Environmental issues regarding CO2 and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials

Original
Environmental issues regarding CO2 and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials / Akhter, Parveen; Farkhondehfal, Mohammadamin; HERNANDEZ RIBULLEN, SIMELYS PRIS; Hussain, Murid; Fina, Alberto; Saracco, Guido; Khan, Asad U.; Russo, Nunzio. - In: JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING. - ISSN 2213-3437. - STAMPA. - 4:4(2016), pp. 3934-3953. [10.1016/j.jece.2016.09.004]

Availability:
This version is available at: 11583/2647432 since: 2017-09-26T12:43:28Z

Publisher:
Elsevier

Published
DOI:10.1016/j.jece.2016.09.004

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Environmental issues regarding CO$_2$ and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials

Parveen Akhter, M. Amin Farkhondehfal, Simelys Hernández, Murid Hussain, Alberto Fina, Guido Saracco, Asad U. Khan, and Nunzio Russo

*Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
*Department of Chemical Engineering, COMSAIS Institute of Information Technology, M.A. Jinnah Building, Defence Road, Off Iqra Road, Lahore, 54000, Pakistan
*Center for Sustainable Futures (CSF@POLIITO), Istituto Italiano di Tecnologia, Corso Trenzo 23, 10129, Torino, Italy
Environmental issues regarding CO₂ and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials

Parveen Akhter,a M.Amin Farkhondehfa, Simelys Hernández,a,c Murid Hussaina,b Alberto Fina,a Guido Saracco,a,c Asad U. Khan b and Nunzio Russo a,*

aDepartment of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
bDepartment of Chemical Engineering, COMSATS Institute of Information Technology, M.A. Jinnah Building, Defence Road, Off Raiwind Road, Lahore-54000, Pakistan.
cCenter for Sustainable Future Technologies (CSFT@POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy.
**To whom correspondence should be addressed. Tel.: +39-011-0904710; Fax: +39-011-0904624; e-mail address: nunzio.russo@polito.it

Abstract: Carbon dioxide (CO₂) is considered one of the main contributors to the greenhouse effect and is currently a key challenge throughout the world. Therefore, the CO₂ complications associated with the environment have in particular been focused on in this review, and various strategies regarding CO₂ mitigation, or the utilization of different technologies to produce renewable fuels or useful chemicals to overcome the energy crisis, have been considered together with the recent developments in the photocatalytic reduction of CO₂ by means of different titania photocatalysts to produce various energy-bearing products. The problems, progress and future prospects regarding CO₂ utilization are presented. This present review indicates that the devolvement of efficient active photocatalysts for this technology is still under way and that better efficiency of the desired products could be accomplished. It is also shown that this technique is still at an embryonic stage, due to a lack of proficiency, and that the yield discrimination is very low. It can therefore be concluded that further research efforts are needed to boost this process towards commercialization in the near future.

Keywords: CO₂; greenhouse gas; titania; photocatalysis; renewable energy

Review outline:
1. Introduction
2. Environmental issues regarding CO₂ and recent strategies for alternative fuels
3. CO₂ utilization technologies for renewable fuel formation
 3.1. Economic aspects of CO₂ for the production of chemicals
 3.2. CO₂ utilization technologies
 3.2.1. Thermodynamics of CO₂ conversion reactions
 3.2.2. Hydrogenation of CO₂
 3.2.3. Electrochemical conversion
 3.2.4. Thermochemical splitting of CO₂
 3.2.5. Biocatalytic processes
 3.2.6. Photocatalytic reduction
4. Photocatalytic reduction of CO₂ with titania-based materials
 4.1. Molecular interactions of CO₂ on titania photocatalysts
 4.2. Pure/bulk titania photocatalysts
 4.3. Nanostructured titania and single crystal titania photocatalysts
 4.4. Dye sensitization and doped titania photocatalysts
 4.5. Ti–oxide anchored on porous silica glass, zeolite, and mesoporous molecular sieve materials
 4.6. Nanocomposites or supported titania photocatalysts
5. Summary: issues, progress and prospects
Acknowledgements
1 Introduction
Carbon dioxide is considered to be one of the main greenhouse gasses. The others are Methane (CH₄), Chlorofluorocarbon (CFC) and Nitrous Oxide (N₂O). CO₂ plays a significant role in the global warming, due to its important contribution to the greenhouse effect (CO₂-55%, CFCs-24%, CH₄-15%, and N₂O-6%), and is currently considered a key challenge for the world [1, 2]. The Special Report of the Intergovernmental Panel on Climate Change (IPCC) on Emission Scenarios (SRES, 2000) projects an increase in the global greenhouse gases (GHG) emissions from 25 to 90% CO₂ between 2000 and 2030 [3].

On one hand, the main emission sources of CO₂ are mainly due to the burning of fossil fuels, such as oil, natural gas, coal etc., which accelerate the greenhouse effect. Human activities generate about 37 billion tons of CO₂ emissions each year, with about 30 gigatons (Gt) of this coming from the energy-related emissions. It has been reported that about 98% of the carbon emissions result from the combustion of the fossil fuels (coal, oil, and natural gas) [4]. On the other hand, the depletion of the fossil fuels throughout the world is dramatically increasing every year because of the ever increasing energy demands of humans as well as because of the increased global population. It has been estimated that these emission in CO₂ concentrations will have increased temperature on average, by 1.4 - 5.8 °C towards the end of this century. Consequently, to fulfill the energy demand for the future generations and to prevent the globe from being over-heated, CO₂ should be used as a raw feedstock to promote energy bearing products in a positive way for overcoming the energy crisis [5]. It can roughly be estimated that about 5–10% of the total CO₂ emissions could be suitable for the production of fuels and chemicals, that is, about one order of magnitude higher than actual use of CO₂ in industry [6]. Therefore, in order to minimize the CO₂ greenhouse effect and in the research of alternative sources of renewable energy, various technologies have been adopted for the capturing of CO₂ from the atmosphere: CCS (Carbon Capture and Storage), DAC (Direct Air Capture), SCPP (Solar Chimney Power Plants), etc. All of these are supposed to be long-term technologies; however, low stability is still a major challenge. In addition, other methods have also been used to capture CO₂, such as post combustion, pre-combustion and oxy-combustions, but unfortunately these are not yet economically feasible technologies [7].

Although CO₂ capture technologies are now widely being accepted by researcher as a pathway toward declining the growth rate of CO₂, overall, society is currently aware of the CO₂ utilization too. Indeed, CO₂ reuse is being considered as one of the main contributors to a low-carbon economy. Nevertheless, catalytic technologies for CO₂ conversion are still at an embryonic stage. In order to move towards such objective, it is necessary a more efficient use of resources and energy as well as the development of novel and effective technologies that employ renewable energy sources. Furthermore, an increase in the scientific efforts is essential, not only to develop new routes but also to efficiently assess problems associated with innovation ideas. Along with this increase in efforts, both public and private funds will be necessary to reach this goal. From this perspective, the SPIRE initiative [8] states that the CO₂ utilization is one of the most important pillars to boost sustainability, and to make the chemical industry competitive.

At the moment, a great deal of research has been carried out on exploring new ways of reducing CO₂, for example, electrochemical CO₂ reduction [9], photovoltaic processes [10], electrochronic display devices [11, 12], thermal CO₂ photocatalytic reduction [13], biological reduction by plants [14], and photoelectrochemical reduction of CO₂ as previously reported by Halmann et al. [15], using an electrochemical cell. Unfortunately, the use of an electrochemical cell for CO₂ conversion leads to certain disadvantages because of its very slow kinetics and its very high-energy demand [16]. On another hand, the photocatalytic reduction of CO₂ in aqueous form was firstly reported by Inoue et al. [17]. Later on, this field led to interest in both liquid and gas phases for the production of valuable chemicals such as CH₄, methanol (CH₃OH), carbon monoxide (CO), formic acid (HCOOH), formaldehyde (HCHO), etc. [18-23]. This technique is still at a developing stage, because of its low efficiency towards fuels formation, but in the meantime, the possibilities of take advantage of a green process for the production of fuels and chemicals while decreasing the CO₂ level in atmosphere makes...
it an interesting method to be analysed and developed.

This review is focused on the issues that arise from the CO₂ emissions to the environment, on various strategies regarding CO₂ mitigation and on its utilization through different technologies to produce renewable fuels or useful chemicals for overcoming the energy crisis. In particular, the attention is concentrated on the recent developments in the field of the photocatalytic reduction of CO₂ by means of different titania photocatalysts to produce various energy-bearing products. Finally, future prospects regarding an efficient CO₂ utilization are also presented.

2 Environmental issues regarding CO₂ and recent strategies for alternative fuels

The increasing level of CO₂ in the atmosphere is not only considered a challenging problem throughout the world, but has also made it necessary for many scientists, investigators and researchers to explore various approaches in order to find a better solution for the energy crisis. The French scientist Jean Baptiste Fourier first observed the effect of greenhouse gases in 1827. This effect is caused by the greenhouse gasses, in particular by, CO₂, water vapour, ozone (O₃), CH₄ and N₂O. The increase in the greenhouse effect constitutes about 70% of CO₂, 24% CH₄ and about 6% of N₂O. This increased concentration of CO₂ in the atmosphere is mainly due to the burning of fossil fuels, such as oil, coal and natural gas. Land-use changes, cement manufacturing and deforestation contribute to this increase and there is an overall release of about 6 Gt of carbon into the atmosphere each year. The global average surface temperature has been estimated, through a climate change simulation [24], to have increased by about 0.6 °C over the 20th century. On the other hand, IPCC has stated that the global GHG emissions should be reduced by 50 to 80% by the year 2050 [3]. Moreover, there has been a slight alteration in the release of CO₂ into the atmosphere over the 1000 year period up to the 20th century. It has been reported that the concentration in Antarctica ice core of CO₂ increased slowly from 280 to 295 ppmv between years 1000 AD to 1900 AD [25]. This analysis is statistics based. From the year 1958 AD to 2004 AD, the CO₂ on the atmospheric air increased sharply from 315 to 377 ppmv [26] and such values are still gradually increasing. The recent data indicate that since October 2011 up to June 2016, the CO₂ concentration has increased from 388.96 to 406.81 ppmv, respectively [27]. On the other hand, the depletion of the energy sources is mainly due to the rapid increase in the world’s population, the rise in public transportation, and the construction of a larger and larger number of industries, which release toxic substances into the atmosphere, thus causing health as well as environmental problems [28].

In addition, another key fact is the use of large amounts of CO₂ at an industrial scale. CO₂ is currently being used in a variety of applications, for example, in the metal industry, for the food and beverages, for the pulp, paper and electronics purposes, for the health care and laboratory analyses as well as chemical production. At present, the Earth's energy requirements are estimated at 14 TW/y.
Considering the economic development, the high consumption of fuel and constantly increasing number of people in the world, it is estimated that the energy demand in 2050 will be between 28-30 TW/y. It is also estimated that in the case of the continued use of the traditional energy sources, the CO₂ levels will rise to 40 billion Mg per year by 2030 [29]. The correlation between the CO₂ emissions and the world's population is shown in Figure 1.

The presence of CO₂ in the atmosphere has two aspects, one of which is very crucial for the existence of life, i.e. for the photosynthesis of plants, for the carbon cycle and for many useful industrial applications, while the other aspect involves some drawbacks, for instance, global warming. The later issue has currently become a challenging topic for the scientists, investigators, researchers, etc. To tackle this problem, many investigations have been carried out over the last few decades by applying different technologies to control the CO₂ emissions and/or convert them into valuable energy products. Various possible strategies for the conversion of CO₂, such as the physicochemical approaches, the sustainable (or renewable) methanol synthesis and the production of syngas (CO/H₂) derived from the flue gases, which are produced from coal, gas or oil-fired electric power stations, in addition to the photochemical production of synthetic fuel [30], are of great interest. In order to prevent the global warming problems, the scientists involved in the study of the atmosphere have suggested that there should be a reduction in our current level of CO₂ emissions by about 60%, which would have a great impact on the climate changes [31]. It has been estimated that the total CO₂ emissions from fossil fuels is about 35.9 Gt/year all over the world [27]. The primarily sources of these emissions are connected to the production of electricity for public use and the production of heat, which release almost 35% of CO₂, along with the public transport, which is responsible for 24%. Another 41% of the CO₂ emissions are due to manufacturing, industrial energy use, auto producers and other sectors (see Figure 2) [32].

Photo-technology is considered one of the most encouraging ways of CO₂ conversion into value added products. The high concentration of CO₂ in the atmosphere could be captured and stored by means of various technologies [33]. Currently, different modes are being applied to capture CO₂, such as chemical and physical adsorption [34], cryogenic processes [35] and membrane separation [36]. The most recent way of capturing CO₂ is known as “ammonia scrubbing” [37] which is the first step toward using CO₂ as the feedstock in different technologies to produce value added products.

3 CO₂ utilization technologies for renewable fuel formation

The increasing level of CO₂ in the atmosphere has not only threatened global warming, but has also raised various questions on how to control or reduce the CO₂ emissions to some extent. Therefore, much more attention has been paid by a number of researchers to gather CO₂ and convert it into valuable chemicals or fuels.
Figure 3. Publication trend of CO₂ conversion vs. CO₂ photocatalytic reduction.

Figure 3 shows the research trend pertaining to the CO₂ utilization, which has increased significantly in recent years. Observing the topic ‘CO₂ conversion’ shown in Figure 3a, it can be seen that the publications in the 2000 period (publications including books, journals, reviews, patents etc.) rose to over 320, a number that increased even more to 1675 at the end of 2014. Similarly, the five-year publication trend regarding ‘CO₂ photocatalytic reduction’ shown in Figure 3b, and in particular for the year 2014, indicates the recent profound interest in this area.

Moreover, the chemical utilization of CO₂ has increased over the last few years, and because of this increasing tendency, chemical industries are now taking part in the conversion of CO₂ to produce even higher energy density compounds such as fuel products. Additionally, recycling and reuse of CO₂ not only address the balance of atmospheric CO₂ but also represent valuable carbon sources renewable fuels formation. Recently, various studies have also been carried out, from the economic point of view, for the future of the chemical industry [38].

The main products of the CO₂ conversion should be fuels to reduce the net CO₂ emissions significantly and to generate the renewable products of high economic value, such as those shown in Figure 4. Various options have been adopted for the CO₂ conversion, such as the hydrogenation of...
CO₂ to form oxygenates; besides, hydrocarbons are the most intensively investigated products of the CO₂ conversion. Methanol synthesis from CO₂ and H₂ has been proposed, and another possibility is the production of dimethyl ether (DME), which is considered a “clean” burning fuel. Moreover, the photocatalytic reduction of CO₂ to a fuel by means of semiconductor catalysts is one of the most important techniques to obtain energy-bearing products. It has been reported that photocatalysis is a ‘green’ technology with promising applications over a wide assortment of chemical and environmental technologies [39]. Therefore, there are various possibilities of activating and of converting CO₂, but it is first necessary to overcome a thermodynamic barrier. For this reason, providing sufficient energy for the reaction is the critical aspect that should be considered when evaluating the alternative routes for the CO₂ conversion. For such a conversion of CO₂ to chemicals, reducing agents as well as intermediates species are needed to complete the reaction, for instance, the production of methanol by electrochemical CO₂ hydrogenation requires the use of protons (H⁺) and electrons (e⁻) consecutively [40-42]. Another possible route is the conversion of CO₂ to syngas (CO/H₂), which can be then converted into other chemicals or clean fuels [43]. Generally, there are several approaches that can be considered for the CO₂ conversion to meet the energy demands [44], and the starting materials should be energy rich, unsaturated, and organometallic compounds.

3.1 Economic aspects of CO₂ for chemical production

CO₂ purification and recovery remain the main problems in terms of cost. However, these problems are not critical as there are many sources of rather pure CO₂ in the refinery and from chemical processes for the production of: ammonia, H₂, ethylene oxides, liquefied natural gas, Fisher-Tropsch coal, as well as it is a product from bio refineries, fermentation process, etc. [45]. It has been estimated that around 500 million tons of low cost (US $ 20/ton) and high concentration CO₂ is obtainable globally as a by-product from fertilizer plants, industrial sources and from natural sources. Diluted CO₂ is emitted at a higher cost, which could be captured from the power, cement and steel plants, etc. It is hoped that by introducing the limitation on the emission of CO₂ all around the world, the cost of the captured CO₂ and the market price of CO₂ will decrease in the near future [46].

3.2 CO₂ utilization technologies

By using different technologies different derivatives can be produced from CO₂ (see Figure .5). Several technologies have recently been explored and are reported in literature [28, 46] for the efficient utilization of CO₂ for useful products. These technologies are based on hydrogenation, electrochemical, thermochemical or biocatalytic processes, and photocatalytic reduction, which are further summarized and compared in this section of this review report.
3.2.1. Thermodynamics of CO₂ conversion reactions

In order to convert CO₂ to other products, substantial input of energy and active catalysts are required due to the stability of this molecule that has a rather low energy content ($\Delta G_f^0 = -394$ kJ/mol in gas phase). In Table 1 the free energy changes and other redox parameters for standard reduction reaction at pH = 0 are mentioned. Based on these tabulated data and on the fact that these reactions are reduction protonation and not hydrogenation, the variation of the redox potential with temperature can be calculated by the Gibbs-Helmholtz relationship:

$$E(T) = \frac{-\Delta G}{nF} = -\frac{(\Delta H(T) - T\Delta S(T))}{nF}$$

where G is Gibbs free energy, H is enthalpy and S is entropy.

Based on this formula, temperature can be pointed out as an effective parameter for the outcome of the reaction. Indeed, at room temperature, the entropy contribution, through the term $(-T\Delta S)$ is negligible with respect to the thermodynamic driving force for the CO₂ reaction; thus, the change of enthalpy (ΔH) during the reaction is a good guide to its thermodynamic feasibility [47]. For example, at low temperatures, CO production is less favored electrochemically rather than formation of other products like formaldehyde [48].

From Table 1, it is clear that the multielectron CO₂ reduction reactions require comparable potentials to that necessary for the H₂ evolution reaction ($H^+ + 2e^- \rightarrow H_2$, $E^o = -0.41$V at pH=7), while the single-electron reduction potential of CO₂ to form CO₂ radical exhibit a much higher value. CO₂ radical has been identified as an intermediate for the production of CO, formic acid and even methane [49, 50]. Figure 6 reports a proposed mechanism of CO₂ reduction in aqueous solution, under basic and acidic conditions. It have been reported that in acidic solution the CO₂ reduction to either CO or HCOOH is nonspontaneous compare to H₂ redox couple, instead reduction to methane is spontaneous [48]. Indeed, the reduction potential of CO₂ to CH₄ and CH₃OH is thermodinamically
more feasible than that required to reduce protons to H_2. Nevertheless, despite the thermodynamic feasibility to reduce CO_2, there are kinetic barriers for accomplishing the multielectron reduction processes that cause high overpotentials and limit such reactions. Thus, reduction of CO_2 in aqueous solutions is expected to be accompanied, or eventually replaced, by the kinetically more favored H_2 evolution.

![Table 1. The standard $\Delta G^\circ (25^\circ \text{C}; \text{pH} = 7)$ and the corresponding E° values](image)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔG° (kJ mol$^{-1}$)</th>
<th>E° (Volts vs. NHE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2\text{O}$</td>
<td>11.68</td>
<td>-0.53</td>
</tr>
<tr>
<td>$\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{HCOOH}$</td>
<td>24.63</td>
<td>-0.61</td>
</tr>
<tr>
<td>$\text{CO}_2 + 4\text{H}^+ + 4e^- \rightarrow \text{H}_2\text{CO} + \text{H}_2\text{O}$</td>
<td>148.85</td>
<td>-0.48</td>
</tr>
<tr>
<td>$\text{CO}_2 + 8\text{H}^+ + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}$</td>
<td>-139</td>
<td>-0.38</td>
</tr>
<tr>
<td>$\text{CO}_2 + 6\text{H}^+ + 6e^- \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}$</td>
<td>-17.42</td>
<td>-0.24</td>
</tr>
<tr>
<td>$\text{CO}_2 + e^- \rightarrow \text{CO}_2^-$</td>
<td>183.32</td>
<td>-1.9</td>
</tr>
</tbody>
</table>

![Figure 6. Reaction mechanism of CO_2 reduction. Adapted from [49]](image)

3.2.2. Hydrogenation of CO_2

The hydrogenation of CO_2 over catalytic beds at elevated temperatures and pressures to produce hydrocarbons such as methane, or oxygenated hydrocarbons such as dimethyl ether and methanol, is a viable approach only if the hydrogen is produced from water electrolysis; by employing renewables energy sources (i.e. electrical energy from sunlight, wind, etc.) [51]. The hydrogenation of CO_2 to lower carbon products, for example (CH_4, CH_3OH), as well as to obtain higher molecular weight alkanes and alcohols through C-C bond formation, is possible [52]. A variety of products, such as methanol, dimethyl ether (DME) and other carboxylic acids (formic and acetic acids), can be produced with this technique. Moreover, various homogeneous and heterogeneous catalysts have been used for CO_2 hydrogenation, which involves multi-step routes. For instance, H_2 can be produced by electro or photocatalytic water splitting processes and, then, it can be used to hydrogenate the CO_2. Moreover, the reverse water-gas shift (RWGS) reaction is very important in the catalytic hydrogenation of CO_2, since it can be used to subsequently form methanol or dimethyl ether [16]. This reaction is considered a mildly endothermic reaction with an enthalpy change of $\Delta H_{298}^\circ = 41.2$ kJ/mol and Gibbs free energy change of $\Delta G_{298}^\circ = 28.6$ kJ/mol. The RWGS reaction is the primary step in CO_2 hydrogenation for fuel production:
Iron-chromium catalysts are considered very active at 400°C or at higher temperatures, but a significant problem arises as a high equilibrium constant is necessary to drive the RWGS reaction towards right side. The equilibrium can be shifted to the right by increasing the CO₂ concentration, and a high H₂ concentration is able to increase the CO₂ consumption. The removal of water vapour from the reactor also drives the reaction to the right side. Different catalysts have been studied for the RWGS reaction [53]. Copper-based catalysts, particularly in CuO/ZnO oxides modified by alumina, zirconia, titania and/or silica [54], as well as iron or cerium-based catalysts, require a temperature above 400 °C to achieve an appreciable CO₂ conversion; therefore, these catalysts are not suitable for the RWGS reaction. The CO produced by means of the RWGS reaction could also be used for hydrogenation and methanol formation, or methanol could be synthesized from a feed of CO₂ and H₂ under feasible conditions. A book has recently been published, by the Nobel Laureate Olah [55], called ‘The Methanol Economy’, which deals with the production of methanol or dimethyl ether. Many studies have indicated that CO₂ is a better feed component for methanol formation than CO for the hydrogenation process, as indicated by the following reaction:

\[
\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O}
\]

The RWGS reaction causes a rapid conversion of H₂ and CO₂ to CO and H₂O. However, water acts as an inhibitor on the catalyst and causes the slowing down of the consecutive methanol formation step. Therefore, to overcome this critical issue, some improved catalysts have been used for CO₂ hydrogenation for methanol production[56]. In addition, multicomponent catalytic systems (e.g. Cu/ZnO/ZrO₂/Al₂O₃/SiO₂) have shown good performances and stable productivity, as well, the use of different precipitating agents have been found to significantly affects the physicochemical properties of such multi-functional catalysts and their catalytic performance [57]. Another aspect that affect the productivity is the feed. Usually, productivity is 3–10 times lower when a pure CO₂ feed is used instead of a CO/CO₂ feed, because of the higher oxidation power of CO₂ and its more negative effect on the catalyst than that of CO.

Dimethyl ether, which is a clean burning alternative to diesel, could be produced from methanol dehydration over an acidic catalyst:

\[
2\text{CH}_3\text{OH} \rightleftharpoons \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}
\]

However, there are two another possibilities for the production of DME:

\[
2\text{CO} + 4\text{H}_2 \rightleftharpoons \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}
\]

\[
3\text{CO} + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OCH}_3 + \text{CO}_2
\]

The synthesis of DME is more favourable from syngas than from methanol. As methanol synthesis and methanol dehydration are both limited by reaction equilibrium, the equilibrium constraint of methanol formation may be avoided by continuous removal of methanol through its conversion to DME directly from syngas [58]. The thermochemical process involves the direct decomposition of CO₂ to carbon monoxide and oxygen:

\[
\text{CO}_2 + \text{energy} \rightarrow \text{CO} + 1/2 \text{O}_2
\]

The reaction is endothermic, and it involves a free energy change (ΔG₀) of 257 kJ/mol. For a 100% conversion of CO₂, the reaction should be carried out at a minimum temperature of about 3075 °C, at which ΔG₀ becomes zero. However, in principle, the CO yield can be as high as 30% at temperatures near 2400 °C, but unfortunately the yield is low and a backward reaction may occur. The methanol fuel produced from CO₂/H₂ is a renewable energy source, as recognized by the Renewable Energy Directives of the European Union. However, renewable energy sources must be used for the methanol synthesis, e.g. either electrolysis or bio-routes, using semiconductor photocatalysts. Methanol formation offers more advantages over the other solutions (such as FT hydrocarbon synthesis). Its benefits include a very simple synthesis process with higher selectivity and flexibility and reduced transport costs. Methanol could also be used as a raw material in the process industry for the synthesis of olefins, etc. Owing to its low emission rate, and higher output
power, some pilot units have proved that using methanol fuel decreases NOx emission by around 30% compared to that of CH4 usage as a fuel [59]. Another benefit of the use of methanol is that the small water content in the methanol causes a further reduction in the NOx emission. Furthermore, methanol can also be used for many other purposes, such as in chemicals, power generation and in transportation.

On another hand, urea can be synthesized from ammonia and CO2, a process that is well established at a large scale. An urea boosting technology has shown that the capturing of fossil fuel CO2 for urea production not only could solve the problem of the reduction of GHG emissions, but can also be used in an integrated ammonia-urea manufacturing plant that uses natural gas as a feedstock in the reforming process to produce CO2 and NH3. A large amount of NH3 can be produced by using the surplus CH4. Generally, ammonia is synthesized from hydrogen (from natural gas) as well as nitrogen (from the air). Firstly, natural gas is converted into hydrogen:

\[
\text{CH}_4 + H_2O \rightleftharpoons 3H_2 + CO
\]

\[
\text{CH}_4 + 2H_2O \rightleftharpoons 4H_2 + CO_2
\]

Then, air is mixed in the gas stream to obtain a H2:N2 ratio of 3:1. Furthermore, hydrogen and nitrogen are treated at higher temperatures/pressures in the presence of iron catalyst to produce ammonia, which is a very crucial component in the synthesis of urea:

\[
N_2 + 3H_2 \rightleftharpoons 2NH_3
\]

The ammonia and carbon dioxide are fed into the reactor at higher temperatures and pressures to produce urea, which is produced in two steps. In the first step, ammonium carbamate, an intermediate product, is formed and then it further dehydrates to produce urea, as indicated below.

Ammonium carbamate formation:

\[
2\text{NH}_3 + \text{CO}_2 \rightleftharpoons \text{H}_2\text{NCOONH}_4
\]

Urea formation:

\[
\text{H}_2\text{NCOONH}_4 \rightleftharpoons \text{H}_2\text{NCONH}_2 + \text{H}_2\text{O}
\]

Urea is used as a fertilizer because of its rich nitrogen component. Therefore, it is of great importance in the field of agriculture and is also used in the manufacturing of resins for timber processing as well as in the yeast manufacturing process. Additionally, the synthesis of substituted urea is also attracting a great deal of attention at an industrial scale [60] and is being applied in various fields, such as in the refinery process, in pharmaceuticals, in agrochemicals and also in petrochemical industries.

3.2.3. Electrochemical conversion

The electrochemical conversion of CO2 was first reported in 1978 by Halmann, who used p-GaP under UV light illumination [15]. Later on, the mechanism behind the electrochemical conversion of CO2 was first described by Bockris et al. in 1989 [61] as:

\[
\text{CO}_2 + e^- \rightarrow \text{CO}_2^-
\]

\[
\text{CO}_2^- + 2H^+ + 2e^- \rightarrow \text{CO} + H_2O + e^-
\]

In such a way, a high potential is required to form the CO2− radical [62, 63]. In addition, a great deal of work has to be done on the use of electrocatalysts to split the dissolved CO2 into liquids. Various products, such as the simplest form of CO to very complex, oxygenated hydrocarbons of high-energy content, can be synthesized directly. This technology offers some positive aspects because of its compatibility with the well-established water electrolysis technology, and the possibility of using photovoltaic derived electricity. In aqueous electrolytes, such as NaHCO3 and KHCO3, water and carbon dioxide reduction processes take place simultaneously at the cathode, due to the proximity of their reduction potentials (H+/H2O potential is – 0.41 V vs. NHE whereas CO/CO2 potential is – 0.53 V vs. NHE at pH = 7). One of the many challenges in electrochemical CO2 reduction chemistry has to do with the interaction between CO2 and water. When dissolved CO2 is introduced to electrochemical conditions a set of reversible reaction can happens, as shown in Figure 11.
7, which needs to be considered in function of the solution pH and the used electrocatalysts [64]. However, a wide range of hydrocarbons can be produced from the co-electrolysis of water and carbon dioxide. It has been observed that more hydrogen than hydrocarbons are produced when some metal electrodes, for instance, Ni, Pt, Co, Rh, and Fe, are used, because of their low hydrogen over-potential and high CO adsorption [65, 66]. Some other metals, for instance Cd, Pb, Hg, Bi, Sn and In, first produce formate ions and then undergo splitting of CO₂ [67]. Some noble metals and some other metals, such as Au, Ag, Pd, Ga and Cu result in a reasonable hydrogen production, but show low CO₂ adsorption. Among the different electrolytes that are available, copper has been considered as one of the most suitable materials for the production of hydrocarbons and oxygenated hydrocarbons in aqueous solutions [68]. In Table 2 a list of some used catalysts for electrochemical CO₂ reduction and their products is shown.

![Equilibrium reactions of CO₂ and water. Adapted from [65]](image)

Table 2. Electrochemical reduction of CO₂ and their product

3.2.4. Thermochemical splitting of CO₂

The capturing of CO₂ from the atmosphere can be obtained through various capturing technologies. The capturing and conversion of CO₂ are high intensive energy processes. However, the direct reduction of carbon dioxide using concentrated sunlight with thermochemical cycles is one of the most encouraging approaches for the production of hydrocarbons from CO₂ reduction with H₂O. The thermochemical process involves the direct decomposition of CO₂ to carbon monoxide and oxygen:

\[\text{CO}_2 + \text{energy} \rightarrow \text{CO} + \frac{1}{2} \text{O}_2 \]

The reaction is highly endothermic, with a free energy change (ΔG°) of 257 kJ/mol. Similarly, for a 100% conversion of CO₂, the reaction should be carried out at a minimum temperature of about 3075 °C, with zero ΔG°. In theory, the CO yield can be as high as 30% at temperatures close to 2400 °C, but it is much lower because of backward reactions. Galvez et. al. carried out a second law thermodynamic analysis of Zn/ZnO and FeO/Fe₃O₄ cycles [86].

\[\text{ZnO} \leftrightarrow \text{Zn} + \frac{1}{2} \text{O}_2 \]
\[\Delta H_{25°C}^{°} = +350.5 \text{ kJ/mol} \]

\[\text{Zn} + \text{CO}_2 \leftrightarrow \text{ZnO} + \text{CO} \]
\[\Delta H_{25°C}^{°} = -67.5 \text{ kJ/mol} \]

The reaction in Eq. (1) is highly endothermic and requires a temperature of about 1700 °C to form gas phase zinc and oxygen. The overall reaction is net production of O₂, which is sum of Eq. (1) and Eq. (2). A temperature between 425 and 725 °C is suggested to operate these reactions with 39% of efficiency under concentrated solar radiation.

The Sandia National Laboratory (SNL) is working on a two-step FeO/Fe₃O₄ thermochemical process, the so-called ‘Sunshine-to-Petrol’ process, to assimilate CO₂ and H₂O splitting processes in order to directly form diesel, gasoline or jet fuel as end products [87]. This process utilizes the concept of a thermochemical ‘heat engine’, called Counter- Rotating Ring Receiver Reactor Recuperator (CR-
5), to convert concentrated solar energy into thermal energy [87]. However, the feasibility of thermochemical CO₂ splitting has yet to be proved.

3.2.5. Biocatalytic processes

CO₂ utilization plays a significant role in the biocatalytic industry and provides a variety of opportunities for the synthesis of chemicals. For instance, Evonik is pursuing an acetone fermentation process using CO₂, the so called COOB AF project. In this process, industrial waste gas streams containing CO, H₂ and CO₂, as well as genetic modified acetogenic microorganisms, such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium aceticum, are used for acetone synthesis. In addition, an Escherichia coli (E. coli) strain has been developed specifically to produce succinic acid along with wheat-derived glucose, which is used as a substrate. Moreover, longer chain alcohols could be produced by means of the metabolic pathway of smart engineered bacteria (e.g. genetically modified E. coli) through the conversion of CO₂. For instance, isobutanol formation is being carried out by means of modified cyanobacterium [88]. Additionally, another CO₂ conversion possibility is a non-natural metabolic pathway. In this process, branched chain amino acids are protracted to produce long-chain abiotic keto acids as well as alcohols (carbon chain 5 to 8) in the presence of 2-isopropylylmalate synthase and other enzymes [88]. The optimization of this technique was made during the synthesis of 6-carbon alcohol, i.e. (S)-3-methyl-1-pentanol.

The biosynthesis route for the CO₂ utilization through the syngas fermentation is another interesting approach that is widely acceptable at an industrial scale, for which CO/H₂ is used rather than pure CO₂. In this process, Carbon Monoxide Dehydrogenase (CODH) enzyme from clostridium thermoacetieum is utilized to catalyze the reversible oxidation of CO to CO₂ using an iron (Fe) and nickel (Ni) containing metalloenzyme. This enzyme can also be coupled with a semiconductor catalyst such as TiO₂ (since its conduction band has good reducing ability), which produces the electrons necessary for the reduction process. In addition, TiO₂ nanoparticles, after the modification with CODH, and a photosensitizer under the illumination of visible light on specific reaction conditions, produce CO (250μmol g⁻¹TiO₂-h⁻¹) [89-91]. The formation of fuels and chemicals through syngas fermentation offers a great advantage over the metal catalytic conversion, because of the higher specificity of the biocatalyst, the lower energy costs, the greater resistance to catalyst poisoning, and the independence of a fixed H₂:CO ratio. On the other hand, the biocatalysts are very costly. However, numerous microorganisms, such as acetogens, including Clostridium ljungdahlii, Clostridium autoethanogenum, Eurobacterium limosum etc., have been reported to be able to produce fuels and chemicals through syngas utilization [92].

Another feasible approach for the CO₂ conversion through biomass is the production of biofuels and, thus, several feedstocks have been used for such purpose [93]. The use of microalgaes appears the most promising route for biofuels production. The oil content of algae is significantly higher than that of crops. Similarly, many algal species have a dry weight oil content of more than 30%; as well, the oil content can be as high as 80% in some strains, such as Schizochytrium sp. and Botryococcus braunii [94]. Algae itself fixes carbon dioxide and facilitates carbon recycling without any assistance. Moreover, bioethanol is commonly produced from sugar or starchy crops, such as sugar cane, and plant cellulose, using fermentation processes. Similarly, biodiesel is currently being produced from oil crops, for example, corn, soybean, canola, coconut, oil palm, in the presence of microalgae. In this transesterification biodiesel production process, triglyceride oil reacts with methanol in the presence of catalysts, such as sodium hydroxide or potassium hydroxide. Then, biodiesel can be used in the combustion process when it is blended with petro diesels. The biodiesel produced from microalgae is considered a significant source of global energy. The world’s fuel production from biomass is rapidly increasing, while the sunlight-to-fuel energy conversion efficiency of photosynthesis is approximately 1%. It appears that biofuels will be a part of the future energy infrastructure, but they are unlikely to play a decisive role.
Over the last few years, there has been a great deal of curiosity in the utilization of CO₂ through new approaches, which involve the use of homogeneous photocatalysts. For instance, methane or methanol can be produced from the CO₂ conversion with hydrosilanes under zirconium phenoxide borane complexes, or N-heterocyclic carbenes as catalysts [96, 97].

3.2.6. Photocatalytic reduction

The photocatalytic reduction of CO₂ to a fuel has been an attractive approach in the last few decades, because of the benefits it offers over other technologies. CO₂ is readily available as a feedstock and can be used infinitely for many fuels syntheses. The reactions can be carried out at mild conditions to obtain short-chain hydrocarbon photocatalytic products from CO₂ reduction that can help to solve the problem of the energy crisis and help to protect the environment. This technology would be more favourable to replace fossil fuels with CO₂ as a carbon source (energy) in the chemical industry. The pioneering work by Fujishima and Honda in 1972, which is known as the ‘Honda-Fujishima effect’, on the photocatalytic splitting of water by TiO₂ electrodes, opened the door for future generations in the field of photocatalysis [98]. After this discovery, attention in this research field has been focused not only on a specific area, but also on different applications from a laboratory to an industrial scale by using semiconductors, such as TiO₂. Moreover, Blajeni et al. later on used single-crystal p-GaP and p-GaAs photoanodes to produce methanol as well as formic acid and formaldehyde [99]. In a subsequent work, Halmann et al. introduced the use of titanate catalyst powder suspended in an aqueous solution, through which CO₂ was bubbled in the presence of natural sunlight to produce formic acid, formaldehyde, and methanol [100]. The Fujiwara group studied ZnS nanocrystal photocatalysts and their visible light response. They reported that a high content of metal ions improved the photocatalytic activity for CO₂ reduction as the result of a shift in the materials band gap [101]. Such strategy is based on the incorporation of metal dopants in substitutional or interstitial positions in semiconductors structure, which can generates trap levels within the band gap. Such trap levels can form narrow bands that are located below the minimum edge of the conduction band. Consequently, electrons can be excited at these levels, exploiting lower-energy photons than such required to excite the pristine material, to become trapped, with the holes having enough lifetime for water oxidation; electrons-holes recombination is moreover suppressed, thus increasing the overall process efficiency [87, 102]. Another strategy consists on the used of co-catalysts, such as the
case of Barton and coworkers who have used a catalyzed p-GaP based photoelectrochemical cell for the reduction of CO2 to methanol [63].

In the following sections, emphasis will be made on describing the basic mechanisms and recent developments on TiO2-based photocatalysts, aimed to enhance their CO2 conversion photoactivity.

4 Photocatalytic reduction of CO2 with titania-based materials

The photocatalytic reduction of CO2 to sustainable fuels is a challenging and promising application, because it offers many advantages, for instance:

- CO2 photo-catalytic reduction can be carried out in moderately mild condition, e.g. at room temperature and pressure;
- CO2 is readily available as a key carbon source, which can be used infinitely to produce clean solar energy;
- Short-chain hydrocarbon can be obtained as photocatalytic products from the CO2 reduction process, thus helping to overcome the energy crisis problem to a certain extent;
- This technology could favourably be used to replace fossil fuels with CO2 as a C source in the chemical industry.

In recent years, a great deal of effort has been directed towards the conversion of CO2 to hydrocarbons or renewable fuels in both liquid or gaseous phases [19, 112-125], using various semiconductor photocatalysts, mostly under UV light sources to simultaneously overcome the global heat problems and to fulfil the future energy demands. After the pioneer work of Fujishima and Honda on water photo-splitting over TiO2 [98], attention on photocatalysis approaches have not only been developed on that specific era, but different applications from a laboratory to an industrial scale have emerged by using different semiconductor materials.

As mentioned briefly above, one of the first works on photocatalytic reduction of CO2 in an aqueous solution was carried out by Inoue et al. [17]. In such work, different semiconductors, e.g. TiO2, WO3, ZnO, CdS, GaP and SiC were used to produce energy bearing products such as formaldehyde (HCHO), formic acid (HCOOH), methyl alcohol (CH3OH), trace amounts of methane (CH4) and carbon monoxide (CO), under xenon and mercury-lamps illumination. Subsequently, numerous investigators have tried to boost the photocatalytic technology by using CO2 as a reducing agent in presence of H2O vapour and other solvents [32, 103-111].

Subsequently, various photocatalyst oxides and non-oxides, such as TiO2, CdS, ZnS, SiC, WO3, Fe2O3, ZrO2, Ga2O3, ZnO, and MgO2, have been used extensively for photocatalytic reduction [1, 125]. However, some of these catalysts suffer from certain limitations, e.g. ZnO is highly unstable as it dissolves immediately in water to form Zn(OH)2, which causes the catalyst inactivation. In addition, Fe2O3, and WO3 have conduction band edges below the reversible hydrogen potential, thus an external electrical bias is needed to complete the splitting of H2O for H2 production [126]. Therefore, the major criterion for an efficient semiconductor photocatalyst is that the redox potential of the e-/h+ should lie within the band gap domain of the photocatalyst in order to obtain a better efficiency of the CO2 reduction. Of all these above-mentioned materials, TiO2 is one of the few catalysts able to satisfy all of the requirements that a good photocatalyst should have. TiO2 is a widely used semiconductor, due to its adequate reduction potential value for CO2 (-0.24V) towards methane formation [20]. Moreover, its holes are strongly oxidizing and redox selective. In addition, TiO2 is an environmentally friendly material, which shows a good oxidation power, strong resistance to chemicals and photo corrosion, non-toxicity, superior charge transport properties, a low operational temperature, low cost, and significantly low energy consumption. Over the last few years, TiO2 has drawn the attention of many scientists, due to its different potential applications.

In particular, for which regard the photoreduction of CO2 over TiO2 based materials, such trend is dramatically increasing every year because of the unique aforementioned properties of the TiO2 and its easy availability. TiO2 can be used in its pure form (bare), or doped with different metals and non-metals, or even in a highly dispersed form within mesoporous silica, zeolites or carbon materials to enhance its photoactivity, as shown in Table 3. It is evident that to date, many investigations have
been focused on this area, in order to obtain good productivity and selectivity for specific products, but this approach is still far from being able to offer the desired efficiency. The development of new technological approaches [127], application of innovative synthesis methods for the formation of high surface area nanostructured catalysts [128], as well as investigation on new co-catalysts to be coupled to the TiO₂ might be some of the ways of enhancing the photocatalytic activity. Moreover, research activities on this field should have the objective of not only establishing robust technologies and materials that can be used for this application, but also of developing cost effective ones [104, 105, 129-131].

Table 3. Photocatalytic reduction of CO₂ on bare, doped and highly dispersed TiO₂ based materials

<table>
<thead>
<tr>
<th>Photocatalysts</th>
<th>Reductants</th>
<th>Light source</th>
<th>Products</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>H₂O</td>
<td>450 Xe lamp</td>
<td>CH₄, C₂H₄</td>
<td>Adachi et al. (1994)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>H₂O</td>
<td>75 W high-pressure Hg</td>
<td>CH₄, CH₃OH, CO</td>
<td>Anpo et al. (1995)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>H₂O</td>
<td>75 W high-pressure</td>
<td>CH₄, CH₃OH, CO</td>
<td>Yamashita et al. (1995)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>H₂O, 0.2M, NaOH solution</td>
<td>4.5kW Xe lamp</td>
<td>HCOOH, CH₃OH, CH₄, CH₂OH, CH₂H₂</td>
<td>Mizuno et al. (1996)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>H₂O, liquid CO₂</td>
<td>990 W Xe lamp</td>
<td>HCOOH</td>
<td>Kaneco et al. (1997)</td>
</tr>
<tr>
<td>Pt-TiO₂/Y zeolite</td>
<td>H₂O</td>
<td>75 W high-pressure</td>
<td>CH₄, CH₃OH</td>
<td>Anpo et al. (1997)</td>
</tr>
<tr>
<td>TiO₂ nanocrystals SiO₂ matrices</td>
<td>1M 2-propanol, solution</td>
<td>500W high-pressure Hg arc lamp</td>
<td>HCOO⁻, CO</td>
<td>Liu et al. (1997)</td>
</tr>
<tr>
<td>TiO₂ (P25)</td>
<td>Isopropyl alcohol</td>
<td>4.2 Kw Xe lamp</td>
<td>CH₄, HCOOH</td>
<td>Kaneco et al. (1998)</td>
</tr>
<tr>
<td>Ti-MCM-41, Ti-MCM-48</td>
<td>H₂O vapor</td>
<td>High-pressure Hg</td>
<td>CH₄, CH₃OH</td>
<td>Anpo et al. (1998)</td>
</tr>
<tr>
<td>Rh/TiO₂</td>
<td>H₂</td>
<td>Ultra high</td>
<td>CH₄</td>
<td>Kohno et al. (1999)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Methanol, ethanol 2-propanol, nitric, hydrochloric, and phosphoric acid</td>
<td>0.96wK Xe lamp</td>
<td>HCOOH</td>
<td>Kaneco et al. (1999)</td>
</tr>
<tr>
<td>TiO₂/SiO₂, Ti-MCM-41</td>
<td>H₂O</td>
<td>100W high-pressure</td>
<td>CH₄, CH₃OH</td>
<td>Ikeue et al. (2002)</td>
</tr>
<tr>
<td>Ti/Si hexagonal and cubic</td>
<td>H₂O</td>
<td>100W high-pressure Hg lamp</td>
<td>CH₃OH CH₄</td>
<td>Shioya et al. (2003)</td>
</tr>
<tr>
<td>Ti-SBA-15</td>
<td>H₂O</td>
<td>Mercury lamp</td>
<td>CH₄, CH₃OH</td>
<td>Hwang et al. (2004)</td>
</tr>
<tr>
<td>TiO₂ suspension</td>
<td>H₂O</td>
<td>λ=350nm</td>
<td>CH₄</td>
<td>Dey et al. (2004)</td>
</tr>
<tr>
<td>Material</td>
<td>Reagent(s)</td>
<td>Light Source</td>
<td>Product(s)</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Cu/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>UV light</td>
<td>CH<sub>3</sub>OH</td>
<td>Wu et al. (2005) [141]</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>UV light</td>
<td>CH<sub>4</sub></td>
<td>Tam et al. (2006) [108]</td>
</tr>
<tr>
<td>TiO<sub>2</sub>(P25)</td>
<td>H<sub>2</sub>O, H<sub>2</sub></td>
<td>15W UVA λ=365nm</td>
<td>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub></td>
<td>Lo et al. (2007) [113]</td>
</tr>
<tr>
<td>TiO<sub>2</sub> pellets</td>
<td>H<sub>2</sub>O vapors</td>
<td>UVC 253.7nm</td>
<td>CH<sub>4</sub>, CO, H<sub>2</sub></td>
<td>Tam et al. (2007) [112]</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>15W UVA lamp, λ=365nm</td>
<td>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>OH, HCOOH</td>
<td>Xia et al. (2007) [109]</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>200W Hg/Xe lamps</td>
<td>H<sub>2</sub>, CH<sub>4</sub></td>
<td>Tam et al. (2008) [142]</td>
</tr>
<tr>
<td>Pure TiO<sub>2</sub> anatase</td>
<td>H<sub>2</sub>O</td>
<td>8W Hg lamp, λ=254nm</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH</td>
<td>Koci et al. (2009) [20]</td>
</tr>
<tr>
<td>Cu/TiO<sub>2</sub>-SiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>Xe lamp</td>
<td>CO, CH<sub>4</sub></td>
<td>Li et al. (2010) [141]</td>
</tr>
<tr>
<td>Ag/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>8W Hg lamp, λ=1254nm</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH</td>
<td>Koci et al. (2010) [144]</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>H<sub>2</sub>O</td>
<td>UV light</td>
<td>CO</td>
<td>Dimitrijevic et al. (2011) [145]</td>
</tr>
<tr>
<td>Ti-SBA-15</td>
<td>H<sub>2</sub>O vapor</td>
<td>120W high pressure Hg lamp</td>
<td>CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub></td>
<td>Yang et al. (2011) [121]</td>
</tr>
<tr>
<td>Bulk TiO<sub>2</sub>, Ti Oxide</td>
<td>H<sub>2</sub>O</td>
<td>UV lamp</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH</td>
<td>Mori et al. (2012) [124]</td>
</tr>
<tr>
<td>Cu(I)/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>150W solar simulator</td>
<td>CO</td>
<td>Liu et al. (2012) [146]</td>
</tr>
<tr>
<td>Cu-I/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>UV light</td>
<td>CO, CH<sub>4</sub>, CH<sub>3</sub>Cl</td>
<td>Zhang et al. (2012) [147]</td>
</tr>
<tr>
<td>Pt/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>100W high pressure Hg lamp</td>
<td>CH<sub>4</sub></td>
<td>Uner and Oymak (2012) [148]</td>
</tr>
<tr>
<td>Ce/TiO<sub>2</sub> SBA-15</td>
<td>H<sub>2</sub>O vapor</td>
<td>UV Xe lamp</td>
<td>CO, CH<sub>4</sub></td>
<td>Zhao et al. (2012) [149]</td>
</tr>
<tr>
<td>R/TiO<sub>2</sub> modified A/TiO<sub>2</sub> nanorods</td>
<td>H<sub>2</sub>O vapor</td>
<td>UV Hg lamp</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>, CO</td>
<td>Wang et al. (2012) [150]</td>
</tr>
<tr>
<td>Ti-KIT-6</td>
<td>H<sub>2</sub>O vapor</td>
<td>UV 300W</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH</td>
<td>Hussain et al. (2013) [19]</td>
</tr>
<tr>
<td>Au/Ti/SBA</td>
<td>H<sub>2</sub>O</td>
<td>200W Hg lamp</td>
<td>CH<sub>4</sub></td>
<td>Mei et al. (2013) [151]</td>
</tr>
<tr>
<td>Montmorillonite/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>200 W Hg lamp</td>
<td>CH<sub>4</sub>, CO</td>
<td>Tahir et al. (2013) [152]</td>
</tr>
<tr>
<td>Ti-KIT-6</td>
<td>H<sub>2</sub>O vapor</td>
<td>UV light</td>
<td>CH<sub>4</sub>, CH<sub>3</sub>OH, H<sub>2</sub>, CO</td>
<td>Akhtar et al. (2014) [18]</td>
</tr>
<tr>
<td>GaP/TiO<sub>2</sub> Pt- GaP/TiO<sub>2</sub> Pd- GaP/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>Visible light</td>
<td>CH<sub>4</sub></td>
<td>Marcì et al. (2014) [153]</td>
</tr>
<tr>
<td>Ni/TiO<sub>2</sub></td>
<td>H<sub>2</sub>O vapor</td>
<td>UV/Visible light</td>
<td>H<sub>2</sub>,CH<sub>3</sub>OH, CH<sub>3</sub>CH<sub>2</sub>OH, CH<sub>3</sub>CHO</td>
<td>Ola et al. (2014) [154]</td>
</tr>
</tbody>
</table>
Two major types of ‘Heterogeneous photocatalysis’ have been studied extensively over the last few years: one is the bulk semiconductor photocatalyst and the other is the matrix dispersed photocatalyst [167-169]. Both types have been used for their potential to help solve environmental problems, as well as those related to energy generation and the synthesis of organic materials (methane, methanol, carbon monoxide, formic acid, formaldehyde, and other hydrocarbons etc.). The modification of photocatalysts with various species that can enhance its performance is considered a vital step. Different approaches have been used by various researchers on the modification of titania, as summarized in Figure 9 and discussed in the following sub-sections of this review.
4.1 Molecular interactions of CO$_2$ on titania photocatalysts

As mentioned before, titania has become one of the favoured photocatalysts for CO$_2$ reduction because of its stability, low cost, non-toxicity and its superior charge transport. Despite all the advantages of titania as a photocatalyst the conversion efficiency of CO$_2$ is still too low for industrial applications. Further progress requires a well knowledge of CO$_2$ interactions at atomic level with titania at its exposed surfaces.

Titania exist in three crystalline form: anatase, brookite and rutile. The rutile and anatase phases are the more extensively studied, with anatase being regarded as the more photocatalytically active phase [170]. As discussed previously, it is believed that formation of the radical anion CO$_2^-$ is the first step toward CO$_2$ reduction. He et al. [171] reported that CO$_2^-$ radicals can be formed on the surface of titania anatase. They used first-principle calculations to determine the binding configuration of CO$_2$ and CO$_2^-$ radicals on perfect and oxygen-deficient anatase (101) surfaces by using both cluster and periodic models. They concluded that the reduction potential of adsorbed CO$_2$ on a (101) surface is lower by 0.24 V than the reduction potential of a CO$_2$ molecule, both in aqueous solution, due to the formation of hybridized orbitals, which facilitates charge transfer to CO$_2$ [171].

Further density functional theory (DFT) calculations on brookite (210) and anatase (101) surfaces demonstrated that the brookite (210) surface has the same building blocks as the anatase (101) one [172]. However, in a more recent work, Andino et al. [173] demonstrated by computational DFT calculations that an unmodified brookite (210) surface will not result in charge transfer to CO$_2$ by itself and, at the same time, presence of oxygen vacancies within the brookite (210) surface will enhance the interaction and charge transfer to CO$_2$ molecule.

A comparison of the most stable sites of anatase titania, i.e. (001) and (101) surfaces, for CO$_2$ molecular interactions has been reported by Ferrari et al. [174]. As shown in Figure 10, their results of DFT calculations and simulations demonstrate that a high activity of (001) surface can be due to a stronger basicity of the surface oxygen sites; as a result, carbonate and bicarbonate formation occurs in this site. On the other hand, in the most stable (101) surface site, CO$_2$ is less adsorbed and retains its molecular properties.
4.2 Pure/bulk titania photocatalysts

In heterogeneous photocatalysis, two or more phases are used in the photocatalytic reaction: 1) a light source with semiconductor material is used to initiate the photoreaction, 2) a catalyst is used to carry out substrate oxidation or reduction reactions. Bulk semiconductor photocatalysts include metal oxides, sulphides, nitrides, oxynitrides and titanium dioxides, the latter being the most frequently used photocatalysts in CO₂ photoreduction. As shown in Figure 11-A, in the case of bulk TiO₂ materials, upon UV irradiation, the absorption of photons with equal or greater energy than the band gap energy of the semiconductor (3.2 eV for anatase) produces e⁻/h⁺ pairs, as shown in Eq. (4.1).

\[
\text{TiO}_2 \; (\rightarrow) e^- \text{cb (TiO}_2) + h^+ \text{vb (TiO}_2) \tag{4.1}
\]

This leads to the promotion of electrons towards CB and to the holes being left behind in the VB. Consequently, the TiO₂ particle can act as either an electron donor or acceptor for the molecules in the surrounding medium. Thus, the overall efficiency of the photocatalytic activity and product selectivity of the bulk titania is low, because of some limitations of the bulk TiO₂, for example, the chance of charge recombination is higher and the lifetime of the photogenerated e⁻/h⁺ pairs is very short (nanoseconds), both of which could have adverse effects on CO₂ photocatalytic activity.

The reduction of CO₂ with H₂O often results in the formation of CH₄, CH₃OH, HCHO and CO (see Figure 11-A). The yields of these products are increased through an increase in the duration of the UV light, which is a clear indication that their formation from the CO₂ reduction with H₂O vapour takes place in a solid-gas phase system with powdered TiO₂.
Figure 11. Reaction schemes for the photocatalytic reduction of CO₂ with H₂O on (A) bulk TiO₂ [124]; (B) sensitization of a wide band gap semiconductor (B-a) narrow band gap with an aligned conduction band, (B-b) a dye that absorbs in the visible region [175]; (C-a) doping of a semiconductor photocatalyst with metals for electron trapping, (C-b) surface and bulk electron carrier trapgings [176]; (D) the isolated titanium oxide species proposed by Anpo et al. [124], (E) reduced graphene oxide-TiO₂ nanocomposites [177].

4.3 Nanostructured titania and single crystal titania photocatalysts

Nanostructured TiO₂ has been explored in various shapes, including nanospheres (zero dimensional) [178-180], nanofibers (one dimensional) [178, 180-184], nanotubes (one dimensional) [185-187], nanorods (one dimensional) [140, 188, 189], nanosheets (two dimensional) [179, 190-195] and TiO₂ interconnected architectures (three dimensional) [19, 196-201], etc., all of which have been used for photocatalysis applications.

The photocatalytic reduction of CO₂ with H₂O on rutile-type single crystal TiO₂ (100) and TiO₂(110) surfaces was performed by Yamashita et al. [202], who found that selectivity of the photocatalytic reactions depends to a great extent on the type of TiO₂ crystal surface. UV-irradiation of a TiO₂(100) single crystal catalyst in the presence of a mixture of CO₂ and H₂O produced hydrocarbons, CH₄ and CH₃OH with 3.5 and 2.4 µmol h⁻¹ g-cat⁻¹ yields, respectively, but a limitation for a TiO₂ (110) single crystal (only 0.84 µmol h⁻¹ g-cat⁻¹ CH₃OH and no CH₄ formation). However, the photo-generated electrons that localize on the surface sites of excited TiO₂ participate with CO₂ molecules to form intermediate and surface Ti atoms, which act as reductive sites. Consequently, a TiO₂ (100) single crystal has shown more photocatalytic activity towards hydrocarbon formation [202].

In more recent work, He et al. [203] used anatase TiO₂ catalysts with various morphologies, such as nanoparticle, nanotube, and nanosheet, which were synthesized through a hydrothermal method. The main products of photocatalytic reduction of CO₂ in aqueous TiO₂ suspensions were found to be methane, methanol, formaldehyde, carbon monoxide, and H₂. In such work TiO₂ sheets showed to be more active due to high-energy exposed (001) facets, which facilitates the oxidative reaction of H₂O with photogenerated holes, leaving more photogenerated electrons available for the reduction of CO₂ on the (101) facets [203].
4.4 Dye sensitization and doped titania photocatalysts

Narrow-band semiconductors or visible-light-active molecules (dyes) are generally used as sensitizing agents, as can be seen in Figure 11-B. Sensitization with dyes is a commonly used technique in solar and photoelectrochemical cells, and a large number of inorganic or organic dyes have been adopted. Similarly, coupled semiconductors, for instance, CdS and TiO$_2$, or CdSe and ZnO, have been used to enhance the efficiency, through the extension of the absorption range, and to improve the charges separation [204]. The LUMO of the dye has to be higher in energy than the conduction band edge of the semiconductor for electron transfer to occur [205].

The dye sensitization process is only limited because of a narrow band gap. If these approaches are not introduced, the visible or solar light is insufficient, and this causes the reduction of photoactivity. Wu J.C.S. [206] found that the CH$_4$ production from the CO$_2$ reduction over N3-dye–Cu (0.5wt%–Fe(0.5 wt%)/TiO$_2$-P25 increased when moving from a solar to artificial light response. Thus, the used light source and its intensity have an effect, i.e. 0.617 µmol CH$_4$/g-cat h and 0.84 µmol CH$_4$/g-cat h were produced with an average concentrated sunlight intensity of 60 mW/cm2 and 225 mW/cm2, respectively, employing artificial light in the 320–500 nm range.

Moreover, Yang et al. [207] have described the possibility of a contamination effect by residual C in the catalyst. They demonstrated that carbon residues present on the catalyst surface were involved in the photocatalytic reduction of CO$_2$ to CO. It was observed that these carbon residue, which are mainly originated by Ti alkoxides and polyethylene glycol (PEG) during the TiO$_2$ synthesis, can be effectively removed by prolonged exposure of the catalyst surface to UV irradiation in the presence of H$_2$O vapor, other than by another methods like thermal treatment in air. Due to observation of adsorbed 12CO as the main product rather than 13CO over Cu(I)/TiO$_2$, it was concluded that 12C originating from carbon residues was the predominant carbon source. By Isotopic labelling of Ag, Au and Pd–TiO$_2$ samples tested for CO$_2$ reduction, it was confirmed that the formation of CH$_4$ was due to organic impurities present on the catalysts and not to 13CO$_2$ [157].

The main barrier to the photocatalytic activity of a titania catalyst is the higher rate of recombination of e$^-$ and h$^+$ pairs. The best way of overcoming this problem and of preventing the recombination of e$^-$ and h$^+$ pairs, is to load the photocatalysts with metals and noble metals, which function as charge-carrier traps, or to induce the activity with isolated Ti-species. The surface defects sites and inequalities that are present on the catalyst surface, as well as in the bulk, participate as charge carrier traps and suppress the recombination of electrons and holes, as can be seen in Figure 11-C. However, different studies on CO$_2$ reduction with H$_2$O have been carried out in order to improve photoactivity. Some modified titania, doped with metals such as Cu with loadings from 0.3 to 1.0 wt%, reduced the CH$_4$ production, but promote the CH$_3$OH formation [208]. It was then suggested that a further increase in the Cu load on TiO$_2$ would increase the CH$_3$OH yield significantly. 3wt% Cu/TiO$_2$ was found to be optimized with maximum of three times higher activity for methanol production than the original TiO$_2$ [209].

In another work by Wu et. al., it was observed that the maximum methanol yield (0.45 µ mole/g-cat·h) was obtained by using 1.2 wt% Cu/TiO$_2$ that was tested under increasing light intensities from 1 to 6 W/cm2 [141].

In a recent work, Fang et. al. [210] used Hierarchical CuO–TiO$_2$ hollow microspheres for photodriven reduction of CO$_2$ to CH$_4$. As a result, the CuO-incorporated TiO$_2$ hollow microsphere catalyst demonstrates much higher photocatalytic activity toward the photoreduction of CO$_2$ with H$_2$O into CH$_4$ compared with commercial Degussa P25 TiO$_2$ (see Figure 12) [210]. Similarly, Pt/TiO$_2$ can favour the production of CH$_4$, which has been shown to increase remarkably as Pt loading is increased from 0.1 to 1.0 % on titania [129].

Non-metal dopants effectively redshift the TiO$_2$ photocatalyst system and lead to a narrowing of the band gap. Various studies have been reported on non-metal substitution with N, C, F, P, and S, but N-doping has been found to be more effective and to lead to better photocatalytic activity than
the other non-metals [211]. Sathish et al. also reported higher photocatalytic activity for a N-TiO$_2$
 system, and found that the photocatalytic activity of N-TiO$_2$ to visible light was higher than pure TiO$_2$
 and P25 [212]. The photocatalytic reduction of CO$_2$ with H$_2$O vapour using nitrogen doped TiO$_2$
nanotube arrays, co-catalyzed with copper and/or Pt nanoparticles, has been investigated by Varghese
et al. [115]. Methane was obtained as the main product with a yield of 160 μL/gh; however, some
other hydrocarbons were also produced in the presence of natural sunlight. In addition, another study
on N-doped TiO$_2$ has recently been carried out by Michalkiewicz et al. [213] and, in such case, methanol
was found as the main CO$_2$ reduction product. In general, it has been observed that the TiO$_2$
photocatalytic efficiency depends mainly on the employed synthesis route, the high surface area and
the composition of its crystal phase.

4.5 Ti–oxide anchored on porous silica glass, zeolite, and mesoporous molecular sieve
materials

In another type of heterogeneous photocatalyst, the isolated species, which are entrapped in an
inert matrix with a large surface area, have a good adsorption property of the reactants and light, and
have enhanced photoactivity towards fuel formation. In addition, in isolated Ti-highly dispersed
species, photogenerated charges e/\(h^+\) pairs are very close to each other, which play a very significant
role in the photocatalysis process of CO$_2$ reduction.

In such a way, isolated and tetrahedrally coordinated Ti–oxide species, under light irradiation,
transfers an electron from the oxygen O$^{2-}$ to the Ti$^{4+}$ ions, and this results in the transit state
formation of pairs of trapped hole centers O$^-$ and electron centers Ti$^{3+}$, which are located quite near
to each other, compared to the electron and hole produced in bulk titania photocatalysts [124]:

\[
[Ti^{4+} - O^{2-}] \xrightarrow{hv} [Ti^{3+} - O^-] \tag{4.2}
\]

Moreover, because of this unique property, Ti-isolated species play a significant role in different
photocatalytic reactions. The reaction mechanism of CO$_2$ reduction and H$_2$O oxidation is elucidated
in isolated Ti-species, as can be seen in Figure 11-D. Currently, these procedures are used extensively
in the CO$_2$ reduction process, as the photocatalytic productivity and selectivity towards valuable fuel
products is higher in isolated titania than in bulk titania.

The anchoring of Ti–oxide catalysts has led to the evolution of CH$_4$, CH$_3$OH and CO from the
CO$_2$ reduction with H$_2$O at 323 K. The total yield was larger under UV-irradiation at 323 K than at
275 K. The efficiency of the photocatalytic reaction depends to a great extent on the H$_2$O/CO$_2$ ratio,
and its activity increases when the H$_2$O/CO$_2$ ratio is increased, but an excess amount of H$_2$O
suppresses the reaction. Hence, an optimum H$_2$O/CO$_2$ should also be considered to obtain the highest
photocatalytic activity. Sasirekha et al. [107] investigated the yield of CH$_4$, which was shown to

![Figure 12. A comparison for CH$_4$ and CO production by photoreduction of CO$_2$ with P25, TiO$_2$ hollow spheres and CuO-TiO$_2$ hollow spheres. Adapted from [210]](image)
increase significantly as a result of a photocatalytic reduction of CO₂ with H₂O when titania was doped on a SiO₂ support material.

In the same way than powdered TiO₂, Ti–oxide anchored onto zeolites, e.g. Y-zeolite, have been used for the CO₂ reduction in presence of H₂O under UV-irradiation and have led to the evolution of CH₄ and CH₃OH at 328 K, while a certain number of lower hydrocarbons, such as C₂H₄ and C₂H₆, have also been observed [41]. As shown in the Figure 13, Ti-oxide species with a tetrahedral coordination anchored by ion-exchange on Y-zeolite (i.e. sample ex-Ti–oxide/Y-zeolite) exhibit high activity and selectivity for the formation of CH₃OH; while the formation of CH₄ is dominant on both bulk TiO₂ and TiO₂ prepared by impregnation onto Y-zeolite (i.e. sample imp-Ti–oxide/Y-zeolite). In addition, improved photocatalytic activity towards CH₄ (12 µmol g⁻¹ TiO₂-h⁻¹) has been observed, following the deposition of Pt, but the CH₃OH selectivity has been significantly decreased. Thus, the results indicate that Ti-oxides tetrahedral coordinated species serve as active photocatalysts for CO₂ reduction with H₂O, and that their selectivity towards CH₄ formation can increase by doping with metals [124].

![Figure 13](image)

Figure 13. Photocatalytic reduction of CO₂ with H₂O on anatase TiO₂ powder, Ti-oxide anchored on Y-zeolite prepared by different preparation methods (i.e. imp: impregnation and ex: ion exchange) with various titania wt% loadings. Adapted from [124]

The CH₄ and CH₃OH yields for the photocatalytic reduction of CO₂ and H₂O on Ti-oxides supported on various porous materials are shown in Figure 14. The relationship between the selectivity for the formation of CH₃OH and the number of surface OH groups on the porous materials with respect to its effect on the reactivity of the Ti-oxide has been investigated. It has been found that the highest apparent photocatalytic reactivity for the formation of CH₃OH is achieved on a thin transparent film catalyst with a hexagonal mesopore structure (i.e. Ti-PS, h, 50). Even though, the selectivity for the formation of CH₃OH was the highest on the film with a cubic mesopore structure (i.e. Ti-PS, c, 50) and with the lowest number of surface OH groups [214]. With such a thin transparent film catalyst, the number of photons absorbed by the Ti-oxide catalysts was obtained by subtracting the number of outlet photons from the number of incident photons. As a result, it was possible to determine the real quantum yield for the photocatalytic reduction of CO₂ with H₂O on tetrahedrally-coordinated Ti-oxides constructed within porous silica materials to be 0.3% at room temperature (at 25 °C), by dividing the total number of photo-formed products (such as CH₄ and CH₃OH, etc.) by the number of photons absorbed by the catalysts.
Figure 14. CH₄ and CH₃OH yields for the photocatalytic reduction of CO₂ with H₂O on Ti-PS(h 25), Ti-PS(c, 50), Ti-MCM-41, the powdered form of Ti-PS(h, 50) and Ti-PS(h, 50) photocatalysts at 295 K. Intensity of the irradiated light: 265 mW cm⁻². Adapted from [203].

The Ti–oxide species within mesoporous silica have been shown to have a distinctive structure and high selectivity in the oxidation of organic substances with hydrogen peroxide [215]. However, Ti-containing zeolites, such as TS-1, Ti–Beta and mesoporous molecular sieves Ti–MCM, Ti–HMS, Ti–FSM, as shown in the Figure 15, have better photocatalytic activity for CH₄ and CH₃OH formation.

Figure 15. Photocatalytic reduction of CO₂ with H₂O on TiO₂ powder, TS-1, Ti–MCM-41, Ti–MCM-48, and the Pt-loaded Ti–MCM-48 catalysts towards CH₄ and CH₃OH formation. Adapted from [124]

Ti-oxide in the mesoporous molecular sieve can be highly dispersed, which is able to improve hydrocarbons formation. For instance, CH₄ formation was shown to be higher in a metal-doped mesoporous molecular sieves (more than 13 µmol.g⁻¹TiO₂.h⁻¹), while the selectivity of CH₃OH formation was higher in Ti-MCM 48 (almost 3 µmol.g⁻¹TiO₂.h⁻¹) because of its 3-D pore structure as well as its larger pores size. Hence, a 3D pore structure facilitates not only good dispersion of the active sites [200], but also a good diffusion of the reactant and products, and hence an improved photocatalytic reduction of CO₂ towards different fuels.
4.6 Nanocomposites or supported titania photocatalysts

Ti/Si binary oxide catalysts, in the presence of a gaseous mixture of CO$_2$ and H$_2$O, form CH$_4$ and CH$_3$OH as the main products. A greater photocatalytic reduction of CO$_2$ has been observed for hydrocarbon formation. The high photocatalytic activity for the binary oxides is closely associated with the formation of the charge transfer excited complex due to the highly dispersed tetrahedral Ti–oxide species. Ti–oxide species maintain a tetrahedral geometry until the TiO$_2$ content reaches approximately 20 wt%. Accordingly, Ti/Si binary oxides with such a high Ti content can be successfully utilized as active photocatalysts for the efficient reduction of CO$_2$ with H$_2$O in solid-gas systems. However, Wu J.C.S. et al. [206] noticed that methane formation increased for the loading of mixed oxides with metal components, such as Cu and Fe. They -acac, showed a higher production rate with a Cu(0.5wt%)-Fe(0.5wt%)/TiO$_2$–SiO$_2$ catalysts (~ 0.279 µmol/g-cat.h) than with the undoped mixed oxide, i.e. TiO$_2$–SiO$_2$ (~ 0.177 µmol/g-cat.h).

Hussain et al. [216] have recently introduced TiO$_2$/Mesoporous silica (KIT-6) systems that can be used to photocatalytically convert CO$_2$ to tunable energy products. Different TiO$_2$ loadings on 3-D mesoporous silica, which produced CH$_4$, CH$_3$OH (hydrocarbons) and CO, H$_2$ (similar to syngas), were explored. The 3-D ordered pore structure of the KIT-6 support was a convenient source for less recombination of the produced electron-hole pairs. This support was also helpful in the adsorption and transportation of reactants and products.

Recently, interesting results have been obtained also by employing titania composites with carbon nanomaterials, that is, carbon nanotubes (CNTs) and graphene. Overall, only a few studies have been conducted on carbon-based composite materials for the photocatalytic reduction of CO$_2$. It has been reported that the photo-oxidation of organic compounds increases when CNTs and graphene are added to TiO$_2$ [217]. In such a way, electrons are fast transferred from TiO$_2$ to the CNTs or graphene sheet, which results in an enhancement of the photocatalytic activity response [116] and can leads to the promotion of the TiO$_2$/C-based composite response to visible light. A narrowing of the band gap of graphene/TiO$_2$ photocatalysts have been observed, as shown in Figure 11-E [177]. However, presence of defects in the graphene have shown a negative enhancing effect on the recombination rate of photogenerated e/h^* pairs.

Multiwalled carbon nanotube (MWCNT) supported anatase and rutile TiO$_2$ have also been explored recently in the context of photocatalytically converting CO$_2$ to produce different products, for instance C$_2$H$_5$OH and HCOOH [105]. MWCNT supports help to mitigate the TiO$_2$ agglomeration and less recombination of electrons and holes by their efficient charges transport along the MWCNT. L.-L. Tan et al. [158] have recently also reported noble metal modified reduced graphene oxide/TiO$_2$ ternary nanostructures for the visible-light-driven photoreduction of carbon dioxide into methane. Shown and compared in Figure 16, the three-component nanocomposites, in particular Pt-GT, exhibit enhanced photocatalytic activities towards the photoreduction of CO$_2$ to CH$_4$ gas under the irradiation of normal light bulbs. However, the yield of the system is still not sufficient and further studies, aimed to explore more efficient systems for commercialization, are already needed.
Many other materials have been reported in a recent review [218] as supports for TiO₂-based photocatalysts, with which the photocatalytic conversion of CO₂ has been shown to vary according to the kind of support. Moreover, different support materials could result in different morphologies as well as in different particle sizes of TiO₂, or in different interactions between TiO₂ and the supports, which change activity and selectivity for the production of different compounds.

5 Summary: issues, progress and prospects

CO₂ plays a significant role in global warming, due to its important contribution to the greenhouse effect, and it is therefore currently considered a key challenge for the world. On the other hand, the depletion of fossil fuels throughout the world is dramatically increasing every year, because of the increasing energy demands of humans as well as the increased global population. Therefore, in this scenario, much more attention should be paid to limit CO₂ emissions as well as to convert it into valuable chemicals and energy-bearing products, and in particular to the formation of fuels for the future generations.

The possible technologies for the conversion of CO₂ to valuable products include: CO₂ hydrogenation; urea synthesis; the electrochemical conversion of CO₂; the thermochemical conversion of CO₂; the utilization of CO₂ through biotechnological routes; the utilization of CO₂ through biomass, and the photocatalytic reduction of CO₂ to renewable fuels. However, of all these alternatives, the photocatalytic reduction of CO₂ to renewable fuels is the most promising to solve the problem of the energy crisis as well as to simultaneously protect the environment to some extent.

A proper selection of the photocatalyst is the first step towards enhancing photoactivity. Many photocatalysts, including oxides and non-oxides, e.g. TiO₂, ZnO, Fe₂O₃, ZrO₂, SnO₂, BiWO₃, Ti-MCM-41, CdS, TNTs, ZnS, GaN, SiC, etc., have been explored extensively in this process to produce valuable fuel products. Of all the above mentioned photocatalysts, TiO₂ has proved to be the best, from all the different points of view, to fulfil the requirements of an ideal photocatalyst. Unfortunately, pure bulk titania also shows a lower efficiency towards fuel formation, due to the greater chance of recombination of e⁻/h⁺ pairs and to the short lifetime of the photogenerated charges (in the nanoseconds scale).

Therefore, many efforts have been made, including the synthesis of nanostructured titania, single crystal titania, titania doped with metals or non-metals, dye sensitized titania, etc, in order to be able to utilize these materials more effectively to convert CO₂ into renewable energy products. However, most of these techniques are complex as well as costly.

On the other hand, isolated Ti-oxide species are more active and beneficial than pure bulk titania, due to the localized photogenerated e⁻/h⁺ pairs, which play a significant role in the photocatalytic reduction of CO₂. Moreover, there are fewer e⁻/h⁺ pair recombination as well as a longer lifetime of
photogenerated e-/h+ pairs (in the microseconds scale) compared to bulk TiO2. However, it is difficult to obtain abundant isolated sites dispersed on the porous support material and, moreover, they are more active under UV illumination.

Nanocomposites or supported TiO2 systems have opened up new possibilities and have recently achieved promising results under UV as well as visible or solar light, but their low efficiency is still a key challenge for their commercialization. Therefore, the devolvement of efficient active photocatalysts for this technology is still an ongoing quest.

A massive amount of scientific research on the photocatalytic reduction of CO2 to enviable chemicals has revealed that better efficiency towards the desired products could be accomplished, but this technique is still at an embryonic stage, due to the lack of proficiency; moreover, the yield discrimination is very low for commercialization purposes. Therefore, although the photocatalytic reduction of CO2 is still at an embryonic stage, it appears promising for the future. Further improvements and modifications to this technique are needed to boost this process in the near future.

Finally, the key points that need to be considered for future improvements in the photocatalytic reduction of CO2 to fuel are:

- The development of novel photocatalyst materials, not only in bare form (i.e. TiO2), but also doped/coupled with metals, non-metals or composites with other supporting materials as well as the testing of novel ternary mixed oxides. The main focus should be on enhancing the properties of high band gap semiconductors by exploiting the visible part of the solar light, as well as by increasing the transport of photogenerated e-/h+ pairs and reducing its recombination rate.
- More detailed studies are recommended regarding the rate limiting step of CO2 reduction photocatalysis, in order to understand the reaction kinetic of CO2 adsorption and product desorption so as to enhance the overall efficiency of this process.
- The low photocatalytic efficiency of the CO2 reduction process could be increased through in-depth optimization studies on all the key factors (i.e. on reaction mechanisms, catalysts activity, etc) or on the operational parameters that have an important influence on the activity (i.e. temperature, pressure, light concentration, etc.).
- The stability, since deactivation and regeneration phenomena in CO2 photocatalytic reduction are still unclear, and in-depth studies are required to investigate all the involved factors as well as to understand the causes of the low efficiency of CO2 reduction towards high valuable products.

Acknowledgements
The financial support from the Eco²CO2 European Project (309701-2 Eco²CO2 CP-FP FP7-NMP-2012-Small-6) is gratefully acknowledged.

References
27. CO₂, earth, earth’s CO2. 2016: https://www.co2.earth/.

