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Abstract

This work presents the Best Theory Diagrams (BTDs) for multilayered plates involved in multifield
problems (mechanical, thermal and electrical). A BTD is a curve that reports the minimum number of
terms of a refined model for a given accuracy. The Axiomatic/Asymptotic technique is employed in order
to detect the relevant terms, and the error is computed with respect to an exact or quasi-exact solution.
The models that belong to the BTDs are constructed by means of a genetic algorithm and the Carrera
Unified Formulation (CUF). This last defines the displacement field as an expansion of the thickness
coordinate. The governing equations are obtained in terms of few fundamental nuclei, whose form does
not depend on the particular expansion order that is employed. The Navier closed-form solution has been
adopted to solve the equilibrium equations. The analyses herein reported are related to plates subjected to
multifield loads: mechanical, thermal and electrical. The aim of this study is to evaluate the influence
of the type of the load in the definition of the BTDs. In addition, the influence of geometry, material
parameters and displacement/stress components are considered. The results suggest that the BTD and the
CUF can be considered as tools to evaluate any structural theory against a reference solution. In addition,
it has been found that the BTD definition is influenced to a great extent by the type of load.
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1 Introduction

A multifield problem arises when a structure is subjected to loads of a different nature, such as thermal,
piezoelectric and mechanical loads. A typical example of such a problem can be a space vehicle during
the reentry phase: in this case, the vehicle is subjected to a temperature and pressure distribution.
The analysis of the blades of a turbine is another example of multifield problem since the blades are
subjected to temperature and pressure distributions at the same time. Another interesting example
comes from the so-called smart structures. This type of structures have a piezoelectric layer inside, i.e. a
layer of a particular material that deforms under the action of a potential distribution, or conversely, it
produces a potential distribution when deformed. Accurate structural models are required to deal with
these problems. This paper proposes advanced plate models for the multifield analysis of multilayered
structures.

A multifield problem for a plate can be solved by employing classical theories, such as the Kirchoff-Love
model (Kirchhoff, 1850; Love, 1927), and including the effect induced by the multifield loads. But, the
hypotheses on which this model is based (transverse normal and shear strains are negligible) make
it not suitable for the analysis of thick and multilayered plates. Improvements of the Kirchoff-Love
model can be obtained if at least one of Kirchhoff’s hypotheses are removed. For example, a constant
through-the-thickness transverse shear deformation can be taken into consideration. This is the case
of the Reissner-Mindlin theory (Reissner, 1945; Mindlin, 1951), also known as the First-order Shear
Deformation Theory (FSDT). Further improvements have been introduced in Vlasov’s (Vlasov, 1957)
or Hildebrand-Reissner-Thomas’s theories (Hildebrand et al., 1938), which are based on higher-order
expansions of the displacement components on the reference surface. In general, it is possible to affirm
that the less restrictive hypotheses are assumed, the more accurate the analysis is. The accuracy of a
plate model is also the topic analyzed in Carrera (1997). In that work, the author observed that an
accurate plate model should include the C0

z -requirements, i.e. the transverse stress continuity at the
interfaces between the layers (Interlaminar-Continuity (IC)) and the discontinuous distribution along
the thickness of the first derivative of the displacement components (this is defined as the Zig-Zag effect
(ZZ)). In the history of the structural models, Lekhnitskii (Lekhnitskii, 1968) has first presented a Zig-Zag
solution in 1935 for the analysis of multilayered beams.

The C0
z requirements are an important feature to account for in the development of an accurate plate

model. In addition, another important distinction has to be considered in the field of multilayer plate
analysis. A multilayered plate model can be developed considering two types of schemes: the Equivalent
Single Layer (ESL) or the Layer Wise (LW) schemes. According to the ESL scheme, the number of the
unknowns are not affected by the number of layers, while, in the LW scheme, each layer of the plate has
its displacement unknowns. In this case, the number of unknowns of the model is strictly related with
the number of layers of the plate. An in-depth discussion on ESL and LW models is reported in the book
Reddy (1997).

The analysis of the stress state due to a temperature distribution is pertinent to the thermoelasticity,
which is a branch of the applied mechanics. A historical introduction to the thermoelasticity is reported
in Hetnarski and Eslami (2009), where the authors describe the J.M.C. Duhamel’s work (Duhamel, 1837),
Navier and Fourier’s (Navier, 1827; Fourier, 1822), Neumann’s (Neumann, 1885), Almansi’s (Almansi,
1897), Tedone’s (Tedone, 1906) and Voigt’s (Voigt, 1910). Examples of refined models for thermal stress
plate analysis are reported in Tauchert (1991), Noor and Burton (1992) and in Argyris and Tenek (1997).
In Tauchert (1991), the author conducted a survey on the response of flat plates to thermal loadings.
Isotropic homogeneous, as well as anisotropic or heterogeneous, plates were considered. The author in
Noor and Burton (1992) focused on the hierarchy of composite models, predictor-corrector procedures,
the effect of the temperature-dependence of the material properties on the response, and the sensitivity of
the thermo-mechanical response to variations in the material parameters. The work presented in Argyris
and Tenek (1997) describes the developments of the nonlinear thermo-structural analysis of laminated
composite plates and shells of arbitrary geometry. Another note that should be considered, whenever
one intends to develop a structural model that is able to describe the thermo-mechanical response of a
multilayered plate, is by Murakami, which is reported in Murakami (1993).

Piezoelectric materials can be employed to create particular types of plates. The piezoelectric
phenomenon was discovered in 1880-1881 by Curie brothers (Jacques and Pierre Curie) for some kinds
of natural crystals. This effect can be divided into direct and inverse effect. The former means the
generation of a distribution of charge when the piezoelectric material is subjected to a pressure load. The
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latter, instead, means the deformation of the piezoelectric material when an electric charge is applied
to it. Piezoelectricity can be used to create embedded sensors and embedded actuators. The main
advantage offered by these configurations is that a structural health monitoring is possible. A number of
mathematical models for piezo-mechanic analysis are available in the scientific literature. In the field of
ESL models, classical formulations can be used for piezo-mechanic analysis: an example can be found in
Tiersten (1969) and in Mindlin (1972). Another example of refined theory available in the literature is the
model proposed in Yang and Yu (1993) by Yang and Yu. A refined model based on the LW approach is
presented by Mitchell and Reddy in Mitchell and Reddy (1995): the description of the electric potential
is based on a LW approach, while the displacement field of the plate is described by means of an ESL
approach.

Among all the refined theories reported in the scientific literature, the Carrera Unified Formulation
(CUF) has to be mentioned. The CUF permits the analysis of plates and shells to be performed in a
unified manner: the governing equations are derived in terms of few fundamental nuclei whose expressions
do not change by varying the assumptions made for the displacement variables in the thickness direction.
The analysis of plates and shells under the action of a pressure distribution is reported in Carrera (2003)
and Carrera et al. (2014). In addition, in that work the author employs the CUF in the framework of
different variational principles. Examples of thermal stress plate analysis conducted by means of the CUF
can be found in Carrera (2002), where the author presented an innovative way of computing the internal
temperature distribution of a plate. It was demonstrated that the assumption of a linear temperature
distribution is no longer valid for thick plates. The use of the CUF for piezo-mechanic analysis can be
found in Ballhause et al. (2005). The authors compare the results obtained by means of the CUF with
the results reported in the open literature. The CUF is employed, in this work, to obtain the governing
equations of multilayered plates for multifield problems.

In all the analyses reported, it is demonstrated that accurate plate analyses can be achieved if
higher-order models are employed. The main disadvantage of this strategy is that high computational
cost is required. It could be interesting to decrease this cost without loosing in accuracy. This problem
was already analyzed in the works Carrera and Petrolo (2010) and Carrera et al. (2011b,c), where refined
plate models were considered, and some reduced refined models were presented. That work was based on
the axiomatic/asymptotic technique which computes the relevance of the terms of a refined model with
respect to a reference solution and discards the terms that do not contribute to the plate analysis. Only
ESL models were considered, and it was demonstrated that several parameters affect the relevance of
the terms. In particular, the results showed that the geometry (through the length-to-thickness ratio,
a/h) and the ortothropic ratio (EL/ET ) influence the order and the number of the retained terms. Other
relevant works on the axiomatic/asymptotic technique are presented in Petrolo and Lamberti (2016) and
Mashat et al. (2013), where the authors applied the axiomatic/asymptotic technique to LW models for
multilayered plates. The paper Mashat et al. (2014) presents the extension of the axiomatic/asymptotic
technique to sandwich shells.

The present work is devoted to the analysis through the axiomatic/asymptotic technique of refined
mechanical, thermal and piezoelectric plate theories. The differential equations are obtained by applying
the Principle of Virtual Displacements. Both ESL and LW schemes are considered. The governing
equations are solved considering the Navier closed-form solution. The purpose of this work is to offer the
Best Theory Diagram (BTD) for multifield problems for plates. This particular graph puts into relation
the number of terms of a model and its accuracy with respect to a reference solution. The models reported
in the BTD have the lowest possible error. The possibility to obtain this graph comes from the use of the
axiomatic/asymptotic technique. It should be mentioned that these models are constructed by employing
a genetic algorithm, which makes it possible to detect the best terms combinations. Examples of BTDs
can be found in Carrera and Miglioretti (2012), where the authors employ a genetic-like algorithm in
order to evaluate the BTD for plates under mechanical loads. In addition, the axiomatic/asymptotic
technique was employed for the analysis of refined beam theory as reported in Carrera and Petrolo (2011)
and Carrera et al. (2012). In this study, the effect of the geometry and the type of the load on the
selection of the terms is analyzed.

The present paper is organized as follows: in Section 2 the constitutive relations and the governing
equations are described and in Section 3 a brief introduction to plate theory analysis is carried out. The
Navier-type closed-form solution is introduced in Section 4 and the governing equations are derived in
Section 5. In Section 6, the axiomatic / asymptotic technique and the Best Theory Diagram are presented;
the results are reported in Section 7. The conclusions are presented in Section 8.
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2 Constitutive equations and variational statements for multi-
field problems

The strain-displacement relations for a plate are introduced

εk = Duk (1)

where εk =
[
εkxx ε

k
yy ε

k
zz ε

k
xy ε

k
xz ε

k
yz

]T
is the vector of the strains of the layer k; uk =

[
ukx u

k
y u

k
z

]T
is

the displacement vector; and D is a differential operator whose components are

D =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


(2)

These relations are valid for all the analyses reported in the following. It should be mentioned that
the strain components can be grouped into in-plane (p) and out-of-plane (n) components, that is

εkp =
[
εkxx ε

k
yy ε

k
xy

]T
εkn =

[
εkxz ε

k
yz ε

k
zz

]T
(3)

The upper script T denotes the transpose operation. In this case, it is possible to write

εkp = Dpu
k εkn = Dnuk (4)

defining

Dp =

 ∂
∂x 0 0
0 ∂

∂y 0
∂
∂y

∂
∂x 0

 (5)

Dn =

 ∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z

 =

DnΩ︷ ︸︸ ︷ 0 0 ∂
∂x

0 0 ∂
∂y

0 0 0

+

Dnz︷ ︸︸ ︷ ∂
∂z 0 0
0 ∂

∂z 0
0 0 ∂

∂z

 (6)

The constitutive relations and variational statements for each problem are defined in the next sections.

2.1 Pure-mechanical analysis

Stress components for a generic layer k can be obtained by means of the Hooke’s law

σk = Ckεk (7)

The elastic coefficients of the matrix C are expressed in the problem reference system (i.e (x, y, z)
system reported in Fig.1). The dependence of the elastic coefficients Cij on Young’s modulus, Poisson’s
ratio, the shear modulus and the fiber angle is not reported. A detailed discussion is reported in the book
by Reddy (Reddy, 1997). The stress components can be grouped into in-plane (p) and out-of-plane (n)
components as the strain components, i.e.

σkp =
[
σkxx σ

k
yy σ

k
xy

]T
σkn =

[
σkxz σ

k
yz σ

k
zz

]T
(8)

In this case, the Hooke’s law can be defined as
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σkp =Cppε
k
p + Cpnε

k
n

σkn =Cnpε
k
p + Cnnε

k
n (9)

In the case of anisotropic materials it is possible to write

Ck
pp =

 Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
nn =

 Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33

 Ck
pn = CkT

np =

 0 0 Ck13

0 0 Ck23

0 0 Ck36

 (10)

The analysis of a plate can be conducted by means of the Principle of Virtual Displacements (PVD), that
states

NL∑
k=1

δ Lkint =

NL∑
k=1

δ Lkext (11)

δ denotes the virtual variation. δLkint is the virtual variation of the strain energy that is computed
considering the internal stresses and strain distributions for a generic k layer. δLkext is the virtual variation
of the work made by the external loadings on the generic layer k. NL is the total number of layers of a
multilayered plate.

In the case of pure-mechanical analysis, the virtual variation of the strain energy can be computed as

δ Lkint =

NL∑
k=1

∫
Vk

(
δεkp · σkp + δεkn · σkn

)
dVk =

NL∑
k=1

∫
Ωk

∫
Ak

(
δεkp · σkp + δεkn · σkn

)
dΩk dzk (12)

where Vk is the volume of the layer k. The virtual variation of the external loading can be computed as

δLkext =

NL∑
k=1

∫
Vk

δuT
k

pk dVk (13)

δuk is the virtual variation of the displacement vector uk and the components of the vector pk are the
load distributions according to the reference system axes x, y and z. The operator

∫
Ak

dzk denotes the

integration along the thickness direction. Ωk is the reference surface of the generic k layer (see Fig. 1).

2.2 Thermal stress analysis

In this work, the uncoupled thermo-mechanical analysis is performed in which the temperature is
considered as an external load. A plate subjected to a temperature distribution can be analyzed by
defining the thermal stresses as

σkpT = Ck
pp · εkpT + Ck

pn · εknT
σknT = Ck

pn · εkpT + Ck
nn · εknT

(14)

where εpT and εnT indicate the in-plane (p) and out-of-plane (n) strains due to a temperature gradient,
that is

εkpT =
[
εkxxT ε

k
yyT ε

k
xyT

]
εknT =

[
εkxzT ε

k
yzT ε

k
zzT

]
(15)

Considering the thermal expansion coefficient vector α, it is possible to write

εkpT =
{
αk1 , α

k
2 , 0

}
· θk(x, y, z) = αkp · θk(x, y, z)

εknT =
{

0, 0, αk3
}
· θk(x, y, z) = αkn · θk(x, y, z)

(16)

where θk(x, y, z) is the relative temperature distribution in a generic k layer referred to a reference
temperature θe. The subscript 1 denotes the longitudinal direction of the fibers, while 2 and 3 denote the
transverse directions to the fibers. Let us recall the PVD in Eq.(11), that is
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Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

p σ
k
p + δεk

T

n σ
k
n

)
dzk dΩk = δ Lext (17)

In Eq.(17), stresses σp and σn are considered as the sum of the mechanical (H) and thermal (T )
contributions, i.e.

σp = σkpH − σkpT
σn = σknH − σknT

(18)

Therefore, the variational statement in (17) can be expressed as

Nl∑
k=1

∫
Ωk

∫
Ak

δεk
T

p

(
σkpH − σkpT

)
+ δεk

T

n

(
σknH − σknT

)
dzk dΩk =

NL∑
k=1

δ Lkext (19)

2.3 Piezo/mechanical analysis

Direct and converse piezoelectric effects define the coupling effect between stresses and electric field. The
constitutive equations for piezoelectric materials are defined according to the IEEE standard (A.N.S.
Institute, 1987) and are

σk = Ckεk − ek
T

Ek

D̃k = ekεk + εkEk (20)

where D̃k is the dielectric displacement and Ek is the electric field

D̃k =
[
D̃k

1 , D̃
k
2 , D̃

k
3

]T
Ek =

[
Ek1 , E

k
2 , E

k
3

]T
(21)

ek is the matrix of the piezoelectric constants:

ek =

 0 0 0 ek14 ek15 0
0 0 0 ek24 ek25 0
ek31 ek32 ek36 0 0 ek33

 (22)

and εk is the matrix of the permittivity coefficients of the k-layer

εk =

 εk11 εk12 0
εk21 εk22 0
0 0 εk33

 (23)

In the following only hexagonal crystal systems are considered, this implies that ε12 = ε21 = 0 (A.N.S.
Institute, 1987).

The piezo-mechanic equations can be written dividing the stress and deformation components into
in-plane (p) and out-of-plane (n) components for a generic k layer. In this case, it is possible to write

σkp = Cppε
k
pp + Cpnε

k
pn − ek

T

p Ek

σkn = CT
pnε

k
pp + Cnnε

k
pn − ek

T

n Ek

D̃k = ekpε
k
p + eknε

k
n + εkEk (24)

where

ekp =

 0 0 0
0 0 0
ek31 ek32 ek36

 ekn =

 ek14 ek15 0
ek24 ek25 0
0 0 ek33

 (25)

The electric field Ek can be derived from the Maxwell equations
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Ek = DeΦ
k (26)

where

De =

 −∂,x 0 0
0 −∂,y 0
0 0 −∂,z

 (27)

and Φk is the electric potential. In this work, two configurations are considered: sensor and actuator.
Sensor configuration means that a piezoelectric plate is subjected only to external mechanical loadings,
and the resulting deformation state causes the potential distribution. Actuator configuration means that
the deformation of the piezoelectric plate is caused by the piezoelectric layers as a consequence of the
application of a potential distribution. Both configurations are reported in Fig. 2. Further details can be
found in Ballhause et al. (2005) and in Carrera et al. (2011).

The potential distribution is a scalar quantity, but for implementation reasons it is convenient to

define it as a vector, i.e. Φk =
[
Φk Φk Φk

]T
. In this case, the matrix of differential operators can be

expressed as

De =

 −∂,x 0 0
0 −∂,y 0
0 0 −∂,z

 =

 −∂,x 0 0
0 −∂,y 0
0 0 0


︸ ︷︷ ︸

DeΩ

+

 0 0 0
0 0 0
0 0 −∂,z


︸ ︷︷ ︸

Dez

(28)

The analysis of a piezoelectric plate can be conducted by means of the Principle of Virtual Displacement
(PVD) (see Eq.(11)) extended to the electro-mechanical problem, that states

NL∑
k=1

∫
Vk

(
δεk

T

p · σkp + δεk
T

n · σkn − δEkT D̃k
)
dVk =

NL∑
k=1

δ Lkext (29)

3 Considered plate theories

Plate geometry is reported in Fig. 1, the reference surface is denoted as Ω and its boundary as Γ. The
reference system axes which belong to the reference surface Ω are denoted as x, y, and z is the thickness
coordinate. The length side dimensions of the plate are indicated as a and b, and the thickness of the
plate is defined as h.

In the framework of the Carrera Unified Formulation, the displacement field of a plate can be described
as:

u(x, y, z) = Fτ (z) · uτ (x, y) τ = 1, 2, . . . , N + 1 (30)

where a summation on the index τ is implied according to the Einstein notation. u is the displacement
vector (ux uy uz), whose components are the displacements along the x, y, z reference axes, (see Fig. 1).
Fτ are the so-called thickness functions depending on z and uτ = (uτx, uτy, uτz) are the displacement
variables depending on the in-plane coordinates x, y; N is the order of expansion.

The expansion functions Fτ can be defined on the overall thickness of the plate or for each k-layer. In
the former case Equivalent Single Layer (ESL) approach is followed, while, in the latter case, a Layer
Wise (LW) approach is used. Examples of ESL and LW schemes are reported in Fig.s 3(a) and 3(b),
respectively: a transverse section of a multilayered plate is reported, the number of layers is equal to
NL. A generic displacement component distribution is presented according to linear and higher order
expansion for both approaches. For the ESL case, the location of the point P on the total thickness is zP
(Fig. 3(a)), while for LW scheme the point P is defined according to the local k-layer reference system
labeled in the figure as xk, yk, ζk (Fig. 3(b)). In the following, ESL and LW approaches are discussed in
detail.
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3.1 Equivalent Single Layer theory

According to the ESL scheme, a multilayered plate is analyzed as a single equivalent lamina. In this case,
the Fτ functions can be Mc-Laurin expansions of z, defined as Fτ = zτ−1. In the following, the ESL
models are indicated as EDN, where N is the expansion order. An example of an ED4 displacement field
is reported

ux = ux1
+ z ux2

+ z2 ux3
+ z3 ux4

+ z4 ux5

uy = uy1 + z uy2 + z2 uy3 + z3 uy4 + z4 uy5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(31)

It should be mentioned that, in the case of ED1 models (and in general, in the case of all ESL models),
whenever only a constant or a linear expansion is considered for the uz displacement component, the
thickness locking correction should be applied. The first order models based on the ESL scheme present
the so-called thickness locking (TL), i.e. the simplified kinematic assumptions in the plate analysis do not
permit the 3D solution to be reached when thin plates are analyzed. In Carrera and Brischetto (2008),
the authors analyze and propose some solutions for this problem.

3.2 Layer Wise theory

According to the Layer Wise scheme, the displacement field exhibits only C0-continuity through the
laminate thickness. LW models can be conveniently built by using a Legendre’s polynomials expansion in
each layer. The displacement field is described as

uk = Ft · ukt + Fb · ukb + Fr · ukr = Fτu
k
τ τ = t, b, r r = 2, 3, . . . , N k = 1, 2, . . . , Nl (32)

where k indicates the generic k-layer of the plate and Nl is the number of the layers. Subscripts t
and b correspond to the top and bottom surfaces of the layer. Functions Fτ depend on the coordinate
ζk and its range is −1 ≤ ζk ≤ 1; its representation is reported in Fig. 3(b). The functions Fτ are linear
combinations of the Legendre’s polynomials according to the following equations:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fr = Pr − Pr−2 r = 2, 3, . . . , N (33)

The Legendre’s polynomials up to the fourth order are:

P0 = 1 P1 = ζk P2 =
3ζ2
k − 1

2
P3 =

5ζ3
k − 3ζk

2
P4 =

35ζ4
k

8
− 15ζ2

k

4
+

3

8
(34)

LW models ensure the compatibility of the displacement at the interfaces and the ’zig-zag’ effects by
definition, that is

ukt = uk+1
b k = 1, . . . , Nl − 1 (35)

In the following, the LW models are denoted by the acronym as LDN, where N is the expansion order.
An example of LD4 layer displacement field is

ukx = Ft u
k
xt + F2 u

k
x2 + F3 u

k
x3 + F4 u

k
x4 + Fb u

k
xb

uky = Ft u
k
yt + F2 u

k
y2 + F3 u

k
y3 + F4 u

k
y4 + Fb u

k
yb

ukz = Ft u
k
zt + F2 u

k
z2 + F3 u

k
z3 + F4 u

k
z4 + Fb u

k
zb

(36)

More details about the CUF can be found in the Carrera’s works (Carrera, 2003; Carrera et al., 2010,
2011,a, 2014).
In general a temperature distribution for a generic k layer can be conveniently described by means of an
LW approach, that is

θk(x, y, z) = Ft · θkt (x, y) + Fr · θkr (x, y) + Fb · θkb (x, y) = Fτθ
k
τ (x, y) (37)

Functions θkτ are defined as

θkτ = θ
k

τ − θe (38)
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where θ
k

τ is the effective temperature distribution. The temperature distribution can be defined
by solving the conduction equation for a given temperature distribution over the lateral, top and
bottom surfaces. The approach proposed in Eq.(37) offers the possibility to impose the continuity of
the temperature distribution along the thickness direction. In Carrera (2002) further details on the
temperature distribution evaluation can be found. However, a simple linear temperature distribution is
here considered for the numerical investigations. A representation of the assumed linear temperature
distribution θz is reported in Fig. 4 and it is defined as

θz = θ0
z

2 z

h
+ θ0 (39)

h is the total thickness of the plate and the parameters θ0
z and θ0 have to be defined according to the

desired top and bottom temperature values.
Regarding the electro-mechanical problem, the layers of the multilayered plates herein considered can
be piezoelectric or pure elastic. In this case, the differences of the electric properties of each layer can
be significant. In the following, the electric potential distribution is expressed according to an LW form
distribution since an ESL scheme seems to not be appropriate when non-piezo layers are included in the
structure. The potential distribution is then defined as:

Φ = FtΦt + FrΦr + FbΦb = FτΦτ τ = t, r, b r = 2, 3, 4 (40)

The continuity of the potential distribution at the layers interfaces has to be imposed:

Φkt = Φk+1
b k = 1, · · · , NL − 1 (41)

where NL is the number of layers. The expansion order of the potential distribution is assumed to be
equal to the expansion order of the displacement field, independently from the adopted scheme (ESL or
LW).

4 Navier-type close-form solution

The attention has been here restricted to the case of closed form solutions related to simply supported,
cross-ply orthotropic rectangular plates (C16 = C26 = C36 = C45 = 0) loaded by a harmonic distribution
of transverse loadings. The displacement components are therefore expressed in the following harmonic
form:

ukxτ = Ûkxτ · cos
(
mπxk
ak

)
sin
(
nπyk
bk

)
k = 1, NL

ukyτ = Ûkyτ · sin
(
mπxk
ak

)
cos
(
nπyk
bk

)
τ = 0, N

ukzτ = Ûkzτ · sin
(
mπxk
ak

)
sin
(
nπyk
bk

) (42)

where Ûkxτ , Ûkyτ , Ûkzτ are the amplitudes, m and n are the number of half-waves (the range varies
from 0 to ∞) and ak and bk are the dimensions of the plate. The same solution can be applied to ESL
approach and, in this case, the displacement variables appear without the superscript k.
The same assumptions are made for the temperature and the electric potential. Therefore, the in-plane
distribution of the temperature is

θkτ = θ̂kτ sin

(
mπxk
ak

)
sin

(
nπyk
bk

)
(43)

and, in the case of piezo-mechanical analysis, the potential distribution can be defined as

Φkτ = Φ̂kτ · sin
(
mπxk
ak

)
sin

(
nπyk
bk

)
(44)

where θ̂kτ and Φ̂kτ are the amplitudes of the temperature and the potential, respectively.
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5 Governing equations

The governing equations are obtained substituting the geometrical relations, the constitutive equations
for the different problems and the variable assumptions (Unified Formulation and Navier’s solution) in
the variational statements presented in Section 2. The derivation is herein omitted for the sake of brevity;
details can be found in the already mentioned CUF works and books.
Substituting in Eqs. (12) and (13), the governing equations in the case of pure-mechanical analysis can
be written as

δuk
T

s : Kkτs
uu · ukτ = Pτ

uτ (45)

and the boundary conditions on edge Γk as

δuk
T

s : uτk = uτk or Πkτs
uu ukτ = Πkτs

uu ukτ (46)

that are Dirichlet-type and Neumann-type boundary conditions, respectively. The bar symbol indicates
assigned value.
Pτ
uτ is the external load. The fundamental nucleus of the stiffness matrix, Kτs

uu, is assembled through
the indexes τ and s, which consider the order of the expansion in z for the displacements. Πkτs

uu is the
fundamental nucleus of the boundary conditions deriving from the integration by parts of the PVD. The
explicit form of the fundamental nuclei can be found in Carrera (2003). Starting from the variational
statement in (19), one obtains the governing equations for the thermo-mechanical problem, that are

δuk
T

s : Kkτs
uu ukτ = −Kkτs

uθ θ + pkus (47)

with the related boundary conditions are

δuk
T

s : uτk = uτk or Πkτs
uu ukτ = Πkτs

uu ukτ (48)

The temperature is considered as an external load and it is assigned. The definition of the fundamental
nuclei Kkτs

uu , Kkτs
uθ and Πkτs

uu can be found in Carrera and Brischetto (2010). Finally, using the equation
(29), the governing equations calculated for the electro-mechanical problem are:

δ usk : Kkτs
uu ukτ + Kkτs

ue Φk
τ = pkms

δΦs
k : Kkτs

eu ukτ + Kkτs
ee Φk

τ = pkes (49)

with the boundary conditions

δ usk : uτk = uτk or Πkτs
uu ukτ + Πkτs

ue Φk
τ = Πkτs

uu ukτ + Πkτs
ue Φ

k

τ

δΦs
k : Φτ

k = Φ
τ

k or Πkτs
eu ukτ + Πkτs

ee Φk
τ = Πkτs

eu ukτ + Πkτs
ee Φ

k

τ (50)

The definition of the fundamental nuclei Kkτs
uu , Kkτs

ue , Kkτs
eu , Kkτs

ee , Πkτs
uu , Πkτs

ue , Πkτs
eu and Πkτs

ee can
be found in Ballhause et al. (2005).

6 The axiomatic/asymptotic method and the Best Theory Di-
agram

Accurate plate analyses can be obtained by increasing the order of the expansion. As a drawback, the
computational cost could increase significantly with respect to the classical formulations. In some works,
as in Carrera and Petrolo (2010), it was highlighted that, for a given problem, some terms of a refined
model do not contribute to the evaluation of the behavior of the structure. The axiomatic/asymptotic
method was introduced in order to detect the ineffective variables for a given problem. In this case, it
is possible to ignore such terms in order to reduce the computational cost without loosing in accuracy.
In the following the axiomatic/asymptotic technique is described, the Best Theory Diagram (BTD) is
introduced and then a method to construct a BTD is explained.
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6.1 Axiomatic/asymptotic technique

The possibility to construct reduced models is offered by the axiomatic/asymptotic technique which
consists of the following steps:

1. parameters, such as the geometry, BC, loadings, materials and layer layouts, are fixed;

2. a set of output parameters is chosen, such as displacement or stress components; in the following
analyses, σxx and φ are considered;

3. a starting theory is fixed (axiomatic part), that is the displacement field is defined; usually a theory
which provides 3D-like solutions is chosen; a reference solution is defined (in the present work LD4
and ED4 approaches are adopted, since these fourth-order models offer an excellent agreement with
the three-dimensional solutions as highlighted in Carrera and Petrolo (2010) and in Petrolo and
Lamberti (2016));

4. the CUF is used to generate the governing equations for the theories considered;

5. the effectiveness of each term of the adopted expansion is evaluated by measuring the error due
to its deactivation; a term is considered as non-effective if its error is below an a-priori defined
threshold; the deactivation of a term is obtained by means of a penalty technique;

6. the most suitable structural model for a given structural problem is then obtained discarding the
non-effective displacement variables.

A graphical notation is introduced in order to represent the results. It consists of a table with three
lines, and a number of columns equal to the number of the displacement variables used in the expansion.
For example, if an LD4 model for a two-layers plate is considered, its representation is reported in Tab.
1 and it is defined as “Full model representation”. If the terms u1

z2 and u2
x2 are suppressed, the model

obtained is represented in Tab. 1 and it is labeled as “Reduced model representation”. The meaning of
the symbols reported in Tab. 1 is reported in Tab. 2. Symbol � is used to denote the terms that can not
be suppressed in the LW approach due to the displacement continuity (Eq.(35)).

6.2 The Best Theory Diagram (BTD)

It is possible to associate to each reduced refined model the number of the active terms and its error
computed with respect to a reference solution. This information is susceptible of an interesting graphical
representation as reported in Fig. 5. The error values are reported on the abscissa, and the number
of active terms is reported on the ordinate. Each black dot represents a reduced refined model and its
position on the Cartesian plane is defined considering its error and the number of the active terms. In
addition, the representation of the active/non-active terms is reported for some reduced models. Among
all the models, it is possible to note that some of them present the lowest error for a given number of
active terms. These models are labeled in Fig. 5 as 1, 2, 3, 4, 5, and they represent a Pareto front for
the considered problems. This Pareto front is defined in this work as the Best Theory Diagram. The
existence of such curve was already demonstrated in the work reported in Carrera and Miglioretti (2012).
This curve can be constructed for several problems, for example considering several type of materials,
geometries and boundary conditions. Moreover, the information reported in a BTD makes it possible
to evaluate the minimum number of terms, Nmin, that have to be used in order to achieve the desired
accuracy.

6.3 BTD construction by means of genetic algorithms

The number of all possible combinations of active/not-active terms for a given refined model is equal to
2M , where M is the number of terms in the model. In the case of an ESL model, M can be computed as

M = (N + 1) 3 (51)

In the case of an LW model, the displacement field assumed per each layer must satisfy the continuity
condition at the interface, so the number M is computed as
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M = 3 (N − 1) NL (52)

As the expansion order increases, the number of the combinations to consider also increases. In this
case, the computational cost required for the BTD construction can be very significant. In order to
construct a BTD with a minimal computation effort, a different strategy has to be employed. For this
purpose in this work, a genetic approach is used, and its implementation is discussed in the following.

The genetic algorithms are inspired by the evolution theory explained in ”The origin of species”,
written by Darwin (Darwin, 1859). In nature, weak and unfit individuals within their environment are
faced with extinction by natural selection. The strong ones have a greater opportunity to pass their
genes down to future generations via reproduction. In the long run, the species carrying the correct
combination in their genes become dominant in their population. Sometimes, during the slow process of
evolution, random changes may occur in the genes. If these changes provide additional advantages within
the challenge of survival, new species evolve from the old ones. Unsuccessful changes are eliminated by
natural selection. In genetic algorithm terminology, a solution vector x ∈ X, where X is the solution
space, is called individual or chromosome. Individuals are made of discrete units called genes. Each
gene controls one or more features of the individual. The present genetic algorithm use the mutation
operator to generate new solutions from existing ones. The mutation operator introduces random changes
into the characteristics of the chromosome. Mutation is applied at gene level. In the multi-objective
optimization genetic algorithm, each individual has a fitness value based on its rank in the population, not
its actual objective function value. The population is ranked according to the dominance rule reported in
Fonseca and Fleming (1993). The fitness of each chromosome is evaluated through the following formula:

ri(xi, t) = 1 + nq(xi, t) (53)

where nq(x, t) is the number of solutions dominating by solution x at generation t. A lower rank
corresponds to a better solution.
In the present work, each plate theory has been considered as an individual. The genes are the terms
of the expansion, and each gene can be active or not active; the deactivation of a term is obtained by
exploiting a penalty technique. A representation of this is reported in Fig. 6. The meaning of the
symbols N and M is reported in Tab. 2. Each individual is, therefore, described by the number of active
terms and its error computed with respect to a reference solution. Through these two parameters, it
is possible to apply the dominance rule in order to evaluate the individuals fitness. The generation of
new refined theories starting from a generic population is inspired to the reproduction of bacteria. For
each individual (plate theory) a number of copies are created according to its dominance and then, a
number of mutations are applied in order to vary the set of new individuals. The purpose of this analysis
is to find the individuals which belong to the Pareto front, that is the subset of individuals which are
dominated by no other individuals. In all the cases, the number of generations, i.e. iterations, needed is
equal to 10 and the number of the initial population is equal to 400. The error of the reduced models
with respect to a reference solution is evaluated through the following formula:

e = 100

∑Np
i=1 |Qi −Qiref|

maxQref
· 1

Np
(54)

where Q is the entity under exam (stress/displacement component) and Np is the number of points along
the thickness on which the entity Q is computed.

7 Results

Best Theory Diagrams (BTDs) for simply supported multilayered plates are reported in the following.
These curves are obtained by considering a pure transverse pressure distribution, a temperature distribution
and an electric potential distribution, separately. Both ESL and LW schemes are considered.

The BTDs for the mechanical case are obtained by considering a transverse pressure distribution
defined as:

pz = p0
z sin

(mπ

a
x
)

sin
(nπ
b
y
)

m = n = 1 (55)
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The number of the half-waves m and n are equal to 1, and the pressure distribution is applied to the
top surface of the plate. The dimensions of the plate are a = b = 1 and the total thickness is derived from
the ratio a/h. The BTDs for the thermal case are obtained by considering a temperature distribution
defined as in the Eq.s(43) and (39). In the cases herein considered, the top and bottom temperatures
(ttop, tbot) are equal to 1 and -1, respectively.

The BTDs for the piezoelectric case are defined by analyzing two different configurations: the sensor
and actuator configurations. In the case of a sensor configuration, a transverse pressure is applied to
the top surface of the plate and the potential distribution is evaluated. The potential at the top and
bottom is set to zero. In the case of an actuator configuration, a potential distribution is applied to
the plate, and the value of the potential is set to 1 V at the top and to 0 V at the bottom. The sensor
and actuator configurations will be defined as problem 1 and problem 2, respectively. In the case of
sensor configuration, the pressure is assumed as in Eq.(55), while, in the case of actuator, the potential
distribution is assumed as

Φ = Φ sin
(mπ

a
x
)

sin
(nπ
b
y
)

(56)

where m = n = 1. The reference system layout and the representation of the two configurations are
reported in Fig. 2. Φ is set equal to 1.

The definition of a BTD is possible if a reference solution is available. The BTDs reported in this work
are based on the solution computed by means of the LD4 model that in previous works was demonstrated
to be in excellent agreement with the elastic solutions. The interested readers can refer to Carrera (2003)
for the mechanical case, to Carrera (2002) for the thermal stress analysis and to Ballhause et al. (2005)
for the piezo-mechanic analysis. The results are provided in terms of maximum amplitude of sinusoidal
distribution, so the transverse displacement uz and normal stresses σxx, σyy and σzz are evaluated in the
center of the plate (a/2, b/2), the shear stress σxz in (a, b/2), σyz in (a/2, b) and σxy in (a, b).

In this work, assessments for the multifield plate analysis are reported. The assessments of the LD4
model for the mechanical and thermal stress analysis are conducted by considering the results reported in
Pagano (1970) and Bhaskar et al. (1996), respectively. In both cases, a multilayered plate is considered
and the pressure and temperature distributions are assumed as in Eq.s(55) (mechanical case), (43) and
(39) (thermal case). The material properties are EL/ET = 25, GLT /ET = GTT /ET = 0.5, GLz/ET = 0.2,
ν = 0.25 and αL/αT = 1125, where E is the Young’s modulus, G the shear modulus, ν the Poisson’s
ratio and α the coefficient of thermal expansion. L and T are the directions parallel and transverse
to the composite fibers, respectively. The ply sequence is (0◦/90◦/0◦) for the 3-layers laminate and
(0◦/90◦/0◦/90◦/0◦) for the 5-layers one. In the 3-layers configuration, the layers have equal thickness. In
the 5-layers configuration, the total of the thicknesses of 0◦ layers is equal to that one of 90◦ layers and
the layers with same orientation have equal thickness between them. Under these conditions, the effective
laminate stiffnesses in the x and y directions are the same (Pagano, 1970). The temperature values at
the top and at the bottom of the plate are ttop = 1.0 and tbot = −1.0. The results for the mechanical and
thermal cases are reported in Tab.s 3 and 4, respectively. In the case of cylindrical thermal load, the
sinus is taken in x direction. The stress σxy has different values at z = +h/2 and z = −h/2 for the three
layer LD4 a/h = 4 case and not for the a/h = 100 case because the first one corresponds to thick plate
configuration and the asymmetry due to the external load is more pronounced. It is possible to note the
excellent agreement of the results offered by the LD4 model with the analytical solutions reported from
Pagano (1970) and Bhaskar et al. (1996). The BTDs are obtained by computing the accuracies of the
reduced refined models in respect to the solution calculated by means of the LD4 model.

The assessment of LD4 model is carried out for the piezoelectric case with respect the case analyzed
in Heyliger (1994). LD4 model assessment considers a two-layers laminated plate with two external
piezoelectric layers at the top and bottom. The elastic materials properties of laminated layers are:
E1 = 132.38× 109 Pa, E2 = E3 = 10.756× 109 Pa, G12 = G13 = 5.6537× 109 Pa, G23 = 3.606× 109 Pa,
ν12 = ν13 = 0.24, ν23 = 0.49, ε11 = 3.098966× 10−11 C/Vm, ε22 = ε33 = 2.6562563× 10−11 C/Vm. The
thickness for each of these layers is equal to h = 0.4 ·hTOT and the ply sequence is (90◦/0◦) from bottom to
top of the plate. The piezoelectric layers are made of PZT-4 and their properties are E1 = E2 = 81.3×109

Pa, E3 = 64.5× 109 Pa, ν12 = 0.329, ν13 = ν23 = 0.432, G44 = G55 = 25.6× 109Pa, G66 = 30.6× 109Pa,
e31 = e32 = −5.20C/m2, e33 = 15.08C/m2, e24 = e15 = 12.72C/m2, ε11/ε0 = ε22/ε0 = 1475, ε33/ε0 =
1300 (ε0 = 8.854× 10−12C/Vm). The thickness of these layers is equal to h = 0.1 · hTOT. The results are
reported in Tab. 5 (sensor configuration) and in Tab. 6 (actuator configuration). It is possible to note
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that the LD4 offers a good agreement with the exact solution and, for this reason, it is used as reference
solution for definition of the BTDs for the piezo-mechanic analysis.

The BTDs reported in this work are related to a 4-layers plate. The top and bottom layers are made
of PZT-4, of which properties were already introduced for the LD4 model assessment. The thermal
expansion coefficients are α1 = α2 = 3.8 × 10−6 K−1 and α3 = 1.7 × 10−6 K−1. The second and third
layers of the plate are made of the same elastic material considered during the assessment, the thermal
expansion coefficients are equal to α1 = −1.× 10−6 K−1, and α2 = α3 = 10.× 10−6 K−1. All the four
layers have the same thickness, and it is equal to 1/4 of the total plate thickness. This particular plate
configuration has been considered in order to create for the same plate, the BTDs for each multifield
problem analyzed.

Firstly, few values of the stress and displacement components related to the plate considered are
reported in Tab.s 7, 8, 9 and 10 for the mechanical, thermal and piezoelectric loads. The results are
computed by means of the LD4 and ED4 models. It can be noted that, in general, the solutions offered
by the LD4 and ED4 models are in good agreement when a thin plate is considered.

7.1 BTDs for the ESL scheme

Once the reference solutions are introduced, it is possible to define the BTDs for the multifield plate
analysis. ESL approach is considered, and the BTDs for the ED4 model are reported in Fig.s 7 and 8
for the thin and thick geometry, respectively. These curves are defined considering the in-plane stress
σxx. It can be noted that in general the reduced refined models for the piezoelectric case have a higher
computational cost than the reduced models for the mechanical and thermal case, since the variables of
the electric potential are retained. It can be noted that the models located on the BTDs for both the
thermal and mechanical cases have the same accuracy when a thin plate is considered, while the BTDs
for the piezoelectric case present a significant difference between the sensor and actuator configuration.
The models of the BTD for the sensor configuration have better accuracy (lower error) than the actuator
case. This fact holds for both the thick and thin plate cases. It can be observed that the models of the
BTD for the mechanical case offers the best accuracy. Note that the reference solution is obtained with a
LD4 model; for this reason, the minimum errors are always positive.

The representation of some of the reduced models which belong to the BTDs of Fig.s 7 and 8 are
reported in Tab. 11 for the thin plate case and in Tab. 12 for the thick plate case, respectively. M/Me

indicates the number of the retained terms on the total number of terms in the reference model. It is
possible to note that for a given number of terms and a stress component, the retained variables are
different as a different type of load is considered. It should be mentioned that the reduced refined models
for BTDs related to the the mechanical and thermal case present common active displacement variables
for the particular problem considered (variables ux1, ux2, ux3, ux4, uy2 uz1 and uz2 are present in all
models), while the reduced refined models for the piezoelectric case are quite different from the previous
cases. In addition, the reduced refined models for the piezoelectric case are different as the sensor or
actuator configuration is employed. The stress σxx distribution is evaluated by means of the reduced
models of the BTDs for the thick plate case, and the result is reported in Fig. 9. It is possible to note
that the solutions proposed are in good agreement with the reference solution.

An in-depth analysis of the difference between the BTDs for the sensor and actuator configurations is
carried out, and the results are reported in Fig. 10. These BTDs are constructed considering the potential
distribution Φ. The results show that the reduced models for the actuator configuration offer better
accuracy than the reduced models for the sensor configuration. It should be mentioned that the accuracy
of the BTDs related to the sensor configuration is very similar for both thin and thick plate geometry. On
the contrary, the accuracy of the refined models related to the actuator plate configuration is higher in the
case of the thin geometry than in the case of the thick geometry. The potential distributions computed by
means of the reduced models which belong to the BTDs are depicted in Fig.s 11. In general, the reduced
models make it possible to compute solutions that are in good agreement with the reference solution.
In particular, it is possible to note that better accuracy is obtained for the actuator configuration. The
results related to the ED4 models showed that

� the geometry and the type of load affect the process of selection of the terms;

� in general, the models located on the BTD for the mechanical load case offer the best accuracy
while the lowest accuracy has been registered for the models of the BTD related to the piezoelectric
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plate case (actuator configuration);

� in some cases, the reduced refined models for the mechanical and thermal stress analyses have in
common several displacement variables.

7.2 BTDs for the LW scheme

The definition of BTDs is performed also for LD4 models, and the results are reported in Fig.s 12 and 13
for thin and thick plates, respectively. The stress σxx distribution is considered for the definition of these
curves. It is possible to note that the reduced models which belong to the BTDs for the mechanical and
thermal loads present approximately the same accuracy. The highest computational cost is registered for
the BTDs related with the piezoelectric plate case since the potential distribution variables are included in
the model. In particular, it can be noted that in the case of the thick plate piezoelectric plate, considering
the actuator configuration, the highest error is equal to the 60%.

The representation of the models of these BTDs are reported in Tab. 13. It is possible to note that
for the case herein considered, the reduced refined models which belong to the BTDs for the mechanical
and thermal loads are different. The results reported show that the accuracy of the models related with
the mechanical and thermal loads is higher than the accuracy of the models related with the piezoelectric
case, given the same number of active terms (25). The stress distribution for the reduced models reported
in Tab. 13 are depicted in Fig. 14. It is possible to note that the reduced models make it possible to
compute the stress distribution in good agreement with the reference solution.

The influence on the selection of terms for the electric potential Φ is analyzed. The results are depicted
in Fig. 15. As already noted for the ED4 model, the accuracy offered by the reduced model for the
actuator configuration is higher than the accuracy offered by the reduced model for the sensor actuator.
The lowest accuracy is obtained for the thick plate case in the sensor configuration, and it is equal to
the 6%. The potential distributions computed with these reduced models are depicted in Fig. 16. It is
possible to note that the accuracy of these models is particularly good. Differently from the ED4 models
case, the potential distribution computed for the thick and thin plates in the sensor configuration present
a better agreement with the reference solution than the ED4 models. The results showed that

� the type of load and geometry influences the retained terms of an LW model for a given number of
active terms;

� in some cases, the configuration of a piezoelectric plate (sensor or actuator) may not affect the
selection of terms.

8 Conclusion

A simply supported laminated plate was analyzed considering the effect of different types of loads.
The Navier-like closed form solution was adopted, and the Carrera Unified Formulation was employed
to generate the refined models. The axiomatic / asymptotic technique was used to detect the terms
which are essential for the proper static response detection and, in this way, to create the Best Theory
Diagram (BTD) for multifield plate analyses. The influence of the geometry was considered through the
length-to-thickness (a/h) ratio and the BTDs were obtained considering the stress σxx, and in some cases
the potential distribution Φ. The analyses showed that

1. the type of the load and the geometry influences to a great extent the selection of the relevant terms
for both LW and ESL approaches; in addition, the type of load influences the number of the models
for a given problem;

2. the accuracy of the LW models related to the mechanical and thermal load cases are very similar;

3. the accuracy of the models related to the piezoelectric case is influenced by the type of the
configuration considered (actuator or sensor); in general, the models related to the actuator
configuration are more accurate than the models for the sensor configuration.

Future works can be performed considering different boundary conditions (in this case the use of the
finite element method is mandatory). In addition, shell geometries can be considered and the effect of a
piezo-thermal load on the retained displacement variables can be analyzed.
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Tables

Full model representation
� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

� N N N � N N N �

Reduced model representation
� N N N � M N N �
� N N M � N N N �
� N M N � N N N �

� M N N � M N N �

Table 1: Schematic representation of the displacement and potential field in a 2-layer plate for a full LD4 model
(up) and an example of reduced model in which the terms u2

x2, u1
y4, u1

z3, Φ1
1, Φ2

1 are deactivated (down).

Active term Inactive term Non-deactivable term
N • M ◦ �

Table 2: Symbols that indicate the status of a term in the expansion of variables.

a/h = 100
3-layers laminate

σxx(z = ±h/2) σyy(z = ±h/6) σxz(z = 0) σyz(z = 0) σxy(z = ±h/2)
Ref. (Pagano, 1969) ±0.539 0.181 0.395 0.0828 ∓0.0213

LD4 ±0.539 0.181 0.395 0.0828 ∓0.0214
5-layers laminate

σxx(z = ±h/2) σyy(z = ±h/3) σxz(z = 0) σyz(z = 0) uz(z = 0)
Ref. (Pagano and Hatfield, 1972) ±0.539 ±0.360 0.272 0.205 1.006

LD4 ±0.539 ±0.360 0.272 0.206 1.006
a/h = 4

3-layers laminate
σxx(z = ±h/2) σyy(z = ±h/6) σxz(z = 0) σyz(z = 0) σxy(z = ±h/2)

Ref. (Pagano, 1969) 0.801 −0.755 0.534 −0.556 0.256 0.2172 −0.0511 0.0505
LD4 0.801 −0.755 0.534 −0.556 0.256 0.2180 −0.0511 0.0505

5-layers laminate
σxx(z = ±h/2) σyy(z = ±h/3) σxz(z = 0) σyz(z = 0) uz(z = 0)

Ref. (Pagano and Hatfield, 1972) 0.685 −0.651 0.633 −0.626 0.238 0.229 4.291
LD4 0.685 −0.651 0.634 −0.626 0.238 0.229 4.291

Table 3: Assessment of LD4 model in the mechanical case. Stresses and displacement for a 3-layers (0◦/90◦/0◦)
and a 5-layers (0◦/90◦/0◦/90◦/0◦) simply supported plate under bi-sinusoidal load for different thickness ratios.

uz = uz 100ET h
3

pz a4 , σxx/yy/xy =
σxx/yy/xy

pz (a/h)2
, σxz/yz =

σxz/yz
pz (a/h)
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Cylindrical thermal load
ux(z = ∓h/2) uz(z = ∓h/2) σxx(z = ∓h/6) σxz(z = ∓h/6)

a/h = 100
Ref. (Bhaskar et al., 1996) ±4.449 2.855 ±371.4 0.2987

LD4 ±4.449 2.855 ±371.4 0.2987
a/h = 4

Ref. (Bhaskar et al., 1996) ±7.470 18.32 ±372.3 2.830
LD4 ±7.470 18.32 ±372.3 2.806

Bisinusoidal thermal load
ux(z = ∓h/2) uz(z = ∓h/2) σxx(z = ±h/2) σxz(z = ∓h/6)

a/h = 100
Ref. (Bhaskar et al., 1996) ±16.00 10.26 ±965.4 7.073

LD4 ±16.00 10.26 ±965.4 7.073
a/h = 4

Ref. (Bhaskar et al., 1996) ±18.11 42.69 ±1183 84.81
LD4 ±18.11 42.69 ±1183.2 84.81

Table 4: Assessment of LD4 model in the thermal case. Stresses and displacement for a 3-layers (0◦/90◦/0◦)
plate under thermal bi-sinusoidal load for different thickness ratios. Temperature values at the top and bottom
of the plate are ttop = 1.0, tbot = −1.0. Reference temperature is t0 = 1.0. ux = ux

hαL t0 (a/h)
, uz = uz

hαL t0 (a/h)2
,

σij =
σij

ET αL t0

z ux × 1012, [m] Φ, [V] σzz × 10, [Pa] D̃z × 1013, [C/m2]
3D LD4 3D LD4, ×101 3D LD4 3D LD4

0.500 -47.549 -47.552 0.0000 0.0000 10.000 10.000 160.58 160.58
0.400 -23.732 -23.733 0.0598 0.0599 9.5151 9.5153 -0.3382 -0.3348
0.000 20.392 20.394 0.0611 0.0611 4.9831 4.9855 0.5052 0.5053
-0.400 39.309 39.313 0.0756 0.0756 0.4868 0.4867 1.4587 1.4590
-0.500 60.678 60.682 0.0000 0.0000 0.0000 0.0000 -142.46 -142.46

Table 5: Assessment of LD4 model in the case of piezo-mechanic static response of a (90◦/0◦) plate with external
piezoelectric layers. Comparison with 3D analytical solution from Heyliger (1994) - a/h = 4 - Sensor configuration.

z ux × 1012, [m] Φ, [V ] σzz × 103, [Pa] σxz × 103, [Pa]
3D LD4 3D LD4 3D LD4 3D LD4

0.500 -32.764 -32.765 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.400 4.7356 4.7352 0.9929 0.9931 -7.5482 -7.5339 56.259 56.034
0.000 0.0295 0.0297 0.4476 0.4477 -14.612 -14.629 -23.866 -23.863
-0.400 -1.7839 -1.7834 -0.0010 -0.0010 -1.8733 -1.8958 -23.379 -23.376
-0.500 -2.8625 -2.8618 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6: Assessment of LD4 model in the case of piezo-mechanic static response of a (90◦/0◦) plate with
external piezoelectric layers. Comparison with 3D analytical solution from Heyliger (1994) - a/h = 4 - Actuator
configuration.

a/h = 100 a/h = 4 a/h = 100 a/h = 4
LD4 ED4

z uz σxx uz σxx uz σxx uz σxx
-0.5 0.3963 -0.2328 0.9744 -0.2881 0.3957 -0.2304 0.7917 -0.3116
-0.4 0.3963 -0.1888 0.9915 -0.1828 0.3957 -0.1895 0.8063 -0.1705
0.0 0.3964 -0.0017 1.0336 0.0100 0.3958 -0.0019 0.8481 -0.0398
0.4 0.3963 0.1629 1.0782 0.2080 0.3957 0.1635 0.8653 0.1964
0.5 0.3963 0.2069 1.0662 0.3230 0.3957 0.2043 0.8538 0.3408

Table 7: LD4 and ED4 reference solutions in terms of transversal displacement and in-plane stress. Mechanic
static response of a (90◦/0◦) plate with external piezoelectric layers for different thickness ratios.
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a/h = 100 a/h = 4 a/h = 100 a/h = 4
LD4 ED4

z uz σxx uz σxx uz σxx uz σxx
-0.5 0.4927 136.0200 0.5636 133.5900 0.4894 130.6500 0.5426 132.5100
-0.4 0.4927 102.8600 0.5445 99.8270 0.4894 104.6700 0.5238 104.1500
0.0 0.4926 -4.0093 0.4742 -3.4198 0.4893 -4.0312 0.4814 -3.7648
0.4 0.4927 -162.5700 0.5445 -159.3700 0.4894 -158.1200 0.5238 -157.4100
0.5 0.4927 -195.7300 0.5636 -190.3900 0.4894 -183.7100 0.5426 -184.8000

Table 8: LD4 and ED4 reference solutions in terms of transversal displacement and in-plane stress. Thermal static
response of a (90◦/0◦) plate with external piezoelectric layers for different thickness ratios.

a/h = 100 a/h = 4
z σxx × 104, [Pa] Φ, [V/m] σxx × 10−4, [Pa] Φ, [V/m]

LD4
-0.5 -0.24970 0.0000 -5.2226 0.00000
-0.4 -0.20186 3.0819 -3.2037 0.00646
0.0 -0.00147 6.4150 0.1701 0.00865
0.4 0.17977 3.0802 3.5513 0.00519
0.5 0.22761 0.0000 5.7604 0.00000

ED4
-0.5 -0.24934 0.0000 -5.4224 0.00000
-0.4 -0.20200 3.0830 -3.1613 0.00609
0.0 -0.00166 6.4088 0.0827 0.00953
0.4 0.17985 3.0821 3.2304 0.00538
0.5 0.22710 0.0000 4.6103 0.00000

Table 9: LD4 and ED4 reference solutions in terms of in-plane stress and electric potential. Piezo-mechanic static
response of a (90◦/0◦) plate with external piezoelectric layers for different thickness ratios. Sensor configuration.

a/h = 100 a/h = 4
z σxx, [Pa] Φ, [V/m] σxx, [Pa] Φ, [V/m]

LD4
-0.5 -0.02659 0.00000 1.04780 0.00000
-0.4 -0.02736 0.00035 0.53439 -0.00091
0.0 0.00246 0.49993 -0.09214 0.45799
0.4 -0.02859 0.99961 -0.08477 0.97355
0.5 -0.02604 0.00000 1.33300 0.10000

ED4
-0.5 -0.03304 0.00000 2.06260 0.00000
-0.4 -0.02559 0.00034 1.05410 -0.00179
0.0 0.00013 0.49993 -0.20510 0.45939
0.4 -0.02780 0.99961 -0.01939 0.97425
0.5 -0.03504 0.10000 1.06870 1.00000

Table 10: LD4 and ED4 reference solutions in terms of in-plane stress and electric potential. Piezo-mechanic static
response of a (90◦/0◦) plate with external piezoelectric layers for different thickness ratios. Actuator configuration.
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Mechanical load Thermal load
M/Me = 9/15 M/Me = 9/15
N N N N M
N N M N M
N N M M M

N N N N M
M N M M M
N N N N M

Error 1.0498 % 0.0120%
Piezoelectric load

Sensor Actuator
M/Me = 10/32 M/Me = 10/32

N N M M M
M N M M M
N M N M M

� M M M � M M M � M M M � M M M �

N M M M M
N M M N M
M N N M M

� M M M � M M M � M M M � M M M �

Error 1.9703 % 7.6621 %

Table 11: Reduced ED4 models for a (90◦/0◦) plate with external piezoelectric layers - Multifield analyses. Thin
case, a/h = 100.

Mechanical load Thermal load
M/Me = 10/15 M/Me = 10/15
N N N N N
M N M N M
N N N M M

N N N N N
M N M M M
N N N N M

Error 2.9268 % 4.8339%
Piezoelectric load

Sensor Actuator
M/Me = 10/32 M/Me = 10/32

M M M N M
M N M N M
N M M N M

� M M M � M M M � M M M � M M M �

N M M M M
M N N N M
M M N M M

� M M M � M M M � M M M � M M M �

Error 4.5933 % 16.3465 %

Table 12: Reduced ED4 models for a (90◦/0◦) plate with external piezoelectric layers - Multifield analyses. Thick
case, a/h = 4.

Mechanical load Thermal load
M/Me = 25/51 M/Me = 25/51

� N M M � M M M � M M M � N M M �
� N M M � M M M � M M M � N M M �
� N N M � N M M � N M M � N N M �

� M M M � N N M � M M M � N M M �
� N M M � M M M � N M M � M M M �
� N M M � N M M � N M M � N N M �

Error 7.6734× 10−2 % 5.1093× 10−2 %
Piezoelectric load

Sensor Actuator
M/Me = 25/68 M/Me = 25/68

� M M M � M M M � M M M � M M M �
� M M M � M M M � M M M � M M M �
� N M M � M M M � N M M � N M M �

� N M M � M M M � M M M � N M M �

� M M M � N M M � M M M � M M M �
� M M M � M M M � M M M � M M M �
� N M M � M M M � M M M � N M M �

� N M M � M M M � M M M � N M M �

Error 0.2847 % 0.5683 %

Table 13: Reduced LD4 models for a (90◦/0◦) plate with external piezoelectric layers - Multifield analyses. Thick
case, a/h = 4.
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Figures

Figure 1: Plate geometry and notation.

y x

Figure 2: Piezoelectric plate.
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Figure 3: Linear and higher-order ESL and LW examples.
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Figure 5: Example of representation of reduced refined models in the Best Theory Diagram.
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Figure 6: Displacement variables of a refined model and genes of an individual. Full black circles indicate active
terms and empty circles deactivated ones.
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Figure 7: BTDs for ED4 model - mechanical, thermal and piezoelectric load cases, a/h = 100 - stress σxx. Lower
errors are considered in the smaller picture.
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Figure 8: BTDs for ED4 model - mechanical, thermal and piezoelectric load cases, a/h = 4 - stress σxx.
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(d) Piezoelectric load - actuator

Figure 9: Stress σxx distribution along the thickness. ED4 model, a/h = 4.
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Figure 10: BTD for ED4 model - piezoelectric load case, Φ. Lower errors are considered in the smaller pictures.
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(c) Actuator configuration - a/h = 100
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(d) Actuator configuration - a/h = 4

Figure 11: Potential Φ distribution along the thickness. ED4 model.
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Figure 12: BTDs for LD4 model - mechanical, thermal and piezoelectric load cases, a/h = 100 - stress σxx. Lower
errors are considered in the smaller picture.
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Figure 13: BTDs for LD4 model - mechanical, thermal and piezoelectric load cases, a/h = 4 - stress σxx. Lower
errors are considered in the smaller picture.
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(d) Piezoelectric load - actuator

Figure 14: Stress σxx distribution along the thickness. LD4 model, a/h = 4.
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Figure 15: BTD for LD4 model - piezoelectric load case, Φ. Lower errors are considered in the smaller pictures.
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(a) Sensor configuration - a/h = 100
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(b) Sensor configuration - a/h = 4

-0.4

-0.2

 0

 0.2

 0.4

0.000 0.200 0.400 0.600 0.800 1.000

z

Φ

Ref. Sol.

Me: 10/15

(c) Actuator configuration - a/h = 100
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(d) Actuator configuration - a/h = 4

Figure 16: Potential Φ distribution along the thickness for LD4 model.
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