction is group-level programming, in which application
development, deployment and maintenance are eased by the availability of program-
ming constructs or APIs to reason about groups of nodes, based both on physical
distance (neighborhood) and on logical properties. Making physical or logical lo-

38 Wireless Sensor Networks 5

cation a first class citizen of course enables much easier application development,
since most WSN data processing must be aware of where the data itself originates.

Finally, the most abstract level considered in that article is the network level,
where it describes:

1. database abstractions, where the network is viewed as a huge database, in which
nodes and time instants play the role of rows, while kinds of sensed data play
the role of columns, as in TinyDB [19]. User-level queries must be decomposed
and distributed to physical nodes and radio channels so that Quality of Service
(QOS) objectives, such as timeliness and energy consumption, are appropriately
optimized.

2. macroprogramming approaches, which provide transparent mechanisms e.g., to
replicate and distribute data, so that the network is viewed as a single distributed
computing platform, as in Kairos [15]. This in principle can provide the best
optimization opportunities, allowing one to move both computation towards the
data and vice-versa, depending on the application constraints and requirements.
But the huge optimization space makes low-level code generation an extremely
challenging task.

Then the article classifies a large number of approaches based on the aspects
listed above and evaluates them by their energy efficiency, scalability, failure-
resilience and collaboration level (e.g., using centralized or distributed triangulation
among nodes to establish node and data location).

Mottola and Picco provide another excellent survey of programming languages
and tools for WSNs in [24]. They also include concrete examples to illustrate the
key aspects of each listed approach. In addition to the space and time aspects that
were discussed by [34], they also classify applications based on:

1. The goal, i.e. pure sensing or sensing and reacting (or actuation). The former
leads naturally to a single or a few sinks, while the latter encourages distributed
processing to improve resiliency and reduce communication costs.

2. The interaction pattern: many-to-one, often associated with sensing, one-to-
many, often associated with reacting, or many-to-many.

3. The need to support mobility of at least some nodes (e.g., in cattle monitoring
applications). This of course requires support for dynamic interaction and recon-
figuration, at least at the network level but often also at the application level.

The article then proceeds to classify the programming languages based on as-
pects such as:

1. the scope of communication: (1) physical neighborhood, (2) multihop within a
subset of nodes (again based on physical neighborhood or logical grouping), and
(3) network-wide.

2. the addressing mechanism: (1) physical, or statically assigned, versus (2) logical,
or dynamically assigned based on e.g., current sensor readings or location.

3. whether communication is explicitly exposed, as in nesC, or implicit, as in
TinyDB.

6 Mihai Lazarescu and Luciano Lavagno

4. the scope of a computation: whether a single statement in the programming lan-
guage can change the state of: (1) a single node, (2) a group of nodes, or (3) the
entire network. Again, the latter offers more scope for optimization, and moves
the burden from the programmer to the “compiler”, but requires the development
of more complex design tools.

5. the data access mode across nodes, via: (1) database abstractions, (2) shared re-
mote variables, (3) code that migrates to find its data, or (4) explicit message
passing. Database languages are easy to use, but lead to extremely complex low-
level code generation issues when efficiency is important, as is often the case in
energy-limited WSNs. Shared variables are also familiar to programmers, but are
very difficult to synchronize and use correctly. This is especially true in a setting
where communication is slow and unreliable, and bandwidth is limited. Code mi-
gration can increase the longevity of networks, which can be often expensive to
deploy. Code migration is best coupled with energy harvesting, because it can ad-
versely impact battery life. Finally, explicit message passing gives most control
to the programmer and is often the preferred choice for real-life deployments.

6. the programming paradigm: (1) imperative, (2) declarative (e.g., SQL-like or
functional), or (3) hybrid, where a declarative language, which provides faster
application development, can be extended with procedural mechanisms for the
most performance- or energy- and power-critical aspects.

Then the article looks briefly at the architectural aspects, e.g.:

1. whether the approach supports only the application programmers (as is often the
case with declarative languages and implicit communication) or can be used to
build all layers of the software (which normally requires an imperative paradigm
and explicit message-passing).

2. the ability to access and tune lower layers (e.g., to allow cross-layer optimization
of the protocol stack).

Finally, a very large number of different approaches is mapped and classified
according to the criteria above.

The article concludes by outlining open areas for further research, such as:

1. tolerance to failures, which is essential for long-term real-life use in an often
harsh environment.

2. ease of debugging, which is especially problematic when the nodes are already
in the field.

3. real-world deployment, which is always needed to validate new ideas in realistic
settings.

4. evaluation methodology, which suffers again from the lack of well-recognized
benchmarks and of sensor data coming from real world deployments.

38 Wireless Sensor Networks 7

38.2.2 Middleware and operating system

Middleware and operating system are essential to support fast development and de-
ployment of WSN software. Hence they are the foundation (explicitly or implicitly)
of all the approaches to WSN design that are outlined in the articles listed above.
These two aspects are the direct focus of several survey articles. We will mention
only a few of them.

First of all, Mohamed and Al-Jaroodi in [23] classify middleware types accord-
ing to lines that are very similar to those mentioned above, namely: Virtual Machine,
database, application-driven and message-oriented. They list and discuss several as-
pects that still challenge effective deployment and use of middleware for WSNs
(and of WSNs in general). These are namely: (1) scarcity of hardware resources,
(2) dynamic changes of network topology and size, (3) heterogeneity, (4) network
lifetime, (5) application-dependency, (6) security, (7) quality of service, and (8) in-
tegration with the broader Internet context.

From this list they derive several key requirements that should be satisfied by the
middleware, e.g.:

1. runtime support for service registration, discovery and use. This enables dynamic
adaptation to changes both of the network topology and of the applications them-
selves.

2. service transparency to client applications, in particular to hide the heterogeneity
of the underlying network.

3. configurability to support a variety of QoS, security, and resource consumption
requirements.

4. support for self-organization, in the presence of dynamic network changes due to
mobility, addition and retirement of nodes, and so on.

5. interoperability with a variety of underlying devices and network protocols.
6. efficient handling of huge volumes of data.
7. support for security, QoS requirement management, and interoperability with

other systems.

The article concludes by classifying and evaluating 15 middleware approaches ac-
cording to these requirements and by discussing the opportunities for future work.

Along similar lines, Mottola and Picco in [25] provide an outlook into WSN mid-
dleware research. One very interesting comment in this article is that most WSN
work, including almost all the approaches mentioned in the surveys above, conspic-
uously ignores the ZigBee industrial standard that specifies how applications can
access the network stack, and that is supported by several commercial node plat-
forms. While this can be explained by the difficulty to tune and exploit a closed
platform, at least the compatibility with its recommendations should be taken into
account.

They also analyze the state of the art, including their own TeenyLIME environ-
ment [7], and outline open research challenges, such as:

1. supporting one-to-many and many-to-many abstractions, as well as mobility.

8 Mihai Lazarescu and Luciano Lavagno

2. providing high-level abstractions for application developers, who are often do-
main experts, rather than electronics or telecommunications engineers, without
forgetting network deployers and maintainers.

3. the need for flexibility and expressive power without losing efficiency.
4. support for cross-layer optimizations and interactions within the network stack,

which is essential for simultaneous energy and performance optimization, and is
seen as a key differentiator between WSNs and telecommunication networks.

5. the need to permit reliable and predictable implementations, since WSNs are
embedded systems, which often implement safety-critical applications.

6. support for multiple, concurrent applications, sometimes with very different con-
straints. These may even have dynamic after-deployment installation and update
requirements.

7. integration within broader systems, including of course the Internet, which would
require a chapter in itself, especially for its industrial and transportation applica-
tion areas.

Finally they again stress the need for all research on WSNs (including the middle-
ware) to be concretely demonstrated in real-world scenarios, not just with simulation
results.

Dong et al. [9] provide a good summary of challenges for WSN OSs. The re-
quirements that they pose are similar to those discussed for middleware, but are at
a lower level: small footprint, energy efficiency, reliability, real-time guarantees, re-
configurability and programming convenience. First of all, they describe the main
components of an OS for WSNs:

1. Task scheduling, which may be event-driven as in TinyOS or thread-based as in
Mantis OS. As mentioned above, the former is more efficient, while the latter is
more familiar to programmers.

2. Dynamic linking and loading, which adds a lot of flexibility to the network, but
has a cost in terms of complexity and overhead.

3. Memory management, in particular support for permanent storage, such as Flash
memory, and for dynamic memory allocation, which may be a problem in
resource-constrained nodes.

4. Resource abstraction, to hide details of the underlying hardware and, in some
cases, virtualize its access.

5. Sensor interfaces, which provide similar abstraction and virtualization capabili-
ties for the more WSN-specific aspects of the hardware platform.

6. Networking stack, which is an essential part by definition of any WSN OS and
may provide higher-level services that cross into the middleware domain.

Then the authors describe and compare several notable examples of WSN OSs, such
as TinyOS [17], Contiki [10], SOS [16], Mantis OS [1], Nano-RK [11], RETOS [5],
and LiteOS [4].

The classification is based on various aspects, such as: (1) static or dynamic re-
source allocation, (2) event-driven versus multi-threaded scheduling, (3) monolithic
or modular architecture, (4) networking support, (5) real-time support, (6), language
support, (7) file system support, (8) reprogramming, and (9) remote debugging.

38 Wireless Sensor Networks 9

The last part of the article evaluates each approach with respect to the require-
ments that were defined at the beginning, and provides several recommendations to
researchers interested in this domain, which range from keeping the design simple
and flexible, to considering hardware requirements, application needs and develop-
ment costs.

38.2.3 Model-Driven Design

Finally we will mention three articles that are more specific to the topic of this
chapter, namely model-driven and component-based design of WSN applications.

Shimizu et al. [32] describe a model-driven methodology and tool to speed up de-
sign and optimization of WSN applications. Different from the approach described
later in this chapter, which focuses only on the Model-Based Design (MBD) of
the node code, they define three different Domain-Specific Modeling Languages
(Domain-Specific Modeling Languages (DSMLs)), respectively for the network
level, the group level and the node level. Each DSML essentially offers a set of
choices for key design parameters at the corresponding layer.

• The DSML for the network considers (1) data source nodes, (2) aggregation and
fusion nodes and (3) sink nodes. At this level, designers can choose how often
sensors are sampled, and how often data are transmitted towards the sink by each
class of nodes.

• The DSML for the group (neighborhood) is similar, but at this level designers
can also choose (1) the network topology (e.g., tree or mesh), (2) the amount of
in-network processing (aggregation and fusion), as well as (3) the geographical
grouping.

• The DSML for the node considers (1) sampling tasks, (2) aggregation and fusion
tasks, (3) sending and receiving tasks and (4) sink tasks. Here, the designers
can make choices on every aspect covered by the approach, thus they have full
customization capabilities.

The use of three DSMLs allows teams with different areas of expertise to hierarchi-
cally design and manage a large network, while retaining full control over the result.
Automated code generation for simulation completes the flow.

While this approach exploits nicely the advantages of MBD, it is not clear how
the user can define an application which cannot be generated simply by choosing
appropriate values for the model parameters. In other words, it basically offers a
single, albeit very parameterized, WSN “application”, which can be customized to
cover a broad range of requirements, but is not (and most likely can never be) fully
general.

In Sect. 38.3 we will present a design framework that is focused on modeling the
code of the application tasks themselves and on smartly linking the tasks together at
node level.

10 Mihai Lazarescu and Luciano Lavagno

Taherkordi et al. [35] describe REMORA, a component-based model that is much
more advanced than the basic static composition mechanism supported in TinyOS.
For example, it includes the ability to dynamically deploy and connect components.
Components and their interfaces are described in REMORA using an Extensible
Markup Language (XML) format that covers: (1) offered and required services that
are activated through events, (2) the state that is retained by each component across
invocations, and (3) the component (in a C-like language).

The event modeling mechanism in XML is more flexible than its TinyOS coun-
terpart, allowing one to: (1) specify event attributes, (2) distinguish between appli-
cation events and OS events, (3) configure events, and (4) define if they are point-
to-point or multi-cast.

The framework has a very low overhead with respect to Contiki, while providing
significantly better encapsulation capabilities, and thus designer productivity, than
bare-bones multi-threading.

Finally, Compton et al. [6] survey semantics specifications for WSNs, i.e. the
ontologies that can be used to describe the requirements of a network and allow a
compositional design approach. This is very relevant for our methodology, which is
based on an ontology to implement the component search, constrained composition,
and parameter value selection capabilities.

The authors describe the capabilities of semantic sensor networks, including the
ability to:

1. classify sensors according to functionality, type of output, or method of measure-
ment.

2. find sensors than can perform some measurement.
3. collect data based on various criteria (spatial, temporal, . . .).
4. perform domain-specific inferences on low-level data.
5. react to specific inferred or measured events.

The article then lists twelve different ontologies, both general-purpose and
application-specific (e.g., for marine sensors), and compares them in terms of the
aspects of a WSN that each of them can describe. These aspects consider:

1. the logical aspects of each node and of the network as whole, in terms of hierar-
chy, node identity, node software, deployment, configurations, history, and kind
of processes it can support.

2. the physical aspects of each node, such as location, power supply, node platform,
physical dimensions, and operating conditions.

3. the observations that each node can make, in terms of accuracy, frequency, re-
sponse mechanism (periodic or event-triggered), field of sensing.

4. the sensing domain, considering the measurement units, the features that are mea-
sured, and the time.

Finally the authors summarize how ontologies are supported by various reasoning
mechanisms. Later in this chapter we will discuss an approach where ontology use is
extended to describe both the functional and non-functional elements that compose
WSN nodes in order to allow the automatic synthesis of both node hardware and
software needed to support the application functions.

38 Wireless Sensor Networks 11

38.3 Model-based WSN application design

The need to improve important metrics of WSN application development such as
cost, time to market, lifetime and reliability, as well as its accessibility to domain
application experts, can be satisfied using high-level design flows that support some
degree of automation.

In Sect. 38.2 we reviewed several models, tools and techniques that have been
proposed in this regard. Although a significant variety of tools was proposed, no
single comprehensive approach has emerged.

In this chapter, faithful to the principles of hardware/software co-design that are
discussed in the entire book, we present a MBD framework that can speed up and
facilitate application development, design space exploration, simulation (including
hardware in the loop) and fast prototyping of distributed WSN applications. The
framework is based on tools widely used in industry like MATLAB Simulink R© [21]
and Stateflow R© [22]. In addition, the architecture of the application is described
using the standard Web Service Definition Language (WSDL).

38.3.1 Development flow overview

In the approach presented here, the Simulink R© and Stateflow R© graphical design
tools are used for design entry using high level abstract concurrent models, which
simplify the design, simulation, and prototyping phases. The abstract model can
be automatically translated to simulation models that can be used on widely used
network simulators such as OMNeT++/MiXiM [36]. The same model can also be
translated for direct implementation on embedded operating systems, like TinyOS
and Contiki, for hardware-in-the-loop simulation and deployment.

The framework shown in Fig. 38.2 provides support for target application de-
sign using high-level abstract models, without requiring knowledge of the low-level
specifications of the underlying hardware and software platforms or communication
protocol stacks. It also allows one to automatically reuse the code generated from
the same model for different simulation environments and deployment platforms.

Within the framework, the target application is first decomposed into a set of in-
terconnected high-level object-oriented abstract models. These can exchange mes-
sages in an service-driven fashion. The model internal logic is described intuitively
using a visual programming language based on Stateflow R© StateCharts [20] and
Simulink R© block diagrams, as shown in Fig. 38.2.

38.3.2 Component structure

The framework allows the designer to define the structure and the behavior of the
WSN application by means of self-contained high-level abstract functional modules

12 Mihai Lazarescu and Luciano Lavagno

Figure 38.2: Overview of the development flow based on Simulink R© framework.

Figure 38.3 Self-contained
high-level abstract functional
module (Simulink R© block).

(Simulink R© blocks) like the one shown in Fig. 38.3. Each module is seen as a “black
box” by the other modules, being externally characterized by its tunable attributes
and by the used and provided services.

Services used by the module are imported through its inbound service ports, such
as InServ_1, . . . , InServ_Y in Fig. 38.3. Services provided are exported through the
outbound service ports of the module, such as OutServ_1, . . . , OutServ_Z. A mod-
ule can use also bidirectional service ports (e.g., InOutServ_1, . . . , InOutServ_X) to
connect an inbound service port and an outbound one to represent an instance of a

38 Wireless Sensor Networks 13

Figure 38.4 A StateChart
implements a finite state
machine which defines the be-
havior of a functional module.

combined service. This service is both used by the module and requires a response
by its provider. Each service instance of a module (used, provided, or combined) is
associated to an interface, which defines the contents of the messages transmitted
by that service.

A module can also expose tunable attributes (e.g., Attr_1, . . . , Attr_N in Fig. 38.3)
which are meant to allow the developer to adjust the performance of the module
without significant changes to its internal logic. Like the services, attributes are as-
sociated to an interface that defines their constituents.

The WSN applications running on nodes can be modeled as an interconnected
set of modules. Therefore, the internal details of the modules do not depend on
the external entities and they can be loosely interconnected. Each Abstract Design
Module (ADM) carries out part of the functions of the target application by ex-
changing service messages with the connected modules, through its service ports.
An outbound service port of a module can be connected to any inbound service port
of another module, as long as they share the same interface type. Inbound and out-
bound service ports can remain disconnected, which means that no incoming service
messages are imported by the floating inbound service port, and that the outgoing
service messages on the floating outbound service port will be discarded (of course
the designer must make sure that these missing connections do not impair the overall
application functionality). These are similar to unidirectional function calls and can
be used to transmit service-specific messages between modules without exposing
the internal implementation details.

Module behavior is represented using an event-driven hierarchical Finite-State
Machine (FSM) in the form of a StateChart, as shown in Fig. 38.4. The logic flow,
i.e. the change of the active state, is determined by either its internal default tran-
sitions or by external service messages imported from other modules. These are
processed by the FSM based on the values of its tunable attributes and the compu-
tation results are attached to the appropriate outgoing service messages which are
sent out through the corresponding outbound service ports.

User defined operations can be attached to each state or to state transitions. They
will be executed upon the entry, permanence, or the exit phases of each state.

14 Mihai Lazarescu and Luciano Lavagno

Figure 38.5: Framework development flow is based on a V-shape iterative model.

The module has a different representation in the various steps of the workflow,
serving different purposes. For instance, it can be viewed as a native Simulink R© /
Stateflow R© block for modeling and single-node functional simulation, as an OM-
NeT++/MiXiM module for large network simulations, or as a TinyOS component
or Contiki OS process for deployment on the target WSN node.

38.3.3 Design flow

The workflow illustrates the basic operation of the framework. It uses an iterative
V-shape flow that starts with the requirement analysis, as shown in Fig. 38.5. It is
made of three development task types:

• Manual tasks include development activities that are not directly supported by
the framework, and must be manually performed by the designers using other
development tools.

• Supported tasks include some activities performed by the designers, with direct
tool support from the framework.

• Automatic tasks are fully supported and performed by tools in the framework.

In the following we describe the steps of the workflow in more detail.

38.3.3.1 Requirement analysis

Requirement analysis is the first step in the workflow. It is a manual task and it con-
sists in the analysis of the requirements of the target WSN application. It includes a
list of the required functions and attributes supported by the application, such as:

38 Wireless Sensor Networks 15

Figure 38.6 Example of
WSN node application de-
composition in functional
modules.

• what measurements will be performed by the node;
• what operations are expected from the nodes;
• what state variables (attributes) will be exposed as the tunable attributes by the

application;
• what kind of criteria will be employed to validate the application and evaluate its

performance.

When these requirements are defined, the designer can move to the next step, to
describe the modules.

38.3.3.2 Module description

Module description is based on the results of previous analysis. The developer can
decompose the target application into a set of interconnected modules, each imple-
menting a part of the target application functions by exchanging service messages
with other connected modules through its service ports.

In this step, the developer lists the services and the attributes that are included
in each module, or includes them from a library of pre-existing descriptions (e.g.,
defined in previous designs). For each module, the developer defines a description
file with all services and tunable attributes of the module, such as the service name,
interface, type of associated service ports.

For instance, for an application that can be decomposed into a set of modules
as shown in Fig. 38.6, the developer will define the content of the service messages
exchanged among the modules and obtains a model description file for each module.
Once defined, the description files are provided to the framework to automatically
generate the skeleton templates for the modules in the next step.

16 Mihai Lazarescu and Luciano Lavagno

Figure 38.7: Example of complete WSN node application skeleton.

38.3.3.3 Generation of application skeleton

The skeleton template is defined in terms of Stateflow R© blocks. In the generated
skeleton template, all the services and attributes defined by the developer for that
module in the previous step will be interpreted as a port. A combined service will
be mapped to a pair of input and output ports in the skeleton template. For instance,
the module shown in Fig. 38.4 is instantiated as shown in Fig. 38.6.

Each inbound service will be mapped to an input port associated with the spec-
ified data type defined by its Interface (e.g., InServ_1 in Fig. 38.3 to InServ_1 in
Fig. 38.7), each outbound service is mapped to an output port (e.g., OutServ_1 in
Fig. 38.3 to OutServ_1 in Fig. 38.7), and a combined service is mapped to a pair
of input and output ports (e.g., InOutServ_1 in Fig. 38.3 to InOutServ_1_IN and
InOutServ_1_OUT in Fig 38.7). For each input and output port, a corresponding
driver function is automatically generated, such as those shown in Fig 38.7:

• driver_InServ_1 for InServ_1
• driver_OutServ_1 for OutServ_1
• driver_InOutServ_1_IN and driver_InOutServ_1_OUT for InOutServ_1

These driver functions are used to detect the incoming service messages and to
send out the outgoing service messages for the input ports and output ports respec-
tively. Similar to the inbound services, for each tunable attribute, the framework

38 Wireless Sensor Networks 17

will generate an input port and a port state variable (e.g., Attr_1 and var_Attr_1 in
Fig. 38.7 for Attr_1 in Fig. 38.3), through which the developer can externally set the
desired value for that attribute.

38.3.3.4 Customization of the application skeleton

The skeleton template can be customized through a supported task that includes two
types of activities in the Simulink R© / Stateflow R© environment, namely skeleton
template completion, to create a full module, and module composition.

Skeleton template completion is done by the developers by modifying the auto-
matically generated skeleton template with the desired internal functions. This con-
sists in processing the imported service messages based on the values of the exposed
tunable attributes, and generating the corresponding outgoing service messages.

The internal logic of a module is defined by the developer using StateCharts and
block diagrams, without knowing the details of the target platform (WSN node).

As shown in Fig. 38.7, the developer-defined operations implemented within
the states are executed upon entry, permanence or exit phases of each state, while
the developer-defined operations implemented between two connected states are
executed when the state transfer occurs through that state connection. All these
developer-defined operations can execute any developer-defined local functions
(e.g., loc_func_1 and loc_func_2 in Fig. 38.7) to perform computational tasks,
as well as generate outgoing service messages. Besides the externally tunable at-
tributes, additional local variables (e.g., loc_var_1 and loc_var_2 in Fig. 38.7) and
local events (e.g., loc_Evt_1 in Fig. 38.7) can be freely defined within each module.

If a single FSM is not sufficient to model the desired function, a single Simulink R©

block can contain one or more sub-charts which can be integrated into the main FSM
in either sequential or parallel execution order, sharing the set of incoming and out-
going messages, attributes, local variables and local events.

The module composition phase creates the final application. This is done by
wiring each outgoing port of each module to the relevant incoming port(s) of other
modules, and by assigning proper values to the attribute port(s) of each module.

Then the high-level application model can be used in the next step to automati-
cally generate an implementation for different platforms.

38.3.3.5 Code generation and deployment

Since the framework helps the developers to automatically port the same high-level
design to different platforms, the developers can easily refine their design and ex-
plore the hardware/software trade-off space almost without low-level detail knowl-
edge. This is an important benefit, since design porting to a different platform is
often effort-intensive and error-prone.

18 Mihai Lazarescu and Luciano Lavagno

Figure 38.8 Module struc-
ture of example node-level
WSN application.

We will analyze a use case in which the nodes collect and perform a distributed
processing of the data from a temperature sensor. Each WSN node wakes up peri-
odically to carry out the following tasks:

1. sample the temperature values with the desired sampling frequency;
2. collaboratively average these values with those from its one-hop neighbors within

a sliding time window;
3. broadcast the calculated average temperature value to the neighbors.

The requirement analysis is used to drive the application architectural design
phase, where the developer decomposes the application into a set of interconnected
ADMs, each carrying out a part of the entire functionality. Since the ADMs are
characterized by services and attributes exposed on their boundary, their internal
behavior may not be detailed in this step. The developer just assigns the require-
ments listed earlier to the constituent ADMs by defining their boundaries. This can
be done describing the ADM services and attributes either manually or by importing
them from a library (e.g., created in previous designs).

In the proposed use case, the following parameters have been identified as poten-
tial tunable attributes for each node:

1. its own node identifier (NodeID);
2. sample refresh interval inside the averaging algorithm (SenseInterval);
3. the sampling period of the temperature sensor (SamplingInterval);
4. the size of the time window to compute averages, which is equal to the node duty

interval (DutyInterval).

Based on requirement analysis (first step in Fig. 38.5), the design is split in three
interconnected ADMs: a Sensor module, a Radio module, and an Algorithm
(TempAverager) module, as shown in Fig. 38.8. The Sensor module samples and
pre-processes temperature data. The Radio module interfaces with the protocol stack
for short range communication with neighbor nodes. The TempAverager module
handles all on-board data processing. Both the Sensor and the Radio modules are
connected to the TempAverager module to exchange service messages (e.g., Sense
and Msg in Fig. 38.8).

The developer manually defines a boundary description file for each ADM. These
are imported in the framework for the next step, template generation.

ADM description files are then supplied to the framework which maps them au-
tomatically to skeleton templates that are defined as Stateflow R© blocks. All ADM

38 Wireless Sensor Networks 19

Figure 38.9 Overview of the
generated skeleton template

services and attributes defined in the ADM templates are interpreted as ports or port
pairs for a request-response service.

For each port, a driver function is automatically created inside the skeleton tem-
plate, which hides the low-level Simulink R© handling of signals and service mes-
sages. These functions handle the service messages exchanges through ports. Like
the input services, each tunable attribute has an input port and a state variable al-
lowing to set the attribute value from outside the ADM.

Fig. 38.9 shows the skeleton template generated automatically for Stateflow R©.
Each skeleton template is created with three FSMs that run in parallel: InputDrivers,
Application and OutputDrivers which can be used to implement the appli-
cation logic.

Once the skeleton template has been filled with functional details, simulated and
debugged, it can be used for automatic code generation. A framework tool converts
the high-level and platform-independent design into target code that runs in different
network simulation environments or on different target OSs and platforms. These
can be:

• Simulink R© / Stateflow R© can be used for node-level and small-scale network
simulation;

• OMNeT++/MiXiM can be used for large-scale network simulation. Each ADM
in the WSN application is mapped to a component, which is the programming
unit used by all these simulators;

• TinyOS [17] can be used for code deployment on target nodes. Each ADM of the
application is automatically converted to a TinyOS module written in nesC [13]
containing the ADM internal logic;

• Contiki OS [10] can also be used for deployment. In that case, each ADM is
instantiated as a protothread. The generated code can also be run in the COOJA
simulator.

For instance, we used the framework code generation function to convert the
high-level design ADMs to nesC modules that are suitable for a simple network
composed of Memsic Telos rev. B nodes running TinyOS. The generated nesC mod-
ules (Radio, Sensor and TempAverager) are configured, interconnected and
encapsulated in a wrapper nesC module that is then wired in TinyOS to use the
existing radio communication services.

Table 38.1 shows the code size and memory usage measured for the binary code
generated using the development framework and the same application logic imple-

20 Mihai Lazarescu and Luciano Lavagno

Table 38.1 Code size and
the memory usage for the use
case application implemented
on top of TinyOS using a
Telos B node.

ROM RAM
[bytes] [bytes]

Hand-written 17220 492
Framework-generated 20562 526

mented manually. The results show a penalty for the generated code of less than
20% in terms of code size and less than 7% in terms of data Random-Access Mem-
ory (RAM) requirements.

38.4 Automated WSN application composition

The MBD tool presented in Sect. 38.3 requires the designer to explicitly compose
the modules to implement a full application, which is an effort-intensive process.

A different set of tools can automate the application composition phase start-
ing from a high-level application specification and an existing library of reusable
modules. The toolset can further speed up WSN application development and the
exploration of the design space, as will be discussed next.

38.4.1 Development flow using automated application composition

Fig. 38.10 compares the automated design flow (shown in the lower part) with a
typical node-level WSN application development flow (shown in the upper part).
The automated flow accepts a high-level application-centric system description at
node level and can be integrated with various external tools, each of them used to
assist the developer in specific tasks.

38.4.1.1 Development flow overview

The automated flow [2] starts with the input of the application-specific behavior
encapsulated in a component format (described later in Sect. 38.4.1.4).

The top-level component and all library components have the same format, with
two major sections: a code section and a metadata section. In the first step of the
flow in Fig. 38.10, the designer fills both of them for the top-level component, as
follows.

The code section can store different types of code (behavioral, simulation mod-
els, etc.) These are always considered as (possibly parameterized) black boxes by
the system synthesis engine, thus there are no restrictions on the coding language
or the representation format (which can be also binary code for one or more tar-
get platforms). Hence, the behavioral code of the component can come from var-

38 Wireless Sensor Networks 21

Figure 38.10: Comparison of the main stages of manual (top) and automated (lower
part) node-level WSN application design flows. A human body tags manual phases
while a gear tags automatic ones. The automated flow accelerates mainly the system
composition and the preparation of the network simulation.

ious sources, ranging from manually-written source code (e.g., legacy C or nesC
code) to code generated by high-level development flows (e.g., metaprogramming
approaches [24], Unified Modeling Language (UML)-based or ad-hoc high-level
modeling flows [8, 29, 32], Chapter 5). MBD tools can also generate suitable be-
havioral code, for example the Stateflow R© tools used in Sect. 38.3 or the Yakindu
Statechart Tools [26] (both provide a state chart-based integrated modeling environ-
ment for the specification and development of event-driven systems).

The metadata section of the components is used by the subsequent phase of the
flow in Fig. 38.10, namely the automated system composition. This phase uses only
the semantics of the metadata to automatically select the components (more pre-
cisely, through parameter-based selection and customization) to compose the node
system, both as hardware and software. If the designer uses the flow described in
Sect. 38.3, then the component metadata are generated automatically from the mod-
ule description. Otherwise, the designer should manually enter the metadata.

Fig. 38.11 shows one possible integration of the automatic flow with external
WSN development tools. The flow shown on the left side of the figure supports

22 Mihai Lazarescu and Luciano Lavagno

Figure 38.11 The main
phases of the application
development flow based on
automated system composi-
tion and one possible inter-
action with external tools.
The application developer
describes both the network
layout and composition using
external tools (flow on the
left) as well as the node-level
application (flow on the right).
Where necessary, the appli-
cation development flow can
extract from network descrip-
tion the distinct types of nodes
and the network connectivity
information. The former is
used to create projects for
node-level application devel-
opment, while the latter is
needed to prepare the network
simulations.

WSN network planning using specific tools for input of geographical data (e.g., of a
topographic map), selection of node locations in the field, and Radio Frequency (RF)
propagation simulation to estimate node connectivity.

The application development flow shown on the right side of Fig. 38.11 can re-
trieve the network planning data from the project repository. It uses it to extract the
number of distinct node types in the network and to create a skeleton project for
node-level application development for each type.

For each project, the developer inputs the application in the format of a top-level
component, as we mentioned earlier. When the developers use model-based design
flows for application input, such as Stateflow R© or Yakindu SCT, they can use the
features of these design environments to test and refine the application at this high
level of abstraction.

The next step, system composition, is fully automated by the composition en-
gine. The engine starts by processing all metadata of the top-level component, such
as requires, provides and conflicts. These encode what is needed by the component
in order to operate properly in terms of hardware, interfaces, configurations, etc. (re-
quires), what the component can provide to satisfy the requires of other components
(provides), and in which conditions the component cannot operate at all (conflicts).

These properties drive the composition process, which iteratively looks for all
subsets of the library of components that do not have any unsatisfied requirements
left and, at the same time, satisfy all constraints imposed by the top-level and the
other selected components. Each such subset represents a possible system solution

38 Wireless Sensor Networks 23

that satisfies application specifications. These solutions are automatically saved and
can be further examined or manually modified by the developer, or used as they are.

For each generated solution, the composition tool can create simulation projects,
as shown in the next steps of the flow. The simulations are set up to run on ex-
ternal simulators (e.g., OMNeT++ [36]) and can be at various level of abstraction.
Basically this consists of the extraction and configuration of the suitable simula-
tion views from the components of the solution, and their assembly in simulation
projects.

Using a similar mechanism, the composition engine generates the projects that
can be compiled with the target tools to create the programs for the WSN nodes.
These projects are typically generated in the format expected by the target tools,
which often is a make-based project.

Moreover, the components that are instantiated in the solution can include a bill
of materials (e.g., compatible hardware nodes, RF and transducer characteristics)
or software dependencies on specific compilation toolchains or underlying OS. The
composition engine can collect all these, e.g., into a solution-specific Bill of Mate-
rials (BOM) and compilation requirements.

As shown in Fig. 38.11, after each step the developer can analyze the results and
attempt to optimize them either by changing the specification (and rerunning the
composition), or by manually editing the generated projects.

As mentioned, the benefits of WSN application automated composition are com-
pounded by its integration with external tools, such as simulators, target compilation
chains that can provide inputs or assist the developer in other phases of the flow. For
instance, Fig. 38.10 shows some typical interfaces with middleware [23, 25], WSN
planning tools [30] or deployment and maintenance tools [18]. An example of inte-
gration is presented in [2].

However, the wide variety of the existing tools and models makes it very diffi-
cult to define an exhaustive set of toolset external interfaces. Moreover, rigid toolset
interfaces or operation models can reduce its value and hamper its adoption in the
rapidly evolving WSN context, which does not seem to be slowed down by standard-
ization efforts or proprietary Application Program Interface (API) proposals. Thus,
as we will show later on, an optimal tool integration in existing and future develop-
ment flows would base its core operation on a model expressive enough to encode
both high-level abstractions as well as low-level details. Moreover, it is also impor-
tant to provide well-defined interfaces and semantics to simplify its maintenance,
updates, integration with other tools, and extensions to other application domains.

38.4.1.2 Automated composition tool overview

The main functions of the tool are: application input (interface and processing),
automated hardware-software composition, and code and configuration generation.

Application domain experts can benefit most from an interactive user-friendly
interface for the description of the WSN application top-level behavior. Stateflow R©,
as described in Sect. 38.3, are well established in this regard for their intuitive use,

24 Mihai Lazarescu and Luciano Lavagno

and they can also provide suitable high-level models to facilitate the description
of the desired application domain behavior. On the other hand, the tool can ac-
cept application descriptions generated by other tools, such as middleware [12] or
metaprogramming [24].

Automated composition of hardware-software systems able to support WSN ap-
plication specification shield the developer from most time-consuming and error-
prone implementation details. At the same time, the composition increases the reuse
of functional components from the library, which can be software components (e.g.,
OS, functional blocks, software configurations, project build setup), hardware com-
ponents (such as WSN nodes, transducers, radio types or specific devices, hardware
configurations), and specifications (e.g., target compilation toolchain, RF require-
ments).

While the tool performs some consistency and satisfiability checks of applica-
tion specifications in order to reject early those that cannot have a solution, other
incomplete specifications are accepted because the tool can typically infer default
parameters based on the values provided by the library components and heuristics.
This allows the developer to refine the specifications during successive design iter-
ations using also the results of previous underspecified composition runs.

Incomplete specifications may lead to the composition of incomplete systems,
which nevertheless satisfy every requirement. This can save effort for experienced
developers, who can use the resulting incomplete projects as starting points for man-
ual refinements.

Code generation can produce simulation or target compilation projects. Network
simulations can be configured using the simulation models of the components of the
solutions, their parameters and the actual configurations. Realistic communication
channels defined by a planning tool [30] can be used, if available. In a similar way,
the tool uses the implementation code of the components instantiated in a solution
to generate and configure the project that compiles the code for the WSN nodes.

Besides this highly automated process, the tool allows the experienced develop-
ers to take over manually the application development at any stage: design entry,
testing and debug, system composition, node application simulation, network simu-
lation, target code generation. Basically, this is achieved by:

• making use of textual data formats that can be edited with general purpose or
specialized editors;

• documenting the data formats, their semantics and processing during each phase
of the development flow;

• including well-known tools in the flow with clean and well documented inter-
faces to simplify their update or replacement for the specialization of the flow;

• allowing one to run manually the individual tools, even outside the integrated
flow, e.g., to explore options and operation modes that are not supported by the
integrated flow.

38 Wireless Sensor Networks 25

38.4.1.3 Automated composition tool input interface

As argued above, abstract concurrent Stateflow R© are an intuitive and efficient high-
level means to specify the top-level application behavior. Besides the behavior, the
tool should support the specification of interfaces and other requirements of the
behavior. These are necessary because the flow does not make any assumptions
about the format, the language or the modelling of the behavioural part.

All these data are captured in the top-level component of the design that is then
used to drive the system composition engine. Using library components, the engine
attempts to automatically compose a hardware and software system that supports
the application-specific behavior and provides all its requirements.

For instance, let us consider a WSN application that collects and sends every five
minutes the environmental temperature during four intervals of two hours spread
evenly during the day. The functional description of this application consists of a
periodic check if the temperature collection is enabled. If it is enabled, then it checks
if five minutes have elapsed from previous reading, and if so then it acquires a new
reading and sends it to the communication channel. The whole application behavior
can be encoded in just a few condition checks and data transfers, plus some configu-
ration requirements to support them (such as timers, a temperature reading channel,
a communication channel). The rest of the node application and communications
are not application-specific, hence the developer should not spend effort developing
or interfacing with them. In this flow (see Fig. 38.10 and Fig. 38.11), these tasks are
automatically handled by the composition engine, which attempts to build a system
that satisfies all specifications by reusing library components, as will be explained
later.

The top-level component can include also several types of metadata proper-
ties. For instance, if the IPv6 over Low Power Wireless Personal Area Network
(6LoWPAN) protocol is a specification of the WSN application, a requirement for
6LoWPAN can be added to the top-level component, regardless if the top-level com-
ponent functional code interfaces directly with the field communication protocol.
This way, the 6LoWPAN requirement directs the application composition to instan-
tiate the functional components from the library that provide this communication
protocol. However, the tool will instantiate only those 6LoWPAN components that
satisfy other system requirements that are collected from both the top-level and other
instantiated components.

38.4.1.4 Structure of top-level and library components

Library components are central to the operation of the system composition engine
(see Fig. 38.12). They are used for:

• the definition by the developer of the behavior and requirements of the node-level
WSN application, modeled as a top-level component;

• the definition of library blocks that can be instantiated by the composition tool to
compose a hardware-software system that satisfies all design specifications;

26 Mihai Lazarescu and Luciano Lavagno

Figure 38.12 Top-level ap-
plication specification compo-
nent and library components
share the same structure: a
variable set of views (shown
darker on the bottom) that are
handed as black boxes by the
system composition process,
and a set of metadata that ex-
press the requirements and the
capabilities of the component.
The components are encoded
in XML (EMF XMI).

• the interface with OS or middleware services when necessary, to support the
functionality of the application;

• providing the simulation models, at different levels of abstraction;
• providing the target code that is used to build the projects as well as to configure

and compile the code for the target nodes;
• providing code generators that can be run by the composition tool to either:

– check if the component can be configured to satisfy the requirements derived
for the current partial solution during composition, so that it can be instanti-
ated in the solution;

– build specialized code stubs, e.g., for API translation and component code
configuration, that are based on the actual parameters of the solution in which
they are instantiated;

• providing hardware component specifications, which are collected in a BOM;
• providing nonfunctional requirements, such as for special radio-frequency re-

quirements or compilation toolchains.

Yakindu SCT was used in this specific case to generate and modify the library
components, including their metadata. Hence, the components are encoded using
extensions of Yakindu projects, which use the Eclipse Modeling Framework (EMF)
XML Metadata Interchange (XMI) format [27]. XMI is an XML interchange format
well supported especially by UML-based tools. Components in other formats can
be supported using suitable translators, as long as those formats can adequately
represent the meanings of the metadata and the functional models of the Yakindu
components.

The library components are designed to be compatible with the concurrency and
communication models provided by the underlying OS or middleware abstractions.
To achieve a consistent system composition, all external communications among
and with the components need to go through their exposed interfaces in order to be
visible to the system composition engine.

38 Wireless Sensor Networks 27

38.4.1.5 System composition process

To exemplify the composition process, we show in Fig. 38.13 a simplified represen-

Figure 38.13: Simplified example of metadata for the design specification compo-
nent and some library components.

tation of just a few metadata properties for both the library components (bottom)
and the top-level specification component (top).

At the begin of the system composition process, the system composition engine
is driven by the metadata specifications of the top-level component of the design
and its selections are guided by the metadata of the components in the toolset li-
brary. As system composition progresses by instantiating library components in the
partial solution, the metadata of the instantiated components will drive the search
performed by the engine alongside with the still unsatisfied specifications of the
top-level component. During the entire composition process the top-level compo-
nent and its metadata are considered mandatory. However, the library components
can be instantiated and removed from the solution as necessary, to satisfy the design
requirements.

More specifically, at the begin of the system composition process the engine
loads all metadata from the top-level component and all library components. Then
the recursive solver of the engine starts to build a partial solution by looking for
library components that match the requirements of the top-level specification com-
ponent. It instantiates these components, one at a time, into the partial solution, then

28 Mihai Lazarescu and Luciano Lavagno

it repeats the process. This time, it considers the specifications of all the compo-
nents that are currently instantiated in the partial solution, including the top-level
component.

The solution becomes complete when all the requirements of its components are
satisfied. Once a complete solution is found, it is saved along with the actual values
for all its configuration parameters. Then the solver resumes the search for other
solutions by removing components from the current solution and replacing them
with alternatives, if any. The solver basically stops when all possible combinations
have been tried. As a future development, the composition engine can be coupled
with design space exploration tools, e.g., [28], Chapter 6, Chapter 7.

For example, considering the top-level specification and the library components
shown in Fig. 38.13, the system composition engine loads first the design entry top-
level component and all 13 components of the library. Then the engine explores
all component combinations that can lead to a complete solution, i.e., a component
composition where all mandatory component requirements are satisfied. All com-
plete solutions found are saved. For the example shown in Fig. 38.13 these are:

1. solution using components 1, 2, 3, 4, 8;
2. solution using components 1, 2, 3, 5, 8, 9;
3. solution using components 1, 2, 3, 5, 8, 10, 13.

The format of the saved solutions includes all the elements necessary to instanti-
ate, connect and configure the selected library components. By revisiting these data
and the instantiated components, the engine is able to:

• extract some figures of merit for the solutions from the instantiated components
metadata and their actual configuration within the solution, e.g., FLASH and
RAM requirements, communication protocol characteristics, etc.;

• generate the BOM and nonfunctional specifications, such as what are the com-
patible compilation chains;

• generate and configure network simulation models;
• generate make-based projects that can build the programming and configuration

code for the target nodes.

The developers can use these data to decide which solution, if any, is suitable.
Alternatively, they may decide to change the application specifications in order to
improve the solutions or to manually optimize a promising solution.

38.5 Case studies

In the following we will present the application of the automated composition flow
to two different representative WSN applications of practical interest, which are
described in [2].

One application is a self-powered WSN gateway designed for long-term event-
based environmental monitoring. It can handle up to 1000 sensor nodes, process and

38 Wireless Sensor Networks 29

aggregate their messages, bidirectionally communicate with a server over the Inter-
net using Transmission Control Protocol/Internet Protocol (TCP/IP) through a Gen-
eral Packet Radio Service (GPRS) modem and receive remote updates. Its hardware
requirements are very small, comparable to those commonly used to implement a
WSN sensor node. To satisfy these requirements, the original gateway code was
hand written fully in C, without using an embedded OS or external libraries besides
the low level standard C libraries.

The other application is a typical WSN sensor node for remote environmental
monitoring. It has transducers for some pollutant gases and it is designed to operate
near industrial sites adjacent to urban areas. The node was developed on top of
ChibiOS [33], a real-time, preemptive, small and fast embedded OS.

In both applications we have started from an existing implementation. However,
the flow presented below can be used both for porting legacy code on the toolset, as
well as adding toolset support for new hardware:

Create library components. The system composition engine is designed to make
extensive use of the components in the library. Hence, the quality of its library
strongly determines the quality of the composed systems.
A good quality library should include enough variety of building blocks to sup-
port most sensing requirements (e.g., various types of sensor interfaces), pro-
cessing requirements (e.g., queues, stats, encryption), in-field and out-of-field
communication protocols, etc.
The libraries can and should be reused for several designs. Thus, once a library
is created it may receive incremental updates (e.g., support for new sensors or
new algorithms) or significant additions (e.g., support for new hardware nodes or
embedded OSs).

Create the top-level specification component. This component is application-spe-
cific and drives the whole system synthesis process. It needs to include enough
requirements to cover all application needs without being over-specified, which
would restrict too much the search space of the synthesis engine.

Run the system composition engine. The engine attempts to solve all requirements
of the top-level component using the existing components from the library.

Evaluate the solutions. As shown in Sect. 38.4.1.5, the toolset can extract and
calculate various figures of merit for each solution which can be used by the
developer in order to select a suitable solution. Moreover, the solutions can also
be manually analyzed and further tuned.

The applications that we consider here are based on existing projects. In these
cases, particular attention should be given to the creation of the components from
the existing hardware or software Intellectual Property (IP) blocks in order to allow
the toolset to find at least a solution that matches the existing projects. One obvious
and easy to automate way is to pack the IP code in an appropriate component model
(see Fig. 38.12). Then, for each component it is important to properly describe its
functional elements, such as its interfaces and configuration capabilities, and the
semantics associated to component behavior and data exchanges.

30 Mihai Lazarescu and Luciano Lavagno

38.5.1 Full custom WSN gateway

The original gateway project was implemented with limited hardware resources,
which are typical for WSN sensor nodes. It included an AVR ATmega1281 mi-
crocontroller, two CC1101 radio modems operating in the 433 MHz band using
a proprietary communication protocol. These connected the gateway, on separate
channels, both with the peer gateways and with much smaller sensor nodes, which
were used for high-density environmental monitoring. The gateway included also a
GPRS TCP/IP-enabled modem for long-range communication with the server and
for remote updates.

The application software of the node is written entirely in C, without an em-
bedded OS. It is made of 49 modules, each of them implementing a well-defined
function: generic functions that are used by most applications (like the task sched-
uler, oscillator calibration or the message queue) or specialized functions that are
used for specific applications (such as drivers for specific on-board sensors).

Instead of an embedded OS, the code uses a module that implements a round-
robin scheduler that can periodically run statically-assigned tasks. Most tasks are
implemented as FSMs using the co-routine approach. Each tasks executes for a min-
imum amount of time when started and voluntarily yields the processor whenever
it completes its processing or it needs to wait for some reason. Also, each task is
responsible for maintaining its own state and persistent data between calls, in order
to be able to resume its execution upon its next scheduling slot.

Besides the functional blocks needed to implement the main gateway behavior,
the code has several modules that implement safety and error recovery functions.
Also, there are several driver and processing modules for several sensors and auxil-
iary devices that can be mounted directly on-board the gateway node:

adc Drivers for the Analog-to-Digital Converter (ADC) peripherals.
The module captures the ADC interrupt and calls the conversion data processing function.

anemometer Weather anemometer sensor handling functions.
Driver and controller for the anemometer transducer.

battery Utilities for battery reading processing.
The module provides the battery-specific voltage-to-capacity conversion tables and the func-
tions to perform the conversion.

cc Field and mesh radio drivers.
The module handles everything related to the field and mesh radio on board the gateway.

crc Cyclic Redundancy Check (CRC) utilities.
Processing utilities (CRC calculation).

eeprom Electrically Erasable Programmable Read-Only Memory (EEPROM) driver.
EEPROM data structure and low-level I/O drivers.

eeprom_ext External EEPROM driver.
Driver for external EEPROM module.

fc10 FC10 sensor handling functions.
It has both the top-level application and drivers for the FC10 transducer.

field Communication protocol with sensor nodes.
Processing of messages received from sensor nodes.

geophone Geophone sensor driver.
It has both the top-level application and drivers for the geophone transducer.

gw Node status.
Controls the state and configuration of the node.

38 Wireless Sensor Networks 31

hal Hardware high level interface.
It processes asynchronous events from the network and on-board switches.

humidity Weather humidity sensor handling functions.
Driver and controller for the humidity transducer.

hygrometer Hygrometer sensor.
It has both the top-level application and drivers for the transducer.

igwc Inter-node communication.
Inter-node messaging and network formation.

inst Node installation mode.
Top-level application that runs during the installation of the node in the field.

mesh inter-node communication protocol.
Processing of node-level messages.

modem GPRS modem driver.
Driver for the GPRS modem.

msg_filter Messages queue filter.
Configurable application-specific processing of the queued messages.

obs On-board sensor driver.
Drivers for various on-board sensors (not application-specific).

oc_link Operating Center communication controller.
Controller of the connection with the server and server message pre-processor.

power Power module driver.
Driver for the power module.

pressure Weather pressure sensor handling functions.
Driver and controller for the pressure transducer.

queue Message queue.
Storage and processing of the messages queued to be delivered to the server.

rain Weather rain sensor handling functions.
Driver and controller for the rain transducer.

rccal Main Resistor-Capacitor (RC) oscillator calibration.
Performs the calibration of the internal RC oscillator.

rel_mesh Multihop message queue transfer via mesh, with acknowledge.
Bidirectional inter-node communication protocol.

rpc Remote procedure call.
Processors for remotely setting and querying (monitoring) node data and for sending remote
commands.

run_state Execution health controller.
Module to monitor the state of the current run, i.e., how far the software execution has pro-
gressed since the last boot.

sched Task scheduler.
Scheduler.

sensor Sensor state and data processing.
Maintains the state of the sensors in range based on the contents of their messages (or lack
thereof).

sensor_ppc Path passage counter sensor.
It has both the top-level application and drivers for a passage detector.

service Internal service requests handler.
Implements a service request/dispatch controller that can change the state of the node

sio Serial link for operating central message transfer.
Communication with the server over a wired serial line.

spi Master Serial Peripheral Interface (SPI) driver.
Driver for the SPI port.

sr Save-restore of RAM contents across watch dog resets.
Saves the contents of specific RAM areas before a watchdog reset and restores them after the
reboot.

32 Mihai Lazarescu and Luciano Lavagno

sw External switch driver.
Driver for the on-node switches.

testing Node test bench mode.
Various top-level applications that act as node and sensor node tester.

test_tx_hw Sensor test bench mode.
Top-level application for the node in testing mode.

theft Node anti-theft detector.
Process that detects possible node theft actions.

timer Timer handler.
Provides several timers for use within the node.

twi Two Wire Interface (TWI) interface.
Driver for the TWI interface.

usart Universal Synchronous/Asynchronous Receiver/Transmitter (USART) drivers.
Drivers for the node USART ports.

util Utilities.
Various processing functions (e.g., conversion of bin values to American Standard Code for
Information Interchange (ASCII) hex).

version Firmware version utilities.
It provides the version of node software.

wd Watchdog driver.
Driver for various functions attached to the watchdog timer.

weather Weather station handlers.
Top-level application that implements a weather station.

zlist RAM-efficient mapping of the Identifiers (IDs) of the sensor nodes in range.
Optimized storage and processing of the messages queued to be delivered to the server.

Most of these modules are made of several functions and may include sizable
amounts of data. For example, module queue includes the data structures for buffer-
ing the messages in queues by priority, waiting to be transmitted, and the functions
for the operation of the queues (such as query, addition or removal). Similarly, the
sensor module maintains the data structure with the status of all sensor nodes in
range and provides the functions for their management, such as query or update.

Fig. 38.14 shows the metadata of the library component that was generated for
a very simple module, version. The module implements the function to store the
gateway version information and provides methods to access it.

At the top level we can see the categories properties, views, resources and inter-
faces. This simple component has only one property that contains the name of the
module. The list of behavioral views includes two files corresponding to the source
code of the module. The resources include one non-functional requirement to track
the dependency of the component on a toolchain that supports the C functions used
in the source code, and a symbolic resource provided by the component which can
be used, for instance, to directly require this component in design specifications or
in other components. In terms of interfaces, the component provides a behavioral
function, which retrieves and returns the version data. Additionally, for most meta-
data properties one can enter a description that can be used, for instance, to help
the developer understand the semantics of the component, when it is displayed in a
component or solution editor.

Fig. 38.15 shows the result of the composition of a minimal gateway system for
which the specification was just to include the core gateway functions. Moreover,
the composition tool ran the configuration helpers of the components, to set up their

38 Wireless Sensor Networks 33

<sgraph:Gss xmi:id="_b2b65395f30689ed09f02e">
<properties>

<name>version_component</name><description />
</properties>
<views xmi:id="_08f5c2612c510ac5e105e7">

<behavior>
<view xmi:id="_5c39ae70c147735f28ad4b" name="version.c"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZ [...]</mem>

</view>
<view xmi:id="_44e6770ca6e62fc2db54e9" name="version.h"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZlc [...]</mem>

</view>
</behavior>

</views>
<resources>

<behavior>
<require><name>avr_libc</name><description /></require>
<provide><name>version_component</name>

<description /></provide>
</behavior>

</resources>
<interfaces>

<behavior>
<provide>

<description />
<function>

<name>version_get</name>
<return><type>char *</type></return>
<port><ord>1</ord><type>char *</type></port>

</function>
</provide>

</behavior>
</interfaces>

</sgraph:Gss>

Figure 38.14: Example of a simple library component that includes properties and a
code view.

Figure 38.15 Result of sys-
tem composition using only
the requirements of the main
gateway component as spec-
ification. Just 36 out of all
49 modules were included
by the engine in the final
project (emphasized), cor-
rectly leaving out, e.g., drivers
for optional sensors, test
suites, interfaces.

adc hygrometer rccal test_tx
anemometer igwc rel_mesh theft
battery inst rpc timer
cc main run_state twi
crc mesh sched usart
eeprom modem sensor util
eeprom_ext msg_filter sensor_ppc version
fc10 obs service wd
field oc_link sio weather
geophone power spi zlist
gw pressure sr
hal queue sw
humidity rain testing

34 Mihai Lazarescu and Luciano Lavagno

instances according to the actual values of their parameters, as found by the solver.
For instance, the scheduler is automatically configured to support the actual tasks.

For this minimal requirement, the solver found a suitable composition with a
maximum recursion depth of 888, matching 230 abstract requirements, 472 func-
tional requirements and two data requirements in less than 0.8 s on an 1.8 GHz
Intel R© CoreTM i7-2677M processor.

In addition to software solution composition, the tool collects other requirements
of the instantiated components into a BOM list that includes the hardware node type,
radio specifications and the target compilation toolchain.

By changing just the top-level specification component, we used the toolset to
automatically compose systems for different application requirements (for different
gateway compositions in this application).

38.5.2 WSN sensor node for air quality monitoring

Also for this application we followed the flow outlined in Sect. 38.5. The existing
application software of the node was developed in C for a real-time embedded OS,
ChibiOS. This OS has some important features that help increasing the reliability of
the applications. For instance, the APIs of the OS are designed to require minimal
parameters and to do just one function, with no options and no error conditions.

Since the application was using an Real-Time Operating System (RTOS), we
converted several OS modules into library components so that the system compo-
sition engine can consider them when searching for a solution to problem speci-
fications. Besides the RTOS modules, we created library components for several
application-specific elements, such as the transducer drivers and some special inter-
faces required by the OS:

comm Application layer of the node communication protocol.
globals Global definitions and initialization.
hwcfg/board Board-specific configurations, e.g., General-Purpose Input/Output Pin (GPIO)

and clock setup, and peripherals check.
crc8 Helper functions for node interface, e.g., CRC calculation.
if Interface functions for the node.
transport Transport layer for node interface.
DHT11 Driver for the temperature and humidity sensor.
GroveDust Driver for the particulate matter sensor.
GroveMQ5 Driver for the gas sensor (H2, LPG, CH4, CO, alcohol).
GroveMQ9 Driver for the gas sensor (CO, coal gas, LPG).
sensors Higher-level abstraction of sensor drivers.
thRdProbes Periodic reader for sensor data.

Along with these components, we have created library components for an exten-
sive set of OS modules, e.g.:

can_lld STM32 Controller Area Network (CAN) subsystem low level driver source.
ext_lld STM32 EXT subsystem low level driver source.
adc_lld STM32F4xx/STM32F2xx ADC subsystem low level driver source.

38 Wireless Sensor Networks 35

ext_lld_isr STM32F4xx/STM32F2xx EXT subsystem low level driver Interrupt Service
Routine (ISR) code.

hal_lld STM32F4xx/STM32F2xx Hardware Abstraction Layer (HAL) subsystem low level
driver source.

stm32_dma Enhanced Direct Memory Access (DMA) helper driver code.
pal_lld STM32L1xx/STM32F2xx/STM32F4xx GPIO low level driver code.
i2c_lld STM32 Inter-Integrated Circuit (I2C) subsystem low level driver source.
mac_lld STM32 low level Media Access Control (MAC) driver code.
usb_lld STM32 Universal Serial Bus (USB) subsystem low level driver source.
rtc_lld Real-Time Clock (RTC) low level driver.
sdc_lld STM32 Secure Digital Card (SDC) subsystem low level driver source.
spi_lld STM32 SPI subsystem low level driver source.
gpt_lld STM32 General Purpose Timer (GPT) subsystem low level driver source.
icu_lld STM32 Input Capture Unit (ICU) subsystem low level driver header.
pwm_lld STM32 Pulse-Width Modulation (PWM) subsystem low level driver header.
serial_lld STM32 low level serial driver code.
uart_lld STM32 low level Universal Asynchronous Receiver/Transmitter (UART) driver

code.
adc ADC Driver code.
can CAN Driver code.
ext EXT Driver code.
gpt GPT Driver code.
hal HAL subsystem code.
i2c I2C Driver code.
icu ICU Driver code.
mac MAC Driver code.
mmcsd Multimedia/Secure Digital Card (MMC/SD) cards common code.
mmc_spi MMC/SD over SPI driver code.
pal Input/Output (I/O) Ports Abstraction Layer code.
pwm PWM Driver code.
rtc RTC Driver code.
sdc SDC Driver code.
serial Serial Driver code.
serial_usb Serial over USB Driver code.
spi SPI Driver code.
tm Time Measurement driver code.
uart UART Driver code.
usb USB Driver code.
chcond Condition Variables code.
chdebug ChibiOS/RT Debug code.
chdynamic Dynamic threads code.
chevents Events code.
chheap Heaps code.
chlists Thread queues/lists code.
chmboxes Mailboxes code.
chmemcore Core memory manager code.
chmempools Memory Pools code.
chmsg Messages code.
chmtx Mutexes code.
chqueues I/O Queues code.
chregistry Threads registry code.
chschd Scheduler code.
chsem Semaphores code.
chsys System related code.
chthreads Threads code.

36 Mihai Lazarescu and Luciano Lavagno

chvt Time and Virtual Timers related code.
nvic Cortex-Mx Nested Vectored Interrupt Controller (NVIC) support code.
chcore ARM Cortex-Mx port code.
chcore_v7m ARMv7-M architecture port code.
crt0 Generic ARMvx-M (Cortex-M0/M1/M3/M4) startup file for ChibiOS/RT.
vectors Interrupt vectors for the STM32F4xx family.
chprintf Mini printf-like functionality.

Fig. 38.16 shows an example of a library component that was created for this

<sgraph:Gss xmi:id="_c3cd36f777bdea1a5ae079">
<properties>

<name>comm_component</name>
<cmt><rpcs><rpc>
<description>Set sensor sampling frequency.</description>
<name value="RATE" /><values><set type="integer" /></values>
</rpc></rpcs></cmt>

</properties>
<views xmi:id="_190b8090159699e0b68bce">

<behavior>
<view xmi:id="_b860c0e4a20a75489a5f76" name="comm.c"
type="source" language="C" encoding="base64">

<mem>LyoNCiAqIENvbW [...]</mem></view>
<view xmi:id="_37a76b4ed27649239a0554" name="comm.h"
type="source" language="C" encoding="base64">

<mem>LyoNCiAqIENvbW0uaA0KICo [...]</mem></view>
</behavior>

</views>
<interfaces>

<behavior>
<provide><data>

<name>m_sPacket</name><base>t_PktHeader</base><size>6</size>
</data></provide>
<provide><function>

<name>Comm_Init</name><return><type>void</type></return>
<port><ord>1</ord><type>void</type></port>

</function></provide>
<provide><function>

<name>Comm_Write</name><return><type>void</type></return>
<port><ord>1</ord><type>t_u8 *</type></port>
<port><ord>2</ord><type>t_u8</type></port>

</function></provide>
<require><function>

<name>Crc8</name><return><type>unsigned char</type></return>
<port><ord>1</ord><type>void *</type></port>
<port><ord>2</ord><type>int</type></port>
<port><ord>3</ord><type>unsigned char</type></port>

</function></require>
<require><data>

<name>g_Kau8Sync</name><base>t_u8</base><size>4</size>
</data></require>
<require><data>

<name>g_pSApp</name><base>SerialDriver *</base><size>4</size>
</data></require>

</behavior>
</interfaces>

</sgraph:Gss>

Figure 38.16: Example of a library component used for the air quality monitoring
application. It includes a parameter that can be remotely accessed at run-time.

project. Its structure is similar to the one shown in Fig. 38.14 in terms of dependency

38 Wireless Sensor Networks 37

and interface data declarations. Besides these, the component includes a parameter
definition under the rpcs tag. These parameters are made available by the functional
code of the component to allow their remote control by a middleware layer or by
a monitoring server, using specific protocols. The data associated to these parame-
ters in the library component, which is enclosed in an rpc tag, is extracted by the
composition tool and is attached to each solution that was generated. These data
are later used by external tools for their run-time configuration to properly interface
with the component. The data can also include human readable descriptions for the
developers or the beneficiaries of the WSN application.

These library components were added to the same library that was used for the
first application. In this way, the synthesis engine is able to compose systems for
both hardware node types by selecting suitable compatible components to match
the specification requirements.

For this application, the solver found a suitable system composition with a max-
imum recursion depth of 109, matching 22 abstract requirements, 50 functional
requirements and 12 data requirements, in less than 0.2 s on an 1.8 GHz Intel R©

CoreTM i7-2677M processor.
We used the toolset to compose nodes with different sensors, sensor combi-

nations, sensing periods and remote monitoring interfaces (as the one mentioned
above). The synthesis engine used the high-level requirements in the top-level com-
ponent (which were provided by the developer) to automatically select and compose
suitable hardware, software and configuration for the node.

38.6 Conclusion

Wireless sensor networks can be used for many applications in a variety of do-
mains, but their reliability, lifetime, overall cost and design effort limit their actual
use. Moreover, WSN design flows often lack a well-defined separation between the
application designers and the multidisciplinary engineering knowledge needed to
cover the operation of the underlying technology. This considerably reduces the use
of WSN solutions by the application domain experts, even though WSNs would
provide very effective solutions for their applications.

We briefly overviewed some of the most important existing WSN development
techniques, abstractions and tool categories to evaluate how well they respond to
these requirements. From the review, the importance of the trade-off between im-
plementation optimization and accessibility to application domain experts became
apparent. On the one hand, the development flows that allow significant design op-
timizations imply a level of hardware, software and network design knowledge that
is seldom found among application domain experts. On the other hand, highly ab-
stracted design flows may often lead to poorly optimized WSN designs and are
difficult to port to target platforms outside the (often) narrow range supported by the
tool. Also, most of the tools themselves generally lack composability and the ability
to be used as building blocks within new development flows.

38 Mihai Lazarescu and Luciano Lavagno

Model-based design flows seem to provide effective trade-offs between the man-
ual effort that is required to optimize the designs and the availability of a high-level
development flow that increases designer productivity. In this context, we presented
in more detail two innovative toolsets that offer user-friendly high-level design entry
interfaces as well as various degrees of automation to hide the low-level implemen-
tation details from the developer. Both flows allow design optimization to various
degrees, and also manual optimization for skilled developers to increase the per-
formance of the resulting WSN designs. To evaluate their effectiveness, we have
illustrated the use of both tools for the development of some typical applications.

References

1. Abrach, H., Bhatti, S., Carlson, J., Dai, H., Rose, J., Sheth, A., Shucker, B., Deng, J., Han,
R.: MANTIS: System Support for multimodAl NeTworks of In-situ Sensors. In: Proceedings
of the 2Nd ACM International Conference on Wireless Sensor Networks and Applications,
WSNA ’03, pp. 50–59. ACM, New York, NY, USA (2003). DOI 10.1145/941350.941358

2. Antonopoulos, C., Asimogloy, K., Chiti, S., D’Onofrio, L., Gianfranceschi, S., He, D., Iodice,
A., Koubias, S., Koulamas, C., Lavagno, L., Lazarescu, M.T., Mujica, G., Papadopoulos, G.,
Portilla, J., Redondo, L., Riccio, D., Riesgo, T., Rodriguez, D., Ruello, G., Samoladas, V.,
Stoyanova, T., Touliatos, G., Valvo, A., Vlahoy, G.: Integrated Toolset for WSN Application
Planning, Development, Commissioning and Maintenance: The WSN-DPCM ARTEMIS-JU
Project. Sensors 16(6), 804 (2016). DOI 10.3390/s16060804

3. Ashton, K.: That ‘Internet of Things’ Thing. Expert view, RFID Journal (2009). http:
//www.rfidjournal.com/article/view/4986

4. Cao, Q., Abdelzaher, T., Stankovic, J., He, T.: The LiteOS Operating System: Towards Unix-
Like Abstractions for Wireless Sensor Networks. In: Proceedings of the 7th International
Conference on Information Processing in Sensor Networks, IPSN ’08, pp. 233–244. IEEE
Computer Society, Washington, DC, USA (2008). DOI 10.1109/IPSN.2008.54

5. Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J., Yoon, C.: RETOS: Resilient, Expand-
able, and Threaded Operating System for Wireless Sensor Networks. In: Proceedings of the
6th International Conference on Information Processing in Sensor Networks, IPSN ’07, pp.
148–157. ACM, New York, NY, USA (2007). DOI 10.1145/1236360.1236381

6. Compton, M., Henson, C., Lefort, L., Neuhaus, H., Sheth, A.: A survey of the semantic spec-
ification of sensors. In: In 2nd International Semantic Sensor Networks Workshop (2009)

7. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming Wireless Sensor Networks
with the TeenyLime Middleware. In: Proceedings of the ACM/IFIP/USENIX 2007 Interna-
tional Conference on Middleware, Middleware ’07, pp. 429–449. Springer-Verlag New York,
Inc., New York, NY, USA (2007)

8. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini, H.: A
Model-driven Engineering Framework for Architecting and Analysing Wireless Sensor Net-
works. In: Proceedings of the Third International Workshop on Software Engineering for Sen-
sor Network Applications, SESENA ’12, pp. 1–7. IEEE Press, Piscataway, NJ, USA (2012)

9. Dong, W., Chen, C., Liu, X., Bu, J.: Providing OS Support for Wireless Sensor Networks:
Challenges and Approaches. Commun. Surveys Tuts. 12(4), 519–530 (2010). DOI 10.1109/
SURV.2010.032610.00045

10. Dunkels, A., Gronvall, B., Voigt, T.: Contiki – A Lightweight and Flexible Operating Sys-
tem for Tiny Networked Sensors. In: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, LCN ’04, pp. 455–462. IEEE Computer Society,
Washington, DC, USA (2004). DOI 10.1109/LCN.2004.38

http://www.rfidjournal.com/article/view/4986
http://www.rfidjournal.com/article/view/4986

38 Wireless Sensor Networks 39

11. Eswaran, A., Rowe, A., Rajkumar, R.: Nano-RK: An Energy-Aware Resource-Centric RTOS
for Sensor Networks. In: Proceedings of the 26th IEEE International Real-Time Systems
Symposium, RTSS ’05, pp. 256–265. IEEE Computer Society, Washington, DC, USA (2005).
DOI 10.1109/RTSS.2005.30

12. Gámez, N., Cubo, J., Fuentes, L., Pimentel, E.: Configuring a context-aware middleware for
wireless sensor networks. Sensors 12(7), 8544–8570 (2012)

13. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language:
A Holistic Approach to Networked Embedded Systems. SIGPLAN Not. 38(5), 1–11 (2003).
DOI 10.1145/780822.781133

14. Greenstein, B., Kohler, E., Estrin, D.: A Sensor Network Application Construction Kit
(SNACK). In: Proceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems, SenSys ’04, pp. 69–80. ACM, New York, NY, USA (2004). DOI 10.1145/
1031495.1031505

15. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming Wireless Sensor Networks
Using Kairos. In: Proceedings of the First IEEE International Conference on Distributed
Computing in Sensor Systems, DCOSS’05, pp. 126–140. Springer-Verlag, Berlin, Heidelberg
(2005). DOI 10.1007/11502593_12

16. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A Dynamic Operating System
for Sensor Nodes. In: Proceedings of the 3rd International Conference on Mobile Systems,
Applications, and Services, MobiSys ’05, pp. 163–176. ACM, New York, NY, USA (2005).
DOI 10.1145/1067170.1067188

17. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architecture Di-
rections for Networked Sensors. SIGARCH Comput. Archit. News 28(5), 93–104 (2000).
DOI 10.1145/378995.379006

18. Lazarescu, M.T.: Design of a WSN Platform for Long-Term Environmental Monitoring for
IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
3(1), 45–54 (2013). DOI 10.1109/JETCAS.2013.2243032

19. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM Trans. Database Syst. 30(1), 122–173 (2005).
DOI 10.1145/1061318.1061322

20. Mathworks: Generate C and C++ code from simulink and stateflow models. The MathWorks
(2013). https://it.mathworks.com/products/simulink-coder/

21. MATLAB and Simulink Release 2010a: The MathWorks, Inc., Natick, Massachusetts, United
States (2010)

22. MATLAB and Stateflow Release 2010a: The MathWorks, Inc., Natick, Massachusetts, United
States (2010)

23. Mohamed, N., Al-Jaroodi, J.: A Survey on Service-oriented Middleware for Wireless
Sensor Networks. Serv. Oriented Comput. Appl. 5(2), 71–85 (2011). DOI 10.1007/
s11761-011-0083-x

24. Mottola, L., Picco, G.P.: Programming Wireless Sensor Networks: Fundamental Concepts and
State of the Art. ACM Comput. Surv. 43(3), 19:1–19:51 (2011). DOI 10.1145/1922649.
1922656

25. Mottola, L., Picco, G.P.: Middleware for wireless sensor networks: an outlook. J. Internet
Services and Applications 3(1), 31–39 (2012). DOI 10.1007/s13174-011-0046-7

26. Mülder, A., Nyßen, A.: TMF meets GMF. Eclipse Magazin 3, 74–78 (2011).
https://svn.codespot.com/a/eclipselabs.org/yakindu/media/
slides/TMF_meets_GMF_FINAL.pdf

27. OMG, XML: Metadata Interchange (XMI) Specification (2007). http://www.omg.org/
spec/XMI/2.1.1/PDF/index.htm (accessed June 4, 2016)

28. Palermo, G., Silvano, C., Valsecchi, S., Zaccaria, V.: A system-level methodology for fast
multi-objective design space exploration. In: Proceedings of the 13th ACM Great Lakes
Symposium on VLSI, GLSVLSI ’03, pp. 92–95. ACM, New York, NY, USA (2003). DOI
10.1145/764808.764833

https://it.mathworks.com/products/simulink-coder/
https://svn.codespot.com/a/eclipselabs.org/yakindu/media/slides/TMF_meets_GMF_FINAL.pdf
https://svn.codespot.com/a/eclipselabs.org/yakindu/media/slides/TMF_meets_GMF_FINAL.pdf
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm

40 Mihai Lazarescu and Luciano Lavagno

29. Paulon, A., Fröhlich, A., Becker, L., Basso, F.: Model-driven development of wsn applications.
In: Computing Systems Engineering (SBESC), 2013 III Brazilian Symposium on, pp. 161–
166 (2013). DOI 10.1109/SBESC.2013.27

30. Ray, A.: Planning and analysis tool for large scale deployment of wireless sensor network.
International Journal of Next-Generation Networks (IJNGN) 1(1), 29–36 (2009)

31. Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless Comm.
11(6), 54–61 (2004). DOI 10.1109/MWC.2004.1368897

32. Shimizu, R., Tei, K., Fukazawa, Y., Honiden, S.: Model Driven Development for Rapid Pro-
totyping and Optimization of Wireless Sensor Network Applications. In: Proceedings of the
2Nd Workshop on Software Engineering for Sensor Network Applications, SESENA ’11, pp.
31–36. ACM, New York, NY, USA (2011). DOI 10.1145/1988051.1988058

33. Sirio, G.: ChibiOS/RT (2013). http://www.chibios.org/ (accessed June 4, 2016)
34. Sugihara, R., Gupta, R.K.: Programming Models for Sensor Networks: A Survey. ACM Trans.

Sen. Netw. 4(2), 8:1–8:29 (2008). DOI 10.1145/1340771.1340774
35. Taherkordi, A., Loiret, F., Abdolrazaghi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: Program-

ming Sensor Networks Using REMORA Component Model. In: Proceedings of the 6th IEEE
International Conference on Distributed Computing in Sensor Systems, DCOSS’10, pp. 45–
62. Springer-Verlag, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-13651-1_4

36. Varga, A., Hornig, R.: An overview of the omnet++ simulation environment. In: Proceed-
ings of the 1st International Conference on Simulation Tools and Techniques for Communi-
cations, Networks and Systems & Workshops, Simutools ’08, pp. 60:1–60:10. ICST (Insti-
tute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST,
Brussels, Belgium, Belgium (2008)

http://www.chibios.org/

Index

A

acronyms, list of ix

W

Wireless sensor network 1
classification 4
middleware 7

approaches 7
challenges 7
classification 7
requirements 7
state of the art 7

operating systems 7
challenges 8
examples 8

programming 2
addressing mechanism 5
architectural aspects 6
communication scope 5
communication specification 5
computation scope 6
data access model 6
group level 4

low level 4
network level 5
paradigm 6

Wireless sensor network design
automation 4
component-based 10
component-based, autom. composition 20

case studies 28
case study, full custom legacy code 30
case study, OS-based design 34
design flow overview 20
design input interface 25
specification and library components 25
system composition example 28
system composition process 27
tool overview 23

model-driven 9, 11
abstract functional modules 12, 15
application code generation 19
application skeleton optimization 17
application skeleton template 16
design flow 14
design framework 11
requirement analysis 14
use case 17

41

	Wireless Sensor Networks
	Mihai Lazarescu and Luciano Lavagno
	Introduction
	Past Work
	Programming languages and tools
	Middleware and operating system
	Model-Driven Design

	Model-based WSN application design
	Development flow overview
	Component structure
	Design flow

	Automated WSN application composition
	Development flow using automated application composition

	Case studies
	Full custom WSN gateway
	WSN sensor node for air quality monitoring

	Conclusion
	References

	Index

