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Abstract — Real-time knowledge about the energy being 
exchanged sustains energy efficiency applications and services. 
The event-based data-saving approach to the measurements of 
electric energy has emerged recently with conceptual and 
practical implications, also thanks to the manufacturing of a new 
technological solution. This paper explains the fundamental 
underlying concepts that have led to these improvements through 
real-case examples. This work borrows from ontology the 
distinction between the concepts of endurants and perdurants, 
associating these concepts to the quantities involved in the energy 
metering process. In the new event-based computational 
framework, energy metering is interpreted by detecting average 
power and accumulated energy variations, as well as highlighting 
the importance of the information provided by the rate of change 
of energy and by the rate of events gathered from meters. 
 

Index Terms— Energy, Measurements, Data analysis, Event-
based data monitoring, Metering. 

I. INTRODUCTION  

n the context of rapidly evolving digital information and 
communication technologies and lower costs of electronic 

programmable devices, energy metering is living a new era. 
The traditional approach to energy metering is based on 
gathering data at regular time intervals. Recently, some 
researchers applied alternative approaches that allowed 
reducing the amounts of data exchanged between 
measurement agents. Load pattern analysis’ researchers [1] 
found that for most of the time the patterns remain almost 
constant. Thereby, until no significant changes occur, there is 
no need to send information [2]. This logic is based on the 
detection of events to determine the timings for data reading, 
changing the way data are gathered from regular timing to 
non-regular timing. The criterion for determining the 
occurrence of significant changes was then extended to the 
case in which the pattern has slow but continuous variations. 
A two-threshold system was proposed in [3] in order to 
maintain consistency with the present legacy depending on the 
timer-based regular data gathering. The characteristics of 
Timer-Based Metering (shortly TBM) and Event-Based 
Metering (shortly EBM) were discussed in [4] in terms of data 
representation based on concepts of accumulated energy and 
accumulated energy variations. In the context of new digital 
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EBM energy meters fabricated in 2015 [5], more energy users 
may be included in the real-time scenario.  

This paper discusses the effectiveness of the domain-
specific framework for real-time energy metering upon events. 
This framework is rather different with respect to the way 
events are used in other research fields. For example, in digital 
signal processing events are considered to generate non-
uniform sampling in applications with variable frequency 
content, with the objective to avoid avoiding high-frequency 
sampling and thus saving power in analog-to-digital 
converters and digital signal processors [6]. In these 
applications, the reconstruction of the signal is aimed at 
reproducing its shape by using interpolation or approximation 
methods [7]. In power quality monitoring, the detection of an 
event is typically used to record the waveforms of some 
relevant quantities (e.g., voltages at the electrical network 
nodes) only during the event, avoiding the recording of the 
whole data stream during normal operation [8]. The recorded 
data during the events are used to try and identify the type of 
event occurred and its characteristics in a post-processing 
phase [9]. In event-driven programming [10], the events 
correspond to conditions (e.g., end of file, limits reached on 
variables) or external operations (e.g., pressing buttons, mouse 
movements) that determine a change in the execution of the 
program. The event-driven approach has been used in circuit 
and system design, for example in clock-less applications with 
signal-dependent sampling rate and adaptive resolution [11], 
or in frame-free event-driven vision systems, in which each 
pixel decides autonomously when to send its address out in an 
asynchronous way [12]. In sensors applications, the send-on-
delta reporting scheme presented in [13] determines an event 
when the monitored quantity changes more than a specified 
threshold (delta) with respect to the value identified for the 
last event. This leads to asynchronous timing of the reported 
events. In hybrid control systems, used in different 
applications including manufacturing processes [14], air traffic 
management, engine control, embedded control, robotics and 
others [15], time-driven and event-driven dynamics are 
interacting, with discrete events acting as trigger mechanisms 
managed by the controller [16]. Further contents on event-
based control and signal processing are discussed in [17]. 

The main difference between the TBM and the EBM 
approaches depends on the nature itself of the quantity 
represented – energy. While in the classical event-based 
approach the quantity of interest represents the event itself 
happening in the system, without the need of reconstructing 
the history of the previous evolution of the system, energy 
metering needs to maintain the information on the previous 
evolution to avoid losing any Amount of Energy (shortly AoE) 
used in the system. In this sense, in many cases of the classical 
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event-based approach (markedly in signal processing) the 
basic concept is the one of sampling, aimed at reconstructing 
in the best way possible the detailed evolution of a signal in 
the time domain, even without calculating the energy 
associated with the signal. Conversely, in energy engineering 
applications the key aspect is the conservation of the energy 
represented, regardless of the detailed reproduction of the 
evolution in time of the patterns referring to the quantities 
determining that energy. The notion of sampling being 
replaced by the averaging time step [4] is formally made 
unnecessary because the integral quantity allows deriving the 
average power by computation. Hence, EBM becomes an 
application retaining its own specificity with respect to other 
event-driven applications. This paper discusses these concepts, 
highlighting their peculiarity and meaning in the energy 
metering process, resorting to real-case examples.  

The next sections of this paper are structured as follows. 
Section II introduces the fundamental concepts. Section III 
deals with relevant quantities and event generators used in the 
novel computational framework, also interpreted in domain-
specific terms of accumulated energy variations. Section IV 
shows how to gain insights from application cases. The last 
section contains the concluding remarks. 

II.  FUNDAMENTAL CONCEPTS 

A. Timing aspects 

In order to describe the timings used to characterize the 
energy metering process, let us define the following entries: 
 Elementary time interval: is the fastest time interval of 

duration t used to calculate integral values such as energy, 
average power, and other RMS values. The elementary 
time interval represents the reference time step for the 
timeline indicating the evolution of the natural time t.  

 Time interval Dt: an ordered sequence of a defined number 
of elementary time intervals associated with the 
representation of a specific pattern.  

 Time period T: a succession of time intervals (even with 
different duration); the duration T of the time period is a 
multiple of t. 

 Time tag: a time instant at which a given elementary time 
interval starts. Time tags (or time stamps) provide the link 
between the discrete sequence of elementary time intervals 
tk, scan by the subscript k, and the natural time t.  

A discretized framework referring to integral values 
imposes that anything happens inside an elementary time 
interval cannot be identified. All the quantities within any 
elementary time interval are represented as constants, leading 
to a stair-wise representation of the corresponding patterns. 
The representation with constant average power referring to a 
time step of certain duration implies that no pattern of 
instantaneous powers can be identified inside that time step. 

In the timer-based approach, the energy measurement 
process always generates a stream of observations flowing at 
discrete and constant rate of time [18], e.g., the limitless 

ordered sequence of time tagged terms {tk, xk=x([tk-t, tk])}, 
where tk is the time stamp associated with the data, and xk is 
the measured quantity encoding the self-information. The left 

hand-side of Fig. 1 represents the time intervals being spaced 

uniformly, that is, Dti+1 = Dt. Fig. 1 also indicates the 
distinction of the time-related indications between endurants 
and perdurants explained in Section II.B. 

 
Fig. 1. Representation of the timings.  

In the event-based approach, the measurement process 
generates an unevenly spaced sequence of terms. The data 
abstraction remains unchanged, but the information is not 
encoded in single variables, but inside the pairs of attributes 
referring to the successive time instants tj-1 and tj. The duration 

Dtj = tj - tj-1 is a multiple of t and depends on how the pattern 
has evolved in the sequence of elementary time intervals. By 
using chunks, namely, fragments of information being 
included in a set of data in order to communicate the 
characteristics of the processes lasting in time, the succession 
of information identifying the energy metering process is 
represented by a chained list of chunks [19]. 

B. Endurants and Perdurants 

To understand the semantics of the event-based data 
objects, let us consider two kinds of very different items: the 
instants and the durations. Geometrically speaking, those 
entities are point-like and segment-like, respectively. A 
categorization of the entities comes from ontology, which 
considers the nature of being, as well as the categories of 
being and their relations [20]. In ontology terms [21], the 
categorization relevant to event-based energy metering 
contains endurants and perdurants: 
 An endurant (or stock) has a conceptual meaning as an 

instantaneous quantity, applicable for example to the 
notions of voltage, current, power, or the time instant. 

 A perdurant (or flow) acquires a conceptual meaning only 
when a certain time interval has elapsed. Examples are the 
time interval itself, integral quantities such as the RMS 
values, and energy calculated over a given time interval. 

The relationship between endurants and perdurants seems 
obvious, but it encodes semantic meanings. Perdurants hold 
the information associated with the time of use (durations), 
linked with the natural time scale through the endurants 
representing the time tags (instants) and their ordering in time. 
Reference frames, clocks, timers, and event generators give us 
the sequence of endurants but also establish relationships 

between perdurants. Given a pair or perdurants {Dtk, Ek} 
containing the calculated quantity Ek referring the time 

interval Dtk, the reference endurant could be set at the 
beginning, in the middle, at the end of the time interval, or in 
any other position. Authors conventionally associated all 
perdurants with the end of the time interval expressed as 

å
-=

=
+- D+=

1

1
1

p

ijp ttt





xi xj xk xm

Dt

t t t t

fixed duration

x([tp-1,tp])

variable duration

Dtp

T

segment-like

perdurants (flows)

time 

ti
ti+t ti+mt

p

p

ijp tttt D+D+= å
-=

=
+

1

1






point-like endurants (stocks) time 

ti+(n-1)Dt ti+nDt



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2680401, IEEE
Transactions on Industrial Informatics

To appear in the IEEE Transactions on Industrial Informatics; DOI  

"Copyright (c) 2009 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the 
IEEE by sending a request to pubs-permissions@ieee.org 

3

perdurant because in energy metering, the quantity Ek is 
reported only after the corresponding duration has elapsed. 

The notation Dt indicates a time interval [ti, ti+Dt] that 
encompasses a sequence of a certain number m of elementary 

time steps lasting t each. The perdurants of time included in 

the chained list of chunks are: [ti, ti+t, [ti+t, ti+2t], …, and 

[ti+(m-1)t, ti+mt].  

C. Self-Information and Mutual information 

After Shannon, the Information Theory distinguishes 
between the self-information encoded in a single random 
variable and the mutual information encoded in a pair of 
variables to allow extracting knowledge about one variable 
based on the information about the remaining one. 

The first concept is explored in the timer-based energy 
measurement mode. Knowing that the duration of the time 

interval Dt is constant, the positional sequence of average 
power values P(tk) for successive values of k in the time 
interval terminating at time instant tk is related to the energy 

E([tk-1,tk]) through the expression P(tk)=E([tk-1,tk])/Dt.  
The second concept is illustrated by the progressive energy 

index E(tk-1) and by the variation of accumulated energy 

DE([tk-1,tk]) allowing the computation of the next positional 
endurant term E(tk)=E(tk-1)+E([tk-1,tk]) forming the chained list 
of perdurants {E([t0,t1],…, E([tk-2,tk-1], E([tk-1,tk]), …}. The 
sequence of terms {E(t1), …, E(tk)} represents the continuous 
update of the energy metered since the meter installation at 
time t0. The term E([tk-1,tk]) refers to the specific time interval 

Dtk=tk-tk-1. As a matter of notation, considering mutual 
information, when the argument is an endurant, e.g., tk for 
E(tk), the quantity represented is continuously updated with the 
natural time. Conversely, when the argument is a time 

interval, e.g., Dtk for E(Dtk), the quantity represented by the 
E([tk-1,tk]) refers to that time interval [tk-1,tk] only. 

D. Rate of Events 

Event-based observers generate irregular data traffic 
characterized by the density of events expressed as time-
varying Rate of Events (RoE). The RoE is a new non-electrical 
information useful to link electric measurements from the time 
domain with the events from the transformed space denoted in 
[4] as digital energy. The number of occurrences produced by 
the event generator during a conventional interval of natural 
time expresses the process variability or volatility.  

The outcomes of real life processes are not equally likely. 
Event-based agent makes a kind of belief that anticipates the 
energy behavior during the sub-sequent measurement 
experiment at the condition that the system will keep the same 
state as in the most recent past. An almost constant RoE may 
indicate operational conditions similar to those from the recent 
past, while an increased RoE could be an indicator of a real-
life process’ change. RoE is assessed by considering the count 
of the events falling within a given user-defined time interval 

[tinit,tfinal] with duration multiple of t. Inheriting from the 
classical timer-based metering making averaged values every 
900 seconds, the same observational period can be fixed in 
order to count events falling in the sliding time-windows [tj-

900, tj]. Each outcome is evaluated by considering the timing of 
events and represented through the event counter function 

f(Dtj) with integer and never negative outcomes.  
An increased/decreased density of events means more/less 

changes. At long run, the sequence of RoE counts becomes a 
Map of Events (MoE). The MoE is a time-slotted data object 
living in the natural time –being linked to time by the relevant 
endurants – MoE={([t0,t900],f([t0,t900])), ([t900,t1800], 
f([t900,t1800])), …, ([t85550,t86400], f([t85550,t86400]))} that shows the 
variability of the density of events. The RoE terms could be 
used industrially to compare energy-related events occurring 
in different time periods and physical systems. Fig. 2 
illustrates the count of RoE that slides along the arrow of 
natural time [19]. The real-case photovoltaic plant’s example 
shown in Fig. 3 indicates the presence of high volatility in a 
given time period [5]. 

 

Fig. 2. The metering observer counts the Rate of Events. 

Fig. 3. The Rate of Events for a small-scale photovoltaic energy plant. 

E. Stateless and stateful services 

The EBM handles two different types of services: 

 Stateless service, in which the relevant data is immediately 
used to provide the response to the service, then no 
memory of the result of that service is maintained. This 
happens when the average power referring to an 
elementary time interval is compared with the average 
power of the previous elementary time interval in order to 
check whether the difference between these values exceeds 
a given threshold. If the threshold is exceeded, an event is 
generated, otherwise the result is ignored. 

 Stateful service, in which the response to the service is not 
provided at a given time, but depends on the occurrence of 
a condition involving a number of data, for which some 
memory has to be maintained. This happens when the 
energy values referring to a number of elementary time 
intervals have to be considered in order to check whether a 
given user-defined threshold is exceeded. This requires 
continuous monitoring of the system state. An event is 
generated each time the threshold is exceeded. Threshold 
setting issues are introduced in Section III and discussed in 
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the examples shown in Section IV. 

III. EVENT GENERATION FOR ENERGY METERING 

A. Thresholds for detecting variations 

The energy is conventionally associated with the Riemann 
integral of a function of power on an interval of time as it is 
defined by the formula (1). In practical applications [5], the 
perdurants of energy are computed by using numeric 
integration (Fig. 4), where the average power changes during 
the time interval, while the time step t appears constant. The 
unknown a-priori shape of power should be always assumed 
as being irregular. When the event-based algorithm generates 
an event, the time tag tj becomes defined.  

 
Fig. 4. Computation of the interval energy (total area). 

The interval energy E(Dtj)=E([tj-1,tj]) is a perdurant given 
by the area between the graph of average power and the 
horizontal axis: 

 (1) 

Starting from the time instant tj-1, until reaching the tj 
generated by the next event, perdurants of time [tj-1,tk], with 
tk<tj, are characterized by “almost steady” and “smooth 
enough” average power, meaning that there is no major 
variation with respect to the previous trend. The average 
power P(Dtj-1) that synthesizes said previous trend becomes 
the expected trend for the next succession of elementary time 
intervals. In other words, until the next event is generated, the 
expected trend is to maintain the average power varying in the 
same known way as in the previous period that is: 

 (2) 

Upon occurrence of an event at tj, the metering observer 
computes once the integral (1). This compressive sensing 
scheme drastically reduces the amount of data required to 
represent the signal [22]. The EBM identifies events by using 
an event generator capturing two types of conditions: quick 
stepwise jumps (a) and slow accumulated variations (b). The 
corresponding triggers are synthetically represented in Fig. 5. 
The first trigger acts in a memory-less way at the level of each 
elementary time interval, and is activated when the absolute 
value of the average power variation from one elementary 

time interval to the next one is higher than the threshold d1 
(that is, when the absolute value of the energy in the 
corresponding elementary time interval exceeds the product 

t×d1). The second trigger acts on the basis of incremental 
variations of the accumulated energy with respect to the 
expected trend, when the absolute value of that quantity 

exceeds the threshold d2. 

 
Fig. 5. The two triggers applied to the event-based energy metering. 

In practical terms, the operation of these triggers can be 
seen as the application of specific filters able to recognize: 
1. Quick stepwise transitions, thanks to a stateless filter 

depending on a threshold d1 applied to the variations of the 
average power referring to two successive elementary time 
intervals (3). The filter is stateless because any term 

DP([tk-t,tk]) 
is independent of the previous ones, so that the 

event generator has no memory. 

 (3) 

A visual representation of the use of the threshold d1 is 
reported in Fig. 6, by showing the average power 
variations as Dirac-like pulses and identifying the event 
when the threshold is exceeded either with positive or 

negative variations. The elementary time step is t = 1 min. 
The Dirac pulses are located at the end of each elementary 
time interval. In Fig. 6, the time interval under 
consideration starts from the time instant tj-1. The average 

power of the previous time interval P(Dtj-1)=3.5 kW is used 
as starting point to calculate the average power variation 
after the first elementary time step. In this example, the 

threshold is set to d1=4 kW. When the average power 
variation exceeds the threshold, the time instant 
corresponding to the end of the elementary time step at 
which the large variation occurred is identified as the time 
tag tj marking the end of the time interval under 
consideration and, at the same time, the beginning of the 
next time interval. In the case reported in Fig. 6, the time 

interval ending at time tag tj has a duration Dtj=7 min, the 

energy corresponding to the time interval is E(Dtj)=29.7 

kWmin, and the average power is P(Dtj)=29.7/7=4.24 kW.  

 
Fig. 6. Threshold d1 for average power variations. 

The value P(Dtj) is then used as the reference to compare 
the average power variation occurring after the first 
elementary time step of the successive time interval.  

2. Slow accumulated variations, by using a stateful filter 

based on a threshold d2 applied to accumulations of 
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elementary unbalances of energy. Starting from the instant 
tj-1, and considering a generic instant tk successive to tj-1 by 

a finite number of elementary time intervals t, the 
following accumulated energy variation is monitored:   

 (4) 

Until the accumulated energy variation does not exceed the 

threshold d2 with memory, no event is generated, and 
otherwise an event is defined at the end of the elementary 
time step at which the accumulated energy variation 
occurred, identified by the time tag tj.  

A visual representation of the use of the threshold d2 is 
reported in Fig. 7, referring to a sequence of average power 

values at successive elementary time steps t=1 min, 
starting from the time instant tj-1. Let us assume that the 
average power representing the previous time interval is 

P(Dtj-1)=3 kW. This means that the expected average 
power is 3 kW at each elementary successive time interval. 
It is then possible to construct the evolution of the 
expected trend of the accumulated energy (represented in 

stair-wise form in Fig. 7). The threshold d2 is set in order 

to limit the variations of the accumulated energy (d2=10 
kWmin in the example). In the example of Fig. 7, the time 

interval ends at time tag tj and has duration Dtj=10 min, the 

energy corresponding to the time interval is E(Dtj)=45.7 

kWmin, and the average power is P(Dtj)=45.7/10=4.57 

kW. The value P(Dtj) is an expected average power for the 
successive time interval. Fig. 8 shows the de-trended 
evolution of the accumulated energy variations, obtained 
by subtracting the expected trend from the accumulated 
energy entries shown in Fig. 7. This de-trended evolution 
is consistent with the right hand-side of Fig. 4 and is used 
for representation purposes to save vertical space in the 
figures [4]. In the example presented in Fig. 7 and Fig. 8, 
the sequence of average power values starts in a way 
consistent with the expected trend, then the accumulated 
energy starts growing to a larger extent, up to reaching the 
upper threshold and generating the new event. 

B. Compatibility with classical energy metering 

The EBM approach to energy metering can be adjusted to 
coexist with the classical TBM approach with regular time 
periods. It is sufficient to force the occurrence of an artificial 
event at predefined time periods, summing up all the energy 
per intervals found in the last regular time interval [22]. In 
order to preserve the effectiveness of the event-based 
representation, the timer-based energy (and RoE) computation 
may be run in parallel with the event-based thread by making 
the artificial event inactive for the purpose of representing a 
real-life process through the identification of relevant events. 

C. Absence of communication and density of events  

Until an event generator remains “silent”, there are no 
messages directed to remote peers. When an event occurs, the 
related data travel over the communication channel. The 
absence of events/communication – provided that appropriate 

verification is carried out to exclude problems in the 
communication channels [1] – has a pivotal role because it 
indicates that the system follows the previous (and expected) 
trend. In the event-based metering approach, based on the fact 
that the pattern is not exceeding the thresholds on average 
power or accumulated energy variations, any remote observer 
can estimate the state of a system autonomously, without any 
further data being encoded in individual variables.  

A large number of co-occurring unbalances of energy is 
trapped by the specific attribute RoE. Therefore, a 
substantially increased RoE during a certain time slot could 
warn about potentially compromised system operation.  

 
Fig. 7. Threshold d2 and accumulated energy trend. 

 

Fig. 8. Representation of the threshold d2 for accumulated energy variations. 

D. Structure of the event-based data object 

Following the previous illustration of the event generation 
modes, each time interval corresponds to a data object 
containing a number of attributes containing general 
information, endurants, and perdurants. In particular, for each 

energy meter labeled with a unique identifier MeterId: 

 The general information is indicated by the MessageType 
attribute set up to indicate the distinction between timer-
driven (TD) or event-driven (ED) modes. 

 The endurant is the TimeTag attribute, introduced at the 
occurrence of each event. 

 The perdurants are the time interval duration Dtj, the 
energy counter E(tj-1) at the previous time, the energy 
variation E(Dtj) during the last period, and the energy 
counter E(tj)=E(tj-1)+ E(Dtj) at the current time. 
On the basis of the above indicated values, the meter 

calculates the average power perdurant P(Dtj)=E(Dtj)/Dtj and 
associates it with the time interval Dtj. Fig. 9 shows the 
contents involved in the data object. The Rate of Change of 

DE([t j-1, t j-1 + kt ]) = t P t j-1 +mt( ) -P tj-1 + m-1( )t( )( )
m=1

k

å
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Energy (RoCoE) and the average power perdurant P(Dtj) are 
identical.  

Furthermore, the RoE gives the ratio between the number 
of events occurring in the user-defined time period of analysis 
[tinit,tfinal] and the duration of the time period itself (e.g., the 15 
minutes indicated in Section II.D). Thereby, each event 
detected in the time interval Dtj increases by one the counter of 
the events in the calculation of the RoE for the time interval 
[tinit,tfinal] containing the time interval Dtj. 

 

 
Fig. 9. Event-based energy metering data object. 

E. Knowledge representation 

The new event-based approach represents energy as a 
quantity associated with a real-life process occurring at an 
expected almost steady RoCoE. It requires the data object 
encompassing several attributes of different types. It is 
associated with the time interval (perdurant of time) and with 
the energy per time interval (perdurant of quantity). It reports 
the accumulated energy so far and the most recent change.  

In synthesis, the knowledge representation in the event-
based energy metering operates in stateless and stateful 
fashions at the same time, providing the following contents: 
 The ordered sequence of average power per elementary 

time interval contains the stateless knowledge about the 
average power transients.  

 The sequence of accumulated energy values contains the 
stateful knowledge on the historical evolution of the 
consumption. 

 The sequence of energy per (unevenly-spaced) time 
interval and the corresponding RoCoE contain the stateful 
details of the process being metered. 

 The RoE provides information on the details of the process 
under analysis in the time period under observation. It can 
also be used in a moving window-like observer, indicating 
the dynamics occurring in the metered system.  

F. Reconstruction of the average power pattern  

During the actual EBM measurements, the pattern 
corresponding to the average power gathered at successive 
elementary time intervals is not known. For the sake of 
comparison, in the cases shown in the examples of this paper, 
the average power values forming this pattern (denoted here as 
base pattern) have been measured and are available.  

The time tags of the events detected and the RoCoE make 
it possible to build an ED-reconstructed pattern having the 
resolution in time equal to the one of the reference pattern. In 
the reconstructed pattern, the relevant aspects detected are 
represented in more detail, while the variations smaller than 
the given thresholds are averaged. In the same way, the TD-
reconstructed patterns are obtained by using the timer-driven 
energy values, considering the average power constant 

between two successive time intervals (e.g., 15 minutes, 30 
minutes, and 1 hour), and building the pattern having the 
resolution in time equal to the one of the reference pattern. 

The quality of reconstruction of the base pattern Pbase by 
using the ED-reconstructed patterns with data available from 
EDM measurements at given thresholds has been compared 
with the quality of the reconstruction of the base pattern 
carried out from the TD-reconstructed patterns with different 
regular time intervals. Let us denote with =t the number 
of elementary time intervals in the observation period T, with 
PR the reconstructed pattern, calculated over the m = 1,…,M 
elementary time intervals, and with �∆(�, �) the absolute error 

�∆(�, �) = |�����[(� − 1)�,��] − ��[(� − 1)�,��]| (5) 

The comparisons have been carried out by using some 
distance and error metrics. The distance metric dE based on the 
step-by-step Euclidean distance between the base pattern Pbase 
and the reconstructed pattern PR is expressed as:  

�� = �
�

�
∑ ��∆(�, �)�

��
���    (6) 

In addition, two error metrics [23] are used: 

 Mean Absolute Error (MAE):  

��� =
�

�
∑ �∆(�, �)
�
���   (7) 

 Weighted Absolute Percentage Error (WAPE, also known 
as MAD/Mean Ratio), and its characteristics have been 
discussed in [24], used instead of the classical Mean 
Absolute Percentage Error (MAPE) because the base 
pattern values could have very low or null values (in the 
latter case the MAPE could not be calculated): 

���� = 100
∑ �∆(�,�)
�
���

∑ �����[(���)�,��]
�
���

  (8) 

IV. EXAMPLES OF APPLICATION  

A. Dataset and reference pattern 

The dataset used in this application is taken from a 
residential user. The elementary time step is t=1 s. Fig. 10 
shows the average power and the corresponding average 
power variations during an observation period of about one 
day (84,000 s). The dataset has many variations in the average 
power. Relatively large fast variations also occur inside the 
processes with higher consumption1. 

 
Fig. 10. Average power data and average power variations. 

B. Application of the thresholds 

The application of different thresholds d1 and d2 generates 
different numbers of events during the observation period. The 

 
1 Reductions of the variations in the dataset could be obtained by increasing 
the elementary time step, losing details in the process representation. 

Event-based energy measurement

Meter Id

Amount of Energy E([tj-1,tj])
Energy counter/index E(tj)

Energy counter/index E(tj-1)
RoCoE E([tj-1,tj])

Amount of Time ([tj-1,tj])
Time tag (tj)

Time tag (tj-1)

Contribution to the Rate of Events RoE ([tinit,tfinal])



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2680401, IEEE
Transactions on Industrial Informatics

To appear in the IEEE Transactions on Industrial Informatics; DOI  

"Copyright (c) 2009 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the 
IEEE by sending a request to pubs-permissions@ieee.org 

7

conceptual difference among the two thresholds is that the 
application of the threshold d1 always refers to the same 
average power variations pattern, due to the stateless 
characteristics of the application of that threshold, while the 
threshold d2 is applied to a stateful energy variation pattern 
that changes depending on the history of the past variations.  

A first example sets up the threshold d1 while maintaining 
the threshold d2 high enough to become inactive. The number 
of events generated decreases when the threshold increases, as 
reported in Fig. 11, changing in a monotonic way. Further 
examples are illustrated by varying the threshold d2 while 
maintaining the threshold d1 high enough to become inactive. 
In the case of Fig. 12, the total number of events does not 
change in a monotonic way. It is due to the stateful nature of 
the application of the threshold d2, according with which the 
accumulated energy variation patterns change because the 
threshold is reached in different time instants. In other words, 
while by lowering the threshold d1 there is an additive 
contribution of new events and the previous ones remain at the 
same time tags, when the threshold d2 is reduced the time tag 
of the previously detected events does not necessarily exist.  

 
Fig. 11. Number of events depends on the average power variations threshold 
d1. 

 
Fig. 12. Number of events depends on the accumulated energy variations 
threshold d2. 
 

Fig. 13 shows how the accumulated energy variation 
patterns change for three cases with d2 = 250, 500 and 1000 
Ws. For each threshold d2, the first representation indicates the 
accumulated energy variation and the threshold d2. The second 
representation contains the evolution of the accumulated 
energy in the successive time intervals (after each event 
generated, the accumulated energy is restored to zero). The 
third representation shows the Dirac pulses corresponding to 
the events, whose amplitude is equal to the energy per interval 
(i.e., the last value of the accumulated energy resulting in the 
time interval when the event is generated).  

C. Considerations on data definition and threshold settings 

In general, with the simultaneous application of the two 
thresholds the accumulated energy variation pattern changes 
due to the combined effect of these thresholds. The threshold 
setting has to be chosen in a suitable way to identify the 

processes [19]. This has to be done after a preliminary 
analysis of the average power patterns of the specific 
application, in such a way to identify the amounts of the 
variations and their distribution in time. The details of this 
analysis will be presented in a future contribution. In 
synthesis, there are three main aspects in the assessment of the 
processes gathered by event-based energy metering: 
 The resolution in time of the dataset: conceptually the 

dataset could be available with an elementary time step as 
short as possible, leaving the possibility to the operator to 
pre-process the dataset to construct a new pattern with 
longer averaging time step in order to reduce the number 
of fast variations if needed. 

 The setting of the average power threshold, aimed at 
recognizing the main processes containing large variations. 

 The setting of the accumulated energy threshold, aimed at 
identifying deviations with respect to the expected trends. 

More specific analyses can provide indications on possible 
dynamic setting of the thresholds, i.e., thresholds that can 
change during time depending on auxiliary calculations 
carried out in near real-time on the reconstructed patterns, or 
depending on external information linked to the timings of the 
patterns (e.g., with different thresholds in time periods during 
the day and during the night for industrial processes). 

 
Fig. 13. Accumulated energy variation patterns depending on the threshold d2. 

D. Reconstruction of the average power pattern from the 
event-based energy metering outcomes 

In order to show an example of the ED-reconstructed 
pattern indicated in section III.F, Fig. 14 shows the 
reconstruction of the pattern of a time period, with thresholds 
set to d1 = 300 W and d2 = 300 Ws. The event-based approach 
maintains the crucial information on the large variations and 
changes from the expected trend, preserving at the same time 
the actual energy per time interval. Results of a quantitative 
assessment of the reconstruction, carried out through the 
calculation of the Euclidean distance (15) for a time period of 
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23 hours2, corresponding to the total number of elementary 
time intervals M = 82800, are reported in Table I. By 
considering timer-driven metering with data gathered at 15 
minutes, 30 minutes or 60 minutes, the number of data taken 
in the day is 96, 48 and 24, respectively. For the TD-
reconstructed patterns, the Euclidean distances are 245.5, 
326.3 and 366.3, respectively. More generally, Fig. 15 shows 
the Euclidean distances found with respect to the TD-
reconstructed patterns at time periods having 60 minutes as its 
multiple. The Euclidean distance falls to zero at a time 
resolution equal to the elementary time interval (1 s). For the 

sake of comparison, combinations of the thresholds d1 and d2 
leading to the same numbers of points3 have been found for 
the event-driven mode, calculating the Euclidean distance for 
the corresponding ED-reconstructed patterns.   

 
Fig. 14. Reconstruction of the average power through the RoCoE (zoom for a 
time period). The thin line represents the initial pattern at 1-second time step. 
The thick line represents the pattern reconstructed from the event-based 
energy metering outcomes. 

 
Fig. 15. Euclidean distances resulting from the pattern reconstruction by using 
timer-driven data. 

The results obtained provide a clear picture of the 
remarkable properties of the event-driven approach to provide 
better reconstructions of the base patterns with a reduced 
number of points. For example, in timer-driven mode at the 
points with time resolution of 2 minutes, with 690 points in 
the 23 hours, the Euclidean distance is 125.5 (Fig. 15). In the 
event-driven mode, a solution with similar Euclidean distance 
(equal to 122.1, from Table I) is obtained with only 48 points, 
that is, by taking only about 7% of the points. An event-driven 
solution with 690 points, indicated in Table I, would have a 
Euclidean distance of 36.7. In turn, to get a Euclidean distance 
lower than 36.7, in timer-driven mode the time resolution 
should be lower than 10 s. From Table I, with time resolution 
of 6 s (i.e., with 13800 points) the Euclidean distance would 
be 32.0. Again, the ratio 690/13800 indicates comparable 
reconstruction capability in event-driven mode by using about 
5% of the points needed in timer-driven mode. 
 

 
2 The reference pattern has data for 84,000 s, which is not a period multiple of 
one hour. The time period considered here has 82,800 s and is multiple of one 
hour, to make it possible to obtain an exact time partitioning by using timer-
driven data taken each 60 minutes. 
3 For the 15-minute case, the conservative solution with 87 points has been 
considered, as a solution with exactly 96 points has not been found. 

TABLE I 
EUCLIDEAN DISTANCES FROM TIMER DRIVEN AND EVENT DRIVEN 

RECONSTRUCTED PATTERNS 

timer-driven event-driven 
resolution #points dE d1  

[W] 
d2  

[Ws] 
#points dE 

6 s 13800 32.0 2 2 13899 0.7 
10 s 8280 43.4 6 10 8260 1.6 

2 min 690 125.5 132 198 690 36.7 
15 min 96 245.7 1500 600 87 107.1 
30 min 48 305.6 1400 1300 48 122.1 
60 min 24 356.1 1200 2000 24 259.7 

 
 
Table II shows the error metrics calculated for the same 

cases indicated in Table I. The MAE and WAPE calculated 
over the whole period are always lower for the reconstruction 
based on the event-driven results. It could seem that some 
differences between the indicators are not so high between the 
timer-driven and the event-driven results. However, it has to 
be considered that the errors are calculated by taking into 
account the absolute deviations on all the M points. For most 
of the points, the base pattern is rather low, and for these 
points the contributions to the absolute errors are relatively 
low. The true difference occurs for a limited number of points. 
This fact may be clearly seen by zooming at the absolute 
errors. The Fig. 16 example shows the absolute errors 
corresponding to the two cases with 690 points indicated in 
Table I, represented for a time period in Fig. 14. The absolute 
errors with the TBM data reach very high values (the 
maximum is 1647 W, even though the MAE is 31.9 W). 
Conversely, the absolute error in the EBM data remains 
limited (the maximum is 179 W, with a MAE of 25.9 W). This 
difference clearly indicates the substantial benefit of the EBM 
representation for what concerns the absolute error reduction.  

TABLE II 
MAE AND WAPE INDICATORS FROM TIMER DRIVEN AND EVENT 

DRIVEN RECONSTRUCTED PATTERNS 

timer-driven event-driven 
resolution MAE 

[W] 
WAPE 

(%) 
d1  

[W] 
d2  

[Ws] 
MAE 
[W] 

WAPE 
(%) 

6 s 5.70 1.62 2 2 0.38 0.11 
10 s 8.46 2.40 6 10 1.02 0.29 

2 min 31.9 9.02 132 198 25.9 7.33 
15 min 89.6 25.4 1500 600 83.4 23.6 
30 min 118.9 33.7 1400 1300 93.7 26.5 
60 min 157.2 44.5 1200 2000 145.8 41.3 

 

 
Fig. 16. Absolute error of the initial pattern reconstruction for a time period, 
from timer-driven data (dashed line) and event-based data (continuous line).  

 
From the EBM results, the WAPE growth mainly depends 

on the usage of high values of d1, with which it becomes 
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inefficient to follow the load pattern variations. Besides the 
advantages on load pattern reconstruction, the main aspect of 
the EBM approach remains the exact/true representation of the 
integral quantity (energy) associated with the consumption 
pattern between successive events. 

E. Using counts of events 

Additional information may be found by observing the 
dynamics of the metered process, indicated by the MoE 
assessed within a given time period in a moving window mode. 
An example is reported in Fig. 17, referring to the same 
thresholds used in the previous Section IV.D, using a time step 
of one minute to group the events and considering a moving 
window length of 15 minutes before the time instant of 
observation. The RoE traces the intensification of events. 
Upon RoE increase - if the RoE increase can be interpreted as 
unwanted system activity-, the operator can perform different 
actions, from sending alerts, starting specific procedures to 
recognize the process under activation in order to anticipate 
some components of the possible evolution of the system in 
the successive time instants, or just monitoring that the 
process is evolving as scheduled.  

 
Fig. 17. Map of Events showing the RoE occurred in the previous 15 minutes 
with respect to the instant of observation, with events grouped by minutes. 

V. CONCLUDING REMARKS 

In the described approach, the notion of event, associated 
with the integral quantity representing the energy measured 
from one event to another, has been used to formulate an 
effective energy metering scheme. This scheme provides 
integral quantities at discrete steps. When an event occurs, the 
integral quantities (i.e., the perdurants of duration of the time 
interval, energy and average power between events) are 
determined. These quantities represent the energy 
conservation in the process and have no intrinsic error, as 
required in an energy meter. The information on the total 
energy counter is transmitted, together with the other 
perdurants, over the communication channels, avoiding the 
need to recalculate them by the receiver.  

The “instantaneous” values of power used to determine the 
average power for each elementary time interval and the 
average power at each elementary time interval itself, are seen 
inside the meter but are not communicated outside the meter, 
to avoid sending an excessive amount of information 
containing only small variations over the communication 
channels. The remarkable advantage of the EBM approach is 
that it filters out these small variations to maintain only the 
values corresponding to the time intervals more representative 
of the evolution in time of the load pattern. On the basis of 
these values, the power pattern is reconstructed by using a 
number of data very limited (i.e., a few percent in the 

examples shown in this paper) with respect to the number of 
data that would be needed by using timer-driven data gathered 
at regular time periods providing a similar quality in the 
pattern reconstruction. After an event has been detected, the 
expected trend of the future evolution in time of the power is 
established depending on the previous average power. As far 
as no new events are detected in real-time, the actual evolution 
of the average power pattern estimates the trend within the 
limits established by the thresholds imposed. This provides a 
baseline for the future evolution of the pattern. 

The EBM approach has a number of convenient 
applications, starting from the most natural one – providing 
data for billing. Metering for billing purposes is a continuous 
process. Billing generally requires a single energy value in a 
predefined period (e.g., one month). In order to maintain 
consistency with the billing practices, the EBM scheme is 
easily aligned with the time horizon used for billing, by adding 
a dedicated “event” (occurring once a month) to provide the 
precise energy value to be used for billing. Multi-period 
billing rates may be accommodated in the same way. While 
satisfying the billing task, in real-time operation the EBM 
reports energy at non-regular time intervals, enhancing the 
knowledge on the consumers’ average power patterns as 
indicated below. If the number of events increases in a given 
time period, the RoE indicates the higher activity occurring in 
the process. User interprets the meaning of a RoE increase by 
establishing whether it is a normal feature of the process, or 
something unexpected is happening. In the latter case, key 
information, also containing the energy content of the 
evolving process, is available for diagnosis purposes. 

In the industrial perspective, the event-based energy 
metering adds value by a mix of aspects such as meaningful 
data compression capability, preservation of the energy 
referring to successive time intervals, detailed representation 
of real-life processes, flexibility of operation with variable 
thresholds for enhancing the knowledge on the characteristics 
of electrical energy usage, and analytical accounting of the 
energy being transformed by a specific real-time process.  

In the computational perspective, the event-based energy 
metering approach allows re-distribution of the computational 
effort between software agents. Industrial multi-core energy 
meters enable high-power parallel processing of information. 
Before the detection of the next event, the local CPUs remain 
available to compute control variables, conditions, and 
decentralized control actions. Examples of new business 
usages are periodic cross-check of the total energy, provision 
of additional information for customer profiling, and 
discovery of specific characteristics of real-life processes.  

In the new generation of smart meters, local processing of 
information will make energy management at the user’s site 
more efficient. Event-based energy metering is ready to be 
adopted to identify the details of the energy usage by 
processing the data available in the meter with different pairs 
of thresholds, to highlight different portions of the information 
that may describe the monitored process in a better way. 
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