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Abstract 24 

In this study, an image-based morphometry toolset quantifying geometric descriptors of the left ventricle, aorta 25 

and their coupling is applied to investigate whether morphological information can differentiate between subjects 26 

affected by diastolic dysfunction (patient group) and their age-matched controls (control group). The ventriculo-27 

aortic region of 20 total participants (10 per group) were segmented from high-resolution 3D magnetic resonance 28 

images, from the left ventricle to the descending aorta. Each geometry was divided into segments in 29 

correspondence of anatomical landmarks. The orientation of each segment was estimated by least-squares fitting 30 

of the respective centerline segment to a plane. Curvature and torsion of vessels’ centerlines were automatically 31 

extracted, and aortic arch was characterized in terms of height and width.  32 

Tilt angle between subsequent best-fit planes in the left ventricle and ascending aorta regions, curvature and 33 

cross-sectional area in the descending aorta resulted significantly different between patient and control groups 34 

(P-values<0.05). Aortic volume (P=0.04) and aortic arch width (P=0.03) resulted significantly different between 35 

the two groups. The observed morphometric differences underlie differences in hemodynamics, by virtue of the 36 

influence of geometry on blood flow patterns.  37 

The present exploratory analysis does not determine if aortic geometric changes precede diastolic dysfunction, or 38 

vice versa. However, this study (1) underlines differences between healthy and diastolic dysfunction subjects, and 39 

(2) provides geometric parameters that might help to determine early aortic geometric alterations and potentially 40 

prevent evolution toward advanced diastolic dysfunction. 41 

 42 

Keywords: Thoracic Aorta, Vascular geometry, Geometric risk, Curvature, Torsion  43 
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Introduction 44 

Morphometry, i.e., the analysis of a form or shape with quantitative means, has been applied extensively to 45 

explore cardiac and vascular anatomy and function. Examples include the detection of anatomical abnormalities 46 

[1], preoperative planning and follow-up of patients with cardiovascular diseases [2-4], risk prediction associated 47 

to atherosclerosis development [5-8], and cardiovascular devices design support [9]. In particular, morphometry-48 

based analysis finds massive adoption for current research of mapping the effects of natural aging on the 49 

structural and functional properties of the aorta [10-17].  50 

Data from those imaging techniques currently adopted in the clinical practice to monitor and assess the 51 

cardiovascular function can be leveraged for accurate morphometric analysis. This opens to the possibility of 52 

complementing and enriching the information extracted from clinical diagnostic exams. In this regard cardiac 53 

magnetic resonance (CMR), bearing the ability to collect precise, quantitative anatomical information, has 54 

become a gold standard for heart chambers volumetric analysis and cardiac mass measurements [18, 19]. For 55 

these reasons, CMR is widely adopted as diagnostic tool for the assessment of the function of the left ventricle 56 

(LV), heart failure (HF), and related pathologies, including diastolic dysfunction [20]. Diastolic dysfunction refers to 57 

the pathological condition for which the mechanical function of LV during diastole is abnormal [21]. The hallmarks 58 

of LV diastolic dysfunction are impaired relaxation, loss of restoring forces, reduced diastolic compliance, and 59 

elevated LV filling pressure [22]. 60 

While systolic function can be routinely assessed non-invasively by measuring markers such as LV longitudinal 61 

strain, no consensus currently exists on diastolic dysfunction diagnosis, because  no effective image-based clinical 62 

indicators of diastolic dysfunction have yet been identified (a detailed overview of the strengths and weaknesses 63 

of different imaging modalities for evaluating diastolic dysfunction can be found in Flachskampf et al. [22]). This 64 

lack in relevant quantification tools results in a vague understanding of the causes leading to diastolic dysfunction. 65 

Moreover, in diastolic dysfunction a set of changes in cardiac mass, orientation and function has the potential to 66 

affect the mechanical loading and morphology of the aorta. In parallel, induced alterations in the arterial 67 
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reflections and in the aortic geometry may result in unfavorable late systolic pressure augmentation, a factor that 68 

promotes diastolic dysfunction [22]. 69 

In the present study, a morphometry toolset is presented, quantifying geometric descriptors of LV, thoracic aorta 70 

and their coupling from 3D CMR images. The proposed toolset is applied to investigate whether the extracted 71 

morphological information can be used to differentiate between subjects affected by LV diastolic dysfunction and 72 

their age matched controls. The final objective is to investigate if LV diastolic dysfunction is associated with a 73 

distortion of the LV-aortic compartment. The proposed image-based morphometric approach could enrich the 74 

tools and consequently the information extracted non-invasively, in the direction of understanding the causes and 75 

progression of LV diastolic dysfunction [21, 22]. 76 

 77 

Methods 78 

Image Acquisition 79 

CMR imaging was performed for a population of diseased and healthy subjects with a prototype self-navigated 80 

isotropic 3D balanced steady state free-precession (bSSFP) technique that included a radial readout following a 81 

spiral phyllotaxis sampling pattern [23]. The technique was adapted for self–navigation [24-26]. The three-82 

dimensional high-resolution CMR image acquisition was performed with a 1.5T clinical MRI scanner (MAGNETOM 83 

Aera, Siemens Healthcare GmbH, Erlangen, Germany) and the ECG-triggered acquisition was initiated 84 

approximately 4 minutes after injection of a 2mmol/kg bolus of Gadobutrol (Gadovist, Bayer Schering Pharma, 85 

Zurich, Switzerland). Imaging parameters included: TR/TE: 3.1/1.56 ms, FOV: 442 mm3, matrix: 3843, acquired 86 

voxel size: 1.15 mm3, radio frequency excitation angle 115°, and receiver bandwidth 900 Hz/Pixel. The trigger 87 

delay was set to the most quiescent point of mid-diastole.  88 

 89 

Study Subjects 90 
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The 3D CMR-based morphometric analysis was applied to a dataset of 20 human subjects. Based on CMR 91 

acquisitions, subjects were selected to compose two groups: 10 subjects with diastolic dysfunction formed the 92 

patient group (PG), while 10 subjects showing normal LV geometry and both systolic/diastolic functions were 93 

selected for the control group (CG). Diastolic dysfunction was considered in the presence of (1) normal LV end-94 

diastolic volume, normal LV ejection fraction (>50%) and increased LV mass (>78 g/m2 in men; >70 g/m2 in 95 

women), (2) increased LV wall thickness (>12 mm), or (3) LV remodeling (mass to LV diastolic volume ratio > 1 96 

g/ml) [21, 22, 27-30].  97 

Patient and control groups were matched for age and gender (in total: 6 females, 14 males; age 58.9±12.5 years, 98 

range 39-85 years, body surface area (BSA) 2.0±0.26 m2, range 1.48-2.53 m2). The ethics review board approved 99 

the experimental protocol, and all of the subjects gave informed consent.  100 

 101 

Image segmentation 102 

The cardiovascular regions of interest (ROI) were segmented from the acquired CMR images with a semi-103 

automated expanding region method, that uses a gradient-based edge detection process as implemented in the 104 

ITK-SNAP (www.itksnap.org) software [31]. The segmentation process was initiated with a set of manually placed 105 

segmentation-defining spheres within the ROI and the corresponding algorithm expands the initial boundaries 106 

based on the image data. The cardiovascular structure of the entire aortic trunk including the left ventricle down 107 

to the descending thoracic aorta was reconstructed. The descending thoracic aorta was considered to conclude in 108 

the level of the renal arteries. The automated segmentation results were visually inspected and any artifacts were 109 

corrected with the manual segmentation tool provided by the software. Finally, the segmentation information 110 

was exported to stereolithography (STL) file-format for morphometric analysis of the segmented structures. 111 

 112 

Morphometric Characterization 113 

http://www.itksnap.org/
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The proposed morphometric analysis based the geometric characterization of the anatomical features on the 114 

definition of a geometric centerline. In more detail, the centerline C is defined and calculated as the locus of the 115 

centers of the maximal inscribed spheres along the cardiovascular region of interest. The centerlines are 116 

estimated automatically in a form of discrete 3D point sets using the Vascular Modeling Toolkit software (VMTK, 117 

www.vmtk.org) [32]. The calculation of local and global features for morphometry characterization is affected by 118 

the noise in the estimation of the 3D centerline curves. 3D free-knots regression splines can be employed as a 119 

basis of representation to provide a less noisy, analytical formulation of the centerlines [33, 34]. A 3D free-knots 120 

regression spline of order m is a piecewise polynomial of degree m-1, with continuous derivatives of order m-2 at 121 

the spline knots. The number and the position of the knots are not fixed in advance, but chosen to minimize a 122 

penalized sum of squared error criterion [35]. In this study, m was set equal to six, thus allowing the estimation of 123 

an analytical formulation for centerlines with no discontinuities in the derivatives of order up to four.  124 

To simplify the comparisons between subjects, we subdivided the aortic trunk in eight regions (R1 to R8) as 125 

defined by nine anatomical landmarks (L1 to L9) positioned in: (1) ventricle apex, (2) ventricle base, (3) aortic 126 

valve, (4) pulmonary ascending aorta, (5) brachiocephalic trunk, (6) left subclavian artery, (7) pulmonary 127 

descending aorta, (8) diaphragm, and (9) renal level (Figure 1A). In this way, it was possible to break the 128 

morphometry analysis in geometric segments. For each centerline segment, a plane fitting the centerline segment 129 

was calculated with a least square minimization method, and denoted as best-fit plane in the followings. To 130 

characterize the segment orientation, we considered for each plane the normal and tangent vectors, with the 131 

latter vector obtained from the linear least-square fit of the projection of the centerline segment onto its 132 

respective plane (Figure 1B). The relative orientation of two subsequent best-fit planes was expressed by a tilt (α) 133 

and a twist (θ) angle, calculated as the arccosine of the internal product between the two tangent vectors and the 134 

two normal vectors, respectively [36]. Moreover, twist angle can be related to Euler’s rotation theorem, stating 135 

that a rotation in the 3D space can be expressed as a single rotation around an axis, which is invariant to the 136 

http://www.vmtk.orgvmtk.or/
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rotation. The rotation axis is determined as the line of intersection between the two planes, and the rotation 137 

around it is quantified by the twist angle (also called dihedral angle).  138 

By differentiation of the free-knots regression spline, the centerlines are characterized on the basis of curvature 139 

and torsion. The curvature κ and the torsion τ of a curve C along the curvilinear abscissa s are defined as: 140 
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where primes denote derivatives of the curve C with respect to the curvilinear abscissa s. Curvature is defined as 143 

the reciprocal of the radius of the circle lying on the plane defined by the normal and tangent vector to the curve 144 

at that point (osculating plane, Figure 2) and it measures the rate of change in the tangent vector orientation 145 

along the curve. Torsion measures the deviation of the curve from the osculating plane (Figure 2). Both 146 

parameters are known to have a major influence on hemodynamics [37, 38]. Cross-sectional area A(s) was also 147 

considered for geometric characterization. Cross-sectional areas were calculated automatically via intersection of 148 

a plane normal to the centerline at the desired location. 149 

Quantitative geometric measures were derived from the characterization described in the previous section.  150 

For each segment (corresponding to regions R1 to R8), the maximum, average and peak-to-peak amplitude (i.e., 151 

max-min)  values (indicated as Max, Avg and PP) were estimated for curvature, torsion and cross-sectional area. 152 

The minimum cross-sectional area (Min A) for each segment was considered, as abrupt transitions to lower values 153 

may denote the existence of a constriction. The tilt and twist angles between planes fitting consecutive centerline 154 

segments were evaluated as a measure of orientation change along the centerline.  155 

A set of global parameters was also considered. The BSA-adjusted values of total aortic volume were estimated. 156 

Aortic arch width (W) was defined as the distance between the centerline points of the ascending and descending 157 
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aorta at the level of the pulmonary artery [39]. The height H of the aortic arch was defined as the distance 158 

between W and the highest centerline point of the aortic arch in left anterior oblique projection [39]. The ratio 159 

H/W was also quantified. Left ventricle shape was evaluated as based on the sphericity index (SI), which is defined 160 

as the ratio between the ventricle long axis (measured from the apex to the mid-point of the mitral valve) over 161 

the short axis (equivalent diameter of the ventricle section that perpendicularly intersects the long axis mid-162 

point). 163 

To test for differences between the groups (CG vs. PG), the univariate Mann-Whitney non-parametric U test was 164 

applied, for all the vascular segments and descriptors. Significant level was set at P < 0.05. The calculation of 165 

morphometric parameters and the statistical analysis were performed using VMTK libraries and Matlab (The 166 

MathWorks, Natick, MA, USA). 167 

 168 

Results 169 

The complete set of reconstructed geometries for patient and control groups is presented in Figure 3 (top and 170 

bottom row, respectively), along with the corresponding centerlines. 171 

Local curvature and torsion profiles provide a representation of the spatial variations in geometric attributes of 172 

ventricle-aorta regions, showing their complex geometric characteristics, non-uniformity and non-planarity 173 

(Figure 4). In particular, most subjects present peak values for curvature located close to the aortic valve (R1) or in 174 

the proximal descending aorta (R6). Considerable absolute peak values for torsion are shown by some geometries 175 

(up to 6 mm-1, M74 subject in the PG, but also, e.g., M67 subject in the PG, and M39 subject in the CG). 176 

Cross sectional areas are reported in Figure 5. As expected, the largest cross-sectional areas are found within the 177 

limits of region R1. Moving downstream, the cross-sectional areas show a sudden decrease due to the aortic valve 178 

(R2 in Figure 5), followed by an increase in correspondence of the sinuses of Valsalva. A slow decrease (due to the 179 

aortic tapering) is then shown along the curvilinear coordinate s in the arch and descending aorta regions, as 180 

expected (Figure 5). 181 
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Results from the quantitative geometric characterization were used for statistical analysis and are summarized in 182 

Tables 1 and 2 for regional and global parameters respectively. Statistically significant differences between 183 

control and patient groups were observed with the current morphometric analysis. In particular, the tilt angle α 184 

was shown to be significantly different in regions R1, R2 and R3, while the twist angle θ was shown to be 185 

significantly different in region R3. Significant differences between the two groups were also shown for curvature-186 

derived parameters in the descending aorta (R8). In regards to torsion, differences in average torsion were not 187 

significant in any of the regions, while torsion maximum values presented significant differences in region R2, and 188 

peak-to-peak amplitude values of torsion presented significant differences in regions R1, R2 and R3. Descriptors 189 

derived from cross-sectional areas yielded significant differences in one region or more (Avg A: R7; Max A: R4; 190 

Min A: R1, R7; PP A: R3, R4, data presented in Table 1). Considering global geometric parameters, the statistical 191 

analysis is reported in Table 2. Total aortic volume as well as aortic arch width presented significant difference 192 

between the two groups with P=0.038, and P=0.032 respectively. Sphericity index SI, aortic arch height H and the 193 

ratio H/W were not significantly different between the two groups. 194 

In order to visually evaluate differences in the distributions of the descriptors yielding statistically significant 195 

differences, box plots were generated and are shown in Figure 6, where the median, the interquartile range and 196 

the extreme values for a 95% coverage of the distribution are depicted. The boxplots provide clear observation 197 

that the median values of the considered descriptors were different for the two groups, as given by the statistical 198 

test, and that in most cases also both the spread and symmetry of the distributions of considered data were 199 

different. 200 

 201 

Discussion 202 

In diastolic dysfunction, LV abnormalities in mass, orientation and mechanical function during diastole affect the 203 

mechanical loading and morphology of the aorta. In parallel, alterations in aortic morphology may promote 204 

diastolic dysfunction via altered hemodynamics and late systolic pressure augmentation due to altered pressure 205 

wave reflections [22]. Thus, open questions still exist on whether diastolic dysfunction is due to a specific cardiac 206 
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disease or it is the result of a myocardial response to unfavorable working conditions attributable to the 207 

downstream arterial system (e.g., arterial stiffening) [22].  208 

In this study, we demonstrated the potential of morphometric analysis of the ventriculo-aortic region for 209 

investigating differences between healthy and diastolic dysfunction subjects. Technically, 3D models of the 210 

ventriculo-aortic structure were reconstructed from 3D CMR images, and morphometric analysis was performed 211 

by considering global and regional parameters, as defined by anatomical landmarks.  212 

The regional analysis identified statistically significant differences between CG and PG (1) in the LV and ascending 213 

aorta regions (R1:R3), specifically in the tilt angle α and the dynamic range of torsion (Table 1), and (2) in the 214 

distal descending aorta (R7, R8), where differences in parameters derived from curvature and area emerged.  215 

Considering global variables, significant differences between CG and PG were observed in the aortic volume and 216 

aortic arch width (Table 2). Interestingly, the PG exhibited considerably less geometric variability than CG when 217 

considering torsion-based parameters (Figure 6), suggesting relative homogeneity of those parameters in PG 218 

subjects.  219 

The observed morphometric differences imply differences in hemodynamics, by virtue of the influence of 220 

geometry on blood flow patterns [5-7, 40]. In particular, the tilt and twist angles quantify the “distortion” of the 221 

aorta, which is expected to impart an abrupt change in the direction of blood flow. Here, it was found that aortic 222 

distortion is more pronounced in the PG, therefore the underlying flow patterns are expected to be more intricate 223 

and complex for the PG [41] than for the CG. The distortion observed in PG, and the consequent reshaping 224 

imposed to flow structures, does represent a point of attention, because curvature and torsion have a well-known 225 

influence on arterial hemodynamics, in particular on the arrangement of flow in helical structures, that has been 226 

reported to limit flow disturbances [42-44].  227 

Aortic cross-sectional area has also been considered as it influences flow rate, Reynolds number, arterial 228 

resistance and the presence of helical flow [41]. Area-based parameters and aortic volume allow to quantitatively 229 

describe aortic enlargement, that has been correlated with arterial stiffening [45] and, ultimately, to systemic risk 230 

factors such as hypertension. Among possible scenarios, an increased aortic volume, as the one observed here for 231 
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PG (Figure 6), might progressively lead over time to chronically increased LV afterload, promoting LV hypertrophy 232 

and concentric remodeling [46], consistently with the diastolic dysfunction diagnosis of PG.  233 

Furthermore, the ascending aorta is a major contributor to the systemic total compliance of the arterial tree, and 234 

several previous reports demonstrate the existence of a complex interplay between aortic pulse wave velocity 235 

(PVW) and LV remodeling. In particular, Redheuil et al. [16] demonstrated the existence of a significant 236 

relationship between increased arch width, increased PWV, decreased aortic arch distensibility and increased LV 237 

mass and concentric remodeling, in accordance with the results of the present study (aortic arch width resulted 238 

statistically different between CG and PG, with higher values for PG, Table 2 and Figure 6). In addition, a large 239 

H/W ratio has been identified as possible promoter of increased pulse pressure and PWV, enhanced systolic wave 240 

reflection and increased wall shear stress, likely inducing structural changes in the aortic wall [47]. 241 

Notwithstanding these factors are well-known contributors to LV remodeling [16, 48], in this study no statistically 242 

significant difference between CG and PG was observed, when evaluating the H/W ratio. Moreover, although 243 

sphericity has been indicated as a marker of cardiomyopathy [30], differences between PG and CG were not 244 

found. 245 

It is worth noting that the cross-sectional design of the present study does not allow to answer the question 246 

whether geometric changes precede diastolic dysfunction, or vice versa. A highly complex and dynamic interplay 247 

exists among the processes leading to diastolic dysfunction, aortic morphology, and the underlying 248 

hemodynamics. As the pathology progresses, the relationship evolves determining a disease-driven remodeling of 249 

the aortic geometry. In this context, it is accepted that the aorta remodels its geometry, structure and 250 

composition according to an overall optimization strategy. Among the factors regulating the remodeling, we 251 

mention here the magnitude of the circumferential stress in the arterial wall, the flow-induced shear stress at the 252 

inner surface, that needs to be maintained within the physiological range [49], and the remodeling action of 253 

altered pressure levels, which are commonly found in diastolic dysfunction patients [21, 50]. Notwithstanding the 254 

intricacy of the relationship geometry - diastolic dysfunction, questions cannot be answered without knowledge 255 

of the several risk factors, and thus we focus in this preliminary study on the geometric differences between PG 256 
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and CG. As further limitation, no data on blood pressure levels or other parameters such as blood flow data or 257 

vessel distensibility were recorded. The focus on geometric factors is motivated by the easiness of their 258 

acquisition in the clinical practice, although this limits the comparability of our results with findings in similar 259 

patient cohorts. A further shortcoming is the limited number of subjects included in the study.  260 

The limitations listed above make the analysis here presented to be intended as exploratory, whose main aims 261 

are the setting up of an image-based tool, and the identification of candidate morphometric descriptors for a 262 

next, adequately powered study. In particular, this work represents the first systematic and statistical analysis on 263 

diastolic dysfunction considering, among others, factors such as tilt/twist angles, and local curvature and torsion, 264 

indicators of the presence of distortive cardiovascular mechanisms. Quantitative geometric characterization by 265 

the robust and noninvasive methods described in this work can be easily and robustly obtained from imaging data 266 

and employed at a large scale for explorative studies, clinical trials and ultimately clinical routine. Moreover, the 267 

proposed approach might provide proofs-of-concept for further in vivo investigations to determine valuable new 268 

markers of diastolic dysfunction-related alterations, allowing an early diagnosis of the LV remodeling and 269 

dysfunction. The developed methods could also be extended to assess a whole range of other situations, such as 270 

the investigation of vascular remodeling after successful repair of aortic coarctation. As further development, the 271 

proposed morphometric analysis could be integrated with a in vivo quantitative hemodynamics based on 4D flow 272 

MRI. Such technique would allow to estimate hemodynamic quantities like pulse wave velocity [51, 52], and 273 

helical flow [17, 43]. 274 

In conclusion, we developed a platform to perform morphometric analysis of the ventriculo-aortic region to 275 

identify differences between healthy and diastolic dysfunction subjects, and to understand the clinical 276 

implications of altered geometries. The morphometric parameters defined in this study could help to determine 277 

early aortic geometric alterations and potentially prevent evolution toward advanced LV remodeling and diastolic 278 

dysfunction. Further initiatives should focus on processing larger databases in order to evaluate any diagnostic or 279 

risk stratification value of the parameters. 280 

 281 
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Tables 417 

 418 

Table 1. Tabularized version of P values for all regional parameters (bold values stand for P<0.05). κ, τ and A 419 

correspond to curvature, torsion and cross sectional area, while Max, Avg, PP and Min correspond to maximum, 420 

average, peak-to-peak amplitude and minimum values. 421 

 422 

P values R1 R2 R3 R4 R5 R6 R7 R8 

Tilt angle α 0.019 0.027 0.013 0.396 0.312 0.172 0.353 0.298 

Twist angle θ 0.425 0.121 0.038 0.455 0.425 0.440 0.367 0.339 

Avg κ 0.367 0.061 0.192 0.061 0.093 0.172 0.312 0.137 

Max κ 0.260 0.367 0.425 0.367 0.214 0.485 0.260 0.027 

PP κ 0.260 0.339 0.214 0.367 0.485 0.339 0.367 0.044 

Avg τ 0.260 0.312 0.285 0.172 0.455 0.260 0.367 0.192 

Max τ 0.061 0.027 0.093 0.425 0.515 0.396 0.214 0.192 

PP τ 0.038 0.011 0.019 0.339 0.485 0.425 0.214 0.106 

Avg A 0.106 0.236 0.106 0.061 0.192 0.154 0.038 0.061 

Max A 0.455 0.425 0.081 0.027 0.192 0.236 0.061 0.052 

Min A 0.032 0.154 0.061 0.172 0.214 0.154 0.038 0.075 

PP A 0.214 0.285 0.023 0.044 0.285 0.396 0.367 0.172 

423 
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Table 2. Tabularized version of P values for global parameters (bold values stand for P<0.05). V, H and W 424 

correspond to volume, arch height and arch width, respectively. 425 

P values 

 Volume V 0.038 

Arch Width W 0.032 

Arch Height H 0.285 

H/W 0.214 

  426 
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Figures captions 427 

 428 

Figure1 - (A) Representation of the human aorta with the landmarks L1-L9 defining the arterial segments (R1-R8) 429 

on which the regional morphometric analysis was performed; (B) example of geometry showing the centerline 430 

and two best-fit planes. From each best-fit plane, the normal vector (red color) and the tangent vector (blue 431 

color) are shown. The angle between two consecutive normal vectors is the twist angle (θ ), while the angle 432 

between two consecutive tangent vectors is the tilt angle (α). 433 

 434 

Figure 2 - Curvature and torsion definition. Curve a has curvature κ and torsion τ equal to zero. Curve b lies in a 435 

plane and has non-zero curvature (equal to 1/R in the point tangent to the shown circle), but zero torsion. Curve c 436 

leaves the plane, and has non-zero curvature and non-zero torsion. 437 

 438 

Figure 3 - 3D visualization of the aortic geometries for patient group PG and control group CG. M stands for male, 439 

F for female and the number indicates the age. Centerlines are colored by curvature values. 440 

 441 

Figure 4 - Longitudinal profiles of curvature (κ) and torsion (τ) as generated for all geometries by using 3D free-442 

knots regression splines representation. The varying severity of curvature and torsion along curvilinear coordinate 443 

s highlights the complex geometry and non-planarity. 444 

 445 

Figure 5 - Longitudinal profiles of cross-sectional area (A) as generated for all geometries by using 3D free-knots 446 

regression splines representation. 447 

 448 

Figure 6 - Boxplots for the descriptors yielded as statistically significantly different. The median is indicated by the 449 

red line, the blue box indicates the interquartile range and the whiskers indicate the extreme values for a 95% 450 

coverage of the distribution.  451 
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