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SUMMARY : Stochastic Resonance (SR) is a phenomenon stadi@xploited for telecommunication, which
permits the detection and amplification of weaknalg by the assistance of noise. The first papeithis topic
date back to the early 80s and were developedglaiexsome periodic natural phenomena. Other agiibias
are in neuroscience, biology, medicine and, obWgusechanics.

Recently, a few researchers have tried to appytddhnique for detecting faults in mechanicaleystand also
bearings. In this paper we discuss the best waselect the parameters to augment the performandheof
algorithm. This is probably the main drawback of, SRce in system identification the procedure sthdne as
blind as possible to be efficient and widely apgitile. The classical bi-stable potential form isgdd in our
study, with three parameters to be selected. Basatumerical tests, a characteristic trend of theldication
factor has been found with respect to the parametmiation, so that a general rule is consequetgtgrmined
which gives the best performances in terms of diete@and amplification. The SR algorithm is testadboth
simulated and experimental data showing a goodoiigpaf increasing the signal to noise ratio.
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1. INTRODUCTION

The phenomenon of stochastic resonance (SR) hdgamms in a number of different fields and s¢iBn
domains. The possibility of resonance in dynamsyatems, which behave stochastically, was introdiigeR.
Benzi et al. [1] in 1981 and originally exploitedrfstudying the evolution of the Earth's climates first
applications were in a wide range of problems coteteto physical and life sciences. Other obsewaatdf this
phenomenon concern experiments on electronic ticahemical reactions, semiconductor devices, ineat
optical systems, magnetic systems and supercongugtiantum interference devices [2].

The studies of SR for mechanical applications, eisfig for mechanical fault diagnosis, began in thiel-90s
and great improvements have been achieved in pkatiduring the last years. Several techniques exid are
applied for the detection of defects in rotating chimes such as gears or bearings in many industrial
applications, but SR is the only one that takesaathge of noise. In fact mechanical acquisitiomsganerally
strongly corrupted by background noise from othements of the system: this component is usualfylented,
but on the contrary it is used by SR to enhancdghtires of faults [3].

2. STOCHASTIC RESONANCE

Stochastic Resonance is a tool used in signal psoog to increase the signal-to-noise ratio (SNRhe output
of a non-linear dynamic system, in order to extthet characteristic features of the system undegsiiigation



from background noise. This is obtained by addimgalinear dynamic system to the measured sigralipted

by noise and, by properly tuning, enhancing theaigf interest (Figure 1).

Usually noise is considered as a disturbance thgtmake measured data unusable, so that the Hasidehind
each data processing procedure includes the fijeor removal of noise. However, useful informatioay

happen to be corrupted or destroyed by this praeedo much attention has to be paid. In SR, idsteaise is a
basic element of the process: in fact, accordingpéoclassical theory of SR, by adding a well-tunee to the
full measurement, signal detection is facilitated.

The amplification of weak signals is obtained byyiag the noise level, through the addition of agmtial, but
keeping the input modulation signal. SR mechanismplies that, if a sinusoidal driving frequency nmixeith

noise is given as input to a nonlinear systengutput contains a high peak in the spectrum coarding to the
driving frequency which varies its amplitude asiadtion of the noise added through the system [3-5]

The algorithms for SR, especially for weak impulsesperiodic signals, work in time domain and salvypes
of implementation exist through the use of differkind of potentials.
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Figure 1 — Stochastic resonance scheme

The dynamic behavior of SR can be described byfdhewing Brownian motion equation of particles, ere
s(t) andn(t) are respectively the input signal and the noiseyse sum is in practice the measurement signal,
andV (x) is the potential function:

Z = —Z 450 +n(t) (@

The quantityx(t) is the system output and denotes the trajectorthe@fBrownian particle in the potential
functionV (x). Classical SR [3-4] uses the following polynongapression as a potential function:

V(x) = —%xz +§x4 (2

It represents a bi-stable symmetric system wheamdb are positive real parameters, whose two stablet®oi
are located at,, = +,/a/b and the height of the potential barrier &/ = a2/4b. Substituting this in the

Brownian particle motion equation and consideringeaodic signak(t) of amplituded and driving frequency
fo and a Gaussian white noig€t) with zero mean and given variance, the main eqoatif the process is
obtained:

% = ax — bx® + Ay cos2rfyt + @) + n(t) (3)
In case there is no external excitation the pasitsoonly determined by the initial conditions ameler changes.
If a periodic input function at frequendy is given as input, the potential function is madetl and changes
periodically, and in case there is also noise @itiput, the particle will jump between the potahtiells with a
period corresponding to that of the input funct{&iigure 2). So, by properly tuning the potentialtihe noise
present in the signal it is possible to detect wsigikals by simply solving the above first-ordeffedential
equation using the discrete Runge—Kutta method.

At this stage it is necessary to find the corredtigs ofa andb potential parameters so thait) takes the form
of a wave with the same oscillation frequency a&sdhving frequency of the periodic signal. In fatte system
output x(t), which represents the motion of a Brownian pagticiside the potentidl (x), should oscillate
between the two potential wells at a transitior ithit matches the period of the input signal. €qusntly the
periodic input signal is enhanced only by adjustimgdynamic system parameters.

In a more realistic case of impact signals givenngsit s(t) to the system, the outputt) will be made of a
series of impulses located in the exact positiothasoriginal signal. For example, by considerimlya single
impact event, the equation of motion becomes:



% = ax — bx3® + Ae P sin(2mfyt) + n(t) 4)
In this case the Brownian particle can jump betwierpotential wells in a few oscillation periodgwest in one
by properly tuning the potential parameters, whiléhe remaining parts of the signal it will getick inside the
potential well because no sufficient energy is ed by noise.
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Figure 2 — State transition of the bistable systerhe presence of periodic input and noise: (djirstate when t=0; (b) t
=1/4fy; (c) t=1/%; (d) =3/4,. Figure from [4]

2.1. Thealgorithm for impact signal detection

The main difficulty for an efficient implementatiaf SR is the selection of the parameters of thengal. In

fact, a criterion is necessary to determine if $héected set of values gives good results in thpubuwhich

means its capability of enhancing signal.

Several measurement indexes exist to assess tliey qpighe procedure, for example kurtosis, crigsttor or

others. The first is defined as the ratio betwémnfourth central moment and the square of theamad and it is
a measure of the peakness of a probability digtdbwof a real-valued random variable. The morepbaks are
narrow and sharp the more kurtosis is high, in r@mttto the case in which there is a normal distidim when
the kurtosis tends to 3:

E[(x-%)*]

kurt () = Gy

(®)

Crest factor is defined as the absolute peak valae the root mean square of the distribution. figher are
the peaks emerging from the background noise #feeapplication of the method, the more this fagioreases.

_ lepeak _ |x|peak

CF = xpMs  E[XZ] ©
Whatever index is selected, the parameters ofdkengial have to be selected in order to maxintize i
The first step after signal pre-processing is thgailization of the range of the coefficients @rms of minimum
and maximum values but also step size. By subisiifuhem in the SR equation, the output signabisguted
with a fourth-order Runge—Kutta algorithm and thewaluated through the criterion previously selected
Generally, after the solution of each equationbitamed, the transient response is removed in dodeorrectly
compute the corresponding criterion function, othiee¢ numerical peaks could be included in its eatdun.
Once all possible values of the coefficients haeerbused, the maximum value of the criterion isseho
together with the corresponding values of the doiefits. The improved waveform is then computed, diroan
this, it is possible to get all the information thie characterization of the impacts.

2.2. Re-scalingratio

The main problem of the classical bi-stable stotbassonance is the small parameters restrictidnich is in
contrast with bearing fault diagnostics. Essenti@R focuses on low frequency and weak periodiaaig
submerged in small noise, this meaning that thaesabf the frequency and amplitude of periodic aigmd



noise intensity are less than 1. But defect freqgigsnare usually much higher than 1 Hz and as aetprence it
is necessary to adapt SR algorithm to large paemisignals.
The approach usually adopted makes use of a rengdaktor applied to the sampling frequenfGyin order to
make it much lower by linearly compressing the fieocy scaleR is a rescaling ratio that satisfies the
requirement of small parameters [6].

fsr = fs/R (7

3. NUMERICAL SIMULATIONS

The SR method has been tested on several numdetal A first simulation has been performed to shiosv
benefits of the SR approach on a dataset genelgteslimming an impulse response function (IRF) to a
Gaussian noise:

s(t) +n(t) = Ae P sin(2rf, (¢ — T;)) + N (0,0) (8)

Figure 3 shows the output produced by SR with tiéowing parameters: natural frequengy= 16 Hz,
attenuation rat® = 12 s~1, impulse starting time;E 1 s and amplitudd = 0.15. A Gaussian white noia¢t)
with zero mean value and standard deviation0.07 has been added to the IRF. The samplimgiémecy is set
to f¢ = 500 Hz, N = 1000 is the number of considered samples andetfwaling ratio iR = 200. Fig. 3 shows
that for a particular realization of the noise dnydselecting a = 0.7 and b = 9 the SR processmaease the
kurtosis index from 3 to 29 and the presence dRinis clearly detectable.
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Figure 3 — Example of SR effect: the Kurtosis ofdlugput signal has been considerably increased.

It also results that if the height of the potenbalrier is too low the Brownian particle can julmptween the
potential wells many times, and not only when tbial impact occurs. In this case, the capabilitidentifying

the actual IRF is lost and the Kurtosis index a&f 8R output doesn’t show any increase. To demdesinés
phenomenon, 500 realizations of the Gaussian maige been considered with the above-mentioned pdeasn
For each realization, parametevaries between 0.1 and 1 and paramieteztween 1 and 10. The corresponding
variation steps are defined in such a way to ob#alt0x10 search grid. Results of maximum, minimurd a
mean values of the Kurtosis index computed ovesahealizations are depicted in Fig. 4a as a fanaif the
height of the potential barrief = a?/4b: this figure shows that an optimum valued exists.

To study the IRF amplituda influence on the Kurtosis gain, the Kurtosis indexlepicted in Figure 4b with
several amplituded: this figure confirms that an optimum value of tieight of potential barriedV exists and
that this value moves to the right if the IRF amale grows. It is stressed that this amplitudesiated to the
damage severity.
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Figure 4 —Kurtosis of the output signal as a fuocf the height of the potential barrier (500 dimtions and 10x10 search
grid): (a)A = 0.15, (b)A from 0.05 to 0.30

4. SSMULATIONSOF BEARING FAULTS

Bearings can manifest several kinds of damage aldlifferent causes, such as fatigue, wear, podallason,

improper lubrication and occasionally manufacturiaglts. Defects could arise in all constitutingrakents and
each has a distinct pattern in the time signal Bsitgpn and could be identified by its deep exartiora Bearing
is made of the following components: outer racaefrrace, cage and rolling elements (Table 1).

Table 1 — Bearing elements and defect frequencies

ouler race d
b Ball Pass Frequency of the Outer race BPFO = anr (1 B _COS¢)
Ball P F f the | n d
all Pass Frequency of the Inner race BPF] — g<1 N Ecosd))
i d
Fundamental Train Frequency (cage speed) FTF = f_r<1 3 _COS¢)
2 D
D d 2
Ball Spin Frequency BSF = frﬁ 1- (5 cos¢)

When a bearing spins, any irregularity in the stefaf inner or outer race, or in the roundnesshefrolling
elements excites periodic frequencies called fureddaal defect frequencies. These depend on the depofe
the bearing and clearly on the shaft speed. Inéldbthere is a list of these frequencies in whicks ball
diameter,D is pitch diameter¢ is contact anglef, is shaft speedsz is the number of rolling elements. It is
assumed that outer race is fixed and inner racdant

All previously listed formulas are valid only whenre rolling contact exists between balls, inneerand outer
race, but actually there is always some random whign a bearing is under load and after some wedr a
consequently frequencies are not found exactlyedigted by Table 1.

In this paper faulty bearing time histories are egated through a Matlab code as repeated impulgmonse
functions, submerged by background noise. These al& given in input to the SR algorithm for sigfaallt
enhancement. The simulated bearing has the chastict listed in Table 2, where its defect frequien are
computed as function of shaft speed.

The standard deviation of noise was set to 0.07 and the defect was simulated as the impelsgonse of a
SDOF system with resonance frequency of 5500 Hzdamdping ratio 5%. In the simulation, which is ézalr
out atfg = 96000 Hz for 1s, the shaft speed 00 Hz, and the amplitude of the IRF is set at A = 0.Bbe
model also includes the typical modulation for um@dtional load, which is at the cage speed fdimglelement
faults. A re-scaling factor R=20000 is used in oresatisfy the small parameter requirement. Byivg thea
andb parameters in the same grid as in the previoumpba it was found that the dependence of the Kisto
index on the height of the potential barrier sh@vsesonance curve” which is similar to Fig. 4aeTdptimal
value of v produces a Kurtosis gain of about 6 as showndn%a. To demonstrate the effectiveness of the SR
algorithm the normalized power density spectrunboth input and output is depicted in Fig. 5b: thefedt
frequency peak is increased by one order of mag@itote that the ballspin frequency (BSF) is tiegdiency
of fault passage over the same race (inner or puithat in general there are two shocks pechmssiod.



Table 2 — Bearing dimensions and defect frequerasidanctions of the shaft frequency

d D ) n BPFO BPFI FTF BSF

9 mm 40.5 mm 0° 10 3.89 f, 6.11 f, 039 £, 214 f,

(a) (b)
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Figure 5 — Example of SR effect (bearing model)itit@ Kurtosis of the output signal and (b) thekpearresponding to the
defect frequency have been considerably increased.

5. EXPERIMENTAL CASE

Finally an experimental application of SR is prdedrnin order to show its effectiveness. The tagtget up in
the laboratory of the Department of Mechanical Aedospace Engineering of Politecnico di Torinomiade of
three bearings and a rotating shaft, see Figudé.radial load is applied to the central bearifglevthe other
two serve as supports for the shaft: one of therdhtbearing exhibits different levels of damagemniage
monitoring is performed by equipping the structui¢h triaxial accelerometers at different shaftexe load
levels and oil temperature.

The bearing under exam has the characteristicddafett frequencies as in Table. 2. Results showealfter
concern a bearing with a defect in a rolling elemeiith shaft speed at78 Hz. The central support is loaded
by a force oftl800 N and the sampling frequencyfis= 51200 Hz.

The optimal value o8V produces a Kurtosis gain of about 7 as showndn . The normalized power density
spectrum of both input and output is depicted op Fb: the defect frequency peak was not detectalilee raw
spectrum, while it clearly appears in the SR outpgether with its harmonics. The identified deffeeuency
differs from the theoretical value (Tab. 2) by anoaint of 3%, which is a typical value of changeb@aring
defect frequencies.




(@) (b)

SR Input, Kurtosis K’0 =7.5949 SR Input, Normalized Spectrum

1 . . 1
05 4 5
\ £
0 ! 0" 05
oF
05} ]
1 L L L L . . . . . 0 L n L. il n PO |
Yo 005 01 015 02 025 03 035 04 045 05 1000 2000 3000 4000 5000 6000 7000 8000
. SR Output, Normalized Spectrum
SR Output, Kurtosis K =50.9797 a=1 b=4 1 ) ; .
1
05 g
2505
af T oF
05 L \Hu“ I\ |L\H bl ”1 M Lkl HM\. IV h‘wijr‘h” i V“L IR h VV L 77 m ‘
-0 o o 0 bl Aol s . . N TN
. . . . . . . 1000 2000 3000 4000 5000 6000 7000 8000

-1

0 005 041 015 02 025 03 035 04 045 05 Frequency (Hz)
Time (s)

Figure 7 — Example of SR effect (experimental ca&@)the Kurtosis of the output signal has beersiamably increased
and (b) the peak corresponding to the defect freaqgiand its harmonics have been highlighted.

6. CONCLUSIONS

The mathematics behind the mechanism of stoch&sténance is relatively simple and easy to be imptged.
Theoretically SR works really well in the detectiofipulses submerged by background noise even laith
levels of excitation. However, the main limitatiohthe procedure is the choice of the parametensdb. In this
paper it is shown that an optimum value of the hieigf the potential barriedV exists, which produces a
considerable increase in the Kurtosis index. Thigerty reduces the user-selected parameters frontat and

b) to one @V ), thus decreasing dramatically the computatiorif@rtein the parameter tuning process. This
computational time reduction is of paramount irgéere the automatic health monitoring.

AKNOWLEDGEMENTS

This work has been conducted in the framework efffoject GREAT 2020 (fase Il) — piattaforma Aeraap.

7. REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

Benzi, R, Sutera, A., Vulpiani A, “The mechamisof stochastic resonance”, Journal of Physics A:
mathematical and general 14, 1981, L453-L457.

McDonnell, MD. , Abbott, D.,”"What Is StochastiResonance? Definitions, Misconceptions, Debated, a
Its Relevance to Biology”, PLoS Computational Bmpydb(5), 2009.

Li, J., Chen, X., He, Z., “Multi-stable stochimsresonance and its application research on nméchlafault
diagnosis”, Journal of Sound and Vibration 332,20dp. 5999-6015

Li, J., Chen, X., He, Z., “Adaptive stochaste&sonance method for impact signal detection basesliding
window”, Mechanical Systems and Signal Processt2813, pp. 240-255

Lu, S., He, Q., Kong, F., “Stochastic resonamith Woods—Saxon potential for rolling element ttreg
fault diagnosis”, Mechanical Systems and Signat®ssing 45, 2014, pp. 488-503

Tan, J.Chen, X., Wang, J., Chen, H., Cao, H., Zi, Y., Be“Study of frequency-shifted and re-scaling
stochastic resonance and its application to faatiribsis”, Mechanical Systems and Signal Proces&ng
2009, pp. 811-822



