
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A hybrid methodology for the performance evaluation of Internet-scale cache networks / Tortelli, M; Rossi, D.; Leonardi,
Emilio. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - ELETTRONICO. - 125:(2017), pp. 146-159.
[10.1016/j.comnet.2017.04.006]

Original

A hybrid methodology for the performance evaluation of Internet-scale cache networks

Publisher:

Published
DOI:10.1016/j.comnet.2017.04.006

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2681206 since: 2018-02-27T12:58:49Z

Elsevier B.V.

A Hybrid Methodology for the Performance Evaluation
of Internet-scale Cache Networks

M. Tortellia,∗, D. Rossia, E. Leonardib

a
Telecom ParisTech, Paris, France

b
Politecnico di Torino, Torino, Italy

Abstract

Two concurrent factors challenge the evaluation of large-scale cache networks: com-
plex algorithmic interactions, which are hardly represented by analytical models, and
catalog/network size, which limits the scalability of event-driven simulations. To solve
these limitations, we propose a new hybrid technique, that we colloquially refer to as
ModelGraft, which combines elements of stochastic analysis within a simulative Monte-
Carlo approach. In ModelGraft, large scenarios are mapped to a downscaled counterpart
built upon Time-To-Live (TTL) caches, to achieve CPU and memory scalability. Addi-
tionally, a feedback loop ensures convergence to a consistent state, whose performance
accurately represent those of the original system. Finally, the technique also retains sim-
ulation simplicity and flexibility, as it can be seamlessly applied to numerous forwarding,
meta-caching, and replacement algorithms.

We implement and make ModelGraft available as an alternative simulation engine of
ccnSim. Performance evaluation shows that, with respect to classic event-driven simu-
lation, ModelGraft gains over two orders of magnitude in both CPU time and memory
complexity, while limiting accuracy loss below 2%. Ultimately, ModelGraft pushes the
boundaries of the performance evaluation well beyond the limits achieved in the cur-
rent state of the art, enabling the study of Internet-scale scenarios with content catalogs
comprising hundreds billions objects.

Keywords: Information Centric Networks; Hybrid Simulation; Caching.

1. Introduction

During the last decade, caches have gained momentum as the atomic part of both
complex distributed networks, like Content Distribution Networks (CDNs), and emerging
architectures, like Information Centric Networking (ICN) [35]. Assessing the performance
of cache networks turns out to be a non-trivial task, owing to the intricate dependencies
created by the interaction of several factors, such as content replacement algorithms,

∗
Corresponding author
Email addresses: michele.tortelli@telecom-paristech.fr (M. Tortelli),

dario.rossi@telecom-paristech.fr (D. Rossi), emilio.leonardi@tlc.polito.it (E. Leonardi)

Preprint submitted to Elsevier Tuesday 21
st

February, 2017

2

 0

 10

 20

 30

 40

 50

 60

1e2
1e5

1e3
1e6

1e4
1e7

1e5
1e8

1e6
1e9

0|Cache| (C)
|Catalog| (M)

p h
it

[%
]

α = 0.8
α = 1.0
α = 1.2 89.9 %

100.0 %

55.9 %

Figure 1: Hit ratio variability - 4-level binary tree, variable α, fixed C/M = 0.01% ratio, with propor-
tional variation of C and M .

cache decision policies, forwarding strategies, network and content dynamics, etc. As a
consequence, relying solely on analytical models [13, 23, 16, 25, 39, 12, 17, 38, 32, 29]
to accurately predict network Key Performance Indicators (KPIs) becomes unfeasible.
An appealing alternative, at the same time, can be that of event-driven simulation, con-
sidering its simplicity in describing all the algorithmic interactions between the different
network entities. Nevertheless, if Internet-scale networks are targeted, CPU and memory
requirements, tied to network size and catalog cardinality, would represent a difficult bot-
tleneck to overcome. Indeed, off-the-shelf computers are not equipped with PetaBytes of
RAM needed to only represent the popularity distribution of huge catalogs sized in the
order of trillion object by recent estimates [33].

Common improvements often connected with simulation-based studies are paralleliza-
tion and downscaling. As for the former, classical techniques [14, 10, 1] are, however, not
effective in parallelizing the simulation of cache networks due to the correlation between
states of neighboring caches [41]. As for the latter, instead, downscaling the scenario
under investigation with näıve techniques might allow to comply with memory and CPU
time constraints, on the one hand, but it can have tremendous consequences on the
representativeness of the gathered results, on the other hand. For the sake of clarity,
we illustrate the problem with the help of Fig. 1, which contrasts the performance of
a four-level binary tree where Zipf’s exponent is varied, i.e., α ∈ {0.8, 1, 1.2}, the ra-
tio between cache size C and catalog cardinality M is kept constant to C/M = 0.01%,
while both M and C are jointly downscaled. Results in Fig. 1 clearly show that barely
downscaling the simulated scenario by linearly reducing the size and cardinality of all the
components significantly alters system performance: the relative error between the mean
hit ratio experienced in the smallest scenario and the one in the largest is between 50%
and 100%. Additionally, crucial parameters like Zipf’s exponent α (or Mandelbrot-Zipf
plateau q) are generally measured over real Internet-scale catalogs, like YouTube [11]
or BitTorrent [20], and then simply used in small-scale simulations: this clearly induces
excessive distortion of the KPIs, thus invalidating the practical relevance of simulation
results.

To circumvent limits of the aforementioned approaches, we propose ModelGraft, a
hybrid methodology for the evaluation of Internet-scale cache networks that grafts ele-

3

ments of stochastic analysis into MonteCarlo simulations. Its design differentiates from
other hybrid approaches, also extensively used in other domains than computer networks,
which do not fit for the analysis of cache networks (see Sec. 9). In a nutshell, we argue
that confusing the characteristic time TC of Least Recently Used (LRU) caches [12, 29]
with the eviction time of Time-To-Live (TTL) caches [23, 16] makes the respective net-
works practically indistinguishable. Since this equivalence constitutes the fundamental
block of ModelGraft, and considering that the TC approximation has been extended for
many popular non-LRU caches [29] (including FIFO or Random replacement, proba-
bilistic or complex meta-caching, dynamic arrivals, etc.), we notice that the proposed
hybrid technique can be successfully applied to study complex cache networks (in terms
of topologies, routing and forwarding schemes) involving a fairly general group of caching
schemes for which the TC approximation holds. We further argue that a proper down-
scaling technique can both preserve KPIs of the original Internet-scale scenario also in
the downscaled TTL one (thus avoiding pitfalls shown in Fig.1), and eliminate the inef-
ficiency of TTL caches in managing large catalogs (see Sec. 8). We finally argue that the
self-contained design of ModelGraft, i.e., constant monitoring of KPIs and subsequent
parameter correction via a feedback-loop in order to guarantee fast convergence, might
increases its seamlessly adoption by end-users, since no tuning is required in practice.

In this paper, we develop the above intuitions further, making the following main
contributions:

• we propose ModelGraft, a novel hybrid methodology for the performance evalua-
tion of cache networks: its performance and accuracy are tested by means of an
exhaustive simulation campaign, which reveals that CPU time and memory usage
are reduced by over two orders of magnitude with respect to the classic event-driven
approach, while limiting accuracy loss to less than 2%;

• we build a fully integrated system, which we make available as open-source software:
we make the technique (and scenarios) available as open source in the latest release
of ccnSim [2], where ModelGraft is available as an alternative simulation engine,
so that users can seamlessly switch between classic event-driven vs ModelGraft
simulations, on the same scenario (and reproduce our results).

In the remainder of this paper, of which a preliminary version appeared at [44], we first
formalize the modeling background at the base of ModelGraft (Sec. 2). We then provide
a succinct overview of our proposal (Sec. 3), followed by an in-depth description of each
component (Sec. 4–6). We next validate ModelGraft against event-driven simulation in
very-large scenarios and use it to assess system performance in Internet-scale scenarios
(Sec. 7). A thorough sensitivity analysis ensures that estimated gains of ModelGraft are
not only consistent, but also conservative, across a large set of scenario-related parameters
(Sec. 8). We finally cover related work (Sec. 9) and conclude the paper (Sec. 10).

2. Stochastic modeling overview

In this section we first provide a background on Che’s approximation [12] (Sec. 2.1),
before analytically formalizing a fundamental building block of ModelGraft (Sec. 2.2),
that is the equivalence between LRU caches and opportunely configured TTL caches [23].

4

2.1. Background

Che’s1 approximation [12], conceived for a LRU cache, is essentially a mean-field
approximation which greatly simplifies the analysis of the interactions between different
contents inside a cache. In particular, it consists in replacing the cache characteristic
time TC(m) for content m (i.e., the (random) time since the last request after which
object m will be evicted from the cache for the effect of the arrival of other content
requests), with a constant eviction time TC , which does not depend on the content itself,
being a property of the whole cache. As a consequence, content m is considered to
be in the cache at time t, if and only if, at least one request for it has arrived in the
interval (t−TC , t]. Supposing a catalog with cardinality M , for which requests are issued
following an Independent Reference Model (IRM) with aggregate rate Λ =

∑
m
λm, the

probability pin(m) for content m to be in a LRU cache at time t can be expressed as:

pin(λm, TC) = 1− e−λmTC . (1)

Denoting with 1{A} the indicator function for event A, and considering a cache of size
C, we have, by construction, that C =

∑
m 1{m in cache at t}. Then, after averaging both

sides, we obtain:

C =
∑
m

E
[
1{m in cache at t}

]
=
∑
m

pin(λm, TC). (2)

It follows that the characteristic time TC can be computed by numerically inverting (2),
which admits a single solution [12]. It is worth to notice that this strong correlation
between the cache size C and the characteristic time TC will be the foundation of the
self-stabilization property of ModelGraft (Sec. 6), where TTL caches will be used instead
of their LRU counterpart (Sec. 2.2).

Finally, KPIs of the system, such as the cache hit probability phit, can be computed
using the PASTA property:

phit = EΛ[pin(λm, TC)] =
∑
m

λmpin(λm, TC)/
∑
m

λm. (3)

As far as a single cache is concerned, Che’s approximation was originally proposed for
LRU caches [12], but it has been extended in more recent times to FIFO or Random
replacement [17], LRU caches with probabilistic insertion [29], possibly depending on
complex cost functions [5], and renewal request models [29]. For the sake of clarity, we
limit our narrative to LRU caches, despite the ModelGraft methodology applies to the
whole class of caching policies for which a Che’s approximation has been derived. For
the sake of completeness, we also report experimental results of non-LRU cache networks
in Sec. 7.

As far as cache networks are concerned, however, further approximations are required
as an alternative approach to the computationally and algorithmically challenging char-
acterization of the miss streams at any node in the network [29, 32]. Approximations that

1
Interestingly, it was recently brought to our attention that Fagin [15] already published in 1977 the

results (on “computer” caches) independently found by Che [12] in 2002 (on “network” caches).

5

often lead to a significant degradation of the accuracy with respect to simulation [43],
especially in arbitrary networks with shortest path [39] or more complex routing policies
[42], where estimation errors can potentially cascade. In addition, analytical approaches
often assume stationary conditions, thus lacking in characterizing transient periods, al-
though a model has been recently proposed only for a single cache [19]. All these reasons
thus justify the quest for a hybrid approach, such as the one we propose in this work.

2.2. Equivalence of LRU and TTL caches

Observe that, under Che’s approximation, i.e., given the characteristic time TC (also
called eviction time) the dynamics of the different contents become completely decoupled.
Therefore, we can greatly simplify the analysis of complex and large cache networks by
replacing every LRU cache with a simpler Time-to-Live (TTL) cache [23, 16, 30, 32],
where contents are evicted upon the expiration of a pre-configured eviction timer T ′C ,
which, for each content, is set upon the arrival of the last request if the content is not in
the cache, and reset at every subsequent cache hit.

Observation 1. As experimentally shown in [12], and remarked in [16, 29], the dynam-
ics of a LRU cache with characteristic time TC , fed by an IRM process with a catalog
M of cardinality M , and request rates λm drawn from a distribution Λ, become indistin-
guishable from those of a TTL cache with deterministic eviction timer T ′C set equal to
TC (i.e., T ′C = TC), and operating on the same catalog :

pTTL

hit (T ′C) = pTTL

hit (TC) = EΛ[1− e−λmTC] = EΛ[pin(λm, TC)] = pLRU

hit (TC) (4)

Specifically, (4) equals the average hit probability of the original LRU system to that
of its TTL-based equivalent [16, 29]. We however point out that the size of a TTL
cache is not bounded a priori, and it equals that of the correspondent LRU one only
in expectation; since contents are evicted only after the expiration of their timer, the
number of cached objects could exceed that of the original LRU system, thus translating
in even higher CPU and memory requirements, which hampers the use of TTL caches in
Internet-scale simulations. This also explains why, though intellectually interesting, TTL
caches have been used, so far, only for very simple networks (e.g., single cache, trees,
etc.) and catalogs (i.e., few hundreds objects) [23, 16, 30, 32]. However, the following
argument makes a crucial step toward the analysis of large-scale cache networks:

Observation 2. Large-scale LRU networks can be analyzed through a downscaled system
associated to a catalog M′ with cardinality M ′ � M , where each cache is replaced by
its TTL equivalent with an eviction time T ′C set equal to the characteristic time TC of
the original LRU cache. KPIs of the original network are, by construction, recovered by
averaging system performance over multiple MonteCarlo realizations of the downscaled
one, each lasting for a duration δT , and where rates λ′m for individual objects of the
downscaled catalog M′ are uniformly and independently drawn from Λ. Expanding (4):

EΛ

[
pin(λ′m, TC)

]
=

EΛ

[
λ′mpin(λ′m, TC)

]
EΛ[λ′m]∑

m λmPt(λ
′
m = λm)pin(λm, TC)∑

m λmPt(λ
′
m = λm)

=

∑
m λmpin(λm, TC)∑

m λm
(5)

6

RESULTS SCENARIO
DESCRIPTION Model ModelGraft Simulation

TC (model)

TC (guess)

Downscaling factor (Δ) Yotta (Y) Topology
Routing and Forwarding
Cache replacement policy
Cache decision policy
Content popularity
Request Rate (λ)
Nodes (N)
Catalog cardinality (M)
Cache size (C)
Requests (R)

(a) Integration in ccnSim

Downscaling
& Sampling

[4]x

+
TC

Correction

[6.2]x

Transient

Steady-state
Monitor

Simulation
Cycle

Consistency
Check

[6.1]x

MC-TTL Simulation [5]x

C ′ T
(z+1)
C

C ′

Y

Y

∆

T
(z)
C

C̃(z)

C̃(z)

(b) Synoptic of ModelGraft Workflow

Figure 2: ModelGraft overview.

where the top-right expression represents the ratio between the average hit-rate and the
average rate of requests at the cache, and Pt(λ

′
m = λm) represents the probability that

λ′m = λm at a generic time instant t.
Given that contents have decoupled dynamics under the previous assumptions, we

can (i) significantly downscale the system, thus reducing both memory and CPU time,
and, in parallel, (ii) accurately represent complex interactions and correlations among
different caches.

Observation 3. A practical approximation is to let δT → 0, and re-extract λ′m at every
new request, thus satisfying (5).

We remark that, in this case, in order to ensure that at a given arbitrary time t,
Pt(λ

′
m = λm) = 1/M , we have to extract the new value for λ′m at every arriving request

from Λ non uniformly. In particular, it can be easily shown, as consequence of classical
renewal arguments, that the probability of extracting λm as a new value for λ′m must be
set equal to λm∑

m λm
, i.e., more formally, P (λ′m = λm) = λm∑

m λm
.

The remainder of this paper illustrates, describes, and validates in greater details the
methodology that is built upon these observations.

3. ModelGraft overview

3.1. ModelGraft components and workflow

Before delving into ModelGraft ’s details, we analyze it in the context of the full frame-
work made available as open-source through the latest version of ccnSim [2] (although
the methodology is portable to other simulators [43]), and we illustrate each of its build-
ing blocks at high level. As illustrated in Fig. 2-(a), starting from a unique scenario
description (also available at [2]), users can analyze the performance of cache networks
via either an analytical model [29] (when available, left), a classic event-driven simulation
engine (right), or via the ModelGraft engine (middle).

ModelGraft performs MonteCarlo simulations of opportunely downscaled systems,
where LRU caches are replaced by their Che’s approximated version, implemented in
practice as TTL caches. It formally depends on a single additional parameter, namely

7

Table 1: Scope of ModelGraft applicability

Supported Supported Unsupported
(tested) (untested)

Workload IRM, Dynamic - -
Forwarding SP, NRR[42], LoadBalance[41] - -
Cache decision LCE, LCP[6], 2-LRU[29] CoA[5], LAC[9] LCD/MCD[25]
Cache replacement LRU[12], FIFO[29], RND[17] - LFU

the downscaling factor ∆, which can be easily tuned according to guidelines in Sec. 6.2.
As introduced in Sec. 2.2, each cache in the network should receive, as input, its char-
acteristic time TC . One option could be to bootstrap ModelGraft with informed guesses
of TC gathered via, e.g., analytical models (notice the TC(model) switch in Fig. 2-(a));
nevertheless, the choice of routing/forwarding strategies, catalog dynamics, and so on,
would be limited, since only cases covered by the model could be considered, thus re-
stricting the generality of the methodology itself. A more interesting approach, used by
default in ModelGraft, is instead to start from uninformed guesses of TC (notice the de-
fault wiring to the TC(guess) switch in Fig. 2-(a)), and let the system iteratively correct
input values. In this case, no algorithmic restrictions are made on the system, which is
simulated with a TTL-based MonteCarlo approach: this is possible since ModelGraft is
intrinsically conceived as an auto-regulating system, so that, by design, it converges to
accurate results even when the input TC values (that users do not even need to be aware
of) differ by orders of magnitude from the correct ones.

Individual building blocks of ModelGraft are exposed in Fig. 2-(b), which we overview
here and thoroughly describe in the following sections. In a nutshell, ModelGraft starts
with the configuration of the downscaling and sampling process (Sec. 4), before entering
the MonteCarlo TTL-based (MC-TTL) simulation (Sec. 5). During the MC-TTL phase,
statistics are computed after a transient period (Sec. 5.1), where an adaptive steady-state
monitor tracks and follows the dynamics of the simulated network in order to ensure
that a steady-state regime is reached without imposing a fixed threshold (e.g., number
of requests, simulation time, etc.) a priori (Sec. 5.2). Once at steady-state, a downscaled
number of requests are simulated within a MC-TTL cycle (Sec. 5.3), at the end of which
the monitored metrics are provided as input to the self-stabilization block (Sec. 6): a
consistency check decides whether to end the simulation (Sec. 6.1), or to go through a
TC correction phase (Sec. 6.2) and start a new simulation cycle.

3.2. ModelGraft applicability

Identifying systems that can be targeted by ModelGraft is an important aspect worth
elucidating further. We summarize in Tab. 1 those features/algorithms implemented in
ccnSim, which are either supported by ModelGraft or available only with the event-driven
engine. Intuitively, as long as the original system admits a mean-field approximation à
la Che, the dynamics of its contents can be decoupled using the characteristic time
TC , which can be in turn used as input for TTL caches. While the original Che’s
approximation holds only for LRU caches, as shown in [29], the class of cache networks
that can be modeled by its extensions is fairly large.

In particular, Che’s approximation has been already extended [17, 29] to cover most
of the classical cache replacement strategies, such as LRU, RANDOM, and FIFO under

8

IRM and non-IRM traffic patterns with dynamic popularities [18], for which ModelGraft
can be used (a theoretical justification is given in [26]). It could, also, possibly work
with approximations of LFU which are content-popularity unaware (at the same time,
we point out that LFU is not interesting in practice as it is far from optimum in scenarios
with dynamic popularity, where the supported 2-LRU and variants are preferable). In
addition, ModelGraft supports a fair variety of cache decision policies and forwarding
strategies; as for the former ones, Leave Copy Everywhere (LCE), Leave Copy Proba-
bilistically (LCP), k-LRU (whose behavior has been proven to converge to LFU [26]),
and newer Cost-Aware (CoA) [5] and Latency-Aware Caching (LAC)[9] are supported
(whereas LCD and MCD are untested). As for the latter ones, instead, not only Short-
est Path (SP), but all state-of-the-art, including Load Balance [41] and Nearest Replica
Routing (NRR)[42], are supported. Overall, Tab.1 confirms that ModelGraft has a rather
wide spectrum of applicability.

4. Downscaling and sampling

4.1. Design

The ModelGraft workflow starts with a proper downscaling of the original scenario.
The only controlling parameter is the downscaling factor ∆ � 1: a catalog comprising
M ′ = M/∆ objects, attracting R′ = R/∆ total requests, will be simulated at steady-state
in the equivalent TTL-based system (Sec. 5.3). Moreover, when T ′C = TC , a TTL cache
in the downscaled system will store, on average, C ′ = C/∆ contents at steady-state.
Indeed, adapting (2) to the downscaled scenario (i.e., M ′ = M/∆), we can compute the
expected cache size as:

C ′ =

M
′∑

n=1

pin(λ′n, TC) = C/∆. (6)

However, in order to avoid pitfalls caused by a nav̈e downscaling process (recall Fig. 1),
we need to ensure that the downscaled catalog preserves the statistical properties of the
original popularity distribution (5). While our methodology is not restricted to a specific
popularity law, in what follows we develop the case where object popularity follows a
Zipfian probability distribution with exponent α – which is also the most interesting case
from a practical viewpoint.

The proposed approach, sketched in Fig. 3, consists in splitting the original catalog
into a number of M ′ bins having the same cardinality ∆, i.e., |Mn| = ∆, where Mn

refers to the n-th bin, with n ∈ [1,M ′]. Each bin is represented in the downscaled system
by a single “meta-content”, thus obtaining an active catalog of M ′ meta-contents. The

key idea is to let each meta-content n be requested with an average request rate, λ̄′n,
equal to the average request rate of the original contents within the respective bin. More
formally, for the n-th meta-content, with n ∈ [1,M ′], it is required that:

λ̄′n =
1

∆

n∆∑
m=(n−1)∆+1

λm , E[λn], (7)

where the interval [(n − 1)∆ + 1, n∆] represents contents of the original catalog that

fall within the n-th bin, λm = Λm−α/
∑M
k=1 k

−α is the rate for the m-th content in

9

Bins

3 M’ . . . Meta Contents

. . . Original Contents

Δ Δ Δ Δ

2 1

DOWNSCALING
& SAMPLING

M
C
R

M’ = M / Δ
C’ = C / Δ
R’ = R / Δ

Figure 3: Downscaling and sampling process.

the original catalog, and E[λn] is the average request rate for the contents within the
n-th bin. The aforementioned design can be implemented by (i) instantiating M ′ request
generators in parallel, i.e., each one n ∈ [1,M ′] issuing requests for a single meta-content,
and by (ii) varying their instantaneous request rate at each new request, as suggested in
Observation (3), so that their average comply with (7).

4.2. Implementation

It is easy to see that the simplest implementation of the above requirements boils
down to binding the sampling probability of the request rate for the n-th meta-content
λ′n at every new request, i.e., P (λ′n = λm), with the rate of the corresponding sampled
content, i.e., the m-th one in the original catalog, among the ∆ inside the respective bin,
i.e., m ∈ [(n− 1)∆ + 1, n∆]:

P (λ′n = λm) =
λm
n∆∑

j=(n−1)∆+1

λj

=
1

∆

λm
E[λn]

. (8)

While the above requirement (7) is met, a significant downside of this näıve implemen-
tation is its memory allocation. Indeed, since it is based on the classic inverse trans-
form sampling, this approach would require to store M ′ Cumulative Distribution Func-
tions (CDFs) having each a size ∆, resulting in an overall memory allocation equal to
M ′∆ = M elements, i.e., as in the original scenario. Given that M is the dominant factor
driving the overall memory occupancy, it is clear that such a simple implementation is
not compatible with our goals.

We therefore resort to a better sampling technique called Rejection Inversion Sam-
pling [22], which is an acceptance-rejection method that efficiently generates random
variables from a monotone discrete distribution (in this case Zipf’s distribution) with-
out allocating memory-expensive CDFs, and which is characterized by a O(1) runtime
complexity. Originally proposed in the late 90s [22] for α > 1, this technique has been
very recently extended to all non-negative exponents α > 0 [4]. Without thoroughly
discussing all its details, we provide a brief overview of its main steps. First of all,
the object population (that we assume being the interval [1,∆] for sake of simplicity)
is divided into two parts: the head, composed by only the first element, and the tail,

10

consisting in the remaining objects. Then, as in any acceptance-rejection method, a
hat function h(x) and its integral H(x) are defined. At this point, the algorithm [4]
iterates through the following steps: (i) extract a uniformly distributed random variable
U from the area under the hat function; (ii) extract, by inversion, the element X to
test, and limit its range to [1,∆], i.e.: X ← H−1(U), K ← bX + 1/2c (iii) return K if:
K−X ≤ s ‖ U ≥ H(K+1/2)−h(k). It can be shown [4] that the probability of selection
and acceptance for both the head and an element from the tail are proportional to the
probability mass function of Zipf’s distribution. Recall now that power-law distributions
(and hence Zipf’s one) exhibit a scale-independent (or self-similar) property, according
to which the scale exponent α is preserved independently of the level of observation.
Hence, by means of rejection inversion sampling, we can consider a single interval [1,∆]
(i.e., with the same cardinality of one bin) from which extracting indexes that follow a
Zipf’s distribution with exponent α. In turn, this generator is used to vary the request
rates of the M ′ meta-contents at each new request according to (8): this implies a gain
of the same order of magnitude of the catalog size M with respect to a classic inversion
sampling technique that stores the content popularity CDF for the whole catalog. As a
consequence, the pivotal role of inversion rejection sampling in studying cache dynamics
at Internet-scale (i.e., with trillion objects [33]) becomes clear. Formally (proof available
in [45]):

Observation 4. If the request generator associated to the n-th bin/meta-content, with
n ∈ [1,M ′], needs to schedule the next request, an index t ∈ [1,∆] is extracted with the
aforementioned technique; to satisfy condition (7), the correspondent request rate has to
be computed as λ′n = λ(n−1)∆+t.

5. MC-TTL Simulation

5.1. Transient

Once the scenario is properly downscaled, ModelGraft starts the warm-up phase of the
first MC-TTL simulation cycle (with initial uninformed guesses for TC). Given that the
duration of the warm-up can be affected by many parameters, ModelGraft automatically
adapts its duration by monitoring KPIs in order to guarantee their statistical relevance.
For instance, the persistence of a transient period can be affected by forwarding policies
(e.g., Nearest Replica Routing comes with shorter average paths, which can reduce the
transient with respect to shortest path [42]), as well as by cache decision policies (e.g.,
like LCP [6], where the reduced content acceptance ratio with respect to LCE is expected
to yield longer transients).

5.2. Steady-state monitor

The convergence of a single node i is effectively monitored using the Coefficient of
Variation (CV) of the measured hit ratio, p̄hit(i), computed via a batch means approach.
In particular, denoting with phit(j, i) the j-th sample of the measured hit ratio of node
i, node i is considered to enter a steady-state regime when:

CVi =

√√√√ 1

W − 1

W∑
j=1

(phit(j, i)− p̄hit(i))
2

 1

W

W∑
j=1

p̄hit(j, i)

−1

≤ εCV , (9)

11

where W is the size of the sample window, and εCV is a user-defined convergence thresh-
old (a sensitivity analysis of εCV is extensively reported in [45] and briefly summarized
in Sec.8.5). To avoid biases, new samples are collected only if (i) the cache has received
a non-null number of requests since the last sample, and (ii) its state has changed, i.e.,
at least a new content has been admitted in the cache since the last sample2.

At network level, denoting with N the total number of nodes in the network, and
given a tunable knob Y ∈ (0, 1], we consider the whole system to enter steady-state when:

CVi ≤ εCV , ∀i ∈ Y, (10)

where |Y| = dY Ne is the set of the first Y N nodes satisfying condition (9). The rationale
behind this choice is to avoid to unnecessarily slow down the convergence of the whole
network by requiring condition (9) to be satisfied by all nodes: indeed, due to particular
routing protocols and/or topologies, there are nodes that have low traffic loads (hence,
long convergence time), and, at the same time, a marginal weight in network KPIs.
A sensitivity analysis of the impact that Y has on system performance is reported in
Sec. 8: shortly, by excluding few (slow) nodes, the accuracy of KPIs is not affected (as
these nodes do not bring crucial information), despite convergence time is significantly
reduced (as we exclude the slowest nodes).

5.3. Simulation cycle

For the original system, the duration of a simulation cycle T at steady-state is com-
puted as T = R/(ΛNC), where R is the target number of requests, Λ =

∑
i∈M λi is the

aggregate request rate per client, and NC the number of clients. In MC-TTL simulations,
instead, the total request rate per each client is Λ′ =

∑
n∈M ′ λ′n ≈ Λ/∆. Keeping the

simulated time T ′ = T constant, it follows that the number of simulated events per each
cycle of a MC-TTL simulation is R′ = R/∆ – with an expected significant reduction of
the CPU time required to simulate a cycle in classic event-driven simulation.

6. Self-stabilization

From a practical viewpoint, one of the most valuable and desirable properties of
our hybrid methodology is a self-contained design that allows to simulate large scale
networks even in the absence of reliable estimates of characteristic times TC . This is
achieved through a feedback loop, which ensures that our methodology self-stabilizes
as a result of the combined action of two elements: a measurement step, referred as
consistency check, and a controller action, where inaccurate TC values are corrected at
each iteration.

6.1. Consistency check

The consistency check is based on Eq. (6), according to which a TTL cache of the
downscaled system, with downscaling factor ∆, and T ′C = TC , would store, on average,

2
To exemplify why this is important, consider that with a LCP(p) cache decision policy, where new

contents are probabilistically admitted in the cache, the reception of a request is correlated with the
subsequent caching of the fetched content only in 1 out of 1/p cases.

12

C ′ = C/∆ contents at steady-state. Considering (i) the absence of size boundaries for

TTL caches [16], (ii) the expected cache size E[C̃] ≈ C ′ = C/∆ for a TTL cache in the
downscaled system, and (iii) the strong correlation that exists between the eviction time
TC and the number of cached contents, it follows that we can consider the measured
cache size C̃ as our controlled variable. In particular, for each TTL cache we maintain
an online average of the number of stored contents as:

C̃
(z)
i (k + 1) =

C̃
(z)
i (k) t(k) +Bi

(z)(k + 1) [t(k + 1)− t(k)]

t(k + 1)
, (11)

where C̃
(z)
i (k) is the online average of the cache size of the i-th node at k-th measurement

time during z-th simulation cycle, and Bi
(z)(k+1) is the actual number of contents stored

inside the TTL cache of the i-th node at the (k + 1)-th measurement time during the
z-th simulation cycle. Samples for the online average are clocked with miss events and
collected with a probability 1/10, so that samples are geometrically spaced, in order to
avoid oddities linked to periodic sampling [7].

At the end of each MC-TTL simulation cycle (i.e., after the simulation of R′ requests),

the consistency check block evaluates the discrepancy of the measured cache size C̃(z),
with respect to the target cache C ′, by using the following expression:

1

Y N

∑
i∈Y

∣∣∣C ′ − C̃(z)
i (kend)

∣∣∣
C ′

≤ εC , (12)

where C̃
(z)
i (kend) is the online average of the measured cache size of i-th node at the

end of the z-th simulation cycle, C ′ is the target cache (that, for the sake of simplicity,
we consider equal for all the nodes), and εC is a user-defined consistency threshold. For
coherence, measures are taken on those |Y| = Y N nodes that have been marked as stable
in Sec. 5.2. If condition (12) is satisfied, the MC-TTL simulation ends, otherwise a new
MC-TTL cycle needs to be started: TC values are corrected (as in the next subsection),
all the caches are flushed, and the online average measurements are reset.

6.2. TC correction

The controller action leverages the direct correlation that exists between the target
cache size C ′ = C/∆ expected for a TTL cache at steady-state, and its characteristic
time T ′C = TC , that is expressed through equations (1)-(2)-(4)-(12). Intuitively, there

exists a direct proportionality between C ′ and TC : the average number of elements C̃
stored in a TTL cache, with TTL=TC , grows as TC grows.

Therefore, if the consistency check block reveals that the measured cache size C̃ of
a particular node is smaller than its target cache, C̃ < C ′, it means that the respective
TC value provided as input is actually smaller than the true TC , thus suggesting an
increment in the next step. Viceversa, for C̃ > C ′, the TC of the correspondent node
should be decreased.

As a consequence of this relationship, we employ a proportional (P) controller to
compensate for TC inaccuracies. That is, if condition (12) is not satisfied at the end of

13

Tier 1

Tier 2

Tier 3

Core nodes
Repository Access tree nodes
Leaf nodes (exogenous traffic)

(a)

...
...

...
...

... ...
...

(b)

Figure 4: Network Topologies: (a) 4-level binary tree, (b) CDN-like.

z-th simulation cycle, TC values are corrected, before starting the next cycle, as:

TCi
(z+1) = TCi

(z)

(
C ′

C̃
(z)
i

)
, (13)

where TCi
(z) is the TTL value assigned to the i-th node during the z-th simulation

cycle. In practice, (13) guarantees a fast convergence towards the right TC values (see
Sec. 8 and [45] for a deeper analysis), avoiding, at the same time, any divergence of the

control action (provided that measures on C̃ are taken at steady-state). This ensures
that ModelGraft would often provide considerable gains, even when inaccurate input TC
values require the execution of multiple simulation cycles.

There is an important condition worth highlighting: i.e., the controller needs to react
on reliably measurable quantities, as opposite to noisy measures – which happens when-

ever the terms of the ratio are very small C ′ ≈ C̃
(z)
i ≈ 1, as errors in their estimation

amplify in their ratio C ′/C̃
(z)
i . In particular, this translates into a very simple practical

guideline: a lower bound to the target cache size of the downscaled system can be in-
troduced as C ′ = C/∆ ≥ 10, which practically upper bounds the maximum downscaling
factor to ∆ ≤ C/10 (see [45] for further details).

7. Results

We now validate the ModelGraft engine against classic event-driven simulation in
very-large scale scenarios (Sec. 7.1), and we then project ModelGraft gains to Internet-
scale ones, which are prohibitively complex for classic event-driven simulators (Sec. 7.2).
To thoroughly assess ModelGraft gains, we test its performance not only with accurate
TC values extracted from event-driven simulations and provided as input (Sec. 7.1–7.2),
but also with rough TC guesses, possibly inaccurate by several orders of magnitude,
in order to stress the self-stabilization capabilities of ModelGraft (see Sec. 8). All the
results presented in this section have been obtained by executing both event-driven and
ModelGraft simulations on the same commodity hardware, i.e., an Intel Xeon E5-1620,
3.60GHz, with 32GB of RAM.

14

Table 2: ModelGraft validation, accurate initial TC (4-level binary tree, M = R = 10
9
, C = 10

6
,∆ = 10

5
, Y = 0.75)

Cache Decision
Policy Technique phit Loss CPU

time Gain Mem [MB] Gain

LCE
Simulation 33.2%

1.8%
11.4 h

194x
6371

168x
ModelGraft 31.4% 211 s 38

LCP(1/10)
Simulation 35.4%

1.4%
7.3 h

90x
6404

168x
ModelGraft 34.0% 291 s 38

2-LRU
Simulation 37.0%

0.9%
10.8 h

97x
8894

234x
ModelGraft 36.1% 402 s 38

7.1. ModelGraft validation: Very Large-scale Scenario

To evaluate the accuracy of ModelGraft, we observe that simulators considered in [43]
(ccnSim, NDNsim and Icarus, to mention a few) all yield consistent results: it follows that
comparing ModelGraft against one of these simulators is sufficient to confirm ModelGraft
validity. We thus select ccnSim –which was already shown to be among the most scalable
ICN software tools [43]– and consider the largest scenario we can investigate via its
event-driven engine. To stretch the boundaries reachable by event-driven simulation
even further, we integrate the rejection inversion sampling in ccnSim – so that, to the
best of our knowledge, we are the first to evaluate ICN networks when the content catalog
is in the order of billions.

The validation scenario represents an ICN-access tree [31] with N=15 nodes, as de-
picted in Fig. 4(a). A single repository, connected to the root node, stores a M = 109

objects catalog, where objects follow a Zipf popularity distribution with exponent α = 1.
R = 109 overall requests are injected through leaf nodes, at a rate of Λ = 20 req/s per
leaf, following an Independent Reference Model (IRM).

The cache size of each node is fixed at C = 106 (i.e., cache to catalog ratio of C/M =
0.01%). We consider three cache decision policies: (i) LCE, where fetched contents
are always cached in every traversed node; (ii) LCP(1/10), that probabilistically [6]
admits contents in the cache (one over ten fetched contents is cached on average); (iii) 2-
LRU [24, 29], where cache pollution is reduced by using an additional cache in front of the
main one, with the purpose of caching only the names of requested contents: the fetched
contents will be stored in the main cache only in case of a name hit in the first cache.
According to our rule of thumb C ′ = C/∆ ≥ 10 (anticipated in Sec. 6.2 and substantiated
in [45]), the maximum downscaling factor is ∆ = 105. Additionally, equations (10) and
(12) are computed considering Y = 0.75, εCV = 5 · 10−3, and εC = 0.1: in other words,
we test convergence of 75% of the caches in the network, by requiring the coefficient
of variation of the hit rate to be below 5 · 10−3, and we iterate ModelGraft simulations
until the measured average cache size of those nodes is within 10% of the expected size
C ′ = C/∆ (a sensitivity analysis of the above parameters is reported in Section.8).

Tab. 2 reports mean values (computed over 10 different runs) for three KPIs: mean
hit ratio phit, CPU time, and RAM memory occupancy. Confidence intervals, instead,
are reported in the sensitivity analysis section available at [45]. The table also highlights

relative gains for CPU and memory footprint (i.e., KPISimulation/KPIModelGraft), as

well as accuracy loss with respect to simulation (i.e., |pSimulationhit − pModelGraft
hit |). Sev-

15

eral observations follow from the table. First of all, (i) ModelGraft brings significant
improvements in terms of reduction of both CPU time and memory occupancy; indeed,
the relative gains with respect to the classic event-driven approach are always about
two orders of magnitude large, regardless of the cache decision policy. Considering the
LCE case as an example, ModelGraft requires only 38 MB of memory and 211 seconds of
CPU time, compared to 6.4 GB and 11 hours under classic simulation. Additionally, we
can also highlight the fact that, despite the aforementioned gains, (ii) the discrepancy
between the hit probability phit measured by ModelGraft vs the one gathered through
the event-driven approach remains always under 2%. It is worth remarking that, despite
Eq. 4 proves the correctness of the TTL approximation under specific conditions (as also
shown in [12], and remarked in [16, 29]), providing analytical lower/upper bounds of the
estimation accuracy of ModelGraft for complex cache networks is not trivial; as a con-
sequence, we resort in assessing ModelGraft accuracy by comparing its results with the
correspondent LRU non-downscaled scenario simulated through event-driven simulation.
Finally, it is interesting to point out the absence of either an (iii) accuracy vs. speed
trade-off, as one would typically expect [34], or of a (iv) memory vs. CPU trade-off [21],
i.e., cases where an algorithm either trades increased space (e.g., cached results) for de-
creased execution time (i.e., avoid computation), or viceversa. ModelGraft thus stands
in a rare win-win operational point where both CPU and memory usage are significantly
relieved, at a price of a very small accuracy loss.

7.2. Gain projection: Internet-scale Scenario

We finally employ the validated ModelGraft engine to venture scenarios that are
prohibitively complex for classic event-driven simulation, due to both CPU and memory
limitations. Indeed, our aim is to investigate Internet-scale scenarios, whose content
catalogs are estimated to be in the order of O(1011) – O(1012) [33], i.e., two orders of
magnitude larger than those considered in the previous section.

We consider two representative scenarios. The first one, depicted in Fig. 4(a), models
an access network represented by a 4-level binary tree with a single repository connected
to the root, serving a catalog with cardinality M = 1010. Cache size is C = 106,
which limits the maximum downscaling to ∆ = 105 (see [45] for an exhaustive sensitivity
analysis on ∆). The second scenario, depicted in Fig. 4(b), models, instead, a more
complex CDN network, where three repositories, serving a catalog with cardinality M =
1011, are connected to backbone nodes interconnected as the classic Abilene network,
and where an access tree is further attached to each backbone node, thus resulting in
a total of N = 67 nodes. In this scenario, we let the cache size be C = 107, which
allows to increase the downscaling factor to ∆ = 106. In both cases, considering the
lack of ground truth due to prohibitive simulation cost, we provide rough TC guesses as
ModelGraft inputs.

As before, we set Y = 0.75, εCV = 5 · 10−3, and εC = 0.1, and we run experiments
on the same machine. Although we cannot instrument event-driven simulations at such
large-scale, due to both physical memory limits (a hard constraint), as well as time budget
(a soft constraint), we can estimate the expected memory occupancy and CPU times by
means of simple predictive models: despite pertaining only to the specific implementation
of ccnSim (and so being of limited interest), such estimates are nevertheless useful to

16

Table 3: Internet-scale scenarios: ModelGraft results and projected gains vs event-driven simulation.

Topology Parameters Technique phit
CPU time
(#Cycles) Gain Mem Gain

Access-like
(N = 15)

 M = 1010

 R = 1010

 C = 106

 Δ = 105

 Y = 0.75

Simulation
(estimate) n.a. 4.5 days

270x

70 GB

~1500x
ModelGraft 31.4% 24 min

(1 cycle) 45 MB

CDN-like
(N = 67)

 M = 1011

 R = 1011

 C = 107

 Δ = 106

 Y = 0.75

Simulation
(estimate) n.a. 50 days

96x

520 GB

~16700x
ModelGraft 34.0% 12.5 h

(3 cycles) 31 MB

project ModelGraft gains. While the CPU time is proportional3 to the the total number
of requests, the memory occupancy (Memsim) of the optimized event-driven module of
ccnSim is well fitted by the following formula:

Memsim = µcacheNC + µcatalogM + µfix, (14)

where N is the number of nodes, C the cache size, M the catalog cardinality, while
the three constants µcache, µcatalog, and µfix, represent the bytewise memory occupancy
of individual entries of the cache, of individual entries of the catalog, and the fixed
footprint of the simulator environment, respectively. By fitting the model over more
than 50 scenarios (i.e., varying N , M , C and several other scenario parameters such
routing, caching policies, etc.) we gathered µcache = 165 Bytes, µcatalog = 4 Bytes, and

µfix = 20 · 106 Bytes, with asymptotic standard errors of 3.28%, 0.02%, and 0.03%.
Notice that this formally confirms the catalog size (orders of magnitude larger than the
cache size) to constitute the primary reason to prevent event-driven simulations at scales
such as the ones considered in this paper.

Projected ModelGraft gains are reported in Tab. 3. Consider the Access-like scenario
first: even though the rejection inversion sampling technique optimizes the memory
allocation of both simulation and ModelGraft, however an index binding all the seed copies
with their respective repositories is still needed: this scales as M in case of event-driven
simulation, and with M ′ = M/∆�M in ModelGraft, which explains why the projected
memory gains in Tab. 3 (obtained for ∆ = 106) are significantly higher (i.e., more than
three orders of magnitude) than the ones shown in Tab. 2 (obtained for ∆ = 105).
Regarding CPU time, instead, relative gains are similar (i.e., higher than two orders of
magnitude) to Tab. 2, as our initial TC guesses (inferred from simple interpolation of
smaller scale scenarios) were accurate enough to let ModelGraft converge. Considering
the CDN-like scenario next, we notice that memory gains increase by one further order
of magnitude (since in this case ∆ = 107), whereas CPU gains are slightly reduced (to a
still large 96×) in reason of the higher number of MC-TTL cycles4.

3
Notice that this model is conservative, as it neglects superlinear effects such as, e.g., the cost of

lookups in larger data structures: as such ModelGraft gains may be underestimated.
4
Specifically, given that our initial TC guesses were not accurate enough, ModelGraft performed three

17

Table 4: Sensitivity analysis parameters. Full details in [45]

Variable parameters

Parameter Default Range

TC T simC (Tab. 5) [1/100, 100]T simC

∆ 105 {101, 102, 103, 104, 105, 106}
Y 0.75 {0.5, 0.75, 0.9, 0.95, 1}
α 1 {0.8, 1, 1.2}
εCV 0.005 {0.005, 0.01, 0.05, 0.1}
εC 0.1 {0.05, 0.1, 0.5}

Fixed parameters

Parameter V alue

M 109

C 106

R 109

Caching {LCE,LCP (1/10)}

Topology
{4-level binary tree, NDN
Testbed}

Table 5: T
sim
C values for validation scenario (4-level binary tree, M = R = 10

9
, C = 10

6
, Y = 0.75)

Level LCE LCP(1/10) 2-LRU
(Name/Main)

0 (Root)

T
C

 v
al

ue
s

[s
] 16.7 • 103 16.7 • 104 20.0 • 103 / 76.4 • 104

1 32.5 • 103 31.4 • 104 38.1 • 103 / 12.5 • 105

2 63.0 • 103 56.9 • 104 71.9 • 103 / 20.4 • 105

3 (Leaves) 11.1 • 104 88.3 • 104 11.1 • 104 / 22.6 • 105

phit 33.2% 35.4% 37.0%

8. Sensitivity analysis

We test the correctness of ModelGraft by varying all the parameters summarized
in Tab. 4, in order to assess its gains under an extensive set of scenarios. To gather
conservative estimate we consider the very large-scale scenario of Sec. 7.1 as a baseline.
Furthermore, we make available all the scripts used to perform the sensitivity analysis
at [2]. Finally, we point out that a complete account of the sensitivity analysis, carried
over more than 340 experiments for cumulated 31 days of CPU time, is available in an
extended technical report [45].

8.1. Input (TC) sensitivity

As described in Sec. 6.1, ModelGraft is self-stabilizing: i.e., after reaching steady-
state, some system properties (namely, the measured cache size C̃) are compared with the
expected ones (namely, the downscaled target cache size C/∆). In case of disagreement
among these quantities, actions are taken by correcting a fundamental system property

(namely, the characteristic time T
(z+1)
Ci

of each node, Sec. 6) before entering a new
MonteCarlo simulation cycle.

As previously seen in Sec. 7.2, correctness of T
(0)
Ci

values provided as input may
impact the number of MC-TTL cycles needed to reach a consistent state, thus affecting
the overall CPU time. We can expect that in the typical ModelGraft use cases, the
exact TC values are not known a priori (as simulation is precluded in those scenarios):
it is thus of primary importance to assess its performance in the presence of rough TC

cycles to converge, lengthening the duration of the Monte-Carlo simulation and reducing the gains with
respect to simulation.

18

 0

 50

 100

 150

 200

C
P

U
 a

n
d

M
em

o
ry

 G
ai

n
s

LCE

CPU Gain
Memory Gain

LCP(1/10)

0

1

2

3

4

5

1/(100u) 1/(5u) 1 5u 100u

#
C

y
cl

es
 a

n
d

 A
cc

u
ra

cy
 L

o
ss

 [
%

]

T
C

 Multiplicative Factor (b)

Cycles
Accuracy Loss

1/(100u) 1/(5u) 1 5u 100u

T
C

 Multiplicative Factor (b)

Figure 5: TC sensitivity: 4-level binary tree, M = 10
9
, R = 10

9
, C = 10

6
,∆ = 10

5
, for LCE (a,c) and

LCP(1/10) (b,d) cache decision policies.

guesses. For the sake of clarity, we report in Tab. 5 TC values gathered from event-driven
simulations of the same scenario, for different cache decision policies. It can be clearly
noticed that TC values vary more according to the cache decision policy (up to one order
of magnitude) than to the topological position inside the network; in particular, the more
conservative the cache decision policy (e.g., LCP or 2-LRU), the bigger the TC values.
Intuitively, this reflects the fact that if nodes regulate the storage of new contents (as in
LCP or 2-LRU), those already admitted in the cache will stay for longer periods (i.e.,
bigger TC values). Also intuitively, these contents are more popular (i.e., note that for
stationary content popularities, LCP(ε) converges to LFU for vanishing ε [29]), which,
in turn, increases the overall hit probability (as the last row of Tab. 5 shows).

With this baseline in mind, our approach in testing the resilience of ModelGraft
against input TC variability consists in purposely introducing estimation errors, for each
node, in a controlled fashion. In particular, we set T 0

C(i) = b(i)T simC (i), where T 0
C(i) is the

initial characteristic time for node i, T simC (i) is the accurate value (gathered via simulation
and reported in Tab. 5), and b(i) ∈ [1/(Bu), Bu] is a multiplicative factor obtained by
multiplying a bias value B ∈ [1, 100] (equal for all the nodes) by a uniform random
variable u ∈ (0, 1] (i.i.d. for all nodes). This means that we allow both overestimating
(when b(i) > 1) and underestimating (b(i) < 1) the actual T simC (i) value. Notice that,
in case of maximum bias (i.e., Bmax = 100), T 0

C(i) will differ from T simC (i) by up to
two orders of magnitude (i.e., larger than the maximum difference previously observed),

19

0.1

1

10

100

1000

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

(∆)

(C/∆)

~168x

(a) Memory Gain

ModelGraft

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

~91x

(b) CPU Gain

1

2

3

4

5

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

~1.4%

(c) Accuracy Loss (%)

∆ Simulation ModelGraft ∆ Simulation ModelGraft ∆ Simulation ModelGraft

102 6404 16549 102 26280 52810 102 35.40 34.39

103 6404 1674 103 26280 4741 103 35.40 34.55

104 6404 187 104 26280 666 104 35.40 34.72

105 6404 38 105 26280 287 105 35.40 33.96

106 6404 6 106 26280 4841 106 35.40 30.50

(d) Memory[MB] (e) CPU time [s] (f) phit[%]

Figure 6: Downscaling factor ∆ sensitivity: 4-level binary tree, with M = R = 10
9
, C = 10

6
, Y =

0.75, LCP(1/10) as cache decision policy: (a-c) Relative gains, (d-f) Tabulated absolute values. Default
value highlighted in green.

varying furthermore for each node in the network due to the uniform random variable u.
Fig. 5 reports the collected results related to four KPIs (namely, CPU and memory

gains, accuracy loss, and number of MC-TTL cycles), under the LCE and LCP(1/10)
cache decision policies, as a function of the multiplicative factor b. Several remarks follow
from Fig. 5. To begin with, (i) the presence of a feedback control loop efficiently drives
the system to a consistent state, thereby nullifying the effects of the initial TC variability:
notice, indeed, that the accuracy loss on phit remains always under 2%, regardless of the
magnitude of the bias b(i). Additionally, (ii) MC-TTL cycles always remain bounded to
a small integer, regardless of the cache decision policy, and even for initial TC estimates
that are off by more orders of magnitude, which confirms the soundness of the choice of a
proportional controller in Sec. 6. It also follows that (iii) while CPU gains are maximum
in the absence of TC bias since no iterations are required (the central highlighted region,
corresponding to about 200x and 100x for LCE and LCP, respectively), they still remain
significant even for the largest TC biases (always higher than 50x, for both LCE and
LCP). Finally, (iv) memory gain is, as expected, independent of the initial TC bias.

Remark 1. We observe that ModelGraft is self-stabilizing, meaning that it is able to
gather the metrics of interest not only accurately, but also timely (i.e., it rapidly con-
verges), even when very harsh guesses of TC values (e.g., TC estimates that are wrong by
orders of magnitude) are provided as input. Despite the largest memory and CPU time
reduction are attained when exact TC values are provided as input (as expected), Model-
Graft converges within few cycles even with very inaccurate TC estimates, still providing
gains of orders of magnitude with respect to event-driven simulation. This makes the
methodology very robust for practical purposes.

20

8.2. Downscaling factor (∆) sensitivity

Another key parameter having a paramount impact on ModelGraft performance, in
terms of both CPU time and memory occupancy, is the downscaling factor ∆. We assess
its impact using LCP(1/10) as cache decision policy, and providing ModelGraft with
exact TC estimates as input (cfr. Tab. 5). We vary the downscaling factor ∆ in the
interval [102, 106], so that the target cache C ′ = C/∆ decreases from 104 to 100.

Fig. 6-(a-c) depict the three KPIs, i.e., memory gain MemSimulator/MemModelGraft,

CPU time gain CPUSimulator/CPUModelGraft, and accuracy loss |pSimulationhit −pModelGraft
hit |,

while the corresponding absolute values are tabulated in Fig. 6-(d-f). Several remarks
are in order. First, note that (i) for small downscaling factors ∆ ≈ 102, the scalability
is actually compromised : notice, indeed, that both memory occupancy and CPU time
exceed that of classic event-driven simulation. This is mainly due to the absence of size
limits in TTL caches, which, despite reaching their target size C ′ = C/∆ only at steady-
state, present peaks with C ′ > C during the transient state, thus resulting in a bigger
memory occupancy with respect to LRU caches. In addition, as lookup in TTL caches
cannot leverage an ordered structure, as it would in LRU ones, it follows that larger
caches also translate into a higher CPU time. Without ModelGraft, then, TTL caches
would not allow, per se, the study of large scale systems.

Second, notice that (ii) for increasing ∆, memory and CPU gains increase, while
accuracy losses remain bounded: gains are maximized for ∆ ≈ C/10, which in the
current scenario corresponds to ∆ = 105. Notice that while this section reports a specific
case, we have experimentally observed the same trend for a wider set of scenarios, so that
we are confident in using this rule of thumb as a robust and reliable guideline for setting
∆. This also means that the larger the cache size, the larger the allowed downscaling
factor ∆, and the larger the gain – which we have early shown in Sec. 7.2.

Third, observe that (iii) for ∆ ≈ C, ModelGraft becomes unstable, which happens
because the target cache size C ′ ≈ 1 is too small to be reliably measurable. The effect is
further amplified by the series of controller actions in (13), with an error that possibly
amplifies:

TCi
(z+1) = TC

(0)
i

z∏
j=0

C ′

C̃
(j)
i

. (15)

As the very small target cache C ′ = 1 hampers the measurement step of the consistency
check, this results in additional MC-TTL cycles: e.g., in the specific case of Figs. 6-(b-c),
ModelGraft simulations reach the maximum number of cycles (set to 20). Such unstable
states are, however, easy to detect (memory occupancy still decreases, while execution
time increases) and avoid (as per the previous ∆ dimensioning rule).

Remark 2. The downscaling factor ∆ has to be chosen in accordance with the cache size
C. The system is stable for a large plateau of ∆ values up to ∆? = C/10, where largest
gains are expected: for ∆ < ∆? the system is still stable but gain reduces, whereas for
∆ > ∆? ModelGraft becomes unstable. For ∆ ≤ 102, the memory requirement of TTL
caches exceeds that of classic LRU event-driven simulation, which makes our downscaling
technique highly important from practical purposes.

21

0

1.0

0.5 0.75 0.9 0.95 1 (Y)
98

7s
19

3s

N
or

m
al

iz
ed

 V
al

ue
s

(a) CPU Time

Simulation ModelGraft

0

1.0

0.5 0.75 0.9 0.95 1

38
.5

%
37

.3
%

(Y)
(b) Phit

42.5%

73.4%

15.3%

Figure 7: Consistency parameter Y sensitivity: very large-scale scenario for NDN Testbed topology

with, M = R = 10
9
, C = 10

6
,∆ = 10

5
, LCE. Normalized (a) CPU time and (b) phit when the system

converges to steady-state. Default value highlighted in green.

8.3. Consistency parameter (Y) sensitivity

Another parameter that impacts ModelGraft CPU time is represented by Y . As seen
in Sec. 5.2, transient periods have, in ModelGraft, a variable duration depending on the
state of individual nodes: Y allows to tune the number of nodes that are considered for
the convergence computation, with the purpose of avoiding waiting for few slower nodes
(e.g., the ones with low traffic and small measured caches, etc.), which, in the end, have
a marginal impact on the overall system performance. We expect the system to be quite
robust to Y , as this parameter only affects the time at which the system enters steady-
state, after which a number R′ of events is executed to gather the metrics of interest over
all network nodes.

While for hierarchical topologies it is immediate to identify which nodes are slower to
converge (e.g., in the 4-level binary tree topology depicted in Fig. 4(a), the latest node
to converge is represented by the root, that aggregates the miss stream of request for
unpopular content that are not filtered by cache hit in downstream caches), this is no
longer the case for more complex topologies or routing strategies. We investigate this
aspect by considering the very large-scale scenario (M = 109, R = 109, C = 106,∆ = 105,
LCE), but using the NDN Testbed topology [3] with N = 26 nodes. We purposely vary
the Y parameter in the interval [0.5, 1], for both ModelGraft and classic event-driven
simulation, requiring convergence of the first Y N nodes in each ModelGraft cycle.

We report the convergence time in Fig.7-(a) , i.e., the elapsed time at which the
simulation is considered at steady-state, and the measured hit rate phit in Fig. 7-(b) at
that time instant. Both figures report normalized values with respect to the maximum
CPU value, and to the ground truth value of phit gathered from event-driven simulation
for Y = 1, respectively. The figure clearly shows that Y has a beneficial impact on
execution time without hurting accuracy for a large plateau of values. Specifically (i)
the largest CPU time gain is obtained when Y passes from 1 to 0.95 (i.e., eliminating
the single slowest node to converge reduces most of the unnecessary wait), that has only
a minimal and conservative impact on the accuracy (as the hit probability only vary
slightly decreases). Moreover, (ii) the CPU gain increases further until Y = 0.75 with
no additional impact on the accuracy. Finally, (iii) accuracy degrades only for extreme

22

Table 6: Content popularity α sensitivity: very-large scenario, 4-level tree, M = R = 10
9
, C = 10

6
,∆ =

10
5
, Y = 0.75, LCE.

α Technique phit CPU time Gain Mem [MB] Gain

0.8
Simulation 7.96% 22.8 h

461x
6356

168x
ModelGraft 7.85% 179 s 38

1
Simulation 33.2% 11.4 h

194x
6371

168x
ModelGraft 31.4% 211 s 38

1.2
Simulation 52.9% 4.2 h

52x
6393

168x
ModelGraft 52.6% 286 s 38

cases where only Y = 0.5 half of the nodes have reached convergence.

Remark 3. The spatial sampling parameter Y impacts convergence speed and accuracy.
It allows to accelerate steady-state achievement for Y <1: already excluding only the
slowest node from the convergence test, i.e., Y ≈ N−1

N , provides significant computational
gains. Further computational gains are possible, although they may come at the price of
accuracy loss when Y < 0.75.

8.4. Content popularity (α) sensitivity

Finally, we verify ModelGraft consistency in different scenarios, by varying the ex-
ponent α ∈ {0.8, 1, 1.2} of the Zipf distribution . Tab. 6 reports numerical values and
relative gains of ModelGraft with respect to event-driven simulation. As expected, the
popularity skewness does not heavily influence ModelGraft performance: very limited
accuracy losses of 0.1% and 0.3% appear for α = 0.8 and α = 1.2, respectively, with a
memory reduction of 168× in both scenarios. Interestingly, the CPU gain for the case
α = 0.8 is more than twice the one obtained with α = 1 (i.e., 461× instead of 194×):
ModelGraft simulations last for 3 minutes, instead of almost 1 day for the event-driven
engine. For the case α = 1.2, instead, the computational gain is smaller but still sig-
nificant (52×). This can be explained with the fact that in this scenario, a hit ratio
higher than 50% translates in very limited propagation of content requests (i.e., gener-
ated events), since most requests are satisfied at leaf caches; as such, the CPU time of
the classic event-driven approach is already small per se, and the gain shrinks.

Remark 4. The popularity distribution of the content catalog does not affect the accuracy
of ModelGraft. In particular, CPU gains are larger for lower skews (close to 500x for
α = 0.8), but they remain consistent also for higher skews (over 50x for α = 1.2),
confirming ModelGraft scalability.

8.5. Further parameters

Other parameters, such as convergence εCV and consistency εC thresholds, scenario
topology and scale, etc. might influence ModelGraft execution time and accuracy. Due to
lack of space, a brief discussion is reported herein, while the interested reader is referred
to the technical report [45] for further details. As shown in Tab. 4, we tested εCV ∈
{0.005, 0.01, 0.05, 0.1}: as expected, the bigger εCV , the faster ModelGraft converges,

23

without affecting the accuracy at the same time. Notice that our selection εCV = 0.005 in
the previous sections implies that we compare ModelGraft against event-driven simulation
gathering a conservative gain estimation. We test the effect of the consistency threshold
for εC ∈ {0.05, 0.1, 0.5}: we gather that small values (e.g., εC = 0.05) force ModelGraft
to unnecessarily execute multiple cycles, i.e., even when exact TC value are provided as
input – which we avoid by letting εC = 0.1 as default.

Remark 5. Estimated gains of our novel methodology over classic event-driven simu-
lation provided in this paper are rather conservative. Notice, indeed, that since the very
large-scale scenario limits, de facto, the downscaling factor to ∆ ≤ 105, the ModelGraft
CPU and memory gains reported in this section are conservative by design, considering
that the methodology is designed to cope with extremely large scenarios, and that gains
grow with ∆ (Remark 2). Similarly, default settings of εCV and εC reported in this paper
provide a conservative estimate of ModelGraft gains.

9. Related Work

We now put our proposal in perspective w.r.t three classes of work that relate to ours.

Hybrid techniques for the study of general networks. The concept of inferring key aspects
of large systems from the study of equivalent and scaled-down versions has been adopted
in several domains, from cosmology and biology, to the closer IP networks [37, 28],
wireless sensor networks [27], and control theory [8].

What presented in this paper shares the spirit of [37], where the idea of feeding
a suitable scaled version of the system with a sample of the input traffic is presented
to reduce the computational requirements needed for large IP networks analysis. In
particular, the scaling rule is differentiated according to the type of TCP/UDP flows
traversing the network: for IP networks with short and long flows they demonstrate, both
analytically and with simulation, that their scaling technique leaves certain metrics, such
as the distribution of the number of active flows and of their normalized transfer time,
virtually unchanged in the scaled system. For networks with long-lived flows controlled
by queue management schemes, a different scaling approach, instead, leaves queuing delay
and drop probability unchanged. In this latter case, the proposed approach drastically
reduces the CPU time of ns simulations.

TCP networks are also considered in [28], where the authors propose a scalable model
which is easily comparable with discrete event simulators due to its time-stepped nature.
In particular, they refine a known analytical model [36] based on ordinary differential
equations, and they solve it numerically using the Runge-Kutta method. Results show
that their approach yields accurate results with respect to those of the original networks,
and, at the same time, it is able to speedup the completion time of orders of magnitude
with respect to packet level and discrete events simulators like ns.

This work is the first to apply these concepts to the study of cache networks. Clearly,
caching dynamics are intrinsically different from system-level aspects of wireless sensor
networks [27], or the steady state throughput of TCP/IP networks [37, 28]. Our method-
ology is novel with respect to the body of hybrid approaches [8, 36, 27, 28, 37] in that,
unlike our approach, they do not allow to study network of caches, that have become a
crucial piece of the current (CDN) or future (ICN) Internet.

24

General tools for the study of cache networks. Additionally, an aspect that makes our
work of high practical relevance is that ModelGraft is fully integrated in ccnSim [2],
an open-source tool that was already among the most scalable ones [43], and even
improving its by orders of magnitude. We notice that, despite general techniques to
scale simulation tools do exist, they however focus on orthogonal problems with respect
to ours. For instance, Message Passing Interface (MPI) [1], SimGrid [10], and Akaroa [14]
allow to parallelize the simulation execution.

In particular, we already used MPI to parallelize ccnSim [40] by simply slicing the
network: however, this is not particularly attractive in cache networks, due to the corre-
lation of states among neighboring caches, which makes the overhead of MPI offsetting
any benefit [40]. Also, in previous sections we have shown memory and computational
bottlenecks to be tied to the vastness of objects in the catalog, which is comparatively
larger than the state of network caches – reinforcing the need of a technique such as the
one we propose and analyze in this paper.

Analytical tools for the study of cache networks. Finally, while our technique leverages ex-
isting building blocks, namely Che’s approximation [12] and TTL caches [23, 16, 30, 32],
it does however bring a number of original contributions. First, while we leverage Che’s
intuition to decouple objects in the catalog, however the technique to opportunely sub-
sample the catalog is an original contribution of this work – that enables sizable gains of
over 100x CPU time reduction, and over 1000x memory footprint reduction in Internet-
like scenarios. We indeed remark that TTL caches with small downsizing are compu-
tationally more costly than classic LRU ones in event-driven simulation. This follows
from the fact that TTL caches are not bounded, so that when ∆ ≈ 1, the CPU time
of TTL-based simulation actually exceeds that of classic event-driven simulation [45]. It
follows that the use of TTL caches[23, 16, 30, 32] would be impractical in Internet-scale
scenarios without our proposed downscaling technique. This also explains why, though
intellectually interesting, TTL caches have been so far used only for very simple net-
works (e.g., single cache, trees) and catalogs (few hundreds objects), thus reinforcing the
relevance of our proposal.

Additionally, while we leverage TTL caches, another original contribution is to for-
malize their equivalence with LRU systems, and to further design a closed-loop system
able to accurately converge to performance estimates with the aforementioned gains.
Notice, en passant, that our technique copes with other replacement policies than LRU,
such as, e.g., random replacement (RND) or FIFO, as extensions of Che’s approximation
[17] and networks of LRU caches, are largely more popular in practice. Similarly, the
support for arbitrary routing and forwarding techniques on complex topologies makes
ModelGraft very relevant from practical perspectives.

10. Conclusion

This work proposes ModelGraft, an innovative hybrid methodology addressing the
issue of performance evaluation of large-scale distributed cache networks. The method-
ology grafts elements of stochastic analysis to MonteCarlo simulation approaches, retain-
ing benefits of both classes. Indeed, ModelGraft inherits simulation flexibility, in that it
can address complex scenarios (e.g., topology, cache replacement, decision policy, etc.).

25

Additionally, it is implemented as a simulation engine to retain simulation simplicity :
given its self-stabilization capability, ModelGraft execution is decoupled from the avail-
ability of accurate input TC values, which is completely transparent to the users. Results
presented in this paper finally confirm both the accuracy and the high scalability of the
ModelGraft approach: CPU time and memory usage are reduced by (at least) two orders
of magnitude with respect to the classical event-driven approach, while accuracy remain
within a 2% band.

Whilst the methodology is general, we offer to the scientific community an open-
source implementation in ccnSim-v0.4, which is readily available in [2]. As ModelGraft
requires little tuning, users can leverage, in a seamless way, either the classic event-driven
engine or the new ModelGraft, which empowers their analysis of Internet-scale scenarios.

Acknowledgments

This work benefited from support of NewNet@Paris, Cisco’s Chair “Networks for
the Future” at Telecom ParisTech (http://newnet.telecom-paristech.fr). Any
opinion, findings or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of partners of the Chair.

References

[1] http://www.mpi-forum.org/.
[2] ccnSim Simulator. http://perso.telecom-paristech.fr/~drossi/ccnSim.
[3] NDN Testbed web page. http://named-data.net/ndn-testbed/.
[4] Zipf distributed random number generator . https://github.com/apache/commons-math/blob/

master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java.
[5] A. Araldo, D. Rossi, et al. Cost-aware caching: Caching more (costly items) for less (isps operational

expenditures). IEEE Transactions on Parallel and Distributed Systems,, 2015.
[6] S. Arianfar and P. Nikander. Packet-level Caching for Information-centric Networking. In ACM

SIGCOMM, ReArch Workshop. 2010.
[7] F. Baccelli, S. Machiraju, et al. On optimal probing for delay and loss measurement. In Proc. of

ACM IMC. 2007.
[8] M. Branicky, V. Borkar, et al. A unified framework for hybrid control: model and optimal control

theory. IEEE Transactions on Automatic Control, 43(1):31, 1998.
[9] G. Carofiglio, L. Mekinda, et al. Analysis of latency-aware caching strategies in information-centric

networking. In ACM CoNEXT Workshop on Content Caching and Delivery in Wireless Networks
(CCDWN ’16). 2016.

[10] H. Casanova, A. Giersch, et al. Versatile, scalable, and accurate simulation of distributed applica-
tions and platforms. Journal of Parallel and Distributed Computing, 74(10):2899, 2014.

[11] M. Cha, H. Kwak, et al. I tube, YouTube, everybody tubes: analyzing the World’s largest user
generated content video system. In Proc. of ACM IMC. 2007.

[12] H. Che, Y. Tung, et al. Hierarchical web caching systems: Modeling, design and experimental
results. IEEE JSAC, 20(7):1305, 2002.

[13] A. Dan and D. Towsley. An Approximate Analysis of the LRU and FIFO Buffer Replacement
Schemes. ACM SIGMETRICS Perf. Eval. Rev., 18(1):143, 1990.

[14] G. Ewing, K. Pawlikowski, et al. Akaroa-2: Exploiting network computing by distributing stochastic
simulation. SCSI Press.

[15] R. Fagin. Asymptotic miss ratios over independent references. Journal of Computer and System
Sciences, 14(2):222, 1977.

[16] N. Fofack, P. Nain, et al. Performance evaluation of hierarchical TTL-based cache networks. Elsevier
Computer Networks, 65, 2014.

[17] C. Fricker, P. Robert, et al. A versatile and accurate approximation for LRU cache performance.
In Proc. of ITC24. 2012.

http://newnet.telecom-paristech.fr
http://www.mpi-forum.org/
http://perso.telecom-paristech.fr/~drossi/ccnSim
http://named-data.net/ndn-testbed/
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java

26

[18] M. Garetto, E. Leonardi, et al. Efficient analysis of caching strategies under dynamic content
popularity. In Proc. of IEEE INFOCOM. 2015.

[19] N. Gast and B. V. Houdt. Transient and steady-state regime of a family of list-based cache replace-
ment algorithms. In Proc. of ACM SIGMETRICS Conference, pages 123–136. 2015.

[20] M. Hefeeda and O. Saleh. Traffic modeling and proportional partial caching for peer-to-peer systems.
IEEE/ACM Transactions on Networking, 16(6):1447, 2008.

[21] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory,
26(4):401, 1980.

[22] W. Hörmann and G. Derflinger. Rejection-inversion to generate variates from monotone discrete
distributions. ACM Trans. Model. Comput. Simul., 6(3):169, 1996.

[23] J. Jaeyeon, A. W. Berger, et al. Modeling TTL-based Internet caches. In Proc. of IEEE INFOCOM.
2003.

[24] T. Johnson, D. Shasha, et al. 2q: A low overhead high performance buffer management replacement
algorithm. In Proc. of VLDB. 1994.

[25] N. Laoutaris, H. Che, et al. The LCD interconnection of LRU caches and its analysis. ACM
SIGMETRICS Perf. Eval. Rev.,, 63(7), 2006.

[26] E. Leonardi and G. Torrisi. Least Recently Used caches under the Shot Noise Model. In Proc. of
IEEE INFOCOM. 2015.

[27] P. Levis, N. Lee, et al. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications.
In Proc. of ACM SenSys. 2003.

[28] Y. Liu, F. Presti, et al. Scalable Fluid Models and Simulations for Large-scale IP Networks. ACM
Trans. Model. Comput. Simul., 14(3):305, 2004.

[29] V. Martina, M. Garetto, et al. A unified approach to the performance analysis of caching systems.
In Proc. of IEEE INFOCOM. 2014.

[30] D. Berger et al. Exact Analysis of TTL Cache Networks: The Case of Caching Policies Driven by
Stopping Times. In Proc. of ACM SIGMETRICS, pages 595–596. 2014.

[31] S. Fayazbakhsh et al. Less Pain, Most of the Gain: Incrementally Deployable ICN. ACM SIGCOMM
Comput. Commun. Rev., 43(4), 2013.

[32] N. Fofack et al. On the performance of general cache networks. In Proc. of VALUETOOLS
Conference, pages 106–113. 2014.

[33] K. Pentikousis et al. Information-centric networking: Evaluation methodology. Internet Draft,
https://datatracker.ietf.org/doc/draft-irtf-icnrg-evaluation-methodology/, 2016.

[34] M. Rosenblum et al. Complete Computer System Simulation: The SimOS Approach. IEEE Parallel
Distrib. Technol., 3(4):34, 1995.

[35] G. Xylomenos et al. A survey of information-centric networking research. IEEE Communication
Surveys and Tutorials,, 16(2):1024, 2014.

[36] V. Misra, W. Gong, et al. Fluid-based Analysis of a Network of AQM Routers Supporting TCP
Flows with an Application to RED. ACM SIGCOMM Comput. Commun. Rev., 30(4):151, 2000.

[37] R. Pan, B. Prabhakar, et al. SHRiNK: A Method for Enabling Scaleable Performance Prediction
and Efficient Network Simulation. IEEE/ACM Trans. Netw., 13(5):975, 2005.

[38] E. Rosensweig, D. Menasche, et al. On the steady-state of cache networks. In Proc. of IEEE
INFOCOM. 2013.

[39] E. J. Rosensweig, J. Kurose, et al. Approximate Models for General Cache Networks. Proc. of
IEEE INFOCOM, 2010.

[40] G. Rossini and D. Rossi. ccnSim: a highly scalable CCN simulator. In Proc. of IEEE ICC. 2013.
[41] G. Rossini and D. Rossi. Evaluating CCN Multi-path Interest Forwarding Strategies. Comput.

Commun., 36(7):771, 2013.
[42] G. Rossini and D. Rossi. Coupling caching and forwarding: Benefits, analysis, and implementation.

In Proc. of ACM ICN. 2014.
[43] M. Tortelli, D. Rossi, et al. ICN software tools: survey and cross-comparison. Elsevier Simulation

Modelling Practice and Theory, 63:23 , 2016.
[44] M. Tortelli, D. Rossi, et al. ModelGraft: Accurate, Scalable, and Flexible Performance Evaluation

of General Cache Networks. In Proc. of ITC. Würzburg, Germany, 2016.
[45] M. Tortelli, D. Rossi, et al. Modelgraft: Accurate, scalable, and flexible performance evaluation of

general cache networks (extended version). Telecom ParisTech Tech. Rep., http://www.enst.fr/

~drossi/paper/ModelGraft.pdf, 2016.

http://www.enst.fr/~drossi/paper/ModelGraft.pdf
http://www.enst.fr/~drossi/paper/ModelGraft.pdf

	Introduction
	Stochastic modeling overview
	Background
	Equivalence of LRU and TTL caches

	ModelGraft overview
	ModelGraft components and workflow
	ModelGraft applicability

	Downscaling and sampling
	Design
	Implementation

	MC-TTL Simulation
	Transient
	Steady-state monitor
	Simulation cycle

	Self-stabilization
	Consistency check
	TC correction

	Results
	ModelGraft validation: Very Large-scale Scenario
	Gain projection: Internet-scale Scenario

	Sensitivity analysis
	Input (TC) sensitivity
	Downscaling factor () sensitivity
	Consistency parameter (Y) sensitivity
	Content popularity () sensitivity
	Further parameters

	Related Work
	Conclusion

