
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (29thcycle)

New techniques for
functional testing of

microprocessor based systems

By

Riccardo Cantoro
******

Supervisor(s):
Prof. Ernesto Sanchez

Doctoral Examination Committee:
Dr. Maksim Jenihhin, Referee, Tallinn University of Technology
Prof. Dr. Mario Schölzel, Referee, Universität Potsdam
Prof. Paolo Bernardi, Politecnico di Torino
Prof. Alberto Bosio, LIRMM
Prof. Michele Portolan, Laboratoire TIMA

Politecnico di Torino

2017



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Riccardo Cantoro
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Doctoral School of Politecnico di Torino (ScuDo).



Acknowledgements

I would like to acknowledge all the people who made the accomplishment of this
thesis possible by guiding, supporting and encouraging me.

My thanks goes especially to Ernesto Sanchez, Paolo Bernardi and Matteo Sonza
Reorda. I feel very grateful for the privilege of working with them and I hope our
collaboration will continue.

I also acknowledge all the other people I have worked with in the Politecnico di
Torino research group. A special thanks goes to Davide Piumatti, whose works has
been fundamental to the experimental part of this thesis.

I acknowledge all the researchers I have been in contact with over these years.
Thanks to the fruitful collaboration and the time spent together in conferences and
meetings.

Finally, I would also like to thank Katia, my family and my friends for their
constant encouragement.



Abstract

Electronic devices may be affected by failures, for example due to physical defects.
These defects may be introduced during the manufacturing process, as well as
during the normal operating life of the device due to aging. How to detect all these
defects is not a trivial task, especially in complex systems such as processor cores.
Nevertheless, safety-critical applications do not tolerate failures, this is the reason
why testing such devices is needed so to guarantee a correct behavior at any time.
Moreover, testing is a key parameter for assessing the quality of a manufactured
product.

Consolidated testing techniques are based on special Design for Testability
(DfT) features added in the original design to facilitate test effectiveness. Design,
integration, and usage of the available DfT for testing purposes are fully supported
by commercial EDA tools, hence approaches based on DfT are the standard solutions
adopted by silicon vendors for testing their devices. Tests exploiting the available
DfT such as scan-chains manipulate the internal state of the system, differently to the
normal functional mode, passing through unreachable configurations. Alternative
solutions that do not violate such functional mode are defined as functional tests.

In microprocessor based systems, functional testing techniques include software-
based self-test (SBST), i.e., a piece of software (referred to as test program) which is
uploaded in the system available memory and executed, with the purpose of exciting
a specific part of the system and observing the effects of possible defects affecting it.
SBST has been widely-studies by the research community for years, but its adoption
by the industry is quite recent.

My research activities have been mainly focused on the industrial perspective of
SBST. The problem of providing an effective development flow and guidelines for
integrating SBST in the available operating systems have been tackled and results
have been provided on microprocessor based systems for the automotive domain.



v

Remarkably, new algorithms have been also introduced with respect to state-of-the-
art approaches, which can be systematically implemented to enrich SBST suites of
test programs for modern microprocessor based systems. The proposed development
flow and algorithms are being currently employed in real electronic control units for
automotive products.

Moreover, a special hardware infrastructure purposely embedded in modern
devices for interconnecting the numerous on-board instruments has been interest of
my research as well. This solution is known as reconfigurable scan networks (RSNs)
and its practical adoption is growing fast as new standards have been created. Test
and diagnosis methodologies have been proposed targeting specific RSN features,
aimed at checking whether the reconfigurability of such networks has not been
corrupted by defects and, in this case, at identifying the defective elements of the
network. The contribution of my work in this field has also been included in the first
suite of public-domain benchmark networks.



Contents

List of Figures xi

List of Tables xiv

Introduction 1

Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Software-Based Self-Test Enhancements 5

1 Background 7

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Software-Based Self-Test (SBST) . . . . . . . . . . . . . . . . . . 10

1.3 Fault Grading Process for SBST . . . . . . . . . . . . . . . . . . . 14

1.4 Observability Solutions . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Module-Level . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Processor-Level . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.3 System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.4 Memory Content . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.5 Performance Counters . . . . . . . . . . . . . . . . . . . . 20

1.5 Generation Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 ATPG-based . . . . . . . . . . . . . . . . . . . . . . . . . 22



Contents vii

1.5.2 Deterministic . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.3 Feedback-based . . . . . . . . . . . . . . . . . . . . . . . . 23

2 SBST Algorithms 26

2.1 Decode Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Instruction Set Analysis . . . . . . . . . . . . . . . . . . . 29

2.1.3 Signature Mechanisms . . . . . . . . . . . . . . . . . . . . 31

2.1.4 Proposed Test Strategies . . . . . . . . . . . . . . . . . . . 35

2.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 40

2.2 Register Forwarding and Pipeline Interlocking . . . . . . . . . . . . 41

2.2.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Proposed Test Strategies . . . . . . . . . . . . . . . . . . . 45

2.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 52

2.3 Dual-Issue Processors . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . 54

2.3.2 Scheduling Issues . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.3 Duplicated Computational Modules . . . . . . . . . . . . . 57

2.3.4 Multi-Port Register File . . . . . . . . . . . . . . . . . . . 59

2.3.5 Feed-Forward Paths . . . . . . . . . . . . . . . . . . . . . 65

2.3.6 Pipeline Interlocking . . . . . . . . . . . . . . . . . . . . . 70

2.3.7 Instruction Prefetch Buffer . . . . . . . . . . . . . . . . . . 75

2.3.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Floating Point Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . 84

2.4.2 Proposed Test Strategies . . . . . . . . . . . . . . . . . . . 85

2.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 88



viii Contents

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Development Flow for On-Line SBST 91

3.1 On-Line Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Execution Management . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.1 Test Encapsulation . . . . . . . . . . . . . . . . . . . . . . 94

3.2.2 Context Switching to Test Procedure . . . . . . . . . . . . . 95

3.2.3 Interruption Management and Robustness . . . . . . . . . . 97

3.3 Development Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.1 Resources Partitioning . . . . . . . . . . . . . . . . . . . . 101

3.3.2 Optimized Test Programs Generation Order . . . . . . . . . 102

3.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4.1 Automotive Microprocessor . . . . . . . . . . . . . . . . . 106

3.4.2 Embedded Floating-Point Unit . . . . . . . . . . . . . . . . 114

3.4.3 Cumulative Results . . . . . . . . . . . . . . . . . . . . . . 117

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Summary of Part I 120

II Test and Diagnosis of Reconfigurable Scan Networks 122

5 Background 124

5.1 Network Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 IEEE Std 1149.1-2013 . . . . . . . . . . . . . . . . . . . . 125

5.1.2 IEEE Std 1687 . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.3 Example Network . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 IEEE 1687 Benchmark Networks . . . . . . . . . . . . . . . . . . . 131



Contents ix

6 Testing 133

6.1 Terminology and Fault Model . . . . . . . . . . . . . . . . . . . . 134

6.1.1 Configurations, Vectors, and Test Time . . . . . . . . . . . 134

6.1.2 Fault Model for Reconfigurable Modules . . . . . . . . . . 137

6.2 Network Representation . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Topology Graph . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Configuration graph . . . . . . . . . . . . . . . . . . . . . 143

6.3 Proposed Test Strategies . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Optimal Approach . . . . . . . . . . . . . . . . . . . . . . 146

6.3.2 Enhanced Version . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.3 Sub-Optimal Approaches . . . . . . . . . . . . . . . . . . . 155

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.1 Experiments with Known Benchmarks . . . . . . . . . . . 159

6.4.2 Experiments with Synthesized Benchmarks . . . . . . . . . 162

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Diagnosis 166

7.1 Terminology and Fault Model . . . . . . . . . . . . . . . . . . . . 167

7.1.1 Fault Dictionary and Fault Classes . . . . . . . . . . . . . . 168

7.1.2 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Proposed Diagnostic Approach . . . . . . . . . . . . . . . . . . . . 171

7.2.1 Diagnostic Analysis . . . . . . . . . . . . . . . . . . . . . 171

7.2.2 Generation of New Patterns . . . . . . . . . . . . . . . . . 175

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8 Summary of Part II 180



x Contents

Conclusions 181

List of Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 182

Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

References 185



List of Figures

1.1 Stuck-at fault and possible test pattern for a sample combinational
circuit (a) and sequential circuit (b) . . . . . . . . . . . . . . . . . . 8

1.2 Conceptual representation of a sequential circuit including a scan chain 9

1.3 Conceptual representation of a pipelined microprocessor architecture
and example of SBST for a stuck-at 0 fault in the Arithmetic Logic
Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Fault grading process for SBST . . . . . . . . . . . . . . . . . . . . 14

1.5 Generic system under test: the observation points adopted by the
techniques described in the text are highlighted . . . . . . . . . . . 16

1.6 Taxonomy of routine development styles for SBST, taken from [60] 21

1.7 Feedback-based approach based on random code generator . . . . . 24

1.8 Feedback-based approach based on evolutionary engine . . . . . . . 24

2.1 Example of signature mechanism for ALU instructions . . . . . . . 33

2.2 Example of signature mechanism for memory instructions . . . . . 33

2.3 Example of signature mechanism for execution flow related instructions 34

2.4 Example of opcodes in the neighborhood of the add instruction . . 36

2.5 Test procedure and ISRs for breakpoint instructions . . . . . . . . . 39

2.6 Graph of the possible forwarding paths between pipeline stages . . . 43

2.7 The Register Forwarding and Pipeline Interlock unit and its interac-
tion with the processor pipeline and Register File module. . . . . . . 44



xii List of Figures

2.8 Test program fragment for testing the MUX for the EXE stage . . . 47

2.9 Vector 0 application to the MUX for the EXE stage . . . . . . . . . 49

2.10 Comparator schema and test patterns . . . . . . . . . . . . . . . . . 50

2.11 Test program fragment for testing the CMP in the EXE stage . . . . 51

2.12 Example block diagram of in-order dual issue processors . . . . . . 55

2.13 Single-issue (a) and dual-issue (b) versions of a snippet procedure to
test adder units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.14 Example of dual-issue execution of instructions that access to the
register file ports in parallel. . . . . . . . . . . . . . . . . . . . . . 59

2.15 Effect of data-dependencies on the access to the register file read
ports. Wrong implementation (a) and correct version by means of
nop instructions (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.16 Example feed-forward paths of in-order dual issue processors . . . . 66

2.17 Example of multiplexer feeding one of the operands of the execute
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.18 Propagation of a test pattern through feed-forward paths . . . . . . 68

2.19 Test sequence that applies the pattern 0 of Table 2.6 to EXA OP1 MUX 69

2.20 Example of instruction schedule on a dual-issue processor . . . . . 71

2.21 Example of instruction schedule including a multi-cycle instruction 72

2.22 Test sequence that applies the first pattern of Fig. 2.22 to two CMPs
involved in data-dependency check . . . . . . . . . . . . . . . . . . 73

2.23 Implementation of the test algorithm for the EXA OP1 CMP of an
example in-order dual-issue processor with 8 registers . . . . . . . . 74

2.24 Dual-issue prefetch buffer . . . . . . . . . . . . . . . . . . . . . . 76

2.25 Test sequence that propagates a pattern through the prefetch buffer
slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.26 Implementation of the pipeline reset in the case studies . . . . . . . 79

2.27 Example of ATPG loop-based approach applied to FPU . . . . . . . 85



List of Figures xiii

3.1 Test program encapsulation and loading for execution phase . . . . 94

3.2 Expected and unexpected exception management scenario . . . . . 98

3.3 Sub-module identification and visualization of the coverage figure
evolution along the proposed generation steps. . . . . . . . . . . . . 100

3.4 Proposed test program development order for CPUs organized in
levels and branches, and synchronization steps . . . . . . . . . . . . 104

3.5 Proposed test program development order for FPUs . . . . . . . . . 104

5.1 Concept of Reconfigurable Scan Network (RSN) . . . . . . . . . . 125

5.2 Excludable TDR segment described in IEEE Std 1149.1-2013. . . . 126

5.3 Selectable TDR segments described in IEEE Std 1149.1-2013 . . . 126

5.4 Segment Insertion Bit (SIB) described in IEEE Std 1687 . . . . . . 127

5.5 ScanMux Control Bit (SCB) described in IEEE Std 1687 . . . . . . 128

5.6 Example of IEEE Std 1687 reconfigurable scan network. . . . . . . 129

6.1 Topology graph of the example network in Fig. 5.6. . . . . . . . . . 144

6.2 Pseudo-code of the optimal approach based on the A∗ algorithm. . . 149

6.3 Topology graph of the example network in Fig. 5.6 annotated for
heuristic optimization. . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Pseudo-code of the sub-optimal approach based on the depth-first
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Pseudo-code of the sub-optimal approach based on the breadth-first
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6 Normal cumulative distribution function (CDF) of the ratio between
sub-optimal approaches (depth-first in black, breadth-first in gray)
and A∗ on the randomly generated networks. . . . . . . . . . . . . . 163

6.7 Progression in time of the maximum fitness value for the evolutionary-
based experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1 Examples of active path in a RSN and related faulty path lengths . . 174



List of Tables

1.1 SBST generation techniques comparison . . . . . . . . . . . . . . . 25

2.1 Example of instruction format and bitmask . . . . . . . . . . . . . . 30

2.2 Example list of instructions . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Operand configurations for instructions working on three registers . 38

2.4 Incremental results of the application of the proposed approach . . . 41

2.5 Experimental results on random opcodes . . . . . . . . . . . . . . . 41

2.6 Test vectors for a 8-to-1 MUX . . . . . . . . . . . . . . . . . . . . 46

2.7 Input values for the 3-to-1 MUX feeding the first operand input of
the EXE stage in a pipelined processor . . . . . . . . . . . . . . . . 47

2.8 Characteristics of the test program for the RF&PI unit . . . . . . . . 53

2.9 Implementation of the single-issue version of the basic test algorithm
for a register file with 8 registers . . . . . . . . . . . . . . . . . . . 62

2.10 Implementation of the dual-issue version of the basic test algorithm
for a register file with 8 registers . . . . . . . . . . . . . . . . . . . 64

2.11 Fault simulation results on the duplicated computational modules of
e200z448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.12 Fault simulation results on the register file of e200z448 . . . . . . . 81

2.13 Fault simulation results on the feed-forward paths, interlocking logic,
and prefetch buffer of e200z448 . . . . . . . . . . . . . . . . . . . 83

2.14 Experimental results on e200z448 and e200z425 . . . . . . . . . . 83



List of Tables xv

2.15 Proposed special operations to detect faults related to erroneous
operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.16 Experimental results on the FPU . . . . . . . . . . . . . . . . . . . 89

2.17 Duration and code size of test programs for the embedded FPU . . . 90

3.1 SBST strategies used along the generation process for the automotive
microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 Coverage evolution along the development flow for the automotive
microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3 Number of evaluated test programs, duration, and code size along
development flow for the automotive microprocessor . . . . . . . . 112

3.4 Fault simulation time comparison for approaches without and with
synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5 SBST strategies used along the generation process for the embedded
FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6 Coverage evolution along the development flow for the embedded FPU116

3.7 Number of test programs, duration, and code size for the embedded
FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8 Cumulative experimental results on industrial processors . . . . . . 118

3.9 Cumulative experimental results on academic processors . . . . . . 119

5.1 List of possible configurations for the network in Fig. 5.6. . . . . . . 130

6.1 Effect of the functional fault on the ScanMux of Fig. 5.6, which
always selects the input 1, when selecting different active paths. . . 139

6.2 Adjacency matrix of the configuration graph built on network in
Fig. 5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Characteristics of the ITC’16 benchmark networks . . . . . . . . . 159

6.4 Experimental results on the ITC’16 benchmark networks . . . . . . 161

6.5 Characteristics of the selected networks . . . . . . . . . . . . . . . 165



xvi List of Tables

6.6 Experimental results on the selected networks . . . . . . . . . . . . 165

7.1 Characteristics of the new synthesized networks . . . . . . . . . . . 177

7.2 Test and diagnostic sequences characteristics . . . . . . . . . . . . 178



Introduction

A general definition of functional testing of microprocessor based systems is hard to
give. I will try to explain the concepts separately and then put everything together.
The key concept is testing, which in this thesis is the activity that checks whether a
given entity works as expected, according to an ideal model [1]. When referring to a
manufactured electronic product, several terms are commonly used, such as device
under test (DUT) or unit under test (UUT) [2]. DUTs in this thesis are systems that
include microprocessor cores and the focus of testing is given to physical defects
possibly affecting such systems. Testing flows that are currently applied to electronic
devices are based on the application of suitable stimuli to some specific test points
of the DUT, while other test points are used to perform measurements of the DUT
responses to the applied stimuli [3]. Different definitions of the term functional
testing have been given, for example that it corresponds to checking whether the
device is able to perform the function which has been designed for. Another definition
is that, during functional test, only functional input signals of a circuit are stimulated
(we will see that special logic is commonly included in the electronic device, e.g.,
for testing purposes) and only functional output signals are observed [4]. A common
definition borrowed from software testing is that functional testing is one type of
black box testing, in which functions are tested by feeding them input and examining
the output, while internal structure is rarely considered [5]; in this context, only
functional models are provided and the evaluation of functional tests requires the
definition of new metrics [6, 7]. Finally, functional testing is often referred to as the
test applied to the DUT while this is embedded in the overall system [3].

In the field of functional testing of microprocessor based systems, several research
aspects are still open, such as concerning the generation of high-quality tests. The
quality of a test is defined by well specified metrics and identifies the effectivess
of the test in detecting defects. Hence, the more defects a test is able to detect the



2 List of Tables

higher the test quality. In this thesis, several systematic techniques will be introduced
in the first part that are able to produce high-quality functional tests for common
microprocessor based systems, while the second part will concentrate on special
logic embedded in modern (and next-generation) designs. This logic is purposely
inserted in a system to access to on-board instruments, such as sensors, debug-related
features, special hardware used for testing, and so on. Other the testing the on-board
instruments, the problem of testing the accessing logic itself is still open and is one
the major achievements of this thesis.

The first part includes Chapters 1 to 4 and is about a well-known functional
testing technique for microprocessor based systems, named software-based self-test
(SBST). SBST is a self-test methodology performed by a processor available in the
system, which executes a test program stored in an accessible memory. We will see in
Chapter 1 the basic concepts and the state-of-the art of SBST. This subject is not new
in literature, as many publications can be found proposing heterogeneous generation
techniques and targeting aspects such as quality of the test, on-line execution of
SBST during the normal system operations, or diagnostic capability of SBST.

SBST presents several advantages when compared to hardware approaches.
Being a software-based technique, its development can be done in parallel with the
manufacturing process of the hardware and eventual modification to test programs
does not affect the hardware, while a modification to the overall system where the
DUT is inserted in may affect the development of SBST. To understand the scenario,
let us consider the test of a microprocessor. The manufacturing of the microprocessor
passes through several phases, starting from the design of a microprocessor model up
to the physical manufacturing. SBST is developed based on a model (at a given level
of granularity), hence when the needed model has been consolidated, test programs
can be generated. However, the test engineer (or the tool) implementing SBST
requires the knowledge of the system in which the microprocessor is inserted in, such
as the memory map and the attached peripheral cores. Since software operations may
interact with such peripherals (or may produce different behaviors by changing the
memory map), any modification to such an environment may require changing SBST
programs, even by leaving the microprocessor untouched. We will see in Chapter 3
some of these problems, that are even more emphasized for on-line testing, where
additional constraints exist due to the coexistence of SBST and operating systems.



List of Tables 3

Clearly, there are drawbacks that are limiting the adoption of SBST as the
standard test solution for end-of-manufacturing, when compared with hardware
approaches that are fully supported by commercial EDA tools. The current average
capability of detecting defects by SBST is considerably lower and not acceptable
to guarantee the expected level of test quality. Despite this, there are specific
applications in which this coverage level is acceptable, such as for safety-critical
domain, where standard regulations demand for constant monitoring of the system
status, intended as faulty or not. These periodic tests should address the most
relevant parts on the processor core, allowing in some cases low coverage levels in
marginal processor parts. The industrial interest to SBST as a periodical self-test
methodology for safety critical applications has moved the scope from the mere
academic experience to reality. Although some of the techniques proposed in the
literature in the last decades, which were trying to leverage the manual effort required
to the test engineer, are valid and demonstrate that the automatic generation of SBST
is possible, such techniques are still not applied in industry, where the work of test
engineers is based on the personal experience and standardized commercial tools are
demanded for quality aspects.

Even though part of my research work has been focused on automatizing the
SBST generation, this part of the thesis is more oriented to the work of industrial
test engineers, rather than to EDA tool vendors. An effective development flow
based on manual processes will be described in detail in Chapter 3, which mainly
targets in-field testing and on-line application of SBST. This process is preceded by
a set of systematic algorithms presented in Chapter 2, which have been intended to
cover special sub-modules existing in modern microprocessor based systems and
have outperformed the state-of-the-art methodologies. Finally, some conclusive
discussions on the topic will be given in Chapter 4.

The second part of this thesis consists of Chapters 5 to 8 and is focused on
test and diagnosis of reconfigurable scan networks (RSNs). A RSN is a kind of
infrastructure for interconnecting the numerous instruments that are available in the
modern microprocessor based system. Such an infrastructure has the ability of being
reconfigured to interact with different sets of instruments, dynamically. More details
about RSNs will be presented in Chapter 5, which describes the basic concepts
concerning instruments and reconfigurable modules, the main functional operations
of RSNs, and the related work on this topic.



4 List of Tables

Given the recent approval of standards describing the specifications for RSNs,
their adoption in electronic designs is growing fast and tools are being developed
targeting several aspects related to their design, integration, and usage. Being the
topic relatively new, few works can be found in the literature about the test of
RSNs. A new functional testing approach will be presented in Chapter 6, based on
performing functional operations on the network to excite possible defects, which
affect the ability of the network of being dynamically reconfigured. One of the
main goals of the presented methodology is to minimize the test time and different
approaches will be presented, which are able to find both optimal solutions, highly
demanding for CPU time and memory occupation, and sub-optimal, this time using
very few resources. Diagnosis of RSNs will be discussed in Chapter 7. The proposed
diagnostic algorithm is able to apply functional operations to identify the faulty
element of the network. To the best of my knowledge, the presented work is the first
one targeting diagnosis of RSNs. Finally, Chapter 8 will give some conclusions on
this topic. Contrarily to the first part, the algorithms presented for RSNs are mainly
oriented to EDA tool vendors.

Problem Formulation

This thesis deals with the enhancement of state-of-the art SBST techniques and with
the test and diagnosis of RSNs.

Concerning SBST, the research question this thesis is trying to answer is whether
SBST can be successfully adopted for the test of real-world processor based systems.
This means providing algorithms and techniques that a test engineer can systematic
implement for the specific DUT with reasonable effort. Moreover, when dealing with
real-world processors, the problem of integrating SBST in the on-board operating
system represents a further challenge.

Concerning RSNs, at time of writing there are very few works existing in liter-
ature about testing, while contributions about diagnosis are missing. The research
question tackled by this thesis is whether RSNs can be systematically tested, once
the functional description is known and, in this case, in the minimum amount of time.
Moreover, whether it is possible to diagnose which is the faulty part of a specific
RSN, systematically and in a reasonable time.



Part I

Software-Based Self-Test
Enhancements





Chapter 1

Background

The use of microprocessor based systems in safety- and mission-critical applications,
calls for total system dependability. This requirement translates in a series of system
audit processes to be applied throughout the product lifecycle. Nowadays, some of
these processes are common in industrial design and manufacturing flows. These
include risk analysis, design verification and validation, performed since the early
phases of product development, as well as various test operations both during and at
the end of manufacturing or assembly steps. Increasingly often, test operations need
to be applied during the product’s mission life, such as periodic on-line testing and
concurrent error detection. The reliability requirements are met by trading off test
quality with admissible implementation costs of the selected solutions.

This chapter briefly introduces the topic of Software-Based Selft-Test, which is
a consolidated technique for the functional test of microprocessor based systems,
together with basic concepts needed for the understanding of this thesis.

The rest of this chapter is structured as follows. Section 1.1 presents the basic
terms and concepts. Section 1.2 gives a definition of SBST and discusses the related
work. The methodology used to evaluate of the SBST fault coverage is briefly
described in Section 1.3. Section 1.4 discusses about possible observability solutions
used to evaluate SBST. The chapter is concluded in Section 1.5 by a discussion of
the most used SBST generation techniques.

Parts of this chapter have been published in [17], concerning observability solu-
tions for SBST.



8 Background

1
2

4
3

A
B

C

D
OUT

0 Stuck-at 1

01

0

1 X

1
0(1)

0(1)

a)

1
2

3

A

OUT

Stuck-at 0

XDFF

DFF

4B

C

0,1
0,1
1,0

0,1 0,1(0)

1,0

1,1(0)

0,1
0,1(0)

D

D Q

Q

b)

Combinational
logic

Combinational
logic

D Q

D Q

D Q

D Q

D Q

OUT1

OUT2

A

B

C

scan_in scan_out
c)

(a) Combinational

1
2

4
3

A
B

C

D
OUT

0 Stuck-at 1

01

0

1 X

1
0(1)

0(1)

a)

1
2

3

A

OUT

Stuck-at 0

XDFF

DFF

4B

C

0,1
0,1
1,0

0,1 0,1(0)

1,0

1,1(0)

0,1
0,1(0)

D

D Q

Q

b)

Combinational
logic

Combinational
logic

D Q

D Q

D Q

D Q

D Q

OUT1

OUT2

A

B

C

scan_in scan_out
c)

(b) Sequential

Fig. 1.1 Stuck-at fault and possible test pattern for a sample combinational circuit (a) and
sequential circuit (b)

1.1 Basic Concepts

The purpose of Testing is to identify defective products. When electronic circuits
are considered, it consists in the application of suitable patterns to certain test points
of the actual circuit, such as the input ports, while other points, such as the output
ports, are sampled and compared to expected values, that are computed on an ideal
device. If there is a mismatch between measured and expected values, a certain
defect affecting the device has been identified [3].

Generating test patterns for assessing the correctness of the structure of a circuit
is a critical task. In order to make it feasible and to quantify the efficacy of a test, the
possible circuital defects are mathematically modeled as Faults [1]. Testing usually
refers to faults instead of defects, since the first can be enumerated. Fault coverage
is defined as the fraction of faults detected (or covered) by a set of test patterns over
all possible faults according to a fault model.

Test pattern generation for combinational circuits is quite straightforward. The
pattern has to activate (or excite) the fault at its location, which means to introduce a
logical difference between the fault-free machine and the one affected by that fault.
Then, it has to propagate the fault effect to an observable point. An example of test
pattern for a stuck-at-1 fault affecting a combinational circuit is shown in Fig. 1.1a.
In the example, the test pattern excites the stuck-at-1 fault by forcing the value of
the faulty location to be 0 and propagates the fault effect up to the OUT signal. The
problem of test pattern generation for sequential circuits is more complex, due to the
presence of memory elements (e.g., flip-flops). In this scenario, additional effort is
needed to move the fault effect towards an observable point. In the example shown in
Fig. 1.1b, the first pattern applied to the primary inputs of the sequential circuit loads



1.1 Basic Concepts 9

1
2

4
3

A
B

C

D
OUT

0 Stuck-at 1

01

0

1 X

1
0(1)

0(1)

a)

1
2

3

A

OUT

Stuck-at 0

XDFF

DFF

4B

C

0,1
0,1
1,0

0,1 0,1(0)

1,0

1,1(0)

0,1
0,1(0)

D

D Q

Q

b)

Combinational
logic

Combinational
logic

D Q

D Q

D Q

D Q

D Q

OUT1

OUT2

A

B

C

scan_in scan_out
c)

Fig. 1.2 Conceptual representation of a sequential circuit including a scan chain

the flip-flops with suitable values; then, in the next clock cycle, the fault excitation
and propagation are performed by both the second pattern and the values previously
stored in flip-flops.

Automated algorithms for test pattern generation are widely known and employed
in industry. This technique is defined as Automatic Test Pattern Generation (ATPG).
The complexity of the ATPG grows exponentially with the sequential depth of the
circuit.

To circumvent the complexity of sequential test pattern generation, which is
the case of microprocessor based systems, hardware solutions are applied to the
original design, specifically devised for testing purposes. Such solutions are tradi-
tionally known as Design-for-Testability or DfT. A de-facto standard DfT solution
implemented in all currently available industrial microprocessors is the inclusion
of one or more scan chains. A scan chain is a serial connection of the available
flip-flops in a circuit and is accessible by additional dedicated pins (see Fig. 1.2). By
serially shifting test patterns through the scan chains, the testing problem is restricted
to the complexity of the combinational logic, thus the efficiency of the ATPG is
dramatically increased. Other DfT solutions are based on Logic Built-In Self-Test or
Logic BIST, which are able to apply stimuli to the primary inputs of the device under
test and to compact the primary output values into a so-called test signature [3].

Testing solutions exploiting the available DfT such as scan-chains may present
some problems: firstly, they are poor in detecting certain faults (e.g., dynamic
faults related to timing issues) since DfT tests are performed at low frequencies;



10 Background

additionally, they manipulate the internal state of the system, differently to the normal
functional mode, passing through unreachable configurations. When the testing is
performed at the nominal frequency of the circuit, without using special hardware
not guaranteeing its functional mode of operation, then it is said to be functional.
This means, for example, that a functional test does not make use of scan-chains and
is typically used for in-field testing, when an excessive stress due to unreachable
configurations is neglected or scan chains are not accessible anymore.

1.2 Software-Based Self-Test (SBST)

The term Software-Based Self-Test (SBST) was first proposed by Chen and Dey in
[18], but the approach itself has been proposed few years before under the name
Native Mode Functional Test in [19, 20]. SBST broadly identifies all test methodolo-
gies based on forcing a microprocessor/microcontroller to execute a program and
checking the results to detect the presence of possible defects affecting the hardware.
Indeed, the pioneering idea of testing a microprocessor with a program dates back
to 1980. In [21], Thatte and Abraham devised fault models and procedures for
building test programs able to detect permanent defects in different functional units
of a simple processor. A wide adoption of their methodology was hindered by the
difficulties in automating the generation of such test programs, especially when
targeting complex processors.

The basic concept of SBST is graphically depicted in Fig. 1.3. In the figure, a
stuck-at-0 fault affecting the ALU is excited by a specifically crafted sequence of
instructions and by suitable data. When the sequence of instructions is executed,
the result of the arithmetic computation is stored in the data memory. The contents
of the memory are then compared with the expected values, hereinafter referred to
as golden references. Alternative ways to observe the fault effect are discussed in
Section 1.4.

In general, the usage of SBST requires:

1. Generating a suitable test program. This is typically a hard job, which is
still mainly performed by hand. Moreover, the complexity and effectiveness
of this task depends on the adopted metric, which in turns depends on the
available information: in some cases, both RTL and gate-level models of the



1.2 Software-Based Self-Test (SBST) 11

Microprocessor

Execute

Write back

Memory

Decode

Fetch

ALUControl

Program Memory

Data Memory

Register
file

PC

0010 0001

0011(0010)

Stuck-at 0

LD R1, var_a
LD R2, var_b
ADD R3, R1, R2
SD var_c, R3

var_a 0010
var_b 0001
var_c 0011(0010) 

Fig. 1.3 Conceptual representation of a pipelined microprocessor architecture and example
of SBST for a stuck-at 0 fault in the Arithmetic Logic Unit (ALU)

target system are available, while in others functional information is available,
only. When the gate-level netlist is available, then it is possible to compute
the fault coverage achieved by the generated test program with respect to the
most common structural fault models (e.g., stuck-at). Details about the most
common generation techniques are given in Section 1.5.

2. Creating an environment to support its execution. Once the test program is
available, it must be stored in some memory accessible by the processor. The
processor must be triggered to execute the test program at the due time. Finally,
the results produced by the processor during its execution must be observed.
More details are given in Section 1.3.

Nowadays, the complexity of processors has significantly increased; the micro-
architectural details play a fundamental role, and devices cannot be accurately
modeled using information about the Instruction Set Architecture (ISA) alone. How-
ever, SBST is getting more and more important: it commonly supplements other
kinds of tests, as functional programs may detect unmodeled defects that escape



12 Background

traditional structural tests (the so-called "collateral coverage" [22]). By definition,
the functional approach tests the system in its operational mode, without activating a
test mode and without reconfiguring the system; hence, it is guaranteed not to cause
overtesting (or overkilling). Moreover, several producers exploit functional stimuli
to validate their design or to run post- silicon verification.

In some cases, test programs are generated pseudo-randomly [23], possibly using
simulation feedback, and may even use some hardware support to make the test
phase more efficient [24].

Among the several recent works focusing on SBST, some aim at developing
algorithms to generate effective test programs for common modules starting from
the knowledge of its ISA alone (e.g., for an OpenSPARC T1 processor [25] or a
MIPS-like ISA [26]), eventually combined with RTL description (e.g., [27] for two
different implementations of the MIPS ISA).

Several works focus on the possible automation of the test program generation
procedure. Details on some of the most used generation techniques are given
in Section 1.5. The work in [28] proposes a genetic-algorithm-based evolution
framework that enables small test programs to evolve using a LEON2 processor.
High-level decision diagrams (HLDDs) are used by the authors of [29]. The work in
[30] applies bounded model checking tools on a global extended finite state machine
(EFSM) model of the processor under test. SAT-based test program generation is
also proposed by several other works [31, 32], including a personal collaborative
work [33], which is able to derive test programs from the gate-level microprocessor
description. The SAT-based framework of such work is described in details in
[34] and not included in this thesis. Other works reuses existing procedures to
automatically generate effective test programs. For example, [35] remaps generic
test program on a target processor, as experimented in a VLIW processor, while
[36] uses the execution trace collected during executing training programs on the
processor under test to create constraints for the test program generation.

The possible usage of SBST for diagnostic purposes has also been explored, e.g.,
in [37] using an 8-bit accumulator-based microprocessor, and [38] for transition-delay
faults in an i8051-compatible microcontroller. The work in [39] is able to produce
diagnostic test programs, which specifically target for faults that can be handled
with an available self-repair method. The same authors described how to integrate
such programs into a superscalar processor [40]. A personal collaborative work [41]



1.2 Software-Based Self-Test (SBST) 13

tackled the automatic generation of test programs with diagnostic capabilities and
provides results gathered on a MIPS-like processor. Also in this case, the work is
not further discussed in this thesis and details can be found in [41].

Finally, a number of works study how to apply SBST for in-field test (e.g., [42]
for a MIPS architecture processor).

In this last domain, regulations and standards mandate the adoption of effective
solutions to early detect permanent faults, and SBST has the big advantage that it
does not require access to any systematic DfT solution, whose usage details are often
considered as proprietary by the manufacturer. SBST can be used not only to test
the CPU, but also the other components in a microcontroller or SoC: for example,
several works addressed its adoption for the test of peripherals [43], memories [44]
(possibly implementing transparent test [45]), and cache memories [46, 47]. SBST
usage can also be extended to the test of multi-core systems [48]. In some cases, the
usage of existing hardware resources introduced for non-test-related purposes (e.g.,
for debug, design validation, performance assessment) allows significantly reducing
the size and duration of SBST test programs [49].

Moreover, SBST can more easily match the constraints of the environment where
the processor is employed. When adopted for in-field test, SBST typically means
activating a test program either at the system power-on, or during the application idle
times. In the latter case, additional constraints about the duration of the test exist,
due to the limited duration of the available time slots. Unfortunately, the constraints
posed by the application environment may severely impair the effectiveness of the
method when applied to test a processor. When functional test is used for end-
of-manufacturing test, processor inputs and outputs can often be fully controlled
and observed by an automatic test equipment (ATE). Nevertheless, during in-field
test some parts of the processor (e.g., the test and debug structures) might not be
accessible by the test procedure, thus resulting in untestable faults [50], i.e., faults
for which no input stimuli exists, able to detect them. In other words, some parts of
a processor which are not used anymore during the operational phase may contain
faults, which cannot be tested in this phase, but are also guaranteed not to affect the
system behavior. Besides, not all the processor inputs may be freely controllable in
the in-field scenario: for example, activating the reset signal is hardly possible, thus
preventing the test of the reset logic. More in general, possible Control/Status input
signals coming from other devices may be hard to control [20]. Finally, observability



14 Background

Golden 
Simulation

Fault 
Simulation

SBST 
program

Golden 
responses

Observability 
solution

Fault list

Fault 
coverage

Fig. 1.4 Fault grading process for SBST

during SBST in-field test could be limited, since only the produced results (e.g., in
memory) can be observed. The set of faults which cannot be tested in the in-field
environment due to these additional constraints are known as functionally untestable
faults [50]. As previously mentioned, it is important to be able to identify untestable
faults, since they limit the achievable fault coverage.

1.3 Fault Grading Process for SBST

Fault grading corresponds to the task of measuring fault coverage of a certain SBST
procedure. This process, that evaluate the effectiveness of SBST programs, passes
through two main steps: the golden simulation and the fault simulation (see Fig. 1.4).

In microprocessor based systems, all the environment concurs to the test program
execution. The environment includes the microprocessor itself, together with acces-
sible peripheral cores and memory modules. A proper testbench has to be able to
control such a system, load a compiled program in th available memory, and finally
forces the microprocessor to executes the program.

A logic (golden) simulation of the testbench uses the SBST program to collect
the golden run responses, e.g., the values of the microprocessor primary output ports,
or the memory content at the end of the test program.



1.4 Observability Solutions 15

The fault simulation uses the golden run responses and compare them with
the faulty circuit responses, according to a given observability solution (refer to
Section 1.4). The fault list used in fault simulation contains all faulty locations to be
checked in the gate-level netlist of the system.

At the end of the grading process a fault coverage report is produced. Further
analysis on the circuit can be performed to show effective test coverage not taking
into account functionally untestable faults. As an example, some scan signals may
become faulty but never affect the in-field SoC behavior, or modules used to perform
software and silicon debug will be no more used during the mission, thus may be
skipped during the grading process. Details about how to identify part of these faults
are given in [50]. In generation approaches based on formal methods, it is possible
to prove that a given fault is functionally untestable during test generation, as shown
in a collaborative work based on SAT solvers [34].

More details on a fault grading process for dependable automotive applications
are presented in [51].

1.4 Observability Solutions

In the following, the main solutions that can be adopted to observe the effects of possi-
ble faults during the SBST testing of a processor-based system are described, namely:
module-level, processor-level, system bus, memory content, and performance coun-
ters. The above solutions are referred to bare metal systems, i.e., solutions that
would require the presence of an Operating System (e.g., based on monitoring its
performance, or analyzing the event logs) are not included.

The assumption is that the targeted faults are those inside a given module within
the processor. For every solution, the adopted mechanism as well as the main
advantages and disadvantages are detailed, and a preliminary analysis about the
forecasted coverage is reported. Fig. 1.5 graphically summarizes the considered
solutions.



16 Background

M
EM

O
R

Y

PROCESSOR

B
U

SINTERNAL

MODULE

Module-Level
Observability

Processor-Level
Observability Memory

Content
Observability

System Bus
Observability

Fig. 1.5 Generic system under test: the observation points adopted by the techniques de-
scribed in the text are highlighted

1.4.1 Module-Level

When a generic module inside the processor is considered for the test, the ideal level
of observability is the boundary of such a module, i.e., it is assumed that all the
output ports are available for observation.

The test program is supposed to be able to properly stimulate the input ports
of the considered module, to excite the faults and to propagate them towards the
module output ports, which are test observation points.

This observability approach can be adopted during simulation and fault simu-
lation processes. However, when working on real chips, for a number of reasons
it is hardly feasible neither in-field nor, in most cases, at end-of-manufacturing.
These reasons are, firstly, that the module output ports usually do not coincide with
the circuit pinout, and even if they do, it is normally not affordable to continuously
observe the circuit behavior without resorting to additional hardware; secondly, when
an instrument is attached to the observation points, the observed signals can only be
read in test mode through a dedicated tester.

Therefore, this observability solution is introduced here only as a reference,
because it establishes an upper bound to the fault coverage results obtainable in
simulation through SBST test approaches.



1.4 Observability Solutions 17

1.4.2 Processor-Level

This solution assumes that fault effects can be observed at the processor level, i.e.,
that all the processor outputs can be continuously monitored. While module-level
observability is very specific and may be not feasible in practice, observability at
processor-level represents one of the scenarios that are sometimes adopted for end-
of-manufacturing test. Considering an internal module which has to be tested, the
test program must not only propagate the fault effects up to the module output ports,
but must be able to propagate them also to the processor output ports.

According to these considerations, the observability we can get with this solution
is generally lower than the one obtained at module-level. In most of the cases,
propagating the faulty behavior requires an additional effort in order to reach the
processor outputs. In the case of a functional testing approach based on test programs,
this additional effort may imply the addition in the code of specific instructions
able to propagate the fault effects to the processor outputs. As an example, faults
within an arithmetic unit can be easily activated by executing suitable arithmetic
instructions (thus propagating their effects on the module outputs), and can then be
made observable on the processor outputs via Store instructions that propagate the
result of the arithmetic operation up to the processor output ports.

Faults may also exist that, even with the addition of instructions, cannot be
observed on the processor outputs. This situation may happen when the processor
design includes some redundant circuitry, for example left from previous releases
or included for future extensions of the design. Clearly, the related faults can be
classified as untestable. However, the identification of untestable faults may often
represent a relevant problem.

Due to the need of constant monitoring of all the processor outputs, this observ-
ability solution requires the use of an ATE and thus, cannot be adopted by in-field
SBST.

1.4.3 System Bus

This solution mandates that the control, data and address signals of the system bus
are continuously monitored. When comparing this solution with the previous, all the
processor outputs not related with the system bus are excluded from observation.



18 Background

End-of-manufacturing scenarios may offer a high-level of observability, when
the constant monitoring of the output ports of the processor is possible. Such a
powerful scenario is not representative of an observation mechanism for in-field
testing. However, more and more processors (especially for embedded systems) are
equipped with specific components in charge of monitoring the interconnections
between the processor and the memory subsystem, in some cases including external
caches. Examples of such modules are MISRs attached to the bus, that update a
signature every time new data are going to be written to the memory. This solution
has been adopted by commercial microcontrollers, e.g., from Freescale [52]. In other
cases, dedicated programmable embedded cores are in charge of tracing specific bus
transactions (e.g., ARM HTM [53]) and of storing a history of processor execution
in a local memory, which is accessible through a dedicated port (e.g., for debug
purposes). An example of IP core specially devised for SoC testing is described and
demonstrated for a processor compliant with the SPARC v8 architecture in [54]. The
presence of caches significantly limits the amount of data flowing through the bus,
and hence the number of faults whose effects can be observed by observing it.

SBST programs using this observability solution should include specific se-
quences of instructions that permit the propagation of the fault effects up to the
system bus.

As an example, the faults affecting the circuitry for supporting an external
coprocessor are considered. If the external coprocessor is connected to the processor
with dedicated ports, the effects of such faults –propagated up to this interface in
the original program– need to be read back from the coprocessor and stored to the
system memory in order to become observable in the system bus. This solution
adds complexity to the test program and is not always feasible. In case of faults
whose effects can only be observed on non-functional output signals and never read
back, the fault coverage reduction cannot be recovered, thus resulting in a potentially
less-effective observation mechanism in general.

Also, if an SBST program developed for processor-level observability is evaluated
with this observability solution, a significant fault coverage reduction could be
observed. This fault coverage loss is motivated by the reduction of the observed
signals, as they are a subset of the output signals of the processor.



1.4 Observability Solutions 19

1.4.4 Memory Content

According to this solution, a fault is marked as detected if the content of the system
memory is different than the expected one at the end of the execution of the SBST
program.

All the previously presented observation mechanisms rely on the fact that some
output ports of the circuit can be constantly monitored, e.g., by a dedicated tester
which is physically connected to test points or to the interface with on-board instru-
ments. This is not the usual case of SBST in general. In a manufacturing at-speed
SBST scenario, the functional program is often uploaded in the system memory (e.g.,
a cache, or a dedicated flash) and run at-speed, storing its responses in some available
memory elements, such as internal registers, caches, or main memory, and hence
permitting a low-cost tester to access them at the end of the execution. Similarly,
during in-field SBST, at the end of the test program run the processor itself or another
module (e.g., another processor) may perform an access to the specific memory cells
in order to compare their values with the expected ones.

According to the presented scenario, this observation mechanism assumes that
the test program collects in some way the information about test results and saves this
information in the system memory. The information collected by the test program
may be compacted by the test program itself and then (at the end of the test process)
saved in few selected memory cells. Alternatively, the information saved by the
program may be written to a set of memory cells, according to the targeted module
characteristics as described in [55] for a MIPS-like processor and an industrial
System-on-Chip.

Since the test results correspond to the values generated by the test program,
which are checked only at the end of the test program execution without taking into
account when these results are produced, some performance faults may escape when
using this observability mechanism. For example, in the case of Branch Prediction
Units, some performance faults may not modify the final test program results, but
only delay the actual execution time [56], e.g., by turning a correctly predicted
branch into a mispredicted one.



20 Background

1.4.5 Performance Counters

Performance Counters (PeCs) measure the number of occurrences of different in-
ternal events, making their observation easier from the outside. They exist in many
processors, mainly for design validation, performance evaluation and to support
silicon debug. Their values can normally be accessed via software. Hence, a test
program may read the value of a given PeC, execute a sequence of instructions
exercising a given module, and then read again the value of the PeC comparing it to
the expected one. Possible differences may allow the detection of faults inside the
module.

The most common types of PeCs include those that count internal events related
to:

• caches, counting the number of miss and hit events;
• Branch Prediction Units (BPUs), counting the number of correctly or incor-

rectly predicted branches;
• pipeline stages, counting the different types of stalls;
• Memory Management Units (MMUs), counting the number of hit/miss ac-

cesses to the Translation Lookaside Buffer (TLB);
• exception units, counting the number of triggered exceptions, often divided by

type.
• bus interfaces, counting the number of performed bus transfers, also often

divided by type.

These counters are already quite common in general-purpose high performance
processors, and their adoption is growing in microcontrollers for embedded applica-
tions.

The usage of these counters as part of the observability mechanism adopted by a
testing procedure was proposed in several works, such as [56, 26] that use variants of
the MIPS architecture, or [57, 58] working with the OpenSPARC T1 processor. The
PeCs have also been proposed as feedback in automatic test programs generation [59]
and in [47]to simplify the test programs aimed at detecting faults in caches. They
are crucial for the detection of some specific types of faults, such as performance
faults. Moreover, they can facilitate the test of faults belonging to some modules,
such as Branch Prediction Units, Cache Controllers, TLBs. They may also be used



1.5 Generation Flows 21

SBST 
generation 
techniques

Functional 
methods

Randomizer
Feedback 

based

Structural 
methods

Hierarchical 
methods

Precomputed
stimuli

Constrained 
test generation

RTL methods

Deterministic Pseudorandom ATPG based

Fig. 1.6 Taxonomy of routine development styles for SBST, taken from [60]

to support the test of specific modules within the pipeline, such as those controlling
the activation of stalls.

Regarding observability issues, the PeCs may provide deeper details on internal
events affecting the module that may not reach the output ports, and allow the
detection of several performance faults. Thus, exploitation of PeCs and propagation
of performance values to system memory increases observability and may represent
a valuable solution during in-field SBST.

1.5 Generation Flows

This section presents some of the most common methodologies for the development
of SBST programs. As a reference, the nomenclature presented in [60] is used. The
main taxonomy of different development styles is also shown in Fig. 1.6. The authors
includes all possible generation techniques into two main categories:

Functional methods that exploit only functional information, such as the micro-
processor ISA. They include both methods that rely on code randomizers,
sometimes guided with suitable constraints, and methods that adopt a feedback-
based strategy, meaning they evaluate generated test programs according to
suitable metrics (often computed through simulation) and try to progressively
improve them.



22 Background

Structural methods that uses also structural information, such as gate-level are
RTL descriptions. These methods are further divided into two categories:
hierarchical approaches, that focus on a processor’s module one at a time,
generating stimuli for each module and then extending those stimuli to the
processor level; and RTL approaches, that exploits structural RTL information
along with the ISA information to generate instruction sequence templates for
justifying and propagating faults of the module under test.

Above all the methodologies listed in Fig. 1.6, in the following three representa-
tive techniques are discussed in details.

1.5.1 ATPG-based

This methodology guarantees the highest possible coverage, given the fact that test
patterns for a specific module are automatically generated by means of an ATPG
engine. Especially for combinational blocks, ATPG is able to reach 100% test
coverage, while it may be harder (in terms of computational effort) for complex
sequential circuits.

These patterns are intended to be applied to the primary input signals of the
block under test and are usually provided in text format (e.g., STIL). Further work is
needed to parse the text file and transform the signal values to a sequence of assembly
instructions. Such step is trivial for simple blocks, but can be more challenging in
other cases, where selection signals have to be properly interpreted. This requires
the knowledge of the processor’s microarchitecture.

A few coverage loss is typically observed when transforming ATPG patterns to
SBST, due to masking effects and aliasing during the signature computation.

Effort: medium-low (minutes to hours), depending the functional block complex-
ity. In the best case, it requires a single fault simulation.

1.5.2 Deterministic

It consists in the implementation of a documented algorithm or methodology. This is
a functional methodology, which does not highly depend on the internal structure of



1.5 Generation Flows 23

the module under test. Some new deterministic algorithm targeting specific modules
of modern microprocessors are presented in Chapter 2.

The expected fault coverage level is medium to high. However, the resulting
program can be highly redundant in terms of test patterns applied to the module
under test. This redundancy is mainly present to effectively adapt the program to the
whichever implementation of the module.

These kind of techniques are really useful when the netlist is missing or not hier-
archical (e.g., flattened, obfuscated). Moreover, they are suitable for such modules
that are too complex for ATPG-based methods.

Effort: low (minutes to hours). In some cases, it requires several adjustments and
fault simulations, until an appropriate level of fault coverage is reached.

1.5.3 Feedback-based

This methodology is based on an iterative generation, in which the fault-coverage of
the current test program is used as a feedback for the next program generation.

A sample scheme resorting on random code generator is graphically depicted in
Fig. 1.7. According to this scheme, a test program is incrementally generated, by
adding new instructions at each iteration. Every time new instructions are added to
the test program, a fault simulation is performed. If new faults are not detected by
the test program, then the added instruction are removed by the test program and
new ones are generated in the following loop.

An alternative scheme is based on an evolutionary engine to continuously gener-
ate test programs, as shown in Fig. 1.8. The effectiveness of this technique depends
both on the number of test programs generated and the skills of the test engineer,
which has to guide the evolutionary engine. Briefly, the test engineer has to build the
basic blocks of the test programs, where some parameters such as register contents
are unknown. The evolutionary engine starts by assigning random values to such
parameters. Later on, after the fault coverage level of the generated programs is eval-
uated, the engine is able to combine previously generated programs and to generate
new ones [61].

The fault coverage can be very high, but it requires that many programs are
generated. This technique is highly useful for distributed parts of the processor, for



24 Background

T

F

F

T

Remove added 
instructions

Generate random 
instructions

Add instructions 
to test program

Fault-simulate 
test program

New DT 
faults

Start

EndGoal FC

Fig. 1.7 Feedback-based approach based on random code generator

Instruction 
library

Netlist

Test 
program

Fault 
coverage

Generator
Fault 

simulator

Fig. 1.8 Feedback-based approach based on evolutionary engine

which is quite difficult to group the logic into a well-defined module. In this case, the
fault list is enough to guide the evolution. Even for flattened or obfuscated circuits,
it can be used to cover the corner cases as the last generation process (i.e., after
deterministic approaches).

Effort: medium-high (hours to days). Since each program is fault simulated, the
time required for a single fault simulation is a key parameter for the effectiveness
of this method. The preliminary steps of preparing the program skeletons require
additional effort, but typically this is not very high.



1.5 Generation Flows 25

Table 1.1 SBST generation techniques comparison

Technique #lines #clock cycles SA FC%

ATPG-based 110/708 3,549 98.0
Deterministic 42/533 41,326 90.1
Feedback-based 164/188 1,651 91.9

Table 1.1 provides the results in terms of number of code lines, clock cycles
required to execute the programs, and stuck-at (SA) fault coverage while using
the described techniques, targeting the shifter module included in the ALU of an
industrial processor core. The shifter counts with 4,196 gates. The column labeled
as #lines provides two values (A/B) showing the number of lines of the obtained test
program. The A and B values count the number of lines of a loop-based version of
the final program and its unrolled version, respectively.



Chapter 2

SBST Algorithms

Test programs included in a SBST test suite for microprocessors are typically devel-
oped following heterogeneous approaches. Although an automatic way to generate
them would be the dream of every test engineer, similarly to the ATPG for test
patterns, at the moment most of the work is done by manually implement systematic
test algorithm on the target processor, especially in industry. This is mainly due to
the lack of automatic SBST support by commercial EDA tools.

A negative aspect of these approaches is that the effectiveness of manually
developed test programs is highly influenced by the skills of the test engineers and
the availability of test algorithms for different parts of the processor. The more
the processors become complex, the harder it is to reach high fault-coverage levels
especially on those modules that are not directly controllable by single assembly
instructions.

This chapter purposely tackles the testing of particular sub-modules of modern
processors that are deeply embedded in the pipeline and whose faults are historically
considered hard to test.

In Section 2.1 the focus is given to the Decode Unit, which in RISC processors
is responsible for decoding each instruction fetched from the program memory and
generating the control signals needed by the other units.

Section 2.2 covers faults on hardware modules responsible for resolving data
hazards. A data hazard is the situation in which the result of a previous instruction
is needed in the pipeline before it is available. Hardware modules devoted to



2.1 Decode Unit 27

resolve such a situation implement the Register Forwarding and Pipeline Interlock
mechanisms.

Section 2.3 deals with superscalar processors that are able to issue multiple
instructions at a time. A set of rules and strategies are given for the re-design of
traditional SBST techniques to cope with multi-issue aspects. Although the presented
algorithms specifically target dual-issue processors, a test engineer can easily adapt
them to complex in-order multi-issue processors.

Finally, a classical computational module such as the Floating-Point Unit (FPU)
is analyzed in Section 2.4. Although the FPU differ from the previous modules in
terms of controllability by means of specific assembly instructions, its test is not a
trivial task. Specific strategies are shown that are able to cover possible test escapes
of state-of-the-art techniques.

Parts of this chapter have been also published in [9] (about Register Forwarding
and Pipeline Interlocking), [8] (about Decode Unit), and [11] (about FPU).

The presented algorithms are examples of free test program generation, which
does not take into account online testing contraints, such as test duration and memory
occupation of the test suite. Details about those aspects are analyzed in Chapter 3.

Experimental results based on fault-simulation are given in each section for each
of the presented algorithms. Results refer to both academic and industrial processors
manufactured by STMicroelectronics.

2.1 Decode Unit

In this section, a functional methodology to test common decode units by means of
SBST is presented. The method uses the instruction set architecture (ISA) of the
target processor and its pipeline functional behavior as described in the user manual,
only. The physical implementation of the processor is only used for evaluating the
fault coverage of the proposed methodology on the actual processor netlist.

Details about the proposed methods are given in the following subsections.
A brief architectural overview is given in Section 2.1.1. The overall approach
starts analyzing the instruction set and dividing the list of assembly instructions
into homogeneous groups, as presented in Section 2.1.2. Depending on the class of



28 SBST Algorithms

instructions, Section 2.1.3 shows different implementations of signature mechanisms,
i.e., the way to observe the effect of faults affecting the decode unit after the target
instruction has been decoded. Such signature mechanisms have to be included in the
synthesized SBST procedures, which are specific of each group of instructions, as
detailed in Section 2.1.4. Finally, experimental results are presented in Section 2.1.5.

2.1.1 Architectural Overview

In a typical pipelined RISC processor, the instruction Fetch Unit fetches instructions
from memory and provide them to the Decode Unit. Usually, instruction buffers
are placed in between these two units for performance purposes. The decode unit
interprets bits in the operational code (opcode) of each instruction and generates the
control signals for further units in the processor pipeline. In details, the decoding
logic performs the following functions:

• opcode decoding to determine the instruction class and resource requirements
for each instruction being decoded;

• source and destination register dependency checking;
• execution unit assignment;
• determine and decode instruction serialization, and inhibit subsequent instruc-

tion decoding.

In case of multi-issue processors (i.e., in which a pipeline stage is able to process
multiple instructions at the time), additional dependency checking among different
issues is performed [62, 63]. In processors such as ARM Cortex A-Series instruction
decode unit also performs register renaming to facilitate out-of-order execution by
removing Write-After-Write (WAW) and Write-After-Read (WAR) hazards.

From the architectural point of view, the decode unit is composed of combina-
tional logic. It implements a table which is addressed by the instruction opcode
together with some configuration and status bits of the processor. Numerous signals
are provided by this module to the later pipeline stages.



2.1 Decode Unit 29

2.1.2 Instruction Set Analysis

This step aims to create groups of similar assembly instructions according to the
analysis of the processor user manuals. The needed information related to the decode
stage that has to be extracted is the following:

• the list of all assembly instructions, their instruction format and operands (e.g.,
affected registers);

• the mechanisms to enable/disable different features of the processor (e.g.,
caches, FPU, high-privileges instructions);

• the mechanisms to switch between multiple ISAs (e.g., between Power ISA
and VLE for Power Architecture) or to enable extensions (e.g., Thumb for
ARM).

The collected data are used to group together instructions according to their
functional category, instruction opcode format, and sensibility to control and status
bits.

Functional Category

Each assembly instruction is included into a group corresponding to a specific
functional category, such as:

ALU: Instructions of this kind make computations over registers and eventually
modify specific status bits of the processor; examples are multiply, shift, and
bitwise operations.

Memory: This category includes Load and Store instructions.
Execution flow: All such instructions that modify the sequential execution flow,

such as branches, calls to subroutines, and interrupts-related operations (e.g.,
system call).

Processor control: Instructions that act on special-purpose registers.

By having instructions grouped in this way, an appropriate signature mechanism
can be associated to each of the groups.



30 SBST Algorithms

Table 2.1 Example of instruction format and bitmask

Opcode
bits

Operand
rD

Operand
rA

Operand
rB

Opcode
bits

0 5 6 10 11 15 16 20 21 31
Instruction 011111 00011 00001 00010 01000010100
Bitmask 111111 00000 00000 00000 11111111111

Table 2.2 Example list of instructions

Instruction Opcode Bitmask Operands

add 7C000214 FC0007FF rD, rA, rB
and 7C000038 FC0007FF rD, rA, rB

a n d i 70000000 FC000000 rD, rA, SIMM

Instruction Format

The format of each assembly instruction is reported in the processor ISA. The
instruction format determines which of the instruction bits are the operands and
which are the fixed values that determine the specific instruction opcode.

A bitmask can be used to discriminate between operand and fixed opcode bits, as
in the example shown in Table 2.1. The example represents a bitmask for a set of
instructions operating on three registers: rA and rB are the source registers, while rD
is the destination register. The bitmask contains the value 1 in the bits 0-5 and 21-31
to indicate the part reserved for the opcode, and the value 0 in the bits 6-20, that are
associated to operands.

By following the same criteria, a bitmask and a list of operands can be associated
to each assembly instuction. Instructions that have the same bitmap and operands
are then placed in the same group. In the example of Table 2.2, the add and and
instructions (extracted from [64]) have the same bitmask and operands and are placed
in the same group, while andi has a different format.

In case of processor supporting multiple ISAs, the grouping is repeated for all of
them. For each group of instructions created in this way, a test procedure is devised,
as shown in the next subsections.



2.1 Decode Unit 31

Control and Status Bits

Some assembly instructions are sensible to control and status bits of the processors
(i.e., bits that are part of certain special purpose registers, such as the Program Status
Word). The processor datasheets provide information about each of these bits. In
particular, typical control bits affecting the decode stage are related to:

• privilege level: part of the instruction set could be disabled when the processor
is running with low privileges (e.g., instructions handling special purpose
registers);

• processor features: they permit to disable certain classes of assembly instruc-
tions associated to specific functional units (e.g., floating-point operations).

For each of these control bits, one group is created, which includes all the
instructions that are sensible to the value of that bit. The effect of such a bit is that
instructions in the group behave differently according to its value. For example, they
are normally executed in one case, while raise an exception in the other (or they
behave as a no-operation instruction).

Instruction may affect the status bits of the processor, as the effect of a special
computational result (e.g., an overflow). Status bits are typically modified in the
following pipeline stages (e.g., during the execution stage, for the overflow bit) and
reported in the processor ISA. Although a group for each of these bits may be created,
it is typically unnecessary. It is up to the signature mechanism associated to each
functional category to observe the values of status bits.

2.1.3 Signature Mechanisms

Instructions that are processed by a faulty decode unit are likely to be corrupted. The
effect of executing legal instructions (i.e., assembly instructions that are compliant
with the processor ISA) is a potential corruption of a data element or the execution
flow. The specific faulty behavior highly depends on the functional category of the
decoded instruction. Consequently, the mechanism that collects the fault effect into a
result value has to be implemented differently depending on the functional category.
This mechanism is also referred to as signature. In the following paragraphs, details
about different signature mechanisms are given.



32 SBST Algorithms

Finally, the case in which a legal instruction is decoded as unimplemented or
illegal opcode has to be handled. This can be done by including an interrupt service
routine (ISR) that modifies the signature value every time such a situation happens.

ALU

The arithmetical and logical instructions make use of the pipeline ALU. Operations
of this category involves processor registers (and immediate values). The signature
mechanism for ALU instructions consists in the following steps:

1. the register file carefully is loaded with appropriate values;
2. the ALU instruction is executed;
3. the signature value is computed over the destination registers (including status

bits such as overflow an comparison flags).

An effective approach consists in identifying registers whose encoding is adjacent
to the destination register with respect to the Hamming distance. Such neighbor
registers have to be loaded with a values that differ from the expected result of
the computation. Moreover, they have to concur in the update of signature value.
Similarly, also the neighborhood of source registers has to be loaded with values that
differ from the related source register.

An example of the proposed mechanism is shown in Fig. 2.1. In particular,
Fig. 2.1a reports the test procedure that includes a signature mechanism for an
adding operation. The neighborhoods of the source and destination registers of the
adding operation are listed in Fig. 2.1b.

Memory

Instructions belonging to the memory category make use of memory addresses (or
offsets) as operands, typically stored into base and index registers, or as immediate
values. A fault affecting the decode unit and corrupting the target address of a certain
memory instruction can be observed by means of a successive memory access. A
signature mechanism is implemented by coupling together two memory instructions,
which respectively excite and observe the effect of a possible fault. For example, a
Store operation into a certain memory location is followed by a Load operation from
the same location. In order to avoid a possible corruption of the instruction operands



2.1 Decode Unit 33

begin
foreach reg ∈ Neighborhood(r4) do

reg← K ̸= 3;
end
foreach reg ∈ Neighborhood(r21) do

reg← K ̸= (3+2);
end
r4← 3;
r21← r4+2;
signature← update with r21;
foreach reg ∈ Neighborhood(r21) do

signature← update with reg;
end

end
(a) Test procedure

Src: r4 (encoding 00100)

r5 (encoding 00101)
r6 (encoding 00110)
r0 (encoding 00000)

r12 (encoding 01100)
r20 (encoding 10100)

Dst: r21 (encoding 10101)

r20 (encoding 10100)
r23 (encoding 10111)
r17 (encoding 10001)
r30 (encoding 11101)
r5 (encoding 00101)

(b) Neighborhood wrt Hamming

Fig. 2.1 Example of signature mechanism for ALU instructions

begin
r7← test value;
Store r7 with base 40000000h and offset 1234h;
Load r8 with base 40001234h and offset 0h;
signature← update with r8;

end

Fig. 2.2 Example of signature mechanism for memory instructions

at the same way, the memory location is expressed differently in the two operations,
as analyzed in [55]. An example of the proposed mechanism is shown in Fig. 2.2.

Additionally, faulty memory accesses can create unexpected exceptions that
have to be handles. In order to protect the memory outside the testing area, special
capabilities offered by the system have to be exploited whenever possible. For
example:

• by configuring the memory protection unit (MPU) before executing memory
instructions;

• by implementing an ISR that modify the signature value in case of memory
violations.



34 SBST Algorithms

begin
r5← 123;
if r5 ̸= 123 then

r5← 0;
end
signature← update with r5;

end

Fig. 2.3 Example of signature mechanism for execution flow related instructions

Execution Flow

The operands of instructions belonging to the execution flow category are memory
offsets, table indexes, and condition registers (used by conditional branch instruc-
tions). This category requires special attention, since faults affecting the decode
unit may result in a corrupted control flow of the program. In order to guarantee a
controlled execution flow, the following guidelines to detect has to be followed:

• for each conditional branch instruction, the unexpected case (e.g., according
to a test result, the branch should be taken, but it is not) has to be handled
by means of instructions able to restore the execution flow and to modify the
signature value;

• unexpected memory violations due to possible faults that corrupt the branch
target addresses has to be handled by implementing an ISR (and eventually by
configuring the MPU);

• on-board timers (e.g., watchdogs) has to be configured whenever possible in
order to recover from possible endless loops.

A simple example of signature mechanism for conditional branch instructions is
presented in Fig. 2.3.

Processor Control

Instructions belonging to the processor control category are used to move data
between the special purposes registers (SPR). Operands of such instructions are
typically register codes. A fault affecting the decode unit and corrupting the register
code can be observed with the same mechanism implemented for the memory



2.1 Decode Unit 35

category. In order to excite and observe the effect of a possible fault, two processor
control related instructions are coupled together. In this case, an instruction that
modifies a special purpose register is followed by a read operation from the same
register. However, the values transferred between the special purpose registers have
to be carefully evaluated to avoid corruptions of the system integrity.

An effective signature mechanism consists in the implementation of a set of ISRs
that handle wrong SPR manipulations. In details, a corruption of the register code
results in a manipulation of an unexpected SPR, e.g., an SPR encoded near with
respect to the Hamming distance. ISRs have to modify the signature value whenever
such a situation happens.

2.1.4 Proposed Test Strategies

In the following paragraphs, the signature mechanisms are integrated in the overall
test procedure. Different strategies are presented, each one focusing on a specific
functionality of the decode unit, such as determining the instruction opcode, the
operands, and the interaction with control and status bits.

Opcodes

One of the features performed by the decode unit is the identification of the kind of
instruction that is going to be issued. The proposed test strategy handles all single
bit corruptions of the instruction opcode. The principle is that a faulty decode unit,
after processing a legal opcode, will result into one of the following alternatives:

1. the expected behavior;
2. the behavior of a different legal opcode;
3. an exception due to illegal opcode.

If the first case occurs, it means that the specific opcode is not able to excite a
certain fault, while in the other two cases, the fault is excited and has to be properly
handled. In order to be effective, the test procedure has to include a sufficient number
of opcodes and to excite all possible faults. Moreover,the test procedure has to
implement a proper signature mechanism and to observe the effect of all excited
faults.



36 SBST Algorithms

Test opcode: 7C000214 − add r0 , r0 , r0
Bitmask: FC0007FF

Neighbor legal: 7C000215 − add . r0 , r0 , r0
7C000210 − doz r0 , r0 , r0
7C000014 − addc r0 , r0 , r0
7C000614 − addo r0 , r0 , r0
78000214 − r l d c r r0 , r0 , r0 , 8
74000214 − a n d i s . r0 , r0 , 0 x214
6C000214 − x o r i s r0 , r0 , 0 x214
5C000214 − rlwnm r0 , r0 , r0 , 8 , 1 0
3C000214 − l i s r0 , 0 x214

Neighbor illegal: 7C000216 , 7C00021C , 7C000204 ,
7C000234 , 7C000254 , 7C000294 ,
7C000314 , FC000214

Fig. 2.4 Example of opcodes in the neighborhood of the add instruction

The proposed strategy is composed of two phases. The first phase executes all
kind of instructions of the processor ISA. The second phase makes use of carefully
selected illegal opcodes. In order to execute all the available instructions, the
processor flags have to be set appropriately (e.g., the FPU has to be enabled).

During the first phase, the fixed bits of a legal opcode are manipulated and
all neighbor opcodes are identified, i.e., those having Hamming distance equal
to 1. According to the functional category of each of the neighbor opcodes, the
test procedure has to implement a signature mechanism that handles the case in
which the target opcode has been decoded as the corresponding neighbor. If illegal
opcodes are part of the neighborhood, they have to be handled by an ISR. Fig. 2.4
reports the neighborhood of the add instruction from [64]. The bitmask indicates
the fixed bits of the opcode. In the example, the signature value has to be updated
after the execution of the target instruction also with the content of status bits, that
are potentially modified by neighbor instructions (e.g., addc sets the carry flag).
Moreover, the register r0 has to be loaded carefully (e.g., in order for a neighbor
instruction to set the overflow flag).

The second phase of the proposed strategy makes use the illegal opcodes gathered
during the first phase. Each of these opcodes is inserted in the test procedure. In the
fault-free scenario, the processor raises an exception each time an illegal instruction
is executed. However, in presence of a fault, the opcode may be decoded as a legal



2.1 Decode Unit 37

instruction. In this case, the test procedure has to implement a mechanism able to
modify the signature value when such a situation happens.

Please note that illegal instructions may reach the decode unit also during the
normal system operations. A typical case is the presence of software bugs. For this
reason, functional strategies targeting both legal and illegal instructions are equally
necessary.

Operands

The decode unit selects the operands for next pipeline stages and eventually checks
dependencies between source and destination registers. Each operand specified in
the instruction bits represents one of the following:

• a general/special purpose register code
• the index of a bit/field in a control/status register
• an immediate value
• a memory address/offset.

The proposed test strategy handles all single bit corruptions of the operands. For
each group of instruction formats (see Section 2.1.2), the test procedure selects an
instruction and instantiates it multiple times, each time with different operands. The
values used as operands are the following:

1. complementary patterns (e.g., all 0s and all 1s);
2. minimum, maximum, middle values (e.g., the first, the last, and an intermediate

register encoding value);
3. marching bit (e.g., 100..., 010..., 001...);
4. random values.

The first test guarantees that both 0 and 1 values are assigned to each bit of
the operands. The second test is more functional based and should cover possible
corner cases. These two tests are suitable for operands such as immediate values and
memory offsets.

The third test is more suitable for instructions that perform operations among
registers and is intended to cover possible faults affecting the comparators that
implement dependency checking between source and destination registers (if coupled
with the complementary patterns). In details, the test consists in propagating the



38 SBST Algorithms

Table 2.3 Operand configurations for instructions working on three registers

Configuration Operand rD Operand rA Operand rB

1 00000 00000 00000
2 11111 11111 11111

3 10000 00000 00000
4 01000 00000 00000
5 00100 00000 00000
6 00010 00000 00000
7 00001 00000 00000
8 00000 10000 00000
9 00000 01000 00000

10 00000 00100 00000
11 00000 00010 00000
12 00000 00001 00000
13 00000 00000 10000
14 00000 00000 01000
15 00000 00000 00100
16 00000 00000 00010
17 00000 00000 00001

bit 1 in the variable bits (i.e., the operand bits) of the instruction. An example of
configurations for instructions working on three registers is listed in Table 2.3.

The last test uses random values as operands. It is suggested to include a certain
amount of instructions with random values in the test procedure to increase the
overall fault coverage. A reasonable number is the same amount of instructions used
in the third test.

Finally, please note that the just presented test strategies targeting the operands
can be combined with the test on the opcodes presented in the previous paragraph.
For each group of instruction formats, every one of the opcodes in the group can be
bound to a different configuration on the operands.

Control and Status Bits

The decode unit is influenced by the values of configuration bits that enable/disable
certain processor capabilities. The proposed test strategy handles all single bit
corruptions of such bits. For each group of instructions that are sensible to control



2.1 Decode Unit 39

begin test procedure
r5← 0;
r6← 0;
enable debug features;
breakpoint;
disable debug features;
breakpoint;
signature← update with r5;
signature← update with r6;

end

begin ISR debug
r5← r5+1;
return;

end

begin ISR illegal
r5← r6+1;
return;

end

Fig. 2.5 Test procedure and ISRs for breakpoint instructions

bits (see Section 2.1.2), the test procedure selects an instruction and executes it when
the related configuration bit is set to the two values. Before executing the instruction,
the related configuration bit is programmed. In one case, an exception is raised when
the instruction is decoded. This case has to be handled by an ISR. In the other case,
the test procedure has to implement a suitable signature mechanism, depending of
the functional category of the instruction.

As an example, let us consider a debug related instruction, such as a breakpoint.
The ISR that handles the breakpoint has to update the signature value and restore the
program execution flow. If the breakpoint instruction is executed after disabling the
debug features, it will results in a different behavior (typically, it raises a different
kind of interrupt, or it is ignored). In a faulty condition, it may raise a debug interrupt
as well, thus corrupting the signature value due to the unexpected execution of the
ISR. The opposite situation may happen in the other case, when the debug features
have been enabled. A simple signature mechanism for these scenarios is presented
in Fig. 2.5.

Please note that each one of the legal instructions are executed by the test
procedure of the opcodes, so it is enough to execute the selected instructions one
more time with the opposite control bit values.



40 SBST Algorithms

2.1.5 Experimental Results

The proposed test methodology has been applied to a SoC including a 32-bit pipelined
microprocessor based on the Power Architecture™. The SoC is employed in safety-
critical automotive embedded systems, such as airbag, ABS, and EPS controllers and
is currently being manufactured by STMicroelectronics. The decode unit module is
composed of 2,440 gates and counts 11,454 stuck-at faults. Overall, the decode unit
occupy the 1.55% of the entire processor area.

In the experiments, an existing test program TP Instruction Coverage, written for
verification purposes, has been first fault-simulated. Starting from such a program,
the progression in the coverage achieved by implementing the proposed methods is
shown. Note that the actual fault coverage reached by applying the proposed method
is the last one presented. In order to show the test programs contribution on the final
test set, the fault simulation results are reported step by step.

The Instruction Coverage TP set was built by simply including all instructions
in the ISA with no additional requirements on opcodes, operands, flags, and illegal
instructions. Such an approach is widely used in the industry for both verification
and test. The program reaches a quite low coverage level (62.71%).

The first enhancement applied to the initial test program was the test of the
opcodes, by following the method presented in the fist part of Section 2.1.4. In
the specific case study, it leaded to the generation of 30 groups of instructions (and
related masks), whose size ranges from 1 to 125 instructions (12 in the average). As
described in the proposed approach, illegal opcodes were also included. The fault
coverage reached the 80% with this enhancement.

Next, the proposed strategy considers the generation of programs for operand
improved coverage. This method is explained in the second part of Section 2.1.4.
The fault coverage was improved to about 90%.

Finally, as presented in the last part of Section 2.1.4, the control and status bits
have been handled. As a result, the final fault coverage was 91.08%. Table 2.4
reports the incremental fault simulation results obtained by applying the proposed
strategy.



2.2 Register Forwarding and Pipeline Interlocking 41

Table 2.4 Incremental results of the application of the proposed approach

Size [kB] Duration [cc] SA FC%

Instruction Coverage TP (initial) ~14 12,456 62.71
+ Opcodes ~19 21,688 80.63
+ Opcodes + Operands ~23 23,230 90.14
+ Opcodes + Operands + C/S Bits ~24 23,652 91.08

Table 2.5 Experimental results on random opcodes

Size [kB] Duration [cc] SA FC%

1k random opcodes ~10 ~11k 49.19
10k random opcodes ~100 ~142k 52.33
100k random opcodes ~1,000 ~1.5M 53.50

For the sake of completeness, a random generation process was implemented,
where random opcodes (legal and illegal) were produced and used as the test program
code. Table 2.5 shows the related results.

Remarkably, only about 8% of SA faults on the module escape when the proposed
flow is implemented. Please note that the proposed flow is not based on the netlist
description of the processor, but just on the knowledge of the ISA and user manuals.
Indeed, the coverage level reached is a particularly useful measure telling that around
91% of faults of the decode unit can be systematically detected without any design
knowledge.

2.2 Register Forwarding and Pipeline Interlocking

A Data Hazard is defined as a situation where a processor pipeline produces a wrong
output due to data dependency relations between instructions [62]. This may happen
when the input of one instruction coincides with the output of a previous instruction,
and this output has not yet been written into the proper register when the instruc-
tion execution phase takes place (i.e., the two instructions have data dependence).
Experiments performed on a MIPS-like pipelined processor with programs from
the SPEC92 benchmarks show that almost 50% of the executed instructions have
some kind of data dependence [65]. A common strategy to deal with data hazards
reducing executing time penalties is to handle them by hardware, relying on two



42 SBST Algorithms

basic mechanisms: Register Forwarding (or data bypass) and Pipeline Interlock
(RF&PI); usually, for optimizing the processor performance, both mechanisms are
implemented.

A fault present in the hardware structures implementing the Register Forwarding
and Pipeline Interlock mechanisms may result in their malfunctioning and therefore
in the processor producing a wrong output; alternatively, the fault may cause an
unneeded pipeline stall and consequently a performance penalty. Hence, some of the
faults affecting the RF&PI logic fall in the class of performance faults [66].

In the next sections, a SBST strategy to test the hardware mechanisms that
handle data hazards is presented. In Section 2.2.1, these mechanisms are first
analyzed, describing common principles present in different implementations. An
algorithm to develop a suitable test program is then provided in Section 2.2.2. Finally,
experimental results are presented in Section 2.2.3.

2.2.1 Architectural Overview

Register Forwarding (or data bypass) and Pipeline Interlock are functions managed
by some combinational logic units included in a pipelined microprocessor to avoid
data hazards.

The methods employed to avoid data hazards mainly consist in checking if there
is a data dependency between two instructions simultaneously present in different
pipeline stages, and take suitable counteractions accordingly. Typically, when an
instruction enters the pipeline, the system checks if its input operands correspond to
the same register which any other instruction already present in the pipeline is using
as output. If this is true, there is a data dependency between the two instructions and
some actions have to be taken. For clarity purposes, let us call the first instruction to
enter the pipeline instruction 1 and the instruction arriving later, which has a data
dependency with the first one, instruction 2. In this case Register Forwarding must
be activated: the input data for instruction 2, instead of coming from the register file,
is directly taken from the stage where instruction 1 produces it. In case instruction 1
is not yet in that stage, Pipeline Interlock is used. Pipeline Interlock implies the
pipeline is stalled until instruction 1 reaches the stage in which the data is produced.
At that moment, Register Forwarding is used to send the result of instruction 1 to the
stage where instruction 2 needs its operands.



2.2 Register Forwarding and Pipeline Interlocking 43

Fetch Decode Execute Mem 
Write 
Back 

Fig. 2.6 Graph of the possible forwarding paths between pipeline stages

According to this working mechanism there are different possible forwarding
paths (shown in Fig. 2.6 for a MIPS-like processor) and their activation depends not
only on the existence of some data dependency between two instructions but also on
the stage in which the instructions produce/require the data.

Interestingly, forwarding paths may vary according to the processor architecture.
For example, if the branch instructions are completely resolved during the decode
stage, the processor core may include forwarding paths able to feed the decode stage,
as represented by the dashed line in Fig. 2.6, and shown as input of de decode stage
in Fig. 2.7.

To implement the described working mechanism, the different stages of the
pipeline and the Register File module interact with the RF&PI unit within the Data
Hazards handling module, as shown in Fig. 2.7 using the MIPS architecture as an
example.

Due to the required behavior of the unit and to its architecture, usually located
within the pipeline control logic, specific sequences of instructions only are able to
trigger its action. Obtaining the full activation of the module, required for its test, is
a relatively difficult task; also, due to the intensive interaction of the unit with the
register file, proper register initialization is needed to build an effective test program.

The architecture of the data hazards handling mechanisms can be divided in the
three structural sub-blocks: multiplexers, comparators, and bonding logic. Their
purposes are detailed in the next paragraphs.

Multiplexers

A multiplexer (or MUX) is a combinational block able to select one input out of
multiple ones and connect it to the output signals.



44 SBST Algorithms

Decode 
Write 

Back 

stop 

Register 

File 

Fetch Execute 

Pipeline  

Interlock 

Register  
Forwarding 

RF&PI unit 

MEM 

Fig. 2.7 The Register Forwarding and Pipeline Interlock unit and its interaction with the
processor pipeline and Register File module.

The Register Forwarding logic uses a number of multiplexers to send the appro-
priate data to each stage. As many MUXs are used as possible destinations exist (e.g.,
one for operand 1 of the execute stage and a second one for operand 2 of the execute
stage, etc.), each one with a number of inputs equal to the number of possible data
origins (register file, write back stage, execute stage, etc.).

Comparators

Comparators (CMPs) are mainly used for two purposes: first, to detect if there is a
data dependency present in the pipeline, i.e., if two instructions present concurrently
in different pipeline stages use the same registers as input and output, respectively;
in this case the CMPs compare register identifiers (each register owns a specific
identifier which is usually encoded in the instruction operating code). The other use
is within the pipeline interlock mechanism to detect potentially unresolved hazards:
when an instruction has a data dependency, they check if that dependency is resolved
in a later stage than the one when the data is needed and accordingly halt the pipeline
when necessary.



2.2 Register Forwarding and Pipeline Interlocking 45

Bonding logic

It integrates the logic controlling all the data hazard avoidance mechanisms, de-
termining at any given moment the activation of register forwarding and pipeline
interlock based on the processor status.

2.2.2 Proposed Test Strategies

In this section, a SBST strategy for the main structures of RF&PI unit is presented.
The overall test is developed bearing in mind that the RF&PI unit is mainly composed
of MUXes and CMPs. A proper test algorithms for these types of modules have been
considered in [67] and [68], respectively.

The sequence of values mandated by the above mentioned algorithms is applied
to each MUX ore CMP embedded within the architecture of the addressed unit.
The produced results is made observable in a functional manner. The testing of
the bonding logic is done as a consequence of applying the testing strategies of the
multiplexers and comparators. The proposed strategies address stuck-at faults, only.

Test of the Multiplexers

In [67] the authors consider a number of different implementations for a MUX, and
prove that they can all be tested by the same set of input vectors. In particular, they
prove that when considering a generic n-to-1 multiplexer a set composed of 2n test
patterns can achieve full stuck-at fault coverage.

The set of necessary test vectors for an 8-to-1 MUX with 1 bit parallelism (i.e., 8
inputs and 1 output, each one composed of 1 bit) is reported in Table I. Si denotes a
selection signal, Di an input data signal, while Z is the output.

When moving to MUXs having a parallelism greater than 1, the same set of
vectors can be used, substituting the 1/0 value with as many 1/0 bits as the parallelism
is.

The proposed test algorithm applies the input vectors into a sequence of instruc-
tions to be executed by the processor able to

• apply the same set of values to the generic MUX within the RF&PI unit;
• make the MUX output observable.



46 SBST Algorithms

Table 2.6 Test vectors for a 8-to-1 MUX

Vector S2 S1 S0 D0 D1 D2 D3 D4 D5 D6 D7 Z

0 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 1 0 1 0 0 0 0 0 0 1
2 0 1 1 1 1 1 0 1 1 1 1 0
3 0 1 0 0 0 1 0 0 0 0 0 1
4 1 1 0 1 1 1 1 1 1 0 1 0
5 1 1 1 0 0 0 0 0 0 0 1 1
6 1 0 1 1 1 1 1 1 0 1 1 0
7 1 0 0 0 0 0 0 1 0 0 0 1
8 1 0 0 1 1 1 1 0 1 1 1 0
9 1 0 1 0 0 0 0 0 1 0 0 1

10 1 1 1 1 1 1 1 1 1 1 0 0
11 1 1 0 0 0 0 0 0 0 1 0 1
12 0 1 0 1 1 0 1 1 1 1 1 0
13 0 1 1 0 0 0 1 0 0 0 0 1
14 0 0 1 1 0 1 1 1 1 1 1 0
15 0 0 0 1 0 0 0 0 0 0 0 1

A specific MUX channel is activated when a data dependence between two
instructions is detected, and the result produced by the first (i.e., stored in a given
pipeline register) must be forwarded to the second (i.e., to the input of a given stage).
Hence, the considered MUX inputs are the data registers existing within the pipeline
registers. This means that for every MUX in the RF&PI unit (i.e., for each possible
data dependence configuration) a program fragment can be created, including a
couple of data dependent instructions that trigger the Register Forwarding. Ideally,
the fragment should be replicated as many times as the number of test vectors required
to test the MUX. For each replica the values of the pipeline registers corresponding
to the inputs of the MUX should hold the all 0s or all 1s value, according to what
mandated by Table 2.6. Finally, the fragment should include an instruction to make
the output of the MUX observable.

As an example, an 8-bit wide 3-to-1 MUX for feeding the first operand of the
execution stage in a pipelined processor is considered. Assuming that the processor
stages are fetch (IF), decode (ID), execute (EXE), memory (MEM), and write back
(WB), as described in [62], and the considered operands are provided to the MUX
inputs from ID, when no forwarding is required, and from EXE, and MEM stages,
when forwarding is needed.



2.2 Register Forwarding and Pipeline Interlocking 47

Table 2.7 Input values for the 3-to-1 MUX feeding the first operand input of the EXE stage
in a pipelined processor

Vector S1 S0 D0 (ID) D1 (EXE) D2(MEM) Z

0 0 0 00 FF FF 00
1 0 1 00 FF 00 FF

. . . . . . . . . . . . . . . . . . . . .

1 l i R1 , 0 x f f ; p r e p a r e f o r o b s e r v a b i l i t y
2 l i R2 , 0x00
3 l d R3 , FF_val ( R0 )
4 l i R4 , 0 x f f
5 add R1 , R2 , R0 ; v e c t o r 0
6 nop
7 nop
8 nop
9 sd R1 , d a t a 1 ( R0 ) ; o b s e r v a b i l i t y i n s t r u c t i o n

10 l d R3 , 00 _ v a l ( R0 )
11 l i R2 , 0 x f f
12 add R1 , R2 , R0 ; v e c t o r 1
13 nop
14 nop
15 nop
16 sd R1 , d a t a 2 ( R0 ) ; o b s e r v a b i l i t y i n s t r u c t i o n

Fig. 2.8 Test program fragment for testing the MUX for the EXE stage

In this example, the first MUX input comes from the decode stage, the second one
from the execution stage, and the last one from the memory stage. An assembly-like
sequence is provided, that could be used for applying the first 2 vectors proposed in
[67] and reported in Table 2.7.

Table 2.7 reports the required input values in the MUX under test. As the reader
can notice, the different values in the MUX inputs at every clock cycle depend on
the instructions that traverse the processor pipeline during the considered instance of
time. The program in Fig. 2.8 reports a sequence of instructions able to apply the
mentioned vectors in the MUX under evaluation.

Assuming that there are no cache misses and that the LD/SD instructions require
only one clock cycle during the MEM stage, the first vector in Table 2.7 is applied



48 SBST Algorithms

during the EXE stage of instruction 5. In the considered clock cycle, the input value
of the MUX under test is actually provided by the decode stage that reads from
the register file the value of R2, already set by instruction 2. Instructions 3 and 4
propagate through the pipeline the rest of the values (FF for both cases) required by
the test vector. Additionally, instructions 1 and 9 are devoted to add observability
capacities to the considered code fragment.

The second vector is applied by the block of instructions 10-16. In details,
instruction 12 depends on instruction 11 that forwards its output value (the one for
R2) from the output of the EXE stage to the input of the MUX under evaluation.
Once again, the rest of the instructions set appropriate values in the pipeline and
support observability.

Fig. 2.9a describes the normal behavior for the sample program at the time in
which Vector 0 is applied. The different values are propagated exploiting the block
of instructions 3-5 that guarantees the values 00, FF, and FF in the MUX inputs.

If a structural fault occurs in one of the selection wires (as in Fig. 2.9b), the
MUX outputs assume a different value (in this case FF) easily detected thanks to
the observability instructions. Similarly, if a stuck-at fault is located in one of the
forwarding paths, the error effect will result in a MUX output different from the
expected 00 (or FF).

Please note that the rest of the patterns of Table 2.6 (vectors 2-15, in the case of
an 8-to-1 MUX) can be easily translated to assembly instructions following the same
scheme provided for Vectors 0 and 1. With this algorithm a total coverage of faults
in the decode logic of multiplexer is assured, with an optimum scalability in terms of
bit-wise parallelism and a short SBST code footprint.

Test of the Comparators

To thoroughly test an m-bit wide comparator (i.e., 2 inputs, with m lines each),
independently on its low-level implementation, it was stated in [68] that one can use
a set of 2m+2 patterns. In the same article it is shown that the following patterns
allow achieving complete fault coverage.

Out of the 2m+2 vectors, two correspond to the situation in which the two CMP
inputs match: this means that all the corresponding bits in the two input operands
are equal. Each bit holds an opposite value in the two vectors.



2.2 Register Forwarding and Pipeline Interlocking 49

M
U

X
 

From  
ID 

From  
EX 

From  
MEM S1 S0  

00h 
FFh FFh 

0  0 

00h 

(a) Normal behavior

M
U

X
 

From  
ID 

From  
EX 

From  
MEM S1 S0  

00h 
FFh FFh 

0  0 

FFh 

S@ 1 

(b) Wrong result in case of stuck-at-1 in
one selector

Fig. 2.9 Vector 0 application to the MUX for the EXE stage

Each of the other 2m patterns generates a mismatch in only one bit of the pair of
words fed in parallel into the comparator. Hence, this set of patterns corresponds to
a walking 1, starting from the most significant bit (MSB) of one of its inputs going
all the way to the least significant bit (LSB) of the other input. Fig. 2.10 shows the
schema of a comparator and the patterns to be applied to test it. Anyhow, being
combinational logic, the order in which these patterns are applied is irrelevant.

As for the multiplexers, the approach aims at developing a program fragment
able to apply the above set of test vectors to each CMP in the RF&IP unit. As
already mentioned, the detection of data dependencies in the pipeline is done with
comparators. For this use there is one comparator per input operand, per each stage
involved in the RF&PI mechanism. In common processor architectures having
two operands per instruction this means a series of comparators that check the two
operands against the possible sources in every one of the pipeline stages where
these values may be produced (see Fig. 2.6). Accordingly, one of the inputs of
these comparators is connected to the operand identifier (i.e., a register) encoded
in the instruction and used by the instruction in one stage, while the other input is
the identifier of the output register on one of the possible source stages where the
other instruction in the pair assumed to have a data dependence is placed. The same
applies for all relevant pipeline stages. In this way any data dependency can be
detected. In order to excite these comparators with the required patterns, registers
with identifiers following the patterns previously described should be addressed by
consecutive instructions.



50 SBST Algorithms

m 

m 

= 

A 

B 

Z 

Pattern A B Z

1 10. . . 00 00. . . 00 0
2 01. . . 00 00. . . 00 0

. . .
m−1 00. . . 10 00. . . 00 0

m 00. . . 01 00. . . 00 0
m+1 00. . . 00 10. . . 00 0
m+2 00. . . 00 01. . . 00 0

. . .
2m−1 00. . . 00 00. . . 10 0

2m 00. . . 00 00. . . 01 0
2m+1 11. . . 11 11. . . 11 1
2m+2 00. . . 00 00. . . 00 1

Fig. 2.10 Comparator schema and test patterns

The example in Fig. 2.11 shows a piece of code intended to excite the comparator
for operand 1 in the EXE stage, considering the processor architecture described
in Section 2.2.1. One input of the comparator is connected to the pipeline register
storing the identifier of the output register of the instruction in the EXE stage; the
other input is connected to the pipeline register storing the identifier of the operand
of the following instruction. The red arrows show the performed comparisons. For
this example the register file is assumed to be composed of 8 registers, so that 3 bits
are used to represent the register identifier; consequently, 2×3 = 8 comparisons are
needed to apply the sequence of test vectors proposed above.

The used registers must be properly initialized, in order to make possible faults
observable. In particular, please note that R0 and R7 are initialized with values
different from all the other registers. Similarly, the value for k should be carefully
chosen to avoid any overflow (e.g., k = 0).

The proposed sequence of 17 instructions thoroughly excites the comparator of
the example. The only purpose of the nop instructions is to create the necessary
distance between the relevant instructions.

The same sequence of instructions can be easily tailored to test the other com-
parators. For example, it can be modified to target both comparators related to the
EXE stage, just using an instruction with two input operands (e.g., add RA,RB,RC

– which performs RA← RB +RC) instead of an immediate operand. Additionally,



2.2 Register Forwarding and Pipeline Interlocking 51

1 a d d i R0 , R1 , k ; R0 <= R1 + k , k b e i n g a c o n s t a n t
2 nop
3 a d d i R0 , R4 , k ; A := R4 ( 1 0 0 ) , B := R0 ( 0 0 0 )
4 nop
5 a d d i R0 , R2 , k ; A := R2 ( 0 1 0 ) , B := R0 ( 0 0 0 )
6 nop
7 a d d i R0 , R1 , k ; A := R1 ( 0 0 1 ) , B := R0 ( 0 0 0 )
8 nop
9 a d d i R4 , R0 , k ; A := R0 ( 0 0 0 ) , B := R0 ( 0 0 0 )

10 nop
11 a d d i R2 , R0 , k ; A := R0 ( 0 0 0 ) , B := R4 ( 1 0 0 )
12 nop
13 a d d i R1 , R0 , k ; A := R0 ( 0 0 0 ) , B := R2 ( 0 1 0 )
14 nop
15 a d d i R7 , R0 , k ; A := R0 ( 0 0 0 ) , B := R1 ( 0 0 1 )
16 nop
17 a d d i R0 , R7 , k ; A := R7 ( 1 1 1 ) , B := R7 ( 1 1 1 )

Fig. 2.11 Test program fragment for testing the CMP in the EXE stage

placing a useful instruction (for testing purposes) instead of the nop instruction can
allow us to also test the comparators of other stages at the same time. By generalizing
this solution, the addition of one instruction per involved stage allows testing all
comparators.

Another use of comparators within the data hazard mechanism is in the pipeline
interlock activation. Let us define the level of an instruction as the stage in which
the data produced by that instruction is ready, or when the effects of the instruction
are seen; for example, in the miniMIPS architecture [69] the level of an ADD is
the EXE stage, while the level of a LOAD from memory instruction is the MEM
stage. This information is hardcoded within the microprocessor and gathered when
each instruction is decoded (i.e., at the decode stage). When a data dependency
is identified, the level of the instruction producing the result to be forwarded is
compared with the stage in which the instruction is, in order to identify potentially
unresolved hazards. In the case of the data hazard handling module, there is one
comparator per stage devoted to this task, and its inputs are connected to a constant
indicating the stage itself and to a signal indicating the level of the instruction present
in that stage.



52 SBST Algorithms

Observation Mechanism

The previous subsections describe how to write test programs able to test the RF&PI
unit. This test can be performed by suitably activating the different components of
this unit, and then making the produced results observable.

However, some the faults affecting the RF&PI unit may not produce any wrong
results, but rather a change in the performance of the processor, e.g., by introducing
unnecessary stalls. For the purpose of detecting these faults, some mechanism to
measure the time required to execute the test program (or some of its parts) can be
exploited.

This can be accomplished in several ways:

• using the performance counters [70] existing in many processors and able to
count the number of stalls;

• resorting to some timer able to measure the performance of the processor when
executing a given piece of code;

• adding some ad hoc module to the system able to monitor the bus activity [71].

2.2.3 Experimental Results

The feasibility and effectiveness of the proposed approach have been evaluated on
an academic processor module and on a commercial microprocessor.

The selected academic case study is the miniMIPS processor [69] synthesized
using an in-house developed library and resulting in a 16,236-gate circuit (without
multipliers). The miniMIPS architecture is based on 32-bit buses and includes a
5-stage pipeline. The RF&PI unit occupies around 3.4% of the total number of gates
of the processor, accounting for a total of 3,738 stuck-at faults.

In order to experimentally validate the proposed approach, an initial test set of
programs has been considered. This set tackles the testing of the whole miniMIPS
processor core and achieves about 91% fault coverage with respect to stuck-at faults.
The test programs contained into the test set were developed following state of the
art strategies such as [72]. However, the stuck-at fault coverage achieved on the
RF&PI unit reached only about 66%, thus proving that specific test algorithms are
required for it.



2.3 Dual-Issue Processors 53

Table 2.8 Characteristics of the test program for the RF&PI unit

Size [kB] Duration [cc] SA FC%

RF&PI TP 4 2,084 98.89

Secondly, a test program (RF&PI TP) was developed following the algorithm
described in Section 2.2.2 and specifically targeted to the RF&PI unit. Its main
characteristics are summarized in Table 2.8 in terms of size, duration, and stuck-at
Fault Coverage on the RF&PI unit. The few untested faults (39 out of 3,520) are
mainly related to signals and features that cannot be activated using a functional
approach, such as the interrupt signal; other faults remain untested because the
module can support a coprocessor, which was not used in the experiments.

The proposed technique was also applied to a commercial System-on-Chip
including a 32-bit pipelined microprocessor based on the Power Architecture™ and
manufactured by STMicroelectronics. The device contains over 2 million logic gates
and is employed in safety-critical automotive embedded systems, such as airbag,
ABS, and EPS controllers.

In this case, the module playing the role of the RF&PI unit accounts for about
14k faults. The functional test program developed for the whole circuit reached only
about 62% stuck-at fault coverage on the RF&PI unit. After adding to it some further
test fragments developed according to the proposed test algorithm (and accounting
for about 2,000 instructions and less than 5,000 clock cycles), the fault coverage
on the same unit raised to about 92%. Obviously, implementation of the proposed
algorithm on this architecture is harder than for the miniMIPS, due to the higher
complexity of the pipeline and the higher number of functional units.

2.3 Dual-Issue Processors

This section deals specifically with the test of dual-issue processors with in-order
execution of instructions strategy. Such processors cannot be tested with available
techniques, as the overall fault-coverage will be low. This is mainly due to specific
classes of sub-modules, or features, which are not well covered by general method-
ologies. Such modules have a considerable impact on the final result, since they
strongly characterize this class of processors.



54 SBST Algorithms

In the following, after a brief architectural overview (Section 2.3.1), typical
issues due to instruction scheduling that characterize this class of processors are
presented in Section 2.3.2. Then, a systematic methodology to develop an effective
suite of test programs for dual-issue processors is proposed in the following sections.
In particular, the methodology covers the following modules:

1. replicated computational modules in the execution units and, in particular, the
set of multiplexers that propagate operands and results through the data-path
(these modules are covered in Section 2.3.3);

2. register file and the replicated set of multiplexers used to read/write in the
register bank (Section 2.3.4);

3. duplicated pipeline registers, and feed-forward paths, which are interconnected
by multiplexers allowing pipeline stages to share data and dealing with data
dependencies (Section 2.3.5);

4. interlocking logic, mainly composed of comparators detecting possible hazards
and control logic managing pipeline stalls and routing feed-forward paths
(Section 2.3.6);

5. instruction pre-fetch buffer logic, which behavior is strongly influenced by the
occurrences of pipeline stalls (Section 2.3.7).

Finally, Section 2.3.8 reports about experimental results carried out on industrial
processor cores manufactured by STMicroelectronics.

2.3.1 Architectural Overview

In the classical processor pipelined architectures, a sequence of instructions is fetched
from the memory and fed to the pipeline that ideally processes one instruction per
clock cycle. Such architectures are known as scalar or single-issue. On the contrary,
modern processors are able to process many instructions at the same time, by leverag-
ing on more complicated pipeline mechanisms and replicated computational modules.
Such architectures are called multiple-issue, depending how many instructions are
able to process for each clock cycle, e.g., two instructions in dual-issue processors.
When the processor relies on special hardware rather than on the compiler to check
whether multiple instructions can be issued (i.e., if they do not produce structural
hazards or data dependencies), it is traditionally referred to as a superscalar pro-
cessor. Such processors are classified either as in-order or out-of-order, whether



2.3 Dual-Issue Processors 55

Instruction
Buffer

Execution Unit A

Execution Unit B

Fetch 
Unit

Branch 
Unit

Decode
/Issue
Unit

A
LU

A

M
A

C

Lo
ad

/
St

o
re

A
LU

B

FP
 U

n
it

Interlock
Unit

Register 
File

R/WA

R/WB

Forwarding

Fig. 2.12 Example block diagram of in-order dual issue processors

they keep the instruction order unchanged, or permit instruction reordering through
specialized hardware modules (e.g., register renaming and re-order buffer).

This section deals with testing of in-order dual-issue processors. From a structural
point of view, the processor’s CPU contains two execution units that permit to treat
two instructions at a time, allowing to the replicated computational modules to run in
parallel. Depending on the specific processor’s implementation, the execution units
can be: symmetric, when both of them contain the same functional units; asymmetric,
when some functional units are missing in one of them. From a logical point of view,
the processor contains two pipelines (referred as A and B). At each clock cycle, two
instructions are fetched from the memory and enter in the two pipelines where they
are processed in-order.

An example block diagram of in-order dual-issue processor is shown in Fig. 2.12.
In this processor, instructions are retrieved from the memory by a Fetch Unit and
placed into an Instruction Buffer, which is composed of a certain amount of slots
and behaves as a queue. The fetch unit interacts with a Branch Unit, which usually
implements a speculative prediction of the program counter’s value in case of branch
instructions, e.g., by means of a Branch Target Buffer (BTB). Two instructions at a
time are withdrawn from the instruction buffer by a Decode/Issue Unit, which can
be implemented in several ways according to the issue and dispatch strategies of the
analyzed processor. In case of stalls due to dependencies detected during instructions



56 SBST Algorithms

issue, an Interlock Unit manages the pipeline stages, for example by limiting the
propagation of instructions through the instruction buffer, or by interlocking the
decode/issue unit until completion of the critical instruction (e.g., because requiring
multiple clock cycles to be issued). The two instructions issued by the decode/issue
unit are processed by two Execution Units (named A and B in the figure), each one
collecting several functional units and interfacing with a multi-port Register File.

2.3.2 Scheduling Issues

When dealing with multi-issue execution, the internal status of the logical pipelines
must be known at the beginning of the test program, before moving to the test
operations. This permits to test the targeted module in a deterministic way, without
counter effects caused by an unknown state. It is possible to identify two categories
of uncertainty: uncertain signature and uncertain coverage.

A test program may present an uncertain signature, in case the non-deterministic
scheduling of the instructions among the multiple logical pipelines can influence the
signature value computed at run-time by the test program itself. If the test program
does not to compromise its signature in presence of unknown conditions, still may
present an uncertain coverage, i.e., an oscillating fault-coverage value resulting from
different fault simulations of the same test program under different conditions. Such
conditions are imposed by the instructions processed by the pipelines prior the test
program’s start. This is the typical situation arising when the test program is executed
on-line, i.e., scheduled by the mission application.

The non-deterministic behavior represents an issue especially for those test
programs implementing algorithms requiring that certain sequences of instructions
are precisely scheduled in the two pipelines; previous pipelines status may influence
the effectiveness of a test program. To solve this problem a viable solution needs to
be implemented and embedded in each of the test programs. This process will be
referred to as the reset of the pipelines. General guidelines for implementing the
pipeline reset can be given.

First of all, the alignment of the instructions in the code memory may determine
which pipeline processes which instruction. In this case, the test engineer should
put the code of the test programs in the instruction memory taking into account
that alignment (e.g., 8-byte aligned instructions are dual-issued). Clearly, other



2.3 Dual-Issue Processors 57

architectures may not have such a static scheme, for example in case of a variable-
length instruction set. However, the mechanisms governing the order in which
the instructions are fetched from the memory and scheduled among pipelines are
reported in the user manuals.

Secondly, since test program instructions entering in the pipelines can be influ-
enced by the instructions entered previously and currently populating the different
stages of the pipelines, as well as by flushing operations of the instruction buffer,
a fixed number of nop instructions can be inserted to avoid a non-deterministic
signature.

The described concerns are overcome by architectures provided with special
assembly instructions in charge of flushing the instruction buffer, or performing
the synchronization of the pipelines, by inserting a certain numbers of stalls in
the earlier stages preventing the operands needed by the following instructions to
be retrieved from feed-forward paths. As well, these instructions can be used in
the implementation of the pipelines reset, coupled with the requirement about the
alignment of instructions in memory.

2.3.3 Duplicated Computational Modules

Some implementations of in-order dual-issue processors adopt a duplication of
certain computational modules, thus permitting the simultaneous execution of two
instructions of the same kind. Examples of these modules are adder units, barrel
shifters, and bit-wise operators.

Computational modules are tested by means of specific patterns that are brought
to the module primary inputs by clearly identifiable assembly instructions. For
example, an add instruction clearly exercises an adder unit.

In single-issue processors, once the patterns required to test a specific computa-
tional module are identified (e.g., from ATPG, or by a deterministic method), a test
program can be composed, which loads the operands with the patterns, performs the
instruction exercising the module, and updates the signature value with the results
[73], without any importance given to the scheduling of the instructions. Also in
VLIW architectures, the single computational module can be precisely exercised by
mapping each operation to a specific part of a VLIW instruction at compile-time
[35].



58 SBST Algorithms

(a) Single-issue version

1 l o a d r1 , immedia te1
2 l o a d r2 , immedia te2
3 add r3 , r2 , r1
4 s t o r e R3 , memory

(b) Dual-issue version

1 l o a d r1 , immedia te1
2 l o a d r2 , immedia te2
3 add r3 , r2 , r1
4 add r4 , r2 , r1
5 s t o r e r3 , memory
6 s t o r e r4 , memory

Fig. 2.13 Single-issue (a) and dual-issue (b) versions of a snippet procedure to test adder
units.

The case of dual-issue architectures is different, whereas a sequence of two in-
structions may be dispatched to different modules. For instance, two add instructions
can use two adder units and be executed in parallel. The direct consequence is that
a given sequence of test instructions that thoroughly test a single module will be
split among the replicated modules if executed on a dual-issue architecture. Such
mechanism intended to improve processor throughput is negatively impacting the
fault-coverage as each unit executes only a subset of test instructions.

To illustrate the problem, we can consider the test of the adder units in the
processor (see Fig. 2.13), and a list of effective patterns obtained by an ATPG run
for one of the adders, which are supposed to have an equal net-list. As previously
mentioned, each ATPG pattern can be translated to a sequence of instructions (see
Fig. 2.13a); in the illustrated scenario instructions 1 and 2 load two registers with
immediate values that represent the ATPG pattern, instruction 3 executes an adding
instruction (add) which applies the pattern to the adder unit’s primary inputs, and
finally, instruction 4 stores the resulting value in a memory area which will be used
for computing the test signature. If this code is executed by a dual-issue processor,
the add instruction will be scheduled to excite just one of the available adders.

The first proposed modification of the code will guarantee high fault-coverage
on both adders (see Fig. 2.13b). The pattern is applied on both modules by having
a couple of equivalent target instructions executed consecutively. Once the pattern
is loaded in the two registers (instructions 1 and 2), the target add instruction is
replicated (3,4), with the second one using the same registers as inputs and storing
results in different one; finally, the two results can be stored in memory (5,6).



2.3 Dual-Issue Processors 59

Just duplicating the instructions is not enough. As analyzed in Section 2.3.2,
the reset of the pipelines is important to reach the desired schedule of instructions.
Additionally, some processors are able to recognize when two consecutive add
instructions are using the same operands; in this case, a single adding operation is
executed and the result is feed-forwarded. To face this potential issue, the solution is
to use a disjoined set of registers for the second add; in this way, the processor does
not optimize the execution and the same pattern is applied to both adders.

Finally, the strategy can be effectively applied on a more complex multi-issue
processor. For example, in a 4-way in-order core, each pattern is replicated four
times, and the set of utilized registers is larger.

2.3.4 Multi-Port Register File

The register file of dual-issue processors is unique. However, since two instructions
need to be executed in parallel, the logic permitting reading and writing of registers
is replicated. Thus, a typical register file for a dual-issue processor is composed of: 1
memory bank, 2 writing ports, and 4 reading ports.

Each writing port is structurally implemented as a decoder, which propagates
the resulting value from the execution unit towards the memory bank; conversely,
each reading port is implemented as a multiplexer that retrieves a value stored in the
memory bank to be used as operand by the execution unit.

Given a duplicated ALU unit, two adding instructions can be processed in
parallel by the stages of the pipelines A and B, as in the example of Fig. 2.14. In this
example, the instruction 1 is supposed to be processed by the pipeline A, and the
three operands are registers, which encoding is used as the selection for the decoder
and the multiplexers dedicated to the pipeline A, referred as DECA (in WriteA port),
MUX1A (in Read1A port), and MUX2A (in Read2A port), respectively. In the same
way, the instruction 2 is processed by the pipeline B.

1 add r1 , r2 , r3 ; ALU i n p i p e l i n e A
2 add r4 , r5 , r6 ; ALU i n p i p e l i n e B

Fig. 2.14 Example of dual-issue execution of instructions that access to the register file ports
in parallel.



60 SBST Algorithms

Given this specific register-bank access method, a test strategy is needed to take
into account the parallel access to the register file. As for replicated computational
units, a methodology that enhances an algorithm for single-issue processors is
proposed. The purpose of the algorithm is to test both the memory bank and the
access ports.

Single-issue Version

The basic algorithm for single-issue processors follows the strategy presented in [74],
which proposes to take into consideration the Hamming distance among the bit
string of the register encodings when testing the access ports. The algorithm for
single-issue is described in the following steps. Successively it is discussed how to
adapt it for dual-issue processors:

1. Preliminary setup operations:
(a) Selection of 2 register groups, where in each group the encodings of all

registers have a hamming distance higher than one bit with respect to
each other. As an example two possible groups of two possible groups
considering 8 accessible registers, r0-r7 is:
Group A: r1, r2, r4, r7
Group B: r0, r3, r5, r6

(b) Identification of instructions exciting the register file read and write ports,
referred as Read1, Read2, and Write, respectively. As an example, the
add instruction between registers presented above accesses Write with
the first operand, Read1 with the second, and Read2 with the third. Other
instructions can be used as well.

(c) Definition of two complementary patterns, which are propagated through
access ports. An example is:
Pattern A: 0101. . . 01
Pattern B: 1010. . . 10

2. Propagate Pattern A through the logic connected to the registers in Group A,
and Pattern B through Group B:

(a) load all registers in Group A with instructions that write the Pattern A
value through Write port;

(b) load all registers in Group B with instructions that write the Pattern B
value through Write port;



2.3 Dual-Issue Processors 61

(c) read all registers with instructions that read from Read1 port, and accu-
mulate a signature value;

(d) read all registers with instructions that read from Read2 port, and accu-
mulate a signature value.

3. Propagate Pattern B through the Group A logic, and Pattern A through the
Group B logic, the same as step 2 but with inverted values.

A possible implementation of the proposed algorithm for single-issue processors
is presented in Table 2.9, where add instructions are used to bring data to the ALU
through the register file read ports.

Dual-issue Version

The proposed algorithm is modified into a dual-issue version, which is parallelized on
the two pipelines with a careful attention given to the scheduling of each instruction
(see Section 2.3.2). The proposed modifications are the following:

1. In the setup phase, the two groups of registers presented in the single-issue
version (which are split according to the Hamming distance) are further split
into two sub-groups, randomly. For example, the 8 registers in Group A and
Group B of the previous example can be split as follows:

Group A1: r1, r2
Group A2: r4, r7
Group B1: r0, r3
Group B2: r5, r6

2. The propagation steps of the single-issue version of the algorithm are split and
parallelized on the two pipelines, each one acting on a sub-group, accordingly:

Pipeline A: Pattern A in Group A1, Pattern B in Group B1

Pipeline B: Pattern A in Group A2, Pattern B in Group B2

Since each pipeline covers half the total amount of registers, the step is then
repeated with the groups inverted on the two pipelines:

Pipeline A: Pattern A in Group A2, Pattern B in Group B2

Pipeline B: Pattern A in Group A1, Pattern B in Group B1

3. As in the algorithm described for single-issue processors, to complete the test,
the propagation steps are finally repeated with inverted patterns, i.e., Pattern B
in the two Group A sub-groups, and Pattern B in Group A ones.



62 SBST Algorithms

Table 2.9 Implementation of the single-issue version of the basic test algorithm for a register
file with 8 registers

Steps Instruction
Read1
input

Read2
input

Write
output

(1) Set patternA equal to 55555555 h
Set patternB equal to AAAAAAAAh

(2a-2b) l o a d r1 , p a t t e r n A – – 0101. . . 01
l o a d r2 , p a t t e r n A – – 0101. . . 01
l o a d r4 , p a t t e r n A – – 0101. . . 01
l o a d r7 , p a t t e r n A – – 0101. . . 01
l o a d r0 , p a t t e r n B – – 1010. . . 10
l o a d r3 , p a t t e r n B – – 1010. . . 10
l o a d r5 , p a t t e r n B – – 1010. . . 10
l o a d r6 , p a t t e r n B – – 1010. . . 10

(2c-2d) add r1 , r1 , r1 0101. . . 01 0101. . . 01 –
add r1 , r2 , r 1 0101. . . 01 – –
add r1 , r4 , r 1 0101. . . 01 – –
add r1 , r7 , r 1 0101. . . 01 – –
add r1 , r1 , r2 – 0101. . . 01 –
add r1 , r1 , r4 – 0101. . . 01 –
add r1 , r1 , r7 – 0101. . . 01 –
add r0 , r0 , r0 1010. . . 10 1010. . . 10 –
add r0 , r3 , r 0 1010. . . 10 – –
add r0 , r5 , r 0 1010. . . 10 – –
add r0 , r6 , r 0 1010. . . 10 – –
add r0 , r0 , r3 – 1010. . . 10 –
add r0 , r0 , r5 – 1010. . . 10 –
add r0 , r0 , r6 – 1010. . . 10 –
s t o r e r1 , memory
s t o r e r0 , memory

(3a-3b) Repeat (2a-2b) with inverted patterns(a)

(3c-3d) Repeat (2c-2d)
(a) Instructions using patternA use patternB and vice-versa.



2.3 Dual-Issue Processors 63

(a) Wrong implementation

1 l o a d r1 , p a t t e r n A ; W r i t e p o r t
2 add r7 , r1 , r 7 ; EX −to−EX f o r w a r d i n g
3 add r7 , r7 , r1 ; MEM −to−EX f o r w a r d i n g

(b) Correct implementation

1 l o a d r1 , p a t t e r n A ; W r i t e p o r t
2 nop ; Avoid EX −to−EX f o r w a r d i n g
3 nop ; Avoid MEM −to−EX f o r w a r d i n g
4 nop ; Avoid WB −to−EX f o r w a r d i n g
5 add r7 , r1 , r 7 ; Read1 p o r t
6 add r7 , r7 , r1 ; Read2 p o r t

Fig. 2.15 Effect of data-dependencies on the access to the register file read ports. Wrong
implementation (a) and correct version by means of nop instructions (b).

A possible implementation of the proposed algorithm for dual-issue processors
is presented in Table 2.10, as an extension of the single-issue version in Table 2.9.

To correctly implement the presented algorithms, even for single-issue processors,
data dependencies among instructions should be avoided. In fact, each of the specific
test patterns is supposed to pass through the access ports of the register file, rather
than through feed-forward paths, which is the case when the instruction is affected
by data dependencies with the previous instructions. Even though the final signature
is the same, the effectiveness of the test program is compromised.

To comply with this undesirable situation, a sequence of instructions may be
introduced to wait for register write-back. These extra instructions will be referred
as padding and can be implemented as nop instructions.

As an example, a 5-stage pipeline is considered and a code snippet implementing
the propagation of a pattern through a single register (see Fig. 2.15). In an implemen-
tation not taking into consideration data dependencies, as in Fig. 2.15a, the register
r1 is loaded with a the pattern value (1), which is then used as input operand of
the following two instructions (2,3); however, instead of retrieving the value from
the register file, the processor feed-forwards the result from the EX stage to the
instruction 2 and from the MEM stage to the instruction 3.

The correct implementation of the desired code, as listed in Fig. 2.15b, requires
to add a padding composed of three nop instructions (2-4) after the instruction



64 SBST Algorithms

Table 2.10 Implementation of the dual-issue version of the basic test algorithm for a register
file with 8 registers

Steps Instruction Pipel.
Read1
input

Read2
input

Write
output

(1) Set patternA equal to 55555555 h
Set patternB equal to AAAAAAAAh

(2a-2b)1 l o a d r1 , p a t t e r n A A – – 0101. . . 01
l o a d r4 , p a t t e r n A B – – 0101. . . 01
l o a d r2 , p a t t e r n A A – – 0101. . . 01
l o a d r7 , p a t t e r n A B – – 0101. . . 01
l o a d r0 , p a t t e r n B A – – 1010. . . 10
l o a d r5 , p a t t e r n B B – – 1010. . . 10
l o a d r3 , p a t t e r n B A – – 1010. . . 10
l o a d r6 , p a t t e r n B B – – 1010. . . 10

(2c-2d)1 add r1 , r1 , r1 A 0101. . . 01 0101. . . 01 –
add r4 , r4 , r4 B 0101. . . 01 0101. . . 01 –
add r1 , r2 , r 1 A 0101. . . 01 – –
add r4 , r7 , r4 B 0101. . . 01 – –
add r1 , r1 , r2 A – 0101. . . 01 –
add r4 , r4 , r7 B – 0101. . . 01 –
add r0 , r0 , r0 A 1010. . . 10 1010. . . 10 –
add r5 , r5 , r5 B 1010. . . 10 1010. . . 10 –
add r0 , r3 , r 0 A 1010. . . 10 – –
add r5 , r6 , r5 B 1010. . . 10 – –
add r0 , r0 , r3 A – 1010. . . 10 –
add r5 , r5 , r6 B – 1010. . . 10 –
s t o r e r1 , memory A
s t o r e r4 , memory B
s t o r e r0 , memory A
s t o r e r5 , memory B

(2a-2b)2 Repeat (2a-2b)1 with inverted pipelines(a)

(2c-2d)2 Repeat (2c-2d)1 with inverted pipelines(a)

(3a-3b)1 Repeat (2a-2b)1 with inverted patterns(b)

(3c-3d)1 Repeat (2c-2d)1
(3a-3b)2 Repeat (2a-2b)2 with inverted patterns(b)

(3c-3d)2 Repeat (2c-2d)2
(a) instructions on Pipeline A are executed on Pipeline B and vice-versa
(b) instructions using patternA use patternB and vice-versa.



2.3 Dual-Issue Processors 65

that loads the pattern value in r1 (1); the value is then read back by the following
test instructions (5,6) through the register file read ports. Clearly, the extra nop
instructions could have been replaced by other test instructions not making use of the
register r1. Please note that the feed-forward of register r7 (5,6) does not influence
the expected propagation of the pattern, which is handled by the register r1.

Finally, note that the implementation of the proposed algorithms is influenced
by the specific processor architecture, as in the special case of processors that
implemented asymmetric pipelines. In such processors, certain instructions can be
processed only by the first pipeline, which contains the necessary functional units,
and others by the second one.

As an example, a processor is considered, in which the pipeline A processes
arithmetical and logical instructions, except for the multiply (mul) instructions, that
are processed by the pipeline B. In this case, the algorithm presented for single-issue
processors can be implemented in two versions: the first implementation uses ALU-
related instructions to propagate patterns through Read1A, Read2A, and WriteA; the
second implementation uses mul instructions to propagate patterns through Read1B,
Read2B, and WriteB.

For the sake of completeness, the test engineer can adapt the presented algorithm
for multi-issue processors. The principle of parallelizing the single-issue algorithm
on the different pipelines is still valid. In a 4-way core, one solution is to further
split the group of registers (A1 to A4, B1 to B4) and apply the propagation steps on
the four pipelines (the number of steps is doubled with respect to the dual-issue).
Another solution is to use the same algorithm of the dual-issue using two pipelines
at the time, while nop instructions are executed by the others.

2.3.5 Feed-Forward Paths

In dual-issue processors, the instructions are processed in parallel by two logical
pipelines, which stages are interconnected with several forwarding paths, in charge
of managing the potential propagation of operands of data dependent instructions.
Feed-forwarding paths could be categorized in intra-pipeline and inter-pipeline
forwarding paths. For example, in a dual-issue processor with two 5-stage pipelines
(see Fig. 2.16), referred to as A and B, intra-pipeline paths can be the following:

1. EXA-to-EXA and EXB-to-EXB;



66 SBST Algorithms

Inter-pipeline 
forwarding 

logic 

Pipeline A Pipeline B 

IF 

ID 

EX 

MEM 

WB 

Intra-pipeline A 
forwarding 

logic 

Intra-pipeline B 
forwarding 

logic 

IF 

ID 

EX 

MEM 

WB 

Fig. 2.16 Example feed-forward paths of in-order dual issue processors

2. MEMA-to-EXA and MEMB-to-EXB;
3. MEMA-to-MEMA and MEMB-to-MEMB.

Such forwarding paths only propagate operands among stages of the same
pipeline. In case the processor only adopts intra-pipeline forwarding mechanism,
data dependencies occurring within instruction issued to different pipelines are
resolved in different ways, according to the processor implementation. In some pro-
cessors, an interlock unit resolves data-dependencies between different pipelines by
stalling both of them until the write-back of the needed data completes. Alternatively,
other processors act at the scheduling time, so that the dual-issue capabilities are
temporary disabled and data-depending instructions scheduled for execution in the
same logical pipeline; the other is fed with nop instructions.

On the contrary, processors having inter-pipeline forwarding paths do not present
such problems and propagate the operands through additional paths. Examples of
inter-pipeline paths (see Fig. 2.16) in 5-stage pipeline processors are:

4. EXA-to-EXB and EXB-to-EXA;
5. MEMA-to-EXB and MEMB-to-EXA;
6. MEMA-to-MEMB and MEMB-to-MEMA.

In all the cases, there must be no data-dependencies between two consecutive
instructions that normally would be executed in parallel. In such a case, the second
instruction cannot be scheduled in the second pipeline, i.e., both are processed by



2.3 Dual-Issue Processors 67

   

From DIA 

Fwd from EXA 

Fwd from EXB 

Fwd from MEMA 

Fwd from MEMB 

To EXA 

Intra-pipeline A 
forwarding logic 

Inter-pipeline 
forwarding logic 

S2 S1 S0 

EXA  

OP1 

MUX 

D0 

D1 

D2 

D3 

D4 

Z 

Fig. 2.17 Example of multiplexer feeding one of the operands of the execute stage.

the first pipeline, while the second processes a nop instruction (further details are
given in Section 2.3.6).

The forwarding paths propagate data between pipeline stages through multi-
plexers, as already analyzed in Section 2.2. As many MUXes are used as possible
destinations exist, each of them with a number of inputs equal to the number of
possible data origins.

As an example, we can consider one of the two execute stages, referred as EXA,
which requires two operands, OP1 and OP2. Each of the operands is brought to
EXA through a MUX, which receives as input both the normal propagation path,
selected in case no data-dependencies exist, and forwarding paths, including intra-
pipeline and inter-pipeline paths. Other than the path coming from IDA stage (D0

input), the OP1 MUX may include two additional inputs (see Fig. 2.17), both from
intra-pipeline forwarding paths:

1. from EXA stage (D1 input);
2. from MEMA stage (D2 input);

as well as other two, related to inter-pipeline paths:

3. from EXB stage (D3 input);
4. from MEMB stage (D4 input).

More complex multi-issue processors present larger MUXes, due to the higher
number of forwarding paths.

Specific sequences of instructions are needed to cover these circuitries, including
test instruction addressing forwarding paths and multiplexers.



68 SBST Algorithms

Setup phase
1 Set patternA equal to 55555555 h
2 Set patternB equal to AAAAAAAAh
3 l o a d r0 , 0
4 l o a d r1 , p a t t e r n A

Reset of pipelines See Section 2.3.2

Test phase
5 add r2 , r1 , r0 ; P i p e l i n e A
6 nop ; P i p e l i n e B
7 add r3 , r1 , r0 ; P i p e l i n e A
8 add r4 , r2 , r 0 ; P i p e l i n e B : EX_A −to−EX_B (OP1)
9 nop ; P i p e l i n e A

10 add r5 , r0 , r3 ; P i p e l i n e B : EX_A −to−EX_B (OP2)

Fig. 2.18 Propagation of a test pattern through feed-forward paths

The forwarding paths can be tested by propagating complementary values, simi-
larly to those shown in Section 2.3.4. For instance, the snippet of code in Fig. 2.18 is
able to test the EXA-to-EXB forwarding paths of a processor that allows dual-issue of
two arithmetic instructions.

In the example, a setup phase (1-4) prepares two registers with the A pattern,
and then the pipelines are synchronized. The following instructions are dual-issued
in the two pipelines since the data-dependencies are resolved by propagating the
operands through EXA-to-EXB forwarding paths. In details, the second operand of
the instruction 8 requires the result of 5, as well as the third operand of 10 uses the
result of 7. Some nop instructions are inserted in order to control the instruction
scheduling; eventually, these instructions can be replaced by other (test) instructions
not affecting the registers already considered. The test of the forwarding paths is
concluded by repeating the same scheme of instructions with the pattern B and finally
including the resulting registers in the signature computation.

An effective test requires to repeat such a procedure for each of the forwarding
paths and it depends on the specific processor’s implementation; however, the
principle is the same of the above example. Moreover, it is applicable also to more
complex multi-issue processors.

Even though the strategy is effective to test the forwarding paths, additional work
is still required to test the MUXes connecting such paths to the appropriate pipeline
stages (as in the example of Fig. 2.17).



2.3 Dual-Issue Processors 69

Reset of pipelines See Section 2.3.2

Test phase
1 l o a d r0 ,0 ; IF ID EX ME WB
2 nop ; IF ID EX ME WB
3 xnor r1 , r0 , r0 ; IF ID EX ME WB ; D1=11. . . 11
4 xnor r2 , r0 , r0 ; IF ID EX ME WB ; D4=11. . . 11
5 xnor r3 , r0 , r0 ; IF ID EX ME ; D1=11. . . 11
6 xnor r4 , r0 , r0 ; IF ID EX ME ; D3=11. . . 11
7 add r5 , r0 , r5 ; IF ID EX ; D0=00. . . 00
8 nop ; end p a t t e r n 0

Fig. 2.19 Test sequence that applies the pattern 0 of Table 2.6 to EXA OP1 MUX

The test of MUXes follows the strategy described in Section 2.2.2, which is
extended for dual-issue processors, where the number of MUXes is greater due to
the two logical pipelines.

The EXA OP1 MUX in Fig. 2.17 can be tested with a subset of patterns presented
in Table 2.6 (patterns 4-6 and 9-11 are discarded due to the selection of unavailable
inputs). Each test pattern can be transformed into a sequence of assembly instructions
bringing the needed value to each of the MUX inputs (i.e., pipeline stage), and finally
selecting the appropriate input (i.e., register) for the signature computation. An
example of sequence applying the first test pattern is reported in Fig. 2.19.

In the example, the test instruction 7 acts on the EXA OP1 MUX, by selecting the
D0 input as operand, which value is set by the instruction 1 and retrieved from the
register file. The other MUX inputs take the values imposed by the other instructions
(3-6). Additional nop instructions (2,8) are added to respect the needed instruction
scheduling.

A similar scheme can be used also for the other patterns, by replacing some of
the xnor with xor instructions, when the opposite value is needed, and modifying
the instructions 1 and 8 with the appropriate register (e.g., r3 register to select the
D0 input as operand). Other schemes can be easily constructed for each of the other
MUXes. Again, the strategy can be adapted to multi-issue processors.

For the sake of completeness, it is also possible to obtain alternative test patterns
from those listed in Table 2.6 by an ATPG.



70 SBST Algorithms

2.3.6 Pipeline Interlocking

Pipeline interlocking is a mechanism to detect a hazard and resolve it. This mecha-
nism is necessary to preserve original data dependencies specified in a sequence of
the instructions. Moreover, an interlock prevents instructions from being executed in
a wrong order.

Pipeline interlock is usually implemented by the interlock unit of a processor,
which constantly monitors the processor’s internal resources, such as pipeline’s
registers and computational units, required by the instructions processed in each of
the pipeline stages, and performs several operations, such as the following related to
in-order dual-issue processors:

Dual-issue detection: the interlock unit detects whether two decoded instructions
can be dual-issued, issuing a nop instruction together with the first instruction
in the negative case.

Multi-cycle instructions: the interlock unit assures in-order execution of instruc-
tions, by eventually stalling the pipeline in case instructions requiring more
than one clock cycle are being processed.

Structural dependency check: the interlock unit checks functional units required
by decoded instructions and eventually stalls the pipeline until the needed
functional unit is available.

Data dependency check: the interlock unit checks data required by decoded in-
structions and eventually:

1. activates appropriate selection of forwarding paths, if the data is available
in a register of the pipeline;

2. stalls the pipeline until the needed data is available, in case the data is
being processed.

Dual-issue detection is typically implemented, at higher level, as a condition
composed of several clauses, each one corresponding to a specific case where the
dual-issue of instructions is possible (or not possible). All possible combinations of
instructions that cannot be dual-issued are reported in the processor’s documentation.

When a condition precluding dual-issue is detected, the control logic activates
suitable control signals that propagate a nop instructions in the pipeline and prevent
one of the instructions to be issued (it will be issued at the following time slot).



2.3 Dual-Issue Processors 71

1 mul r1 , r2 , r3 ; P i p e l i n e A
2 mul r4 , r5 , r6 ; P i p e l i n e A ( no dual−i s s u e )

. . .
3 add r7 , r1 , r 4

Fig. 2.20 Example of instruction schedule on a dual-issue processor

In case of faults affecting the dual-issue detection, this behavior can be disturbed,
resulting in the following unexpected effects:

1. instructions that can be dual-issued are actually delayed and unnecessary stalls
are introduced;

2. instructions, that are normally delayed, are issued.

In the first case, the performances of the processor are affected, and faults causing
this are classified as “performance faults”. Such faults can be detected by using some
performance counters that are able for example to compute the number of stalls;
these modules exist in many processors.

In the second case, the faults may change the data-flow of the instructions. In
some situations, the instruction is skipped, thus the following instructions that retrieve
data produced by the skipped instruction is wrong. For example, let us consider two
consecutive mul instructions executed by a dual-issue processor equipped with a
single multiplication unit, as in the code snippet of Fig. 2.20. The mul instructions
(1,2) cannot be dual-issued; however, in case of fault, the instruction 2 may be
skipped. In this specific case, the following add instruction (3) needs the result of
2 and will use an old and most likely wrong value in its computation. The same
happens in case the instruction 1 is skipped.

In other situations, the internal registers of the pipeline may be changed, thus cor-
rupting the results of other instructions in the pipeline that use data from feed-forward
paths. This cascade effect may finally bring to unexpected run-time exceptions.

According to these considerations, the proposed functional test strategy aimed at
detecting faults affecting the dual-issue detection feature is the following:

1. Preliminary setup operations:
(a) to initialize (or deactivate) modules affecting the performances, such as

Branch Prediction Unit (BPU), and Caches, in order to create a determin-
istic environment with respect to the execution time;



72 SBST Algorithms

1 d i v r1 , r2 , r3 ; P i p e l i n e A
2 xor r4 , r5 , r6 ; P i p e l i n e B
3 xor r2 , r3 , r5 ; P i p e l i n e A ( d e l a y e d )

. . .
4 add r7 , r1 , r4
5 add r7 , r7 , r2

Fig. 2.21 Example of instruction schedule including a multi-cycle instruction

(b) to initialize performance counters when available in the processor;
(c) to create and setup Instruction Service Routines (ISRs) to trap unexpected

exceptions during test.
2. Test each pair of instructions that cannot be dual-issued:

(a) to prepare the operands with values suitable to observe the result in the
signature computation;

(b) to perform a reset of the pipelines (refer to Section 2.3.2);
(c) to execute the two instructions;
(d) to use the data produces by the two instructions in the signature compu-

tation.

3. Read the value of the timer or performance counters and update the signature.

In case of in-order multi-issue processors, each pair of instructions is executed
on all combinations of pipelines.

The proposed strategy can be extended to other interlocking features, such as
the management of multi-cycle instructions and structural dependency check (or
hazards).

In many processors, specific execution hardware is not fully pipelined, thus
executing particular instructions may require additional clock cycles. This is the
case, for example, of multiplications and especially divisions. In case a multi-cycle
instruction is being processed, the interlock unit stalls the pipeline until the instruction
(and the other one dual-issued) completes. We can consider a div instruction followed
by other single-cycle instructions as a significant scenario, as reported in Fig. 2.21.

In the example, let us consider the div instruction 1 executed on the A pipeline
and the instruction 2 that is dual-issued. Normally, the following instruction (3) is
delayed to wait for instruction 1. In case of fault, the result of 1, 2, or 3 may change,
thus corrupting the results of the following instructions (4,5).



2.3 Dual-Issue Processors 73

1 l o a d r4 , p a t t e r n A ; P i p e l i n e A
2 add r3 , r0 , r0 ; P i p e l i n e B ( r0 != r4 )

Fig. 2.22 Test sequence that applies the first pattern of Fig. 2.22 to two CMPs involved in
data-dependency check

Structural hazards may exist in a dual-issue processor with asymmetric pipelines,
where one of the execution units contains certain functional units. As an example, in
case of a single multiplier, a multiply instruction can only be issued in one of the
pipelines; thus, it is delayed in case the order is not respected. In case of fault, the
instructions are corrupted similarly to the previous examples.

The step 2 of the presented algorithm can be extended by:

1. a test for each multi-cycle instruction;
2. a test for each possible structural dependency.

The last feature which is interesting to be analyzed is the data dependency check.
The test of such a feature follows the strategy described in Section 2.2.2, which is
extended for dual-issue processors. To detect if there is a data-dependency present in
the pipeline, the register identifiers, which are encoded in the instruction operating
code, are compared between different pipeline stages, by means of comparators
(CMPs). In details, the amount of CMPs is equal to the number of input operands per
each pipeline stage involved in the forwarding mechanism. For example, the EXA

OP1 (analyzed in Section 2.3.5) includes a series of CMPs that check the operand
against the possible sources in every one of the pipeline stages where these values
may be produced (see Fig. 2.17). Accordingly, one of the inputs of these CMPs is
connected to the operand identifier (i.e., a register) encoded in the instruction and
used by the instruction in one stage, while the other is the identifier of the output
register on one of the possible source stages where the other instruction in the pair
assumed to have a data dependence is placed.

In Section 2.3.5, systematic patterns for CMPs (see Fig. 2.10) are transformed
in a sequence of assembly instructions. In the following, the strategy is adapted to
dual-issue processors.

As an example, it is possible to apply the first pattern of Fig. 2.10 to the two
CMPs that verify data-dependency between two consecutive instructions, which are
supposed to be dual-issued, with the instructions reported in Fig. 2.22.



74 SBST Algorithms

Setup phase Load all registers with different values

Reset of pipelines See Section 2.3.2

Test phase
; P ipe CMP i n p u t 1 CMP i n p u t 2

l o a d r4 , v a l u e ; A −− −−
nop ; B −− −−
add r2 , r0 , r4 ; A r4 ( 1 0 0 ) r0 ( 0 0 0 )
nop ; B −− −−
add r1 , r0 , r2 ; A r2 ( 0 1 0 ) r0 ( 0 0 0 )
nop ; B −− −−
add r0 , r0 , r1 ; A r1 ( 0 0 1 ) r0 ( 0 0 0 )
nop ; B −− −−
add r0 , r4 , r0 ; A r0 ( 0 0 0 ) r4 ( 1 0 0 )
nop ; B −− −−
add r0 , r2 , r0 ; A r0 ( 0 0 0 ) r2 ( 0 1 0 )
nop ; B −− −−
add r7 , r1 , r0 ; A r0 ( 0 0 0 ) r1 ( 0 0 1 )
nop ; B −− −−
add r0 , r7 , r0 ; A r7 ( 1 1 1 ) r7 ( 1 1 1 )
nop ; B −− −−
add r0 , r0 , r0 ; A r0 ( 0 0 0 ) r0 ( 0 0 0 )
nop ; B −− −−
Compact registers and compute test signature.

Fig. 2.23 Implementation of the test algorithm for the EXA OP1 CMP of an example in-order
dual-issue processor with 8 registers

In the example, the first input of the CMP is r4 (1002), while the second input is
r0 (0002). Normally, the two instructions do not present any data-dependency, thus
they are dual-issued. In case of fault, the CMP may signal a data-dependency and a
stall may be inserted in the pipeline. Again, the effect of the fault may be observed
by means of performance counters.

A complete application of test pattern to the EXA OP1 CMP can be performed
with a suitable sequence of instructions interleaved with nop instructions, aimed at
scheduling the test instructions only on the pipeline A, as depicted in Fig. 2.22.



2.3 Dual-Issue Processors 75

2.3.7 Instruction Prefetch Buffer

Another critical module in dual-issue processors is the instruction prefetch buffer.
This module, included in the fetch (or prefetch) stage, fetches instructions in advance
and forwards the relative Program Counter. In case of conditional branches, fetches
are speculative, in accordance with the Branch Unit.

In principle, the Bus Interface Unit (BIU) loads the prefetch buffer by reading
instructions from the code memory or instruction cache if available. On the other
hand, instructions are read from the prefetch buffer and then decoded and issued
accordingly. From the logical point of view, the prefetch buffer is a FIFO, which is
composed of several slots (or entries), each one possibly holding one instruction.

The number of slots that can be filled in a cycle by the BIU depends on the bus
width and, in dual-issue processors, two instructions at each cycle can be retrieved
from the prefetch buffer. Dependencies among instructions and stalls in the pipeline
influence this behavior.

For example, when data-dependencies exist, so that the processor issues a nop
instruction (as analyzed in Sections 2.3.5 and 2.3.6), only one instruction is retrieved
from the prefetch buffer at the successive cycle.

Moreover, in case of multi-cycle instruction, when in-order processors stall
the pipelines until the instruction completes, no instructions are retrieved from the
prefetch buffer, which is eventually filled with other instructions. The longer is the
stall, the higher is the amount of prefetch slots that are filled.

According to these principles, instructions are moved from the higher slots (near
to the BIU) towards lower slots (near to the issue stages) as follows:

• instructions are hold in the slots, in case of stalls present in the pipelines;
• one instruction is retrieved and the other slots are shifted by one position, in

case the previous instruction has been single-issued;
• two instructions are retrieved and the other slots are shifted by two positions,

in case the previous two instructions have been dual-issued.

Multi-issue processors (e.g., 4-way) are able to shift instructions by a higher
number of positions (e.g., 4).

Structurally, a slot of the prefetch buffer includes a register, where an instruction
is hold, and a MUX, which selects the source of the instruction to be hold depending



76 SBST Algorithms

Bus 
Interface 

Unit 

Slot N 
Decode
/ Issue 

Unit 
Slot N-1 Slot N-3 

Slot 1 

Slot 0 

Slot
N-2 

Interlock Unit 

Fig. 2.24 Dual-issue prefetch buffer

on the selection signals coming from the Interlock Unit (see Fig. 2.24). The possible
sources of instructions are:

• the content of the previous slot (single-issue case);
• the content of the second previous slot (dual-issue case);
• the content of the slot (stall case);
• the value coming from the BIU.

The proposed strategy to effectively test this module is based on two phases:

1. An appropriate sequence of instructions is executed able to stall the pipelines;
this allows to load further instructions up to the higher slots.

2. A test sequence is loaded by the BIU in the slots during the stalling cycles; at
the end of the stall, this sequence is propagated in the slots exciting some of
the paths.

As an example, a prefetch buffer composed of 4 slots is considered, and a dual-
issue processor where a division instruction stalls the pipeline for enough clock
cycles to fill the prefetch buffer. In this situation, a div instruction is considered,
followed by a sequence of test instructions, as reported in Fig. 2.25.

In the example, the div instruction (1) introduces a stall in the pipelines, long
enough to fill all the slots of the prefetch buffer with the following instructions. The
number of stalls introduced by the div is usually documented in the user manual,
however, in case a single div is not able to guarantee enough stall time, then multiple
div instructions have to be used. The nop instruction (2) is dual-issued with the
instruction 1 and is hold in the pipeline until that instruction completes. Meanwhile,



2.3 Dual-Issue Processors 77

1 d i v r1 , r2 , r3 ; i n t r o d u c e a long s t a l l
2 nop ; dual−i s s u e d w i t h 1
3 nop ; s l o t 0
4 nop ; s l o t 1
5 nop ; s l o t 2
6 nop ; s l o t 3
7 l o a d r4 , v a l u e ; s l o t 4

Fig. 2.25 Test sequence that propagates a pattern through the prefetch buffer slots

the prefetch buffer is loaded with the following instructions. In particular, the opcode
of the load instruction (7) is used as the test pattern, which is then propagated in
some of the prefetch buffer’s paths. The other nop instructions (3-6) are dual-issued
and do not insert any stall in the pipelines, thus the pattern is shifted by two slots
at the time. At the end of the sequence, the test signature has to be updated in
order to detect a possible fault. In particular, a fault in the propagation path corrupts
the test instruction’s opcode, while an error in the MUX selectors may produce an
unexpected sequence of instructions.

By carefully modifying the example in Fig. 2.25, another path can be excited.
For example, the extra nop instructions (3-6) can be replaced with other instructions
introducing data-dependencies, in order to shift the instruction 7 by one slot at the
time.

Moreover, other than simply filling the whole buffer, even the content needs to be
carefully selected. In Fig. 2.25, the instruction 7 can be replaced with other opcodes,
referred as opcode A and opcode B. To be effective, the two opcodes should be: 1)
complementary; 2) valid instructions.

If no combination is feasible for opcode A and opcode B in the processor’s
instruction set, then more than two opcodes are needed, in order to propagate
complementary values in each bit of the propagation path.

Finally, although most of the faults in the prefetch buffer can be covered by the
above strategy, further work is needed to cover the faults on the MUXes selection
circuitries. As analyzed in Sections 2.2.2 and 2.3.5, well known pattern can be used
in this case (see Table 2.6). The sequence of instructions can be modified accordingly,
by replacing the nop instructions with specific opcodes implementing the specific
pattern.



78 SBST Algorithms

2.3.8 Case Studies

The proposed methodology has been applied to two 32-bit in-order dual-issue pro-
cessors of the family named e200, which is based on the Power Architecture™.

The first processor (codename e200z448) is embedded into a 90nm SoC manufac-
tured by STMicroelectronics. Such a SoC is employed in safety-critical automotive
embedded systems, and serves two main application areas: mid-range engine man-
agement, and automotive transmission control. The other processor (codename
e200z425) is embedded into a 40nm multi-processor SoC also manufactured by
STMicroelectronics. This SoC is targeted at automotive powertrain, chassis and
body applications.

The e200z448 and e200z425 processors count for about 500 thousand equivalent
gates each and are representative for typical industrial dual-issue processors. They
share the same pipelined architecture, but present some differences. They utilize an
in-order dual-issue five-stage pipeline for instruction execution, which includes two
integer execution units, a branch control unit, instruction fetch unit and load/store
unit, and a multi-ported register file.

In the following, the details about the implemented reset of the pipelines will be
given, followed by the experimental results on the processors; a comparative analysis
with non-optimized test programs will also be given.

Reset of the Pipelines

A set of synchronization instructions available in the ISA has been exploited. Such
instructions stall the pipelines for a number of clock cycles that is enough to verify
certain conditions, which are: memory synchronization, performed to assure that
accesses to memory are ordered, and instructions synchronization, performed to
assure that fetches to memory occur in a synchronized context.

The solution implemented in the case study (see Fig. 2.26) is the following: a
memory barrier (1) orders all memory accesses; a context serialization instruction (2)
waits for previous instructions (including any interrupts they generate) to complete
before it executes, which purges all instructions from the processor (i.e., the prefetch
buffer is flushed) and re-fetches the next instruction. Thus, the processor starts a new
fetch phase, where a couple of instructions are fetched only in the case when the



2.3 Dual-Issue Processors 79

1 msync ; memory s y n c h r o n i z e
2 i s y n c ; i n s t r u c t i o n s y n c h r o n i z e
3 . a l i g n 3 ; a l i g n m u l t i p l e o f 8 b y t e s
4 < i n s t r u c t i o n > ; P i p e l i n e A
5 < i n s t r u c t i o n > ; P i p e l i n e B

Fig. 2.26 Implementation of the pipeline reset in the case studies

program counter contains a double-word aligned address, otherwise it only fetches
one instruction at first, and then keeps fetching two instructions at the time; for
this reason, an assembler directive (3) has been used, in order to assure that the
following instruction (4) is stored at a double-word aligned address; if needed, at
compile-time the assembler includes additional nop instructions between 2 and 4.
Finally, instructions 4 and 5 are fetched simultaneously.

Such a mechanism has been embedded whenever needed in the implemented
algorithms, eventually simplifying it when the previous instructions do not perform
load/store operations; in such cases, memory synchronization can be avoided.

Experimental Results

The evaluation of the proposed methodology has been carried out by selecting the
appropriate processor modules from the complete netlists. The Stuck-At (SA) fault
model has been considered in this work.

The entire fault lists have been split and organized in groups according to the
discussed algorithms. Modules under analysis are tested by adapting techniques
thought for single-issue processors; thus, a comparative analysis of different test
programs is presented. The e200z448 processor was extracted by the netlist of the
90nm SoC. The entire CPU module consists in 756,789 SA faults. It includes two
execution units, with several computational modules used for both integer execution
and vector processing. The two execution units are not symmetric, in fact only
one of them includes and a division unit; moreover, two 32×32 hardware multiplier
arrays are used for both two 32-bit multiply instructions (in dual-issue) and a vector
multiply instruction, thus it can be fully tested without a specific dual-issue approach;
such modules are not considered in this work. The total amount of SA faults that
have been evaluated for the purposes of this work is 406,666.



80 SBST Algorithms

For each computational module, test patterns were generated with ATPG and
then transformed in suitable sequences of assembly instructions that are able to
bring patterns towards the module’s primary input and time by time compute the
test signature with the values on the primary outputs. In order to highlight the
importance of having a deterministic behavior, several modified versions of the
final test program have been created (referred to as no reset), where the mechanism
which implements the reset of the pipelines is disabled. In order to influence the
scheduling of the instructions among the two pipelines, some nop instructions have
been randomly added in the no reset programs. Experimental results obtained via
fault simulation have shown a significant fault-coverage drop (up to 37 points) on the
modules behaving to one of the two pipelines. Actually, it is possible to note that in
the case the testing instructions are issued in only one pipeline, the obtained results
in this pipeline are similar than the expected ones. However, since the processor
issue is statistically unbalanced, it is possible to notice high differences in the fault-
coverage results on the different pipelines (see Table 2.11). Up to 15 percentile units
of fault-coverage drop are observed in the worst case on the complete fault list of
computational modules. In details, about 6 points are the worst case loss for the
pipeline A (less than 1 the best case), while for the pipeline B it is more than 25
(more than 6 the base case). The details of the fault simulation on the duplicated
computational modules can be found in Table 2.11.

The register file contains 32 64-bit GPRs, each one accessible by 32-bit ports;
thus, there are 4 write ports (2 for each pipeline), and 12 read ports (6 for each
pipeline). Also in this case, the impact of the methodology specifically devised
for the dual-issue capabilities has been evaluated by comparing three different
test programs. The dual-issue final test program (see Table 2.12) represents the
methodology herein explained: the idea is to recur to the reset of the pipelines, and
to the propagation algorithm that runs two times, because of the two pipelines. In
addition, two alternative versions of the test program have been created: the new
versions do not recur to the reset of the pipelines; additionally, one of the versions
only executes a single run of the propagation algorithm, as if the processor were a
single-issue one. The details of the fault simulation on the register file can be found in
Table 2.12. The experiments show that all the three test programs are able to test the
memory bank, thus no fault-coverage loss is observed on this module. Concerning
the access ports that include about 90% of the faults of the register file, a slight drop
(about 5 percentile units) can be observed on the version not implementing the reset



2.3 Dual-Issue Processors 81

Table 2.11 Fault simulation results on the duplicated computational modules of e200z448

Module Pipeline #faults SA FC% no reset SA FC% final

Arithmetic Units A 2,928 98.58–99.37 99.73
B 3,040 60.85–95.75 97.34

Logic Units A 2,922 82.50–89.69 89.94
B 2,914 59.74–80.88 89.57

Priority encoders A 2,072 88.67–92.80 92.81
B 2,046 54.85–77.98 92.42

Barrel shifters A 7,002 93.99–96.22 96.99
B 7,170 73.74–91.12 95.68

Mask unit A 4,169 76.70–83.32 85.20
B 4,204 58.65–69.02 76.07

(total) A 19,124 88.58–92.52 93.33
B 19,374 64.34–84.12 90.42

A+B 38,498 76.37–88.29 91.88

of the pipelines (column 4), while a significant loss of about 25 percentile units is
visible on the version devised for single-issue processors (column 3).

Each stage of the two pipelines stores the resulting data into specific registers,
which are interconnected with several multiplexers implementing data feed-forward.
Each of the two execution units retrieves data from 7 operand registers and updates
a status register. Each operand registers is fed by a dedicated multiplexer, which
is connected to several computational modules. Each status registers is fed by a
dedicated multiplexer, which implements the feed-forward paths; both intra-pipeline

Table 2.12 Fault simulation results on the register file of e200z448

Module #Faults
SA FC%

single-issue
no reset

SA FC%
dual-issue
no reset

SA FC%
dual-issue

final

Memory Bank 17,521 99.94 99.94 99.94
Access Ports 165,099 69.56 91.39 96.38
(total) 182,620 72.40 92.14 96.72



82 SBST Algorithms

and inter-pipeline paths are implemented. Other dedicated registers and multiplexers
exist for the memory stages, but load/store operations cannot be dual-issued in this
processor, thus they are not considered in this work. Test programs for these modules
have been able to reach about 77% of fault-coverage. The missing coverage is due to
the presence of logic managing exceptions, which has resulted hard to control.

The pipeline interlocking unit is implemented by a specific module of the netlist,
in charge of comparing the pipeline registers, identifying data-dependency and
routing the feed-forward paths, identifying structural dependency, and eventually
stalling the pipelines. As in the previous case, the final fault-coverage is not very
high (around 69%) for the exception-related logic.

Finally, the fetch stage includes two instruction registers that are preceded a
prefetch buffer composed of 20 slots. Other than the instruction opcode, each slot
holds the address, which is used by the debug unit of the processor for hardware
breakpoints, and prediction bits added by the branch prediction unit. The prefetch
logic also include other information for an externally accessible debug module,
which has limited the fault-coverage to 76%.

In order to evaluate the effectiveness of the results on forwarding, interlocking,
and prefetch unit, which are strongly influenced by the presence of exception-
handling and debug logic, alternative versions of the original test programs have
been created, which are thought for single-issue processors. Concerning feed-forward
paths, only intra-pipeline forwarding logic have been systematically tested. Test
program for interlocking logic has been relaxed, by removing the test of faults
affecting the dual-issue detection feature and by restricting data dependency check to
single-issue. A test program devised for a single-issue processor of the same family
has been finally used to test the prefetch buffer. Experimental results have shown a
significant fault-coverage drop (15 to 30 percentile units) obtained with single-issue
versions, as summarized in Table 2.13.

The complete test suite has a size of 50 kB and its execution takes about 62k
clock cycles. The average fault-coverage is 86.98%.

Especially in controlling units, some of the logic is not directly accessible with
SBST (or general purpose programs), resulting as functionally untestable. Unfortu-
nately, it is very hard to isolate the faults related to such logic without ad-hoc formal
tools, thus it is difficult to determine an upper bound value of fault-coverage. This is
a typical limitation of the state-of-the-art SBST.



2.4 Floating Point Unit 83

Table 2.13 Fault simulation results on the feed-forward paths, interlocking logic, and prefetch
buffer of e200z448

Module #Faults
SA FC%

single-issue
SA FC%
dual-issue

Feed-forward paths 97,821 47.22 77.53
Interlocking logic 20,214 54.48 69.15
Prefetch buffer 67,513 61.03 76.79

Table 2.14 Experimental results on e200z448 and e200z425

Module
e200z448 e200z425

#Faults SA FC% #Faults SA FC%

Dupl. comp. modules 38,498 91.88 42,976 89.94
Register file 182,620 96.72 103,456 99.65
Forwarding 97,821 77.53 133,523 75.80
Interlocking 20,214 69.15 22,114 67.83
Prefetch 67,513 76.79 56,915 85.19
(total) 406,666 86.98 358,980 85.37

For the sake of completeness, the same methodology has been applied to the
e200z425 processor, which has been extracted from the netlist of a 45nm SoC. This
processor includes a CPU consisting in 715,777 SA faults. The architecture is similar
to the previous processor, with some differences due to the lack of vector extensions,
and the addition of signal processing capabilities. The total amount of SA faults that
have been identified for the purposes of this work is 358,980.

By following the same strategy, a set of test programs for the interested modules
has been created and the average fault-coverage of 85.37% has been reached. The
complete test suite occupies 47 kB and is executed in about 51k clock cycles. The
cumulative results on the two processors are summarized in Table 2.14.

2.4 Floating Point Unit

Current critical systems commonly use floating-point computations. A floating-point
unit (FPU) is the module that implements the floating-point arithmetic as defined by
the IEEE standard 754 [75, 76]. This module is highly integrated in the pipeline of



84 SBST Algorithms

general purpose processors, thus SBST techniques used to test microprocessor cores
are valid also for FPUs.

In this Section, a SBST methodology to test the FPU in modern embedded
processors is presented. Well-known techniques are used to test some of the features
of the FPU that mainly implement the classical Floating-Point (FP) operations, e.g.,
FP multiplication. High fault detection can be achieved on the components that
implement such features by converting Automatic Test Pattern Generation (ATPG)
patterns in assembly instructions that finally compose a test program. However, other
parts are better tested by using a systematic functional approach.

In the following, a FPU architectural overview is given (Section 2.4.1), follower
by the proposed test strategies (Section 2.4.2). Finally, Section 2.4.3 shows some
experimental results gathered on a FPU embedded in an industrial SoC.

2.4.1 Architectural Overview

Floating-point numbers consist of a mantissa, exponent, and sign bit. The AN-
SI/IEEE Standard 754-1985 [75] and IEEE 754-2008 [76] specify various FP num-
ber formats, such as single precision, expressed on 32 bits, with 1 sign bit, 8-bit
exponent, and 23-bit mantissa. The standards also define values for positive and neg-
ative infinity, a "negative zero", exceptions to handle invalid results like division by
zero, special values called "not a number" (NaNs) for representing those exceptions,
denormalized numbers to represent numbers lower than the minimum, and rounding
modes.

In modern microprocessor designs, FP arithmetic is either integrated in the main
CPU (e.g., [77]) or part of a specialized core (e.g., [78, 79]).

FPUs in embedded microcontrollers usually implement a single-precision FP
system, which is in some cases a reduced subset with software support in order to
fully conform to the standard while minimizing the area occupation.

From a structural point of view, FPUs consist in several integer functional units,
such as adders, multipliers, shifters, etc., coupled with control modules that perform
normalization, rounding, and truncation. A careful analysis of testability of such
modules is presented in [80].



2.4 Floating Point Unit 85

FPMUL

A B

Z

(-8.64664867483711e-11) (-3.172135353088379)

(2.7428337e-10) Status Reg

R1 ← 

R2 ← 

R3 ← 

R4 ← 

R5 ← R5 + R3 + R4

0x2E0990AD 0x3AF09F7F

0xA7DB86D2 0x3CBB49D3

0xC7C38E06 0x001EF323

0x3C14BDAF 0xAC71A9D6

0x9903F796 0xABF99255

…

Input A Input B

Fig. 2.27 Example of ATPG loop-based approach applied to FPU

2.4.2 Proposed Test Strategies

An extensive test of the floating-point unit (FPU) requires the development of a
set of test programs, each one specialized in a particular feature or sub-module.
Well-known techniques can be applied to different modules, while there are specific
features (e.g., format conversion) that require a more accurate analysis.

Computational Modules

Typical blocks embedded in a FPU are the functional units that implement the
FP arithmetical operations, such as FP adders, FP multipliers, FP dividers, etc.
Some of these modules are combinational blocks and can be extensively tested by
means of ATPG loop-based approaches. These techniques rely on ATPG tools for
generating effective test patterns, which are then converted into loop-based sequences
of instructions [73, 81].

A simple example is shown in Fig. 2.27, which reports a list of ATPG patterns
(left part of the figure) for a FP multiplier. Such patterns are converted to a sequence
of instructions (right part of the figure) that loads the pattern into two general purpose
registers, then executes the FP multiply instruction, retrieves the result and the status
bits (from a status register), and finally computes the test signature.



86 SBST Algorithms

A loop is typically implemented that applies all the generated patterns to the target
module. A few coverage loss is typically observed when transforming ATPG patterns
to SBST, due to masking effects and aliasing during the signature computation.

The conversion step is trivial for simple blocks, but can be more challenging in
other cases, where selection signals have to be properly interpreted. Moreover, for
sequential blocks such as FP multipliers, sequential ATPG is required. If an effective
sequential ATPG engine is not available, alternative approaches such as deterministic
algorithms for these modules have to be used to cover the test escapes.

Format Conversions

Due to the different formats described in the standard, FPU in modern processors can
be equipped with specialized modules in charge of dealing with format conversion.

The test of these modules can be performed by applying the conversion of the
following values to different formats:

• well-known patterns, such as 0101. . . , 1010. . . , 0011. . . , 1100. . . , etc.;
• some denormalized and NaN values;
• positive and negative zero and infinite;
• several legal values, for example by reusing some values from the test of

functional modules (e.g., operands of FP adder test instructions).

For example, a single-precision FPU may also support the half-precision format,
as defined in IEEE 754-2008. Thus, the FPU instruction set should include specific
assembly instructions that convert a value to other formats. In this example, the
test of the conversion capabilities consists to convert each of the above values to
half-precision, and then convert the result again to single-precision, as shown in
Eq. (2.1).

A
Single−to−Hal f−−−−−−−−−→ B

Hal f−to−Single−−−−−−−−−→C (2.1)

In the above example, the FP value A, which is expressed in single-precision, is
converted in the value B, which is expressed in half-precision. Finally, B is converted
in the value C, which is again a single-precision number. Due to the fact that the
half-precision format has less bits in the exponent and mantissa fields, B can become
a denormalized number (and thus also C). Both B and C are used to update the



2.4 Floating Point Unit 87

Table 2.15 Proposed special operations to detect faults related to erroneous operations

Operations Value in A Value in B

A/B, A*B Denormalized Valid ̸= 0
A/B, A*B Valid ̸= 0 Denormalized

A/B Zero Valid ̸= 0
A/B Valid ̸= 0 Zero
A+B Infinite Valid or Zero
A+B Valid or Zero Infinite
A*B Denormalized Zero
A*B Zero Denormalized
A+B Hamming 1 non-conventional Valid or Zero
A+B Valid or Zero Hamming 1 non-conventional

signature, which should compact the effects of possible faults altering the correct
conversions.

The proposal approach is to apply the scheme of Eq. (2.1) to all the conversions
that are supported by the instruction set, for example:

• FP to integer, with truncation;
• FP to integer, with rounding.

Erroneous Operations

Operands involved in a FP operation can have different exponents, and as a con-
sequence the operation may result in overflow or underflow conditions. Moreover,
the standards specify the format for non-conventional values such as two zeros
(positive and negative), two infinite values (positive and negative), NaN values, and
denormalized values. FP operations using such values may also result in erroneous
values.

FPUs usually signal these situations by using a status register, which can be
read after a FP operation to determine its correctness. In some implementations, the
FPU raises exceptions in order to alert the CPU that consequently handles errors via
specialized interrupt service routines.

In order to test the circuitry involved in checking and alerting erroneous opera-
tions, the test program has to include some well-defined FP operations, as specified



88 SBST Algorithms

in Table 2.15. The presented operations are intended to detect all faults that create
a different erroneous result than the expected one (in a fault-free scenario). After
each operation, the signature has to be updated not only with the resulting value, but
also with the effect of the erroneous operation, i.e., by reading the status register or
handling the corresponding interrupt.

Each of the operations listed in Table 2.15 uses single values for the operands A
and B, except for the last two operations. For these operations, all the values with
Hamming distance 1 from non-conventional values are used, in order to consider the
dual cases with respect to the others in the table.

As an example, the first FP division in the table is considered, using a denormal-
ized value (A) as the dividend and a valid value different than zero (B) as the divider.
In faulty cases, the operand A may be interpreted as a valid value, thus the erroneous
result is not signaled. The final signature is then corrupted.

2.4.3 Experimental Results

The methodology herein introduced has been applied to a SoC including a 32-bit
pipelined microprocessor based on the Power Architecture™equipped with a floating-
point unit (FPU). The SoC is employed in safety-critical automotive embedded
systems and is currently being manufactured by STMicroelectronics.

The FPU integrates many execution units, a control unit, and few registers.
Concerning execution units, the FPU includes a floating-point adder unit, a floating-
point divider unit, a square root computation unit, and conversion units. The control
unit absolves many duties: it receives the instruction to be decoded and sent to the
right execution unit. As well, it is in charge of stalling the system if arithmetic
calculation is getting longer that a clock cycle. Few registers and flip-plops permit
the management of the execution flow.

In the experiments, an initial set of test programs (CPU-SBST) has been first
evaluated. These programs were developed focusing on the main processor. The
FPU was exploited for processor testing purposes, such as:

• to rise a special category of processor exceptions that are triggered by the FPU;



2.4 Floating Point Unit 89

Table 2.16 Experimental results on the FPU

Sub-modules #Faults
CPU-SBST

SA FC%
FPU-SBST
SA FC% Size [byte] Duration [cc]

Add/Mul/Conv. 53,095 32.4 89.4 2,684 3,360
Divider 12,794 25.2 87.2 2,848 21,985
Square root 6,621 19.5 96.2 648 508
Exceptions 418 30.1 86.3 5,500 4,420
Status register 1,014 23.0 100 2,352 10,776
Decode 556 78.4 100 460 216
Control logic 751 15.3 94.8 920 2,897
Glue logic 2,169 29.1 82.3 – –
TOTAL 77,418 30.2 90.0 15,412 44,162

• to excite the processor decode unit, which identifies floating-point instructions
when read from the code memory, and sends them to the FPU through the FPU
interface, for further decoding and execution.

The fault simulation of the CPU-SBST resulted in the low coverage level of
around 30% of Stuck-at (SA) faults.

The CPU-SBST test set has been enhanced following the strategy presented in
Section 2.4.2. Final value reached by the enhanced test set (FPU-SBST) is around
90% of SA fault coverage. The fault coverage values on the FPU sub-modules for
both test sets is resported in Table 2.16.

Table 2.17 also shows additional data, such as the size of memory occupied
by the FPU-SBST and its execution time on chip, expressed in clock cycles. It is
relevant to note that divider-related programs are very long because each division
instruction requires an average of 14 clock cycles to complete in the considered
architecture.

Finally, the test escapes can be attributed to the lower coverage of large computa-
tional modules like multiplier and divider. These sequential modules are not easy to
tackle either by using an ATPG based strategy, if a powerful sequential ATPG engine
is not available. Exhaustive search of operation can permit higher coverages at the
cost of a long fault simulation process aimed at discovering more effective patterns.



90 SBST Algorithms

Table 2.17 Duration and code size of test programs for the embedded FPU

Sub-modules Duration [cc] Code size [byte]

Add/Mul/Conversions 2,684 3,360
Divider 2.848 21,985
Square root 648 508
Exceptions 5,500 4,420
Status register 2,352 10,776
Decode 460 216
Control logic 920 2,897
TOTAL 15,412 44,162

2.5 Chapter Summary

This chapter presented several methodologies for the development of a suite of SBST
programs specialized in the test of specific components of modern microprocessors.
The proposed test strategies are systematic and their implementation has to be
adapted to the specific case study.

Some of the modules tackled by this chapter, such as the decode unit, the register
forwarding unit, and the pipeline interlocking unit, strongly characterize the pipeline
of modern processors. These modules are not classical functional units that are
mapped on well-defined assembly instructions, but require specific sequences of
instructions to be tested. Moreover, the complex features characterizing multi-issue
processors have been analyzed, with special focus given to in-order dual-issue
processors. In this case, the hardness is due to the non-deterministic scheduling
of instructions among replicated functional units. Finally, the test of a complex
computational unit such as the FPU has been tackled. In this case, other than state-
of-the-art techniques based on ATPG, hints have been given about how to cover
hard-to-test faults.

Experimental results on both academic and industrial processor have shown the
feasibility and the effectiveness of the proposed test strategies. In all the presented
case studies, the stuck-at fault coverage has been higher than 85%.



Chapter 3

Development Flow for On-Line SBST

When SBST programs have to be integrated into safety-critical systems, the coexis-
tence with on-board operating system (OS) impacts on the development phase with
additional effort by the test engineer. In systems of this kind, such as for automo-
tive or avionics, safety regulations impose the periodical execution of test phases
during the mission, thus SBST programs are suitable to integrated in the system and
executed as OS tasks.

This chapter tackles the problems of the development of SBST programs and
their integration into safety-critical systems, with special emphasis given to the
automotive field.

Microprocessor-based systems are employed in cars for a great variety of applica-
tions, ranging from infotainment to engine and vehicle dynamics control, including
safety-related systems such as airbag and braking control. The use of microprocessor
systems in safety-critical and mission-critical applications, calls for total system
dependability. This requirement translates in a series of system audit processes to
be applied throughout the product lifecycle, including on-line testing. The reliabil-
ity requirements are met by trading off fault coverage capabilities with admissible
implementation costs of the selected solutions.

The technical content of this chapter deals with the most relevant aspects of
on-line test programs characteristics and their development flow.

Section 3.1 illustrates the several issues that need to be taken into account when
generating test programs for on-line execution.



92 Development Flow for On-Line SBST

Section 3.3 proposed an overall development flow based on ordered generation of
test programs that is minimizing the computational efforts. Algorithms proposed in
the previous chapter are integrated in the generation flow and combined to minimize
the overall development time.

Section 3.2 provides guidelines for allowing the coexistence of SBST with the
mission application while guaranteeing execution robustness.

Finally, Section 3.4 shows the results that have been collected on industrial case
studies. The impact of on-line requirements is evaluated on automotive Systems-
on-Chip (SoCs) manufactured by STMicrolectronics. Experimental results also
demonstrate that the development of SBST becomes unfeasible on processors with a
significant dimension, without careful planning for proper resource partitioning and
ordering.

The concepts and the results presented in this chapter have been published in
[12] (about the methodology and partial results for microprocessors) and [11] (about
FPU).

3.1 On-Line Constraints

SBST is widely perceived as a proper method for accurate and non-invasive au-
tonomous test. In a few words, a test program runs and eventually detects misbe-
havior by simply exercising the processor functionalities. This process intrinsically
respects power constraints, since test programs are executed under the same condi-
tions of the mission mode. SBST does not ask for additional test circuitries, and is
quite cheap in terms of features and commodities required to the test equipment.

When dealing with on-line SBST, test programs have to share processor resources
with the mission application, i.e., the OS which is managing mission’s tasks; this
coexistence introduces very strong limitations compared to manufacturing tests:

1. SBST programs need to be compliant with a standard interface, enabling
the OS to handle them as normal processes. This interface must guarantee
processor status preservation and restoration, even in case of higher priority
requests (e.g., preemption).

2. SBST programs need to be generated following execution time constraints, due
to the resources occupation that can be afforded by the mission environment.



3.2 Execution Management 93

In particular, this is strictly required when a test cannot be interrupted because
using critical resources (e.g., special purpose registers).

3. There is a strong limitation in terms of memory resources, due to the mis-
sion code and data characterizing the OS. To face this issue, it is usually
recommended to implement the following guidelines:

(a) to develop SBST as a set of precompiled programs stored in binary
images to be run along mission mode, possibly scheduled and loaded by
the operating system;

(b) not to refer to any absolute addresses when branching, as a result, the
test code can be stored in the memory, copied, and launched from any
location without any functional or coverage drawback (this is usually
referred to as code relocation);

(c) not to refer to absolute addresses when accessing the data memory (i.e.,
data relocation);

(d) to identify possible memory constraints from the point of view of the OS
restrictions, and indispensable locations to be reserved for test purposes.

Moreover, targeting effort reduction, the test should be created also taking into
account the characteristics of the general processor family, in order to reduce code
modifications when transferring SBST programs to another processor core belong-
ing to the same family. The next sections face these questions and provide some
guidelines for easily taking early decisions.

On-line execution constraints may in same cases limit the effectiveness of the
usual methodologies for writing test programs, which has to be rethought to fit to the
real system.

3.2 Execution Management

The inclusion of SBST routines in the mission environment is a critical issue. To
face the problematic aspects of this integration, after the generation, three major
points related to test program execution are considered:

1. cooperation with other software modules, usually related to the mission envi-
ronment such as the OS;

2. context switching and result monitoring;



94 Development Flow for On-Line SBST

OS (in flash)

Self-Test programs

Free

Unmapped

OS (in RAM)

Self-Test data
(read/write)

Free

Unmapped

Control
Status

Unmapped

Watchdog

FL
A

SH
R

A
M

P
e

ri
p

h
e

ra
ls

MPU

Signature

Test duration

Stack frame size

Processor setup

Memory configuration

Memory protection

EABI prologue

Self-Test code
EABI epilogue

Self-Test data 
(read-only)

Test Program StructureMemory Allocation

GP and SPR registers 
MMU

Peripheral Setup

Si
gn

at
u

re
 c

h
ec

k Setu
p

 p
h

ase

Fig. 3.1 Test program encapsulation and loading for execution phase

3. robustness in case of faulty behavior, which is strictly related to interruption
management.

3.2.1 Test Encapsulation

Considering the cooperation with other software modules, such as the threads
launched by the OS, the test program suite needs to be constructed by including key
features enabling the test to be launched, monitored, and eventually interrupted by
higher priority processes of the mission management system.

The test program has to be carefully structured, in order to configure memory
areas and peripheral resources for test purposes, as also graphically depicted in
Fig. 3.1. All the test programs are normally stored and executed in the flash memory.

In order to be compliant with the mission software environment, a viable and
strongly suggested solution for the development of the OS and software modules for
automotive embedded microcontrollers is the adoption of the Embedded-Application
Binary Interface (EABI). Widely used EABIs include PowerPC [82], ARM EABI2
[83], and MIPS EABI [84]. EABIs specify standard conventions for file formats,



3.2 Execution Management 95

data types, register usage, stack frame organization, and function parameter passing
of a software program. Thus, every test program includes an EABI prologue and
epilogue (see Fig. 3.1), in charge of saving and restoring the mission status.

The EABI frame is created by the test code as soon as it begins. Thus, any
scheduler can launch the test execution, e.g., the scheduler available in the OS
hosting the test routine. Moreover, extra information should be included to allow a
test scheduler to perform a proper running environmental setup.

Such additional information, or metadata, encompasses:

• stack frame size;
• special purpose register setup;
• memory protection setup;
• test duration.

Metadata are used by the test program during different phases, some at the setup:

1. duration time (i.e., watchdog setup);
2. stack frame size (i.e., space available for mission configurations to be saved

and local variables of the test program);
3. processor setup (i.e., special purpose register ad-hoc values);
4. memory configuration (i.e., virtual memory initialization);
5. memory protection (i.e., to manage wrong memory accesses through excep-

tions);

and others at the execution end:

6. signature (i.e., test results check).

Such a memory structure can be also stored in the mass memory until it is loaded
to be run from any portion of the available memory, according to the code relocation
feature already described in Section 3.1.

3.2.2 Context Switching to Test Procedure

Test programs structured as described Section 3.2.1 can be integrated into any
mission OS as normal system tasks. Proper context switching is managed by the
EABI interface; additional setup may be required, according to the characteristics of



96 Development Flow for On-Line SBST

the test program, and it is managed internally by the test programs themselves, by
means of the additional metadata.

Three general cases can be identified, each one demanding for proper metadata
to be used in setup procedures:

Run-time tests They can be interrupted by mission requests; usually used to cover
computational modules such as arithmetic modules.

Non-exceptive tests They require the manipulation of SPR register, such as for
testing the Register File.

Critical tests They intentionally raise interrupts and make use of peripheral cores,
such as a procedure for testing modules managing software exceptions.

Run-time tests are the easiest to manage: they only require creating a stack
frame according to EABI compliancy; stack frame size is minimal. It is suggested to
execute this kind of tests with low privileges, i.e., user mode, because they shall never
request interruptions or privileged instruction execution in the fault-free scenario.
No other special setup is required. EABI compliancy can be satisfied during the
execution, and other OS threads can preempt the test execution.

Non-exceptive tests are slightly less easy to manage because these require re-
sources that are not allowed to be directly used in the EABI context. For this category,
additional test setup steps have to be executed before running:

• disable the external interrupts to avoid preemption;
• save all special and general purpose registers in a larger stack frame memory

area;
• modify the content of special and general purpose registers according to the

processor setup information.

Moreover, some closing operations are needed at the conclusion of the test
execution to restore the initial configuration. During the execution of these tests, no
preemption is allowed because the compliancy with the EABI standard cannot be
guaranteed.

When considering Critical tests, other than saving-restore all registers and disable
external interrupt sources, more restrictive requests have to be accomplished:

• the Interrupt Vector Table (IVT) and the related registers in case an alternative
IVT is required for testing purposes;



3.2 Execution Management 97

• the current control and status registers of the used peripheral modules, such as
the interrupt controller configuration and the MMU.

3.2.3 Interruption Management and Robustness

Interrupt mechanisms, which are managing synchronous and asynchronous excep-
tions, need to be handled with extreme care, because they are not only intentionally
raised for testing purposes.

In the SBST scenario, three types of exception can be identified:

• intentionally provoked exceptions, i.e., to test processor exceptions;
• unexpected, induced by an erroneous execution that is provoked by a faulty

configurations;
• mission mode interruptions.

Intentionally provoked interruptions can be both synchronous or asynchronous.
Situations like system calls, illegal memory access, illegal instructions, and privilege
related operations are synchronous, as they are forced by the code itself. On the
other hand, asynchronous interruptions are raised through operations with peripheral
cores.

To test exceptions it is therefore necessary to both rise and manage them (see
Fig. 3.2). If the logic managing the interrupt has not been corrupted by a fault, each
single forced exception is correctly managed, meaning that a test Interrupt Service
Routine (ISR) is accessed. Such an ISR is configured at the time when the scheduler
prepares the environment for the test program execution and replaces the mission
ISR with the test ISR.

The code included in the test ISR is also used to add significant contents into the
signature, e.g., the processor’s status registers. In presence of a fault, the execution
flow may be altered so that an exception, which is intentionally scheduled, actually
is not raised. In this case, the signature is not updated by the test ISR, and the right
signature value is not produced.

Furthermore, the exception management is also crucial for detecting faults pro-
ducing execution flow deviations that lead to an unexpected processor’s internal
status or cause unexpected synchronous interruptions. Typical cases are a legal
instruction wrongly decoded as an illegal instruction format, or an illegal memory



98 Development Flow for On-Line SBST

Prepare for INTR

Excepting instruction

Assert: RET from INTR

Program peripheral

Prepare for async INTR

…
…
…

Create stack frame

Assert: expected INTR?

Serve INTR & 
update signature

RET from INTR

INT skipped

sync test INTR

Assert: barrier after RET

RET skipped

async
mission/test 

INTRPeripheral 
core

FAIL

FAIL

…

FAIL

Unexpected 
INTR

Test ISR

Unstable processor status

???

Continuous INTR

Freeze/Loop

Signature 
corruption & 

Jump into Test
Assert: check signatureFAIL

PASSED

Watchdog

SYSTEM RESET

Test routine

RET

Fig. 3.2 Expected and unexpected exception management scenario

access raising an interruption by the memory protection unit mechanism (such cases
have been also analyzed in Section 2.1). If this situation occurs during the execution
of any test program, the test ISR should ideally be able to recover such an erroneous
(due to the fault) execution flow and to record the wrong behavior observed. Some
countermeasure can be adopted to identify unexpected interrupt requests, such as
performing an assertion in the ISR prologue to check a password stored into a GPR
before the interrupt is intentionally raised. A similar method is implemented for
checking the correct return from interrupt, e.g., by completing the test execution
with an assertion.

This technique is making the test code quite robust, but further work is needed if
the processor status becomes unstable, resulting in spurious and repeated exceptions
or endless loops. In the latter case, an external mechanism have to be implemented
in order to bring the system into a safe status, i.e., by programming a watchdog timer
before running the test.



3.3 Development Flow 99

These cases are graphically shown in Fig. 3.2, where solid lines are showing
expected interrupts while dashed ones are showing the effect in case the processor
status is unstable. During the execution of run-time test programs, mission interrupts
need to be identified and served as soon as possible, i.e., passed to the mission OS.
The correct implementation of the EABI permits to easily manage this case.

3.3 Development Flow

The major cost in the development of SBST is the computational effort required
to generate test programs: the fault grading process [51], which evaluates the ef-
fectiveness of a test program (by assessing the fault coverage), represents a severe
bottleneck. Moreover, the cost for developing the test program infrastructure de-
scribed in the previous sections and required by the on-line execution is not negligible.
For instance, for a medium sized embedded processor with about 200k stuck-at faults,
fault simulating 1 ms program may require some 3 days on a 2GHz processor.

Such a cost becomes unsustainable if the generation process is iterative and
produces many programs before achieving a good coverage [28]. The proposed
methodology is able to achieve a significant optimization of development time and
resources and is based on the following principles:

Modularity The processor under test is not tackled as a unique module, but its
sub-modules are considered separately (e.g., ALU, Control Unit, etc.); this
means that the processor’s fault universe is selectively divided into several
smaller fault lists that are more effectively managed along the test program
generation.

Parallelization By facing modules separately, it facilitates the distribution of the
development process on the available workstations/test-engineers (see more
details in Section 3.3.1);

Side-effect By developing a test for a specific sub-module, additional faults belong-
ing to other sub-modules can be covered.

The strategy is based on these principles and consists on the iterated execution of
two steps until all sub-modules are considered:

1. to generate, possibly in parallel, test programs for a set of carefully selected
sub-modules until these are sufficiently covered (more details in Section 3.3.2);



100 Development Flow for On-Line SBST

CPU

S4

S1 S3

S2

(a) sub-module division

CPU
Modules under test

S4

S1 S3

S2

(b) test generation of
a set of sub-modules

CPU

S1

S2 S4

S3

(c) synchronization and
side-effect evaluation

CPU
Modules under test

S1

S2 S4

S3

(d) new generation step

Fig. 3.3 Sub-module identification and visualization of the coverage figure evolution along
the proposed generation steps.

2. to perform a synchronization among all the previously generated test programs,
which evaluates their effectiveness over a larger fault list; to synchronize means
to fault grade test programs that are generated for a specific sub-module over a
different (larger) list of sub-modules.

In order to better explain the proposed flow, an example device is considered,
which is split into four sub-modules: S1, S2, S3, and S4 (Fig. 3.3a).

In the first step (Fig. 3.3b), two modules (S3 and S4) are considered in parallel
and graded separately, i.e., during the generation process for module S3 only its own
faults are considered.



3.3 Development Flow 101

As soon as the coverage of these sub-modules is satisfactory, the generated test
programs are graded over the other parts of the device (Fig. 3.3c); this synchroniza-
tion step brings to observe a positive side-effect on the coverage of modules S1 and
S2, as well as on S3 when grading the test program for S4, and vice versa.

A new generation step is then started on S1 and S2 (Fig. 3.3d); it is worth to
mention that the previous steps have been beneficial because the starting fault lists
of S1 and S2 have been pruned before facing their generation process.

The main advantage of using this approach is a faster development of the test suite
because the fault lists to be considered are significantly smaller than the complete
fault list, resulting in a faster fault grading that usually takes in the order of minutes
to complete. Moreover, after each synchronization step, the number of active faults
in new sub-modules is reduced, again leading to a speed-up of the fault simulation
process.

3.3.1 Resources Partitioning

According to the modularity principle, the processor is divided into sub-modules to
consider independent fault lists in parallel, and their selection is the major issue in
the preliminary phase preceding the generation effort.

For being independent, fault lists need to be:

• non-overlapping, i.e., one fault has to belong to only one fault list;
• functionally orthogonal, i.e., faults in the same independent fault list need to

belong to modules related to one specific functionality.

The non-overlapping criterion dictates that the same fault must be considered
only one time in the process; on the other hand, when dealing with orthogonality, a
fault must be included in the most relevant fault list from the point of view of the
functionality of the related gate.

The process of selecting the set of fault lists is not trivial and relies on:

1. manuals and documentation of the device with specific indications about the
micro-architecture;

2. hierarchy of the device netlist;
3. test engineer expertise.



102 Development Flow for On-Line SBST

To identify independent fault lists, the process requires the analysis of the pro-
cessor functions. Such functions are then mapped over the processor hierarchical
netlist.

Most of the fault lists directly derive from a specific module, but frequently sev-
eral sub-modules are combined into a single fault list if related to the same processing
functionality. As an example, the faults of a multiplication unit usually constitute an
independent fault list. On the contrary, there are several multiplexers that seem to be
independent netlist modules, but actually compose the feed-forwarding logic in the
processor’s pipeline. Thus, faults belonging to these multiplexers have are grouped
into the same fault list, which is functionally orthogonal and non-overlapping with
other modules.

Concerning computational resources allocation, once the independent fault lists
have been identified, the following rules aim at maximizing the number of fault lists
to be considered in parallel:

1. fault coverage calculation for sub-modules may be allocated on a single or
many threads according to:

(a) number of available threads per CPU;
(b) number of EDA tool licenses;
(c) fault list size;

2. fault coverage calculation for synchronizing the results of multiple test pro-
grams among multiple sub-modules should be allocated on many threads.

3.3.2 Optimized Test Programs Generation Order

The side-effect principle is crucial to select the most promising order to proceed
in the test program generation. The decision needs to be tailored on the specific
architecture under analysis.

In the following, general guidelines for determining the generation order are
provided for the most common microprocessor architectures used in automotive.
In the proposed development flow, the generation order is organized according to
horizontal and vertical flow rules.



3.3 Development Flow 103

Vertical flow rules demand to split the flow into consecutive levels, such that by
testing all the modules into a given level, a large positive side-effect in terms of fault
coverage is observed when moving to the next level.

The proposed methodology divides the flow into levels according to the following
rules:

1. to consider first those units that can be mapped on specific assembly instruc-
tions or specific architectural programming mechanisms;

2. to continue with memorization and control flow resources;
3. to conclude with modules which functions are transparent to the programmer.

According to the presented strategy, a synchronization step is needed after
completion of the currently considered level before moving to the next. This syn-
chronization step involves all sub-modules of the next level, i.e., to reduce the size
of the fault lists to be considered successively.

By looking at the problem in a horizontal manner, it is also possible to identify
many parallel branches which are still complying with vertical requirements. This
horizontal view consists in identifying branches, so that a negligible side-effect
crosses branches belonging to different horizontal views.

Based on the previous rules, for a typical automotive-oriented CPU architecture,
an effective development flow is based on 3 levels and 2 branches (Fig. 3.4), as in
the following scheme:

Level 1 – Branch A (1A) ALU: easy to test, sub-modules that ask for the execution
of specific arithmetic and logical instructions. Side effect will be maximized
towards the REGISTER FILE by an accurate selection of registers to be used
as operands and in the control flow management.

Level 1 – Branch B (2B) SPECIAL: sub-modules that encompass Exceptions Man-
agement, Branch Prediction, and Virtual Memory-related modules, e.g., the
Memory Management Unit (MMU) module. These sub-modules are hard to
cover, requiring specific instructions and sequences of instructions. They will
produce a very large positive side-effect on ADDRESS-related modules.

Syncronization 1 Once a sufficient coverage on sub-modules belonging to Level 1
is reached, the set of programs developed for (1A) are evaluated on the REGIS-
TER FILE fault lists, while (1B) is graded on the ADDRESS-related modules.



104 Development Flow for On-Line SBST

ALU sub-modules

ADDER
(ARITH)

MUL DIV
LOGIC

SHIFTERS

Synchro 1

REGISTER FILE

REGISTER
BANK

MUX-DECODER
(R/W PORTS)

SPECIAL sub-modules

EXCEPTIONS MMU
BRANCH

PREDICTION

Synchro 1

Synchro 2

ADDRESSING

ADDER
(EFFECTIVE ADDR)

PROGRAM
COUNTER

PIPELINE - CONTROL UNIT 

FETCH
PRE-FETCH

MUX-DECODER
(DATA DEPENDENCY)

DECODE LOAD/STORE

Synchro 3

FINAL  REFINEMENT

1A)

2A)

1B)

2B)

3) FLAGS

HORIZONTAL rules - BRANCHES
V

ER
TIC

A
L ru

les -
LEV

ELS

Fig. 3.4 Proposed test program development order for CPUs organized in levels and branches,
and synchronization steps

ALU sub-modules

FP
ADDER

FP
MUL

FP 
DIV

Synchro 1

REGISTER FILE

GENERAL
REGISTERS

SPECIAL modules

EXCEPTIONS

Synchro 2

PIPELINE - CONTROL UNIT 

DECODE

Synchro 3

FINAL  REFINEMENT

1A)

2)

1B)

3)

STATUS 
REGISTER

CONVERSION

CONTROL
LOGIC

STACK

V
ER

TIC
A

L ru
les -

LEV
ELS

HORIZONTAL rules - BRANCHES

Fig. 3.5 Proposed test program development order for FPUs



3.3 Development Flow 105

As a result, the number of active faults to be then considered in Level 2 will be
greatly reduced.

Level 2 – Branch A (2A) REGISTER FILE: the test of the register file module is
straightforward, being several papers describing effective sequences to test
(including Section 2.3.4). In the proposed generation method, it is suggested
to reorder instructions and operands in order to induce the usage of DATA
DEPENDENCY structures in the PIPELINE.

Level 2 – Branch B (2B) ADDRESSING: by having completed (1B), the most of
the faults included in the ADDRESS-related modules, such as Branch unit,
Effective Address calculation, and Program Counter, will result as already
covered. This step is therefore a completion of the previous one, which is done
mainly by adding memory operation and branches to specific addresses.

Syncronization 2 After reaching a sufficient fault coverage on Level 2, the test
programs developed for Levels 1 and 2 are evaluated on the PIPELINE and
CONTROL UNIT modules.

Level 3 PIPELINE – CONTROL UNIT: these modules are typically considered
hard-to-test, but the fault lists are highly pruned by previous generation steps.
Algorithms for modules such as Decode Unit, Data Dependency-related logic,
or Prefetch Buffer are presented in Chapter 2.

Syncronization 3 The entire test suite obtained along this process is evaluated on
the whole processor fault universe.
The missing faults are analyzed at the end of the process and final refinement
programs are added to cover corner cases and specific configurations not
considered along the previous steps.

In the previous scheme, additional branches can be added when considering mi-
croprocessors equipped with special features, e.g., caches, shared memory schemes,
and Floating-Point unit (FPU). Alternatively, a similar approach can be applied to
the special feature under analysis, if this is complex enough to require multiple
generation steps. As an example, a complex FPU can be considered. The 3-level
2-branch scheme presented above can be adapted to such a module, as shown in
Fig. 3.5. In this case, ADDRESSING modules have not been considered, but the
actual implementation depends on the specific case under analysis.



106 Development Flow for On-Line SBST

3.4 Case Studies

The methodology herein introduced has been applied to several industrial SoCs, in
the frame of a collaboration with STMicroelectronics. Such SoCs are employed
in safety-critical automotive embedded systems, such as airbag, ABS, and EPS
controllers and is currently being manufactured by STMicroelectronics. On-line
SBST programs have been developed mainly targeting the CPU and FPU cores.

Details about the development flow for a 32-bit microprocessor based on the
Power Architecture™ are given in Section 3.4.1. Results of the development flow
for an embedded FPU are presented in Section 3.4.2. Finally, Section 3.4.3 shows
cumulative experimental results gathered among the different processors.

3.4.1 Automotive Microprocessor

The case study is a 32-bit pipelined microprocessor based on the Power Architec-
ture™ technology and designed specifically for embedded applications. The pro-
cessor integrates a pair of integer execution units, a branch control unit, instruction
fetch unit and load/store unit, and a multi-ported register file capable of sustaining
six read and three write operations per clock cycle. Most integer instructions execute
in a single clock cycle. Branch target prefetching is performed by the branch unit to
allow single-cycle branches in many cases. It contains a Memory Management Unit
(MMU) and a Nexus Class 3 module is also integrated for external debug purposes.

The 32-bit processor utilizes an in-order dual-issue five-stage pipeline for instruc-
tion execution. These stages are:

1. Instruction Fetch
2. Instruction Decode/Register file Read/Effective Address Calculation
3. Execute 0/Memory Access 0
4. Execute 1/Memory Access 1
5. Register Write-Back

The stages operate in an overlapped fashion, allowing single clock instruction
execution for most of the available instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic
Unit (LU), a 32-bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition



3.4 Case Studies 107

Register manipulation Unit (CRU), a Count-Leading-Zeros unit (CLZ), a 32x32
Hardware Multiplier array, and result feed-forward hardware. Integer EU1 also
supports hardware division. Most arithmetic and logical operations are executed in
a single cycle with the exception of multiply, which is implemented with a 2-cycle
pipelined hardware array, and the divide instructions. A Count-Leading-Zeros unit
operates in a single clock cycle. Two execution units are provided to allow dual-
issue of most instructions. Only a single load/store unit is provided, and only a
single integer divide unit is provided, thus a pair of divide instructions cannot issue
simultaneously.

Experimental Results

To test processor through software is a deeply explored field; therefore, in many
cases the technique utilized has been borrowed from the literature and adapted to
cover the specific modules of the considered processor core. Table 3.1 reports the
list of generation techniques employed to achieve the high fault coverage of each
processor sub-module. On selecting these techniques, some of the most important
proposals regarding test program generation available in today’s literature has been
used.

Concerning automatic approaches, both ATPG-based and optimization tech-
niques based on Evolutionary Algorithms have been utilized (refer to Section 1.5).
Deterministic techniques refer to available solutions that exploit the sub-module
regularity in order to propose a well-defined test algorithm. Finally, rows labeled as
Manual refer to pure manual strategies performed by the test engineer exploiting the
processor user manual, the ISA, as well as the available HDL processor descriptions.

As discussed in Section 3.1, both the duration and the size of each test program
are on-line requirements that may vary depending on the mission application and
physical limits of the device (e.g., the available memory space). In the specific case
study, the limitations were given both in terms of duration of single programs, and of
overall occupation of the complete test suite. In particular, the maximum duration of
a single program labeled as run-time test should have not exceeded 512 clock cycles,
while the Flash memory area reserved for test purposes was limited to 256kB.

To match these constraints, every method needs to be tailored opportunely:



108 Development Flow for On-Line SBST

Table 3.1 SBST strategies used along the generation process for the automotive microproces-
sor

Sub-module Techniques References

Arithmetic adders
Divider

Logic unit
Multiplier
Shifters

Deterministic +
Constrained ATPG +

Evolutionary

[28, 27, 85, 39],
Section 2.3.3

Exceptions Deterministic [86]
Branch prediction unit Deterministic [26]

Timers Manual
Register bank
Register ports Deterministic Section 2.3.4

EA adder
Load store unit

Program counter

Deterministic +
Evolutionary +

Manual
[55]

Forward/Interlock unit Deterministic Sections 2.3.5 and 2.3.6
Decode unit

Control registers
Status registers

Deterministic Section 2.1

Fetch unit Deterministic Section 2.3.7

• ATPG-based generation methods can be constrained by asking the automatic
engine for high compression and limiting the generation to a maximum number
of patterns; the generated patterns may be eventually transformed into many
test programs compliant with duration constraints;

• fitness values used in the Evolutionary computation experiments include pro-
gram size and length measurements; in such a way, the programs exceeding
the imposed limitations can be discarded;

• Deterministic and Manual generation methods require additional efforts by the
test engineer to fit the programs length and size into the required constraints;
more easily, if too long, they can be split into several shorter programs.

Code characteristics fitting on-line requirements were also considered in all cases,
such as having relocatable code (absolute branches and access by absolute addresses
to memory locations were not allowed) and resorting to a limited portion of memory
space (1kB) reserved for test.



3.4 Case Studies 109

As described in Section 3.2, each generated program was encapsulated into the
EABI standard frame and included the additional code sequences that guarantee
the test robustness. For the specific case of study, the EABI compliant frame
is accounting for very few instructions at the beginning of procedures (e.g., 3-5
instructions); this number increases whereas:

• extra registers have to be saved before being used and finally restored to their
original values (e.g., non-volatile registers, or special purpose registers, such
as the Microprocessor Status Register);

• memory resources need to be protected (e.g., Memory Protection Unit is
exploited);

• on-board peripherals need to be programmed for test robustness (e.g., watch-
dog timers, performance counters).

The number of additional instructions required to afford robustness other than
mere compliancy with EABI standards was equal to about 20. Additionally, to further
enforce robustness, additional instructions were added when a context switching is
forced via exception. Concerning the development flow, the fault list generation and
the adopted generation order followed the generic indications provided in Section 3.3.

The fault lists were generated mainly according to the processor functionalities
which are directly related to specific modules in the netlist hierarchy. There were
some exceptions, due to the fact that the considered device is a dual-issue processor.
Thus, replicated arithmetic modules, such as adders, were grouped together in a
single fault list; in a different way, the data-forwarding unit is composed of several
multiplexers, which faults are jointly considered. Another interesting case of resource
partitioning is related to the multi-port register file that is contributing with two fault
lists, the register bank and the register ports (decoders and multiplexers); this is due
to both the fault list size, and the different functionalities.

Table 3.2 shows the evolution of the stuck-at (SA) fault coverage along the
development flow. The final fault coverage is 87.23% on the fault list that includes
around 750k SA faults.

For different reasons, there are modules not well covered:

1. modules managing exceptions: because it is not possible to purposely exercise
all of them (e.g., it is not possible to force a bus error which asks the exception
unit to intervene);



110 Development Flow for On-Line SBST

Table
3.2

C
overage

evolution
along

the
developm

entflow
forthe

autom
otive

m
icroprocessor

Sub-m
odule

#Faults
Single

1A
SA

FC
%

Synchro
1A

SA
FC

%

Single
1B

SA
FC

%

Synchro
1B

SA
FC

%

Single
2A

SA
FC

%

Single
2B

SA
FC

%

Synchro
2A

+2B
SA

FC
%

Single
3

SA
FC

%

Synchro
3

SA
FC

%

A
rith.adders

5,996
95.03

97.93
–

–
–

–
98.27

–
98.52

D
ivider

19,018
83.98

83.98
–

–
–

–
83.99

–
84.82

L
ogic

unit
22,294

76.32
78.57

–
–

–
–

78.70
–

83.34
M

ultiplier
78,094

91.18
92.62

–
–

–
–

92.62
–

95.90
Shifters

14,172
87.95

92.96
–

–
–

–
93.97

–
96.32

E
xceptions

40,718
–

–
66.08

67.17
–

–
68.16

–
72.48

B
ranch

pred.
24,489

–
–

70.91
70.95

–
–

72.67
–

72.67
Tim

ers
7,683

–
–

88.21
88.43

–
–

88.46
–

89.70
R

egisterbank
83,764

–
71.21

–
–

84.15
–

89.38
–

92.66
R

egisterports
126,329

–
69.17

–
–

94.93
–

97.67
–

98.09
Program

cnt
26,060

–
–

–
66.07

–
68.66

69.42
–

70.09
E

A
adder

5,228
–

–
–

66.51
–

92.02
93.75

–
94.57

Fetch
unit

71,582
–

–
–

–
–

–
69.45

82.39
83.54

Forw
./Interl.

84,758
–

–
–

–
–

–
70.95

84.29
84.82

Status
flags

33,277
–

–
–

–
–

–
59.31

78.08
78.61

C
ontrolflags

10,328
–

–
–

–
–

–
64.21

66.83
69.83

D
ecode

unit
62,876

–
–

–
–

–
–

50.12
92.46

93.08
L

oad/Store
15,971

–
–

–
–

–
–

73.50
75.42

76.73
G

lue
logic

19,425
–

–
–

–
–

–
–

–
63.36

TO
TA

L
756,789

–
36.07

–
9.74

–
–

76.87
–

87.23



3.4 Case Studies 111

2. branch prediction, program counter, and load/store units: due to the memory
mapping configuration of the specific SoC, not all bits in the addressing
registers can be functionally excited;

3. processor status and control registers: because many bits cannot be excited
because controlling circuitries outside the processor core.

As a complement to the fault coverage measurements, the size, duration, and
number test programs along the entire development flow are included in Table 3.3.
At the working frequency of 150 MHz, the overall time required for executing all 73
developed tests is about 0.8ms.

It is interesting to note, how the synchronization phases produce a very strong
positive side-effect over the modules not yet considered; at least the half of the faults
of the modules that are going to be considered during the next generation steps were
pruned from the list without any additional effort. Table 3.2 also permits to remark
that the synchronization steps cause coverage improvements also for modules of the
current and previous levels of the same branch, as described in Section 3.3.2.

A significant advantage in terms of grading time reduction is achieved by a
proper development order which is maximizing the cascade effect. As an example of
effectiveness, by adopting the proposed order, the generated test programs over the
139,574 faults of arithmetic modules included in 1A (Level 1 – Branch A) led to a
positive side effects on 2A consisting in 147,029 over 210,093 faults (corresponding
to about 70%), i.e., these faults are already covered without any specific generation
effort for 2A. In other words, the fault simulation experiments carried on level 2A
need to consider only 63,064 faults.

For the sake of completeness, the proposed generation order have been evaluated
against an alternative one. Such an alternative order first considers the modules of
2A and then the ones of 1A. The 210,093 faults of the register file (2A) have been
tackled by obtaining a fault coverage comparable with the results in Table 3.2 and the
side-effect of such programs over the ALU (1A) has been evaluated. As a result, only
10,318 faults (corresponding to 7.4%) were already covered over the total amount of
139,574 faults of the ALU sub-modules.

The reduction in the fault list cardinality, achieved by properly ordering sub-
modules and synchronizing fault lists, induces a significant time gain due to a large
reduction of fault simulation efforts. The effect is not limited to the successive



112 Development Flow for On-Line SBST

Table 3.3 Number of evaluated test programs, duration, and code size along development
flow for the automotive microprocessor

Generation step #Test programs Duration [cc] Code size [kB]

Single 1A 29 8,840 23
Synchro 1A 29 8,840 23
Single 1B 8 19,716 11
Synchro 1B 8 19,716 11
Single 2A 10 32,634 36
Single 2B 8 28,212 17
Synchro 2A+2B 55 89,402 87
Single 3 18 26,700 32
Synchro 3 73 116,102 119

synchronization, but permits faster generation iterations as required by loop-based
approaches (e.g., based on evolutionary algorithms).

Table 3.4 shows the elapsed time for fault simulations in two cases:

1. a simple development flow not using synchronization but simply considering
sub-modules separately;

2. the proposed development flow implementing levels/branches based generation
order and synchronization between levels.

All the experiments were executed on a single core of a 2 GHz processor. The
resulting times would be reduced by running multi-process fault-simulations.

It is worth to notice that the fault simulation time becomes excessive if not imple-
menting synchronization. As well, the development order is important to minimize
the fault simulation efforts. In the alternative scenario in which 2A (Level 2 – Branch
A) is considered before 1A, the CPU time reduction for fault simulations is only 3
hours (from about 37 to 34), which is a negligible gain if compared to that obtained
by the proper ordering.

SBST Integration into Mission OS

The suite of test programs resulting from the development phases described above
was integrated in an industrial demo project for STMicroelectronics. The project
handles the whole test set of programs by means of two software modules, and



3.4 Case Studies 113

Table 3.4 Fault simulation time comparison for approaches without and with synchronization

Fault-list
Fault simulation time [hours]

without synchro with synchro Speed-up

Level 1 – Branch A 37 37 –
Level 1 – Branch B 122 122 –
Level 2 – Branch A 217 55 4×
Level 2 – Branch B 72 23 3×
Level 3 630 195 3×

provides the project integrator with a software Application Programming Interface
(API), in order to include them in the mission application:

• tests for power-on: 44 test program, including Non-exceptive and Critical tests,
scheduled by an ad-hoc software module named Boot Time Self-Test Module
(BTSTM);

• tests for run-time: 29 Run-Time test programs handled by an AUTOSAR 4.0
Complex Driver [87] named Core Self-Test (CST) Library.

Both CST Library and BTSTM provide configuration capabilities at compile
time, in such a way that the project integrator can selectively activate all programs
or a subset of the entire suite. It is up to the user of the API to choose suitable test
combinations and a scheduled execution order to fulfill the safety requirements of
the system.

In the demo setup, after the execution of tests for power-on that takes about 0.7ms,
the run-time tests were scheduled according to some specific on-line requirements:

• self-test chunks must be less than 5µs long;
• self-test interrupts the mission application every 500µs.

Along mission, using the proposed demo setup, the overall self-test length does
not exceed 100µs and a complete self-test is performed in less than 2ms. Availability
of the mission application is reduced by around 1% even though that self-test can be
preempted at any time.

Along development, the demo test suite was encompassing several verification
and validation stages towards software maturity, which were including embedded
documentation of the code by means of Doxygen tags [88] that are parsed by external
tool for automatically generating user manuals.



114 Development Flow for On-Line SBST

Test programs also provide services for returning test results, i.e., error codes
such as AUTOSAR DEM errors and malfunctioning signatures computed by the test
programs for successive inspection of failing chips. BTSTM assumes that all the
available processor functionalities can be exclusively accessed for testing purposes;
on the contrary, CST Library has more restrictive requirements.

For validation sakes, additional experiments aimed at emulating the in-field
behavior of the system:

• to verify the fault-free behavior, a sample OS was considered that was in-
tensively triggering mission interrupts while SBST was executed at regular
intervals as described above; a physical target was programmed with such a
complete software environment and left running for several hours, tracing the
correctness of the test responses and liveness of the system;

• to investigate on the robustness in case of faults, a specific fault injection
campaign was performed by means of complete simulation (i.e., without fault
dropping) in order to classify erroneous behaviors.

Erroneous situations were classified as following:

1. self-test ends with a wrong signature;
2. self-test is not ending due to deadlock configuration;
3. self-test ends with unattended exception management, due to:

(a) illegal instruction execution;
(b) wrong branches to protected memory areas.

3.4.2 Embedded Floating-Point Unit

The case study is the embedded FPU of a SoC for safety-critical automotive applica-
tion (which also includes the case study processor of Section 3.4.1) manufactured by
STMicroelectronics.

In this section, the experimental results presented in Section 2.4.3 are extended
with details about the development flow.

Table 3.5 provides a list of generation techniques employed to reach high cover-
age for each sub-module of the considered FPU.



3.4 Case Studies 115

Table 3.5 SBST strategies used along the generation process for the embedded FPU

Sub-module Techniques References

Add/Mul/Conversion
Divider

Square root

Deterministic +
Constrained ATPG

Section 2.4.2

Exceptions Deterministic [86]
Decode Deterministic Section 2.1

Status register
Control logic

Deterministic +
Manual

Section 2.4.2

Where applicable, the constrained ATPG-based technique guarantees very good
coverage values; as a drawback, a high number of patterns may be required.

For others units, it is not trivial to use the ATPG. In these cases, it is necessary to
implement specific test strategy, unfortunately with manual efforts.

Similarly to the microprocessor case, a development flow composed of 3 levels
and 2 branches (see Fig. 3.5) was implemented.

Table 3.6 reports the evolution of the stuck-at (SA) fault coverage along the
several phases of the development flow, with side-effects evaluated over the synchro-
nization phases. Final value reached is around 90% of SA fault coverage.

Table 3.7 shows the number of test programs developed for each FPU sub-module,
as well its code memory size and execution time on chip, expressed in clock cycles.

As for the microprocessor case study, all mentioned programs are encapsulated in
EABI standard frame that includes general and special purpose register settings and
additional information specifically aimed at guaranteeing robustness. For instance,
many faults may cause unexpected exceptions, thus a specialized vector table and
interrupt service routines are implemented to intercept such defective consequences.
As well, test programs that execute arithmetic floating-point operations and do not
freely make use of RAM memory (i.e., the only memory they use is in the stack and
in the global data sections) or intentionally raised exceptions, can be interrupted at
any moment along their execution by the mission application.



116 Development Flow for On-Line SBST

Table
3.6

C
overage

evolution
along

the
developm

entflow
forthe

em
bedded

FPU

Sub-m
odule

#Faults
Single

1A
FC

%

Single
1B

SA
FC

%

Synchro
1A

+1B
SA

FC
%

Single
2

SA
FC

%

Synchro
2

SA
FC

%

Single
3

SA
FC

%

Synchro
3

SA
FC

%

A
dd/M

ul/C
onv.

53,095
85.2

–
85.2

–
87.9

–
89.4

D
ivider

12,794
86.4

–
86.4

–
86.6

–
87.2

Square
root

6,621
96.2

–
96.2

–
96.2

–
96.2

E
xceptions

418
–

82.6
85.2

–
85.9

–
86.3

Status
register

1014
–

–
80.0

95.5
95.7

–
100.0

D
ecode

556
–

–
–

–
89.2

99.3
100.0

C
ontrollogic

751
–

–
–

–
70.8

93.1
94.8

G
lue

logic
2,169

–
–

–
–

–
–

82.3
TO

TA
L

77,418
–

85.1
–

88.8
–

90.0



3.4 Case Studies 117

Table 3.7 Number of test programs, duration, and code size for the embedded FPU

Sub-modules #Test programs Duration [cc] Code size [byte]

Add/Mul/Conversions 3 2,684 3,360
Divider 3 2.848 21,985
Square root 1 648 508
Exceptions 1 5,500 4,420
Status register 2 2,352 10,776
Decode 1 460 216
Control logic 1 920 2,897
TOTAL 12 15,412 44,162

3.4.3 Cumulative Results

In the frame of a collaboration with STMicroelectronics, during the recent years
the proposed development flow has been applied to several industrial devices for
safety-critical automotive applications. The fault coverage level of the resulting
suite of SBST programs concurs to the overall functional safety regulated by the
ISO 26262 standard [89].

The cumulative results gathered in these years are reported in Table 3.8. The
e200 processor family is a set of CPU cores that implement low-cost versions of the
Power Architecture™ Book E architecture. A brief description of the processors is
given in the following:

e200z0h is a single-issue 32-bit CPU embedded in a single-core 90nm SoC for auto-
motive targeting chassis market segment, specifically the Electrical Hydraulic
Power Steering (EHPS) and the lower end of Electrical Power Steering (EPS),
and the airbag application segment.

e200z448 is the case study processor of Section 3.4.1. It is embedded into a 90-nm
single-core SoC for safety-critical automotive applications.

e200z215 is a single-issue 32-bit CPU operating up to 80 MHz. It is embedded into
a 40-nm single-core SoC that targets automotive vehicle body and gateway
applications, such as standalone gateway, simple body control module, and
satellite body application like door or lighting module.

e200z420 is a dual-issue five-stage pipeline 32-bit CPU operating up to 180 MHz.
It is embedded into a 40-nm multi-core SoC (including two symmetrical z420
CPUs and a third processor running at 100 MHz) that targets automotive



118 Development Flow for On-Line SBST

Table 3.8 Cumulative experimental results on industrial processors

Processor #Faults SA FC% Duration [cc] Code size [kB]

e200z0h 198,622 82.55 45,091 76
e200z448 756,789 87.23 116,102 119
e200z215 282,370 80.40 156,363 86
e200z420 422,419 82.64 205,003 113
e200z425 792,647 81.04 222,855 139

vehicle body and gateway applications, such as central body controller, smart
junction box, and mid-end and high-end gateway.

e200z425 is a dual-issue five-stage pipeline 32-bit CPU operating up to 180 MHz.
It is embedded in a 40-nm multi-core SoC that targets any safety-critical
application requiring a very high level of safety integrity, such as automotive
powertrain controllers, steering, breaking, and others.

In order to comply with the overall functional safety, the required fault coverage
level on the CPU module of a given device was equal to 80%. As shown in Table 3.8,
this level was reached in all the considered case studies. However, the final fault
coverage reached on the processors is not very high and in same cases is quite
near to 80%. The reason for this is partially due to the maturity level of the test
suite, that is still in development for some processors. Moreover, stringent on-line
requirements were limiting the effectiveness of some test procedures, as well as
functionally untestable faults which are hard to identify and quantify.

Finally, cumulative results have been gathered on a set of academic processors
and reported in Table 3.8. The RT-level descriptions of such processors have been
synthesized using Synopsys Design Compiler targeting different open-source tech-
nology libraries. No Design-for-Testability features have been included in the final
gate-level netlists, thus the fraction of functionally untestable faults in these proces-
sors is significantly lower than in industrial ones, whose netlist are post-layout. Also,
the reason why the final fault coverage on academic processors is considerably higher
is due the less complexity and size of the fault lists. Finally, on-line constraints have
not been considered in the test program generation for these processors.



3.5 Chapter Summary 119

Table 3.9 Cumulative experimental results on academic processors

Processor #Faults SA FC% Duration [cc] Code size [kB]

miniMIPS 110,024 95.02 17,162 45
Cortex-M0 75,936 90.47 205,765 153
OpenRISC 1200 112,144 85.60 32,516 54
OpenMSP 430 29,424 94.87 118,450 48

3.5 Chapter Summary

This chapter described an effective development flow for the SBST generation of
a library of test programs to be integrated in the mission operating system. The
automotive domain was used as reference in the discussion.

In details, the chapter discussed about:

1. identification of on-line constraints and implemented solutions;
2. resources distribution and generation order for a most efficient and fast test

program generation along the various sub-modules of the device under test;
3. robust execution and management of SBST programs.

As case of studies, the chapter presented results related to the development flow
for an industrial 32-bit processor core and a floating-point unit (FPU) included in
automotive SoCs manufactured by STMicroelectronics.

The fault coverage obtained on the case study processor is more than 87% over
around 750k stuck-at faults, while 90% is the FPU coverage. Cumulative results on
several academic and industrial processors demonstrated that the development flow
can be systematically applied to reach the target fault coverage level with reduced
generation time.



Chapter 4

Summary of Part I

This part of the thesis presented SBST techniques for microprocessor based systems.
Within this work, a set of systematic techniques for hard-to-test modules in modern
microprocessors has been presented: decode unit, register forwarding and pipeline
interlocking unit, special modules that implement dual-issue execution, and floating-
point unit.

Although this subject has been studied for years, its practical adoption by the
industry is still not mature. An effective development flow has been presented
and actually implemented for a family of industrial processors manufactured by
STMicroelecronics. Previous approaches found in the literature mainly target SBST
generation for academic processors, without stringent on-line requirements due to
the integration of SBST into mission operating systems. Such requirements are not
only related to time and memory budgets, which challenge the possibility by the test
engineer to reach high levels of fault coverage, but also concern the robustness of
the testing environment, meaning that SBST programs must not corrupt resources
used by the mission application.

Referring to the industrial domain, testing of microprocessor cores is tradition-
ally afforded using automatic techniques that are highly supported by commercial
EDA tools. This is the case of scan testing, which relies on ATPG and retarget-
ing techniques for embedding patterns into built-in self-test modules. Conversely,
SBST generation is mainly implemented with manual effort, by recurring to deter-
ministic algorithms or feedback-based techniques, which in most cases are highly



121

time-consuming tasks. The usage of commercial EDA tools by the test engineer is
restricted to fault simulations, used for the fault grading or withing the test program
refinement loops, and (mainly combinational) ATPG for sub-modules that can be
easily controlled by means of software routines. This thesis has tried to go in the
direction of collecting some state-of-the art SBST techniques and new proposed
ones, with the purpose of creating a repeatable generation flow for complex designs.
Nevertheless, the proposed flow is based on manual effort, but is trying to maximize
the generation efficiency, compared to non-organized alternative approaches.



Part II

Test and Diagnosis of Reconfigurable
Scan Networks





Chapter 5

Background

Due to the complexity of new electronic devices, several features are embedded in
such systems beside the core functional logic. Examples of such features are Built-In
Self-Test (BIST) included for test and diagnostic sake, interfaces to core testing
(e.g., based on the IEEE Std 1500), analog components (e.g., temperature sensors)
accessed during the chip calibration, or debug related components (e.g., trace buffers).
These features are hereinafter called instruments. Creating a mechanism to access
instruments has led to many different legacy solutions, facing the complex task of
integrating all of them in the system, especially when they come from different
designers. In order to mitigate these issues, new standards have been created.

The traditional boundary scan chains are not efficient solutions for connecting
the considerable number of instruments present in next generation designs for dif-
ferent reasons. Some of the instruments may need to be accessed only in particular
situations, e.g., for security-related issues. This chapter introduces the basic concepts
of Reconfigurable Scan Networks (RSN in Fig. 5.1), which extend the concept of
reconfigurable scan chains and are extensively used in the IEEE Std 1687.

The rest of this chapter is structured as follows: Section 5.1 presents the main
structures characterizing RSNs, in particular introduced by IEEE Std 1149.1-2013
(cf. Section 5.1.1) and IEEE Std 1687 (cf. Section 5.1.2). Section 5.2 discusses
about the related work. Finally, Section 5.3 introduces a suite of benchmarks used in
the experimental results of this thesis.

Parts of this chapter have been derived from published works [90, 13, 14].



5.1 Network Constructs 125

T
A
P

T
D
R

SI

SO

RSN

In
stru

m
en

t

Fig. 5.1 Concept of Reconfigurable Scan Network (RSN)

5.1 Network Constructs

IEEE Std 1149.1-2013 and IEEE Std 1687 have introduced the concept of reconfig-
urable scan chains. This kind of chains are segmented in several parts, hereinafter
referred to as segments, which are interleaved with special elements, hereinafter
referred to as reconfigurable modules. Each segment can include one or more instru-
ments. The interface with an instrument is the test data register (TDR), which can
include capture logic (in case of reading capability) and update logic (in the case
when writing is allowed). According to the configuration of reconfigurable modules,
certain segments are connected together in the so called active path, i.e., the path
connected between the scan input and scan output pins of the reconfigurable scan
chain. Since the complexity of these reconfigurable scan chains can be high (i.e.,
many possible active paths may exist), the standards refer to them as networks.

5.1.1 IEEE Std 1149.1-2013

In the IEEE Std 1149.1, TDRs are composed of a number of bits, each bit containing
a capture/scan cell (C) and an optional update cell (U). According to the standard, a
set of TDRs can be defined as part of the boundary-scan architecture, each one with
a register code specified at design time, and selected by acting on the test access port
(TAP) controller. In the earlier versions of the standard, each TDR must have a fixed
length, chosen by the designer. In the latest revision of the standard (i.e., IEEE Std



126 Background

Update_<TDR>
Shift_<TDR>

Capture_<TDR>

Excludable SegmentC

U

From TDI

Ready to scan

To TDO
1

0
Configuration

module

SI SO
PI

PO

Fig. 5.2 Excludable TDR segment described in IEEE Std 1149.1-2013.

Selectable segments

3
2
1
0

Decode

C C C C

C C C C C C C C C C C C
U U U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C C C C C C C C
U U

C
U

C
U

C
U

C
C C
U. . .

. . .

SI
SO

Configuration
module

Fig. 5.3 Selectable TDR segments described in IEEE Std 1149.1-2013

1149.1-2013 [91]), each TDR can be constructed as a chain of multiple segments,
some of which are always scanned while others, called excludable segments and
selectable segments, are scanned only in particular situations.

The excludable segment of a TDR is controlled by a configuration module
composed of one bit, which eventually disables the update/capture capabilities of
the segment, and is followed by a switching element controlled by the configuration
module (see Fig. 5.2). The configuration module is also a boundary scan cell,
composed of a C cell and an U cell. When a logical 0 is scanned into the configuration
bit, the segment will be excluded from the active path of the network.

The selectable segments of a TDR are segments, even of different lengths, which
are connected to a selection circuit (e.g., a multiplexer). According to the value of
the configuration module (this time composed of one or more bits), only one segment
at a time is selected as the scanout for the set (see Fig. 5.3).



5.1 Network Constructs 127

 

Paper 6.1                                                           INTERNATIONAL TEST CONFERENCE                                                                 3 

III. NETWORK CONSTRUCTS 

This section presents the network constructs used in the 
IJTAG networks to configure the scan chain.  

Basically, the standard relies on two types of constructs. 
The first one is for inserting or skipping a scan segment. This 
type of constructs is named Segment Insertion Bit (SIB). A SIB 
includes a multiplexer preceding the flip flop storing the 
control bit, as shown in Figure 1.A, or the multiplexer can 
follow the control bit (Figure 1.B). Control bit is implemented 
as a Scan Register (SR) of a size of one bit. With the host scan 
interface, SIB is connected to the nested scan chain segment. 
With the client scan interface of the SIB, active scan chain has 
access to the nested scan chain segment located behind the host 
interface of the SIB.  

In Figure 1, the right-hand side ports (toSI and fromSO) 
belong to host type and the left-hand side ports (SI and SO) 
belong to the client scan interfaces type. For the sake of 
simplicity, where applicable, we omit in the figures the CE, SE, 
UE, SEL, RST and TCK ports of the scan interface.  

 
Fig. 2. ScanMux Control Bit (SCB) 

The second type of network configuration constructs is for 
selecting a split, mutually-exclusive, selectable scan chain. For 
this task the standard defines an inline ScanMux control bit 
(SCB) (Figure 2.A) and a ScanMux with remote control bit 
(Figure 2.B). In Figure 2, SI_a, SI_b and SI_remote indicate an 
end-points of the scan chains that belong to the separate scan 
interfaces, where SI_a and SI_b share the SO port. The inline 
and remote SCBs have only client type scan interfaces. Thus, 
the scan chains SI_a and SI_b (Figure 2) are selected by the 
dedicated signals (not shown in Figure 2) composed with and 
operation between SEL signal from the respective host 
interface and the SCB data signal. Same SCB data signal is 
selecting the multiplexer inputs.  

Each of these four constructs is treated in this paper as a 
solid, single network component. The rest of the network 

constructs used in the benchmarks are common IJTAG 
network components described in the standard as ICL module 
items (e.g., ScanRegister, ScanMux, OneHotScanGroup). 

IV. BENCHMARK SET 

The suite of networks has been devised in such a way that 
it includes the widest possible range of structures supported by 
the standard (including SIBs and ScanMuxes) as well as 
architectures (flat, balanced, unbalanced, etc.). 

The Annex E of the IEEE 1687 document defines a set of 
examples of commonly used IEEE 1687 structures. These 
examples are considered as guidelines for designing the IEEE 
1687 benchmark networks: therefore, they are included as 
reference building blocks into most of the benchmarks of our 
suite. The networks do not directly replicate the examples from 
the standard but rather re-use them in different forms and 
combinations as sub-modules of larger 1687 networks. The list 
of used Annex E examples is given below: 

E.5 - Daisy chain of wrapped instruments  
E.7 - Serial chain of wrapped instruments behind a single SIB  
E.8 - Three wrapped instruments, each behind its own SIB  
E.9 - Scan muxes with local control  
E.11 - Nested SIBs: mux_pre  
E.12 - Nested SIBs: mux_post  
E.14 - Exclusive access: explicit ICL  
E.15 - Exclusive access with broadcast  
E.16 - Broadcast scan  
E.18 - Branched-then-merged scan chain  
E.20 - IEEE1500 Wrapper Serial Port with Select WIR 

register 
E.21 - Single embedded TAP controller (eTAPC)  
E.26 - Addressable instruments 
E.30 - Complex IEEE 1149.1 AccessLink example. 

The examples that were not included into this list either 
represent a subnetwork of the selected examples or consist of 
so called black box modules. 

The suite of benchmarks is organized in four groups of 
networks based on their categories/purposes: 

 Basic networks: the networks in this group are constructed 
using a limited set of primitive components from the IEEE 
1687 standard. These networks span the whole range of 
hierarchies and constructs while utilizing the examples 
from the IEEE 1687 document.  

 Classic networks: benchmarks in this group are generated 
from popular ITC’02 abstract scan designs by adding 
several types of IEEE 1687 networks that connect existing 
scan chains together. These benchmarks have been 
already used in the past by several research groups for 
different purposes.  

 Standard networks: these networks are intended to cover 
the most extensive set of constructs supported by the 
standard, thus allowing tool developers to verify their 
completeness in terms of support of the 1687 network 
primitive components.  

 Advanced networks: they have been specially designed to 
exhibit possible extreme cases in terms of network size, 

0 1

A) SCB in-line B) SCB remote

0 1

SR

SI_a
SI_b

SI remote

SO

SO remote

SO

SI_b
SI_a

SR

 
Fig. 1.  Segment Insertion Bit (SIB) 

pSIB

0
1 SR

SO

SI

fromSO

toSI

SIBmuxpre

SIBp

SR

SO

SI

fromSO

toSI

SIBmuxpost

0
1

Simplified
view

Simplified
view

A) pre mux SIB B) post mux SIB

Cl
ie

nt
in

te
rf

ac
e

Cl
ie

nt
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

(a) pre-MUX SIB

 

Paper 6.1                                                           INTERNATIONAL TEST CONFERENCE                                                                 3 

III. NETWORK CONSTRUCTS 

This section presents the network constructs used in the 
IJTAG networks to configure the scan chain.  

Basically, the standard relies on two types of constructs. 
The first one is for inserting or skipping a scan segment. This 
type of constructs is named Segment Insertion Bit (SIB). A SIB 
includes a multiplexer preceding the flip flop storing the 
control bit, as shown in Figure 1.A, or the multiplexer can 
follow the control bit (Figure 1.B). Control bit is implemented 
as a Scan Register (SR) of a size of one bit. With the host scan 
interface, SIB is connected to the nested scan chain segment. 
With the client scan interface of the SIB, active scan chain has 
access to the nested scan chain segment located behind the host 
interface of the SIB.  

In Figure 1, the right-hand side ports (toSI and fromSO) 
belong to host type and the left-hand side ports (SI and SO) 
belong to the client scan interfaces type. For the sake of 
simplicity, where applicable, we omit in the figures the CE, SE, 
UE, SEL, RST and TCK ports of the scan interface.  

 
Fig. 2. ScanMux Control Bit (SCB) 

The second type of network configuration constructs is for 
selecting a split, mutually-exclusive, selectable scan chain. For 
this task the standard defines an inline ScanMux control bit 
(SCB) (Figure 2.A) and a ScanMux with remote control bit 
(Figure 2.B). In Figure 2, SI_a, SI_b and SI_remote indicate an 
end-points of the scan chains that belong to the separate scan 
interfaces, where SI_a and SI_b share the SO port. The inline 
and remote SCBs have only client type scan interfaces. Thus, 
the scan chains SI_a and SI_b (Figure 2) are selected by the 
dedicated signals (not shown in Figure 2) composed with and 
operation between SEL signal from the respective host 
interface and the SCB data signal. Same SCB data signal is 
selecting the multiplexer inputs.  

Each of these four constructs is treated in this paper as a 
solid, single network component. The rest of the network 

constructs used in the benchmarks are common IJTAG 
network components described in the standard as ICL module 
items (e.g., ScanRegister, ScanMux, OneHotScanGroup). 

IV. BENCHMARK SET 

The suite of networks has been devised in such a way that 
it includes the widest possible range of structures supported by 
the standard (including SIBs and ScanMuxes) as well as 
architectures (flat, balanced, unbalanced, etc.). 

The Annex E of the IEEE 1687 document defines a set of 
examples of commonly used IEEE 1687 structures. These 
examples are considered as guidelines for designing the IEEE 
1687 benchmark networks: therefore, they are included as 
reference building blocks into most of the benchmarks of our 
suite. The networks do not directly replicate the examples from 
the standard but rather re-use them in different forms and 
combinations as sub-modules of larger 1687 networks. The list 
of used Annex E examples is given below: 

E.5 - Daisy chain of wrapped instruments  
E.7 - Serial chain of wrapped instruments behind a single SIB  
E.8 - Three wrapped instruments, each behind its own SIB  
E.9 - Scan muxes with local control  
E.11 - Nested SIBs: mux_pre  
E.12 - Nested SIBs: mux_post  
E.14 - Exclusive access: explicit ICL  
E.15 - Exclusive access with broadcast  
E.16 - Broadcast scan  
E.18 - Branched-then-merged scan chain  
E.20 - IEEE1500 Wrapper Serial Port with Select WIR 

register 
E.21 - Single embedded TAP controller (eTAPC)  
E.26 - Addressable instruments 
E.30 - Complex IEEE 1149.1 AccessLink example. 

The examples that were not included into this list either 
represent a subnetwork of the selected examples or consist of 
so called black box modules. 

The suite of benchmarks is organized in four groups of 
networks based on their categories/purposes: 

 Basic networks: the networks in this group are constructed 
using a limited set of primitive components from the IEEE 
1687 standard. These networks span the whole range of 
hierarchies and constructs while utilizing the examples 
from the IEEE 1687 document.  

 Classic networks: benchmarks in this group are generated 
from popular ITC’02 abstract scan designs by adding 
several types of IEEE 1687 networks that connect existing 
scan chains together. These benchmarks have been 
already used in the past by several research groups for 
different purposes.  

 Standard networks: these networks are intended to cover 
the most extensive set of constructs supported by the 
standard, thus allowing tool developers to verify their 
completeness in terms of support of the 1687 network 
primitive components.  

 Advanced networks: they have been specially designed to 
exhibit possible extreme cases in terms of network size, 

0 1

A) SCB in-line B) SCB remote

0 1

SR

SI_a
SI_b

SI remote

SO

SO remote

SO

SI_b
SI_a

SR

 
Fig. 1.  Segment Insertion Bit (SIB) 

pSIB

0
1 SR

SO

SI

fromSO

toSI

SIBmuxpre

SIBp

SR

SO

SI

fromSO

toSI

SIBmuxpost

0
1

Simplified
view

Simplified
view

A) pre mux SIB B) post mux SIB

Cl
ie

nt
in

te
rf

ac
e

Cl
ie

nt
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

(b) post-MUX SIB

Fig. 5.4 Segment Insertion Bit (SIB) described in IEEE Std 1687

5.1.2 IEEE Std 1687

The new IEEE Std 1687 [92] tackles the same problem of accessing instruments by
means of RSNs, also referred to as IJTAG (Internal JTAG) networks. Actually, the
standard offers more general access mechanisms with respect to the IEEE Std 1149.1,
and the reconfigurable scan networks are only a subset of the possibilities allowed.
For example, the standard does not force the usage of the TAP. The structure of each
network including configurable blocks is described using a standard format called
Instrument-Connectivity Language (ICL) [92].

One of the most important structures the stardard defines is called Segment
Insertion Bit (SIB), which is similar in concept to an excludable segment. Selectable
segments are instead implemented by means of scan multiplexer (ScanMux) modules.
Each segment controlled by a SIB or a ScanMux can be a complex network itself.

A SIB includes a multiplexer preceding the flip-flop storing the control bit, as
shown in Fig. 5.4a, or the multiplexer can follow the control bit (Fig. 5.4b). Control
bit is implemented as a Scan Register (SR) of a size of one bit. With the host scan
interface, SIB is connected to the nested scan chain segment. With the client scan
interface of the SIB, active scan chain has access to the nested scan chain segment
located behind the host interface of the SIB. In Fig. 5.4, the right-hand side ports
(toSI and fromSO) belong to host type and the left-hand side ports (SI and SO)
belong to the client scan interfaces type. For the sake of simplicity, the CE, SE, UE,
SEL, RST, and TCK ports of the scan interface are omitted in the figure. When a
SIB is said to be asserted, the nested scan chain segment is included in the active
path; otherwise, it is said to be de-asserted.



128 Background

 

Paper 6.1                                                           INTERNATIONAL TEST CONFERENCE                                                                 3 

III. NETWORK CONSTRUCTS 

This section presents the network constructs used in the 
IJTAG networks to configure the scan chain.  

Basically, the standard relies on two types of constructs. 
The first one is for inserting or skipping a scan segment. This 
type of constructs is named Segment Insertion Bit (SIB). A SIB 
includes a multiplexer preceding the flip flop storing the 
control bit, as shown in Figure 1.A, or the multiplexer can 
follow the control bit (Figure 1.B). Control bit is implemented 
as a Scan Register (SR) of a size of one bit. With the host scan 
interface, SIB is connected to the nested scan chain segment. 
With the client scan interface of the SIB, active scan chain has 
access to the nested scan chain segment located behind the host 
interface of the SIB.  

In Figure 1, the right-hand side ports (toSI and fromSO) 
belong to host type and the left-hand side ports (SI and SO) 
belong to the client scan interfaces type. For the sake of 
simplicity, where applicable, we omit in the figures the CE, SE, 
UE, SEL, RST and TCK ports of the scan interface.  

 
Fig. 2. ScanMux Control Bit (SCB) 

The second type of network configuration constructs is for 
selecting a split, mutually-exclusive, selectable scan chain. For 
this task the standard defines an inline ScanMux control bit 
(SCB) (Figure 2.A) and a ScanMux with remote control bit 
(Figure 2.B). In Figure 2, SI_a, SI_b and SI_remote indicate an 
end-points of the scan chains that belong to the separate scan 
interfaces, where SI_a and SI_b share the SO port. The inline 
and remote SCBs have only client type scan interfaces. Thus, 
the scan chains SI_a and SI_b (Figure 2) are selected by the 
dedicated signals (not shown in Figure 2) composed with and 
operation between SEL signal from the respective host 
interface and the SCB data signal. Same SCB data signal is 
selecting the multiplexer inputs.  

Each of these four constructs is treated in this paper as a 
solid, single network component. The rest of the network 

constructs used in the benchmarks are common IJTAG 
network components described in the standard as ICL module 
items (e.g., ScanRegister, ScanMux, OneHotScanGroup). 

IV. BENCHMARK SET 

The suite of networks has been devised in such a way that 
it includes the widest possible range of structures supported by 
the standard (including SIBs and ScanMuxes) as well as 
architectures (flat, balanced, unbalanced, etc.). 

The Annex E of the IEEE 1687 document defines a set of 
examples of commonly used IEEE 1687 structures. These 
examples are considered as guidelines for designing the IEEE 
1687 benchmark networks: therefore, they are included as 
reference building blocks into most of the benchmarks of our 
suite. The networks do not directly replicate the examples from 
the standard but rather re-use them in different forms and 
combinations as sub-modules of larger 1687 networks. The list 
of used Annex E examples is given below: 

E.5 - Daisy chain of wrapped instruments  
E.7 - Serial chain of wrapped instruments behind a single SIB  
E.8 - Three wrapped instruments, each behind its own SIB  
E.9 - Scan muxes with local control  
E.11 - Nested SIBs: mux_pre  
E.12 - Nested SIBs: mux_post  
E.14 - Exclusive access: explicit ICL  
E.15 - Exclusive access with broadcast  
E.16 - Broadcast scan  
E.18 - Branched-then-merged scan chain  
E.20 - IEEE1500 Wrapper Serial Port with Select WIR 

register 
E.21 - Single embedded TAP controller (eTAPC)  
E.26 - Addressable instruments 
E.30 - Complex IEEE 1149.1 AccessLink example. 

The examples that were not included into this list either 
represent a subnetwork of the selected examples or consist of 
so called black box modules. 

The suite of benchmarks is organized in four groups of 
networks based on their categories/purposes: 

 Basic networks: the networks in this group are constructed 
using a limited set of primitive components from the IEEE 
1687 standard. These networks span the whole range of 
hierarchies and constructs while utilizing the examples 
from the IEEE 1687 document.  

 Classic networks: benchmarks in this group are generated 
from popular ITC’02 abstract scan designs by adding 
several types of IEEE 1687 networks that connect existing 
scan chains together. These benchmarks have been 
already used in the past by several research groups for 
different purposes.  

 Standard networks: these networks are intended to cover 
the most extensive set of constructs supported by the 
standard, thus allowing tool developers to verify their 
completeness in terms of support of the 1687 network 
primitive components.  

 Advanced networks: they have been specially designed to 
exhibit possible extreme cases in terms of network size, 

0 1

A) SCB in-line B) SCB remote

0 1

SR

SI_a
SI_b

SI remote

SO

SO remote

SO

SI_b
SI_a

SR

 
Fig. 1.  Segment Insertion Bit (SIB) 

pSIB

0
1 SR

SO

SI

fromSO

toSI

SIBmuxpre

SIBp

SR

SO

SI

fromSO

toSI

SIBmuxpost

0
1

Simplified
view

Simplified
view

A) pre mux SIB B) post mux SIB

Cl
ie

nt
in

te
rf

ac
e

Cl
ie

nt
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

(a) SCB in-line

 

Paper 6.1                                                           INTERNATIONAL TEST CONFERENCE                                                                 3 

III. NETWORK CONSTRUCTS 

This section presents the network constructs used in the 
IJTAG networks to configure the scan chain.  

Basically, the standard relies on two types of constructs. 
The first one is for inserting or skipping a scan segment. This 
type of constructs is named Segment Insertion Bit (SIB). A SIB 
includes a multiplexer preceding the flip flop storing the 
control bit, as shown in Figure 1.A, or the multiplexer can 
follow the control bit (Figure 1.B). Control bit is implemented 
as a Scan Register (SR) of a size of one bit. With the host scan 
interface, SIB is connected to the nested scan chain segment. 
With the client scan interface of the SIB, active scan chain has 
access to the nested scan chain segment located behind the host 
interface of the SIB.  

In Figure 1, the right-hand side ports (toSI and fromSO) 
belong to host type and the left-hand side ports (SI and SO) 
belong to the client scan interfaces type. For the sake of 
simplicity, where applicable, we omit in the figures the CE, SE, 
UE, SEL, RST and TCK ports of the scan interface.  

 
Fig. 2. ScanMux Control Bit (SCB) 

The second type of network configuration constructs is for 
selecting a split, mutually-exclusive, selectable scan chain. For 
this task the standard defines an inline ScanMux control bit 
(SCB) (Figure 2.A) and a ScanMux with remote control bit 
(Figure 2.B). In Figure 2, SI_a, SI_b and SI_remote indicate an 
end-points of the scan chains that belong to the separate scan 
interfaces, where SI_a and SI_b share the SO port. The inline 
and remote SCBs have only client type scan interfaces. Thus, 
the scan chains SI_a and SI_b (Figure 2) are selected by the 
dedicated signals (not shown in Figure 2) composed with and 
operation between SEL signal from the respective host 
interface and the SCB data signal. Same SCB data signal is 
selecting the multiplexer inputs.  

Each of these four constructs is treated in this paper as a 
solid, single network component. The rest of the network 

constructs used in the benchmarks are common IJTAG 
network components described in the standard as ICL module 
items (e.g., ScanRegister, ScanMux, OneHotScanGroup). 

IV. BENCHMARK SET 

The suite of networks has been devised in such a way that 
it includes the widest possible range of structures supported by 
the standard (including SIBs and ScanMuxes) as well as 
architectures (flat, balanced, unbalanced, etc.). 

The Annex E of the IEEE 1687 document defines a set of 
examples of commonly used IEEE 1687 structures. These 
examples are considered as guidelines for designing the IEEE 
1687 benchmark networks: therefore, they are included as 
reference building blocks into most of the benchmarks of our 
suite. The networks do not directly replicate the examples from 
the standard but rather re-use them in different forms and 
combinations as sub-modules of larger 1687 networks. The list 
of used Annex E examples is given below: 

E.5 - Daisy chain of wrapped instruments  
E.7 - Serial chain of wrapped instruments behind a single SIB  
E.8 - Three wrapped instruments, each behind its own SIB  
E.9 - Scan muxes with local control  
E.11 - Nested SIBs: mux_pre  
E.12 - Nested SIBs: mux_post  
E.14 - Exclusive access: explicit ICL  
E.15 - Exclusive access with broadcast  
E.16 - Broadcast scan  
E.18 - Branched-then-merged scan chain  
E.20 - IEEE1500 Wrapper Serial Port with Select WIR 

register 
E.21 - Single embedded TAP controller (eTAPC)  
E.26 - Addressable instruments 
E.30 - Complex IEEE 1149.1 AccessLink example. 

The examples that were not included into this list either 
represent a subnetwork of the selected examples or consist of 
so called black box modules. 

The suite of benchmarks is organized in four groups of 
networks based on their categories/purposes: 

 Basic networks: the networks in this group are constructed 
using a limited set of primitive components from the IEEE 
1687 standard. These networks span the whole range of 
hierarchies and constructs while utilizing the examples 
from the IEEE 1687 document.  

 Classic networks: benchmarks in this group are generated 
from popular ITC’02 abstract scan designs by adding 
several types of IEEE 1687 networks that connect existing 
scan chains together. These benchmarks have been 
already used in the past by several research groups for 
different purposes.  

 Standard networks: these networks are intended to cover 
the most extensive set of constructs supported by the 
standard, thus allowing tool developers to verify their 
completeness in terms of support of the 1687 network 
primitive components.  

 Advanced networks: they have been specially designed to 
exhibit possible extreme cases in terms of network size, 

0 1

A) SCB in-line B) SCB remote

0 1

SR

SI_a
SI_b

SI remote

SO

SO remote

SO

SI_b
SI_a

SR

 
Fig. 1.  Segment Insertion Bit (SIB) 

pSIB

0
1 SR

SO

SI

fromSO

toSI

SIBmuxpre

SIBp

SR

SO

SI

fromSO

toSI

SIBmuxpost

0
1

Simplified
view

Simplified
view

A) pre mux SIB B) post mux SIB

Cl
ie

nt
in

te
rf

ac
e

Cl
ie

nt
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

H
os

t  
in

te
rf

ac
e

(b) SCB remote

Fig. 5.5 ScanMux Control Bit (SCB) described in IEEE Std 1687

The second type of network configuration constructs is for selecting a split,
mutually-exclusive, selectable scan chain. For this task the standard defines an
inline ScanMux control bit (SCB) (Fig. 5.5a) and a ScanMux with remote control
bit (Fig. 5.5b). In Fig. 5.5, SI_a, SI_b and SI_remote indicate an end-points of the
scan chains that belong to the separate scan interfaces, where SI_a and SI_b share
the SO port. The inline and remote SCBs have only client type scan interfaces.
Thus, the scan chains SI_a and SI_b (Fig. 5.5) are selected by the dedicated signals
(not shown in Fig. 5.5) composed with and operation between SEL signal from the
respective host interface and the SCB data signal. Same SCB data signal is selecting
the multiplexer inputs.

In order to bring a reconfigurable scan network into a certain network config-
uration, vectors have to be shifted through the scan input port. Then, an update
operation moves the vector from the shift flip-flops (C cells) to the update latches
(U cells) of the configuration module. This operation changes the active path of the
network. Since a RSN can have a hierarchical structure, the operation of making
an instrument, placed deep into the network, part of the active path may require
multiple configuration phases. The standard defines the language to describe such
instrument-specific and network-independent procedures together with necessary
data (including test patterns), called Procedure Description Language (PDL) [92].

Finally, the access to instruments may include combinational logic (e.g., included
for security purposes).



5.1 Network Constructs 129

0

1

ScanMux

TAP

TDR0

SIB1 SIB2

TDR1 TDR2

TDOTDI

length = 8 length = 8

length = 2

cb1 cb2

cb3

Fig. 5.6 Example of IEEE Std 1687 reconfigurable scan network.

5.1.3 Example Network

In order to clarify the scenario and to explain the methodologies proposed in the next
sections, a simple IEEE Std 1687 scan network is shown in Fig. 5.6. The example
network is accessed through an IEEE 1149 TAP interface and is composed of two
selectable segments: the first one with a single TDR, and the other one with two
TDRs, each one controlled by a SIB. In Fig. 5.6, the bit length of each TDR is also
reported. The SIB modules and the multiplexer (ScanMux) are associated each one
with a control bit (cb1, cb2, and cb3) and are highlighted in grey. Depending on the
configuration (i.e., the value of the control bits of SIBs and ScanMux), the network
presents one of five possible active paths, each one including different subsets of
TDRs, as listed in Table 5.1. In this table, ’A’ means the SIB is in the asserted
position, ’D’ means de-asserted, 0 and 1 correspond to the two possible positions of
the ScanMux, and ’X’ appears when a module belongs to an inaccessible segment
(i.e., don’t care value). During the system reset, a known configuration is selected.
The status of the reconfigurable modules upon reset determines the network reset
configuration. In the example network, the reset configuration is assumed to be
0,D,D (using the same module ordering of Table 5.1).



130 Background

Table 5.1 List of possible configurations for the network in Fig. 5.6.

ScanMux SIB1 SIB2 Scan length Active path

0 X X 3 TDI→TDR0→cb3→TDO
1 D D 3 TDI→cb1→cb2→cb3→TDO
1 D A 11 TDI→cb1→TDR2→cb2→cb3→TDO
1 A D 11 TDI→TDR1→cb1→cb2→cb3→TDO
1 A A 19 TDI→TDR1→cb1→ TDR2→cb2→cb3→TDO

5.2 Related Works

RSNs have been a hot research topic for years. Due to the recent adoption of the
IEEE Std 1687 by commercial tools, several issues have arisen regarding design,
validation, and test of such structures, as well as their usage in the field.

Given a generic circuit with several instruments, different access networks can
be created, e.g., by using IEEE Std 1687 SIB modules. The authors of [93] have
analyzed different possible scenarios and evaluated the overall access time (i.e., the
time required to access all instruments in the circuit).

The design automation of IEEE Std 1687 reconfigurable scan networks has been
targeted by different works. In [94], a method has been proposed, which is able to
construct networks composed of multiple SIBs that optimize parameters such as area
overhead, total access time, or average access time. Additional scenarios have been
analyzed in [95], such as different positions of the configuration module with respect
to the related ScanMuxes; moreover, a formal analysis of the modeled networks has
been presented in the same paper for verification sake. Test scheduling has been
analyzed in [96, 97].

A formal analysis of generic RSNs has been also presented by the authors of [98,
99]; RSNs have been modeled as satisfiability (SAT) problems, upon which several
structural and functional properties have been verified. The works in [98] and [99]
offer a deep analysis about the related modeling, verification, and pattern generation
problems. However, the authors of [98] and [99] do not face the issue of minimizing
the test time, which is one of the goals of this article.

Pattern retargeting is a well-known problem in the area of RSNs. This problem
consists of the operations that are needed to transport the required data bits to/from



5.3 IEEE 1687 Benchmark Networks 131

the instruments’ registers [100]. IEEE Std 1687 provides a way to define instrument-
specific operations. Each operation targets a specific segment of the network, thus
the specific issue arises of configuring the network such that the time to access that
segment is minimized. This problem has been tackled by different works, e.g., [101,
100]. The benefit of automatic retargeting has been discussed in [102].

The test of RSNs has been targeted in different works. Dependability issues
of RSNs including verification, test, and security have been the objective of [103].
The authors of [104] have tested structural faults and investigated the test quality of
different test strategies. The combination of the evaluated test strategies achieves
high fault coverage even in synthetic difficult to test circuits. More than evaluating
the test time efficiency, which is the main objective of the work in Chapter 6, the
work in [104] aims to maximize the structural fault coverage. In the work presented
in Chapter 6, the knowledge of the system is limited to the functional description of
the network, thus controllability of the attached instruments is neglected, meaning
that faults affecting such a logic are not considered.

In-field reuse of IJTAG for system-health monitoring has been proposed in [115,
116] and further elaborated in [117, 118, 119, 120, 121] including a prescriptive
regular architectural extension proposal [117] and introducing a new concept of
self-reconfiguring IJTAG networks [121]. Recent works describing on-chip monitor
wrapping case-study [122], and focusing on implementation challenges of on-chip
IJTAG retargeting engines [123], as well as on-the-fly dynamic retargeting framework
[124]. Reliability and fault tolerance of IJTAG during online operation has been
considered in [125].

Finally, IJTAG has also been proposed as a complementary solution for 3D-IC
test [126], which opens up another dimension in research and application in the
domain of IJTAG.

5.3 IEEE 1687 Benchmark Networks

The lack of specific IEEE Std 1687 open examples, forced several research groups
to derive own IEEE Std 1687 networks from the ITC’02 set [127] – all yielding
different results. Different authors have made different assumptions, which makes it
difficult now to objectively compare their results.



132 Background

Different ways have been used by authors to generate IEEE Std 1687 networks
from ITC’02 benchmarks. First is the way how scan-chains are associated to in-
struments. Each instrument may either receive a dedicated scan register or all
instruments at a core could be connected together. Second, the inputs, outputs and
bi-directionals in the ITC’02 benchmarks can be handled differently. Finally, there
are different ways to handle the hierarchy resulting in different network depth. This
makes comparison across different methods difficult and represents an additional
argument towards a new holistic benchmark set.

In order to stop uncontrolled multiplication of numerous similar but non-identical
experimental IJTAG networks, a collaborative work within the frame of the EU-
funded FP7 research project BASTION put together a holistic benchmark suite.
Source files (including ICL and VHDL) as well as respective documentation, in-
cluding textual and graphical descriptions allowing to characterize each network
are publicly available through the BASTION web-site [128]. Each benchmark cor-
responds to the IJTAG circuitry that connects the device interface (e.g., the IEEE
1149.1 TAP, or the IEEE 1500 interface) to the instrument interfaces. The bench-
marks do not include any information about the connected instruments, apart from
the size of the related TDR.

Details about the benchmarks, referred to as ITC’16 in this thesis, are given in
[90]. The paper also reports some results gathered by applying a few algorithms
developed to face some problems related to IJTAG networks, such as retargeting,
test and diagnosis (these last ones are discussed in the next chapters of this thesis).



Chapter 6

Testing

This chapter discusses about the test of possible faults affecting reconfigurable
modules in RSNs.

Testing a standard (non-reconfigurable) scan chain for permanent faults has been
a widely studied subject for years. Several techniques exists, e.g., shifting a suitable
sequence of 0s and 1s through the scan chain, such as the sequence "00110011"
that applies all possible transitions in two cycles [129]. In order to cover scan cells
internal defects (see [130]), the previous sequence is not enough, but has to be
enhanced with additional tests, e.g, for stuck-open faults [131, 132], or for bridging
faults [133]. Diagnosis for intermittent faults in scan-chains has been discussed in
[134].

RSNs are however more complicated to test. In addition to flip-flops composing
the TDRs, which have to be tested to check whether they can correctly shift values
when included in the active path, the reconfigurable modules (e.g., the IEEE Std
1687 SIBs and ScanMuxes) also need to be tested in order to check whether they are
able to move the network into all its possible configurations.

The main motivation of this work is not to cover faults affecting TDR flip-flops.
These modules have been widely studied for years and state-of-the-art techniques
can be used for this purpose. Moreover, the update and capture logic is not taken
into consideration in this work, since its controllability and observability depend on
the instruments attached to the TDRs.



134 Testing

The main motivation of this work is checking that the capability of a network to
change its configuration is not corrupted by a fault. This means that reconfigurable
modules, such as SIBs and ScanMuxes, have to be fully tested. Moreover, the
configuration bits associated to these modules have to be also tested. In details, the
main objective is to present the problem of testing reconfigurable modules and to offer
alternative ways to solve it. Different techniques in terms of memory requirements
and computational time are presented in the following sections. This chapter extends
the basic idea already presented in [13] and [14] with a detailed description of the
proposed algorithms and more extensively supported by experimental results.

The rest of this chapter is structured as follows: Section 6.1 presents the basic
notions about network testability, the functional fault model introduced in this work,
and test vectors. Section 6.2 illustrates the high-level representation of RSNs by
means of graphs, which are used by the proposed algorithm. Section 6.3 presents
different test algorithms, based on graph exploration, including an optimal approach
in terms on test time. Some experimental results on benchmark RSNs are reported in
Section 6.4. Finally, Section 6.5 draws some conclusions.

6.1 Terminology and Fault Model

In this section, the basic terminology introduced in this chapter is presented. More-
over, in order to generalize as much as possible the problem of testing the reconfig-
urable modules in a network, a functional fault model is introduced and specified for
each type of reconfigurable modules.

6.1.1 Configurations, Vectors, and Test Time

A generic reconfigurable module, hereinafter indicated with Mi, is able to control
parts of the network defined as segments, according to the values stored in its
configuration bits. Moving backward from the k-th input pin of Mi (corresponding
to an input to the multiplexer in Mi), the segment sk ends in the fork that connect
sk to the other segments connected to Mi. In the example of Fig. 5.6, ScanMux
controls two segments: one including TDR0, and the other including the two SIBs.
Moreover, each SIB in the figure controls a segment that include a TDR and an
empty segment (when de-asserted). In general, a certain Mi has k controllable (or



6.1 Terminology and Fault Model 135

selectable) segments. In this thesis, each element of the network is associated to the
most specific segment possible. For example, TRD1 lies in the segment controlled
by SIB1, while cb1 is in the segment controlled by the ScanMux. The length of a
segment is equal to the number of bits it includes.

A generic configuration of the network (i.e., the value of all configuration bits)
is referred to as σi. The term σ0 indicates the reset configuration. Each σi can be
associated to a record, which contains an identifier and the following information:

• for each reconfigurable module Mi, the configuration bit values (e.g., asserted/de-
asserted for SIBs, an input identifier for ScanMuxes);

• the active path length;
• the list of possible faults (each referred to as Fi) affecting the network, that

can be detected by performing test operations while the network is configured
with σi.

Such test operations use test vectors to verify whether the expected path has
been inserted between the scan input and scan output pins, i.e., whether the right
instrument can be accessed during the normal operation. An example test vector tvi

consists of the following operations:

1. a suitable sequence (as long as the active path length) is shifted in, forcing it
to travel along the active path and to appear on its other end;

2. scan output pins (e.g., TDO) are monitored: the sequence previously loaded is
expected to come out; based on the fact that the observed sequence matches
the expected one or not, possible faults can be detected; we will see in the
following that, according to the proposed fault model, the effect of a fault
affecting a reconfigurable module is to change the active path; in this case,
the expected output sequence will appear on scan output pins after a wrong
number of clock cycles.

A network transition is defined as a change in the configuration, by means of
one or more configuration vectors. A generic configuration vector cvi consists of the
following operations:

1. as many shift operations as the active path length, so that the next configuration
is stored in the C flip-flops of the reconfigurable modules’ configuration bits,
while the other bits are don’t care (’X’ in this thesis);



136 Testing

2. an update operation, so that the next configuration is applied to the network
and the active path changes.

If transitioning from the configuration σi to σ j requires a single configuration
vector, then σ j is a neighbor configuration of σi. In this case, the transition cost in
terms of clock cycles is equal to the active path length of σi plus one (the update
operation). Please note that the neighborhood relation is not reversible. For example,
let us consider the network in Fig. 5.6, whose configurations are listed in Table 5.1.
In this network, the configuration bits are placed in the same segment of the related
reconfigurable module (i.e., right after each SIB and ScanMux), then the network
can be moved from the configuration σ1 = {1,A,A} to σ2 = {0,D,D} by shifting a
single vector. On the contrary, when the network is in σ2, two vectors are needed to
reach σ1, passing through the intermediate configuration σ3 = {1,D,D}.

The neighborhood Σi of a certain configuration σi is obtained by generating all
permutations on the reconfigurable modules’ configuration bits that are part of the
active path (i.e., they can be changed by shifting a single vector). In the configuration
σ1 of the previous example, all configuration bits are part of the active path, thus
the neighborhood of σ1 includes all other configurations. On the contrary, σ2 only
exposes the element ScanMux, while SIB1 and SIB2 are not included in the active
path; thus, the neighborhood of σ2 is obtained by changing the configuration of
ScanMux, i.e., it only includes σ3.

Configuration and test vectors are used by the proposed test techniques and
organized in sessions. A generic session, referred to as Si, is composed of two
phases:

1. a configuration phase (Cfg), corresponding to a network transition, in which a
certain number of configuration vectors are applied, until the target configura-
tion is reached;

2. a test phase (Tst), in which test vectors are applied.

The sequence of test vectors to be used in the test phase depends on the kind of
defects to be tested. More details are given in the following subsection, where the
specific fault model and test vectors for reconfigurable modules are presented.

For every session Si, the related session fault set (SFSi) is defined as the set of all
faults related to reconfigurable modules excited by the session.



6.1 Terminology and Fault Model 137

The term tc
i is used to denote the duration (in clock cycles) of the configuration

phase Cfgi and tt
i indicates the duration of the test phase Tsti. The configuration time

is the time needed to apply all the configuration vectors of the session. Each vector
requires a certain time to be shifted in, plus a few clock cycles (the exact number of
which is implementation dependent) to update it into the U cells of the corresponding
path (this time is denoted as JTAG protocol overhead in [97]). The active path
changes after each update operation, thus each vector may have a different length.
The duration of the test phase (tt

i ) depends on the active path length l of the target
configuration (i.e., after the last configuration vector). The total test duration for a
network that needs N sessions to cover each testable fault is thus given by:

T = Tc +Tt =
N

∑
i=1

tc
i +

N

∑
i=1

tt
i (6.1)

where Tc is the sum of clock cycles of each Cnf i and Tt is the sum of the clock cycles
of each Tsti.

During test generation, a fault list is used, which is composed of all possible
faults affecting the network, according to the proposed fault model. The fault list
includes an indication for each fault, hereinafter indicated with Fi, about whether Fi

is tested, still untested, or untestable in any possible network configuration. If Fi is
still untested, is said to be active.

6.1.2 Fault Model for Reconfigurable Modules

Reconfigurable modules are used with the purpose of including (excluding) segments
into (from) the scan path. In case of faults affecting such modules, the network
configuration may become different than the expected one, or unknown. In this
situation, the network becomes unusable, hence testing such modules is a real need.

In order to be independent from the implementation, a functional fault model
is used. A certain fault Fi affecting reconfigurable modules is modeled such that
a different configuration is forced by Fi rather than the expected one. Fi leads to
a different active path (called faulty path) than the expected one, and the two are
likely to have a different length. For example, in Fig. 5.6 the multiplexer (ScanMux)
may be affected by a permanent fault whose effect is that the segment connected
to the input 0 is always selected, no matter the value in the configuration bit. The



138 Testing

same may arise for the SIBs, which may be stuck at their asserted (or de-asserted)
configuration.

Stuck-at faults in the shift flip-flops (C cells) of the configuration modules are
considered as detected by implication by testing such functional faults, which also
cover the faults affecting the update logic of reconfigurable modules. Moreover,
such faults also cover those faults affecting the reset logic, whose effect is to keep
the module stuck at its reset value. Other reset faults (i.e., those that make the reset
ineffective) are not considered, but can be easily targeted if we grant the possibility
to act on the asynchronous reset signal.

A proper test for functional faults of a reconfigurable module compares, for
a configuration able to excite a given fault, the expected path length against the
length of the faulty path. This comparison is performed by looking at the number
of clock cycles required by the input sequence to appear on the scan output pin. As
an example, the functional fault on the module ScanMux of Fig. 5.6, which always
selects the segment connected to the input 1, can be excited by a configuration which
selects the input 0; all such possible configurations are listed in Table 6.1, which also
reports the length of the selected faulty paths. In the table, the first configuration is
not able to detect the fault, due to the fact that the faulty path length is equal to the
active path length. Thus, one of the remaining three configurations can be selected
for the test.

Some situations may exist, in which all faulty paths have the same length of the
active path, i.e., no configuration able to excite the fault exists. In this case, the fault
is untestable.

In the following subsections, the basic concepts presented above are applied in a
test procedure for SIB modules and ScanMuxes. Configuration and test vectors are
applied in the test procedure. Since test vectors aim at checking whether the active
paths are as long as expected, an initialization vector is included in the test phase,
which forces the scan paths to a known value. A sequence of 0s can be used for
this purpose. The length of the initialization sequence is equal to the longest path in
the network, rather than to the active path length. The reason for this is that a fault
affecting a reconfigurable module results in a faulty path, whose length is (generally)
different than the length of the expected path. Thus, the length of the longest path in
the network is a suitable value to be used before any test phase. In this case, each
tt
i contribution in Eq. (6.1) includes the length of the longest path. An alternative



6.1 Terminology and Fault Model 139

Table 6.1 Effect of the functional fault on the ScanMux of Fig. 5.6, which always selects the
input 1, when selecting different active paths.

ScanMux SIB1 SIB2
Path length

(faulty/active)
Faulty path

0 D D 3/3 TDI→cb1→cb2→cb3→TDO
0 D A 11/3 TDI→cb1→TDR2→cb2→cb3→TDO
0 A D 11/3 TDI→TDR1→cb1→cb2→cb3→TDO
0 A A 19/3 TDI→TDR1→cb1→ TDR2→cb2→cb3→TDO

solution is to use the maximum length among all faulty paths and the expected path,
but this value is fault-dependent. In the example of Fig. 5.6, an initialization vector
composed of 19 0s can be used before each test phase.

SIBs

Given a SIB stuck-at asserted (de-asserted) fault, the test procedure has to force the
SIB to be de-asserted (asserted) and then check whether the SIB works correctly. In
details, the test procedure is the following:

1. apply a certain number of configuration vectors, until the SIB is part of the
active path;

2. shift in an initialization vector whose length is equal to the one of the longest
path in the network;

3. shift in a test vector as long as the expected path length;
4. check whether the expected sequence appears on the output of the path;
5. reconfigure the network, so that the SIB is part of the active path and at the

opposite configuration;
6. shift in an initialization vector whose length is equal to the one of the longest

path in the network;
7. shift in a test vector whose length is equal to the one of the expected path

length;
8. check whether the expected sequence appears on the output of the path.

As an example, the test of SIB1 of the reference network in Fig. 5.6 is presented,
assuming that in the reset configuration the SIBs are de-asserted and the ScanMux
selects the input 0. As test vectors, a sequence of alternated 0s and 1s is used,



140 Testing

followed by two consecutive 1s, which are used as sequence terminator. The output
pin is monitored until the sequence terminator is shifted out: this permits to calculate
the active path length and to compare it against the expected one. In details:

1. Reset – active path (AP): TDI→TDR0→s3→TDO
2. Configuration vector 1:

(a) Shift in XX1 (lenght = 3)
(b) Update – AP: TDI→cb1→cb2→cb3→TDO

3. Initialization vector 1:
(a) Shift in 0000000000000000000 (lenght = 19)

4. Test vector 1:
(a) Shift in 010 (lenght = 3)
(b) Shift in 11 (lenght = 2)

5. Check
6. Configuration vector 2:

(a) Shift in 101 (lenght = 3)
(b) Update – AP: TDI→TDR1→cb1→cb2→cb3→TDO

7. Initialization vector 2:
(a) Shift in 0000000000000000000 (lenght = 19)

8. Test vector 2:
(a) Shift in 01010101010 (lenght = 11)
(b) Shift in 11 (lenght = 2)

9. Check.

In the last check (step 9), extra bits are shifted in until the last sequence terminator
comes out from the output pin (at maximum, as long as the longest path plus the
length of the sequence terminator, i.e., 19+2 = 21 in the example). The lengths of
test vectors shifted in at steps 4 and 8 are checked when the next configuration vector
is shifted.

Scan Multiplexers

The same test procedure can be extended to scan multiplexers. The basic idea is
once again to first configure the network so that the ScanMux is switched to a given
configuration, thus making a given path accessible. The difference with respect to the
SIB is that the faulty path of a SIB is always longer (or shorter) than the active path.
On the contrary, that is not the case of faulty paths of ScanMuxes (see Table 6.1). In



6.2 Network Representation 141

that case, the length of the faulty path may even vary depending on the configuration
of other modules in the active path. Moreover, the faulty paths can be more than
one (e.g., in a 4-to-1 multiplexer, each configuration has 3 faulty paths). In order
for the fault to be testable, the length of each faulty path has to be different than the
active path. In details, the test procedure for a testable scan multiplexer fault is the
following:

1. apply a certain number of configuration vectors, until:
(a) the multiplexer is part of the active path and set at a certain configuration,

and
(b) the other modules are configured such that the faulty paths have different

length than the active path;
2. shift in an initialization vector as long as the longest path in the network;
3. shift in a test vector as long as the expected path length;
4. check whether the expected sequence appears on the output of the path;
5. repeat the previous steps for all the multiplexer’s configurations.

6.2 Network Representation

RSNs can be represented in different formats, such as the Instrument Connectivity
Language (ICL) for IEEE Std 1687 networks. Structural representations are hard
to handle and extracting the main properties of a network requires to pass through
internal representations. In order to abstract the main functions of a reconfigurable
scan network to be tested, two formal graphs representations are proposed.

These representations are traversed by the proposed test algorithms, as discussed
in the following section, in order to generate a sequence of configuration and test
patterns for the target network.

The first graph, named Topology Graph, is based on the network topology and
consists of all possible scan paths of the network. This graph is a topological view
of the network.

The second graph, named Configuration Graph, is based on the list of possible
network configurations. A path in this graph represents a sequence of configurations
in which the network can be sequentially placed.



142 Testing

6.2.1 Topology Graph

The topology graph is a simplified representation of the scan network providing
a topological view. The elements of the scan network (TDRs, SIBs, ScanMuxes,
configuration bits) are associated with vertices, while the connections between
elements are represented by edges. The set of vertices also includes those associated
to the input and output pins of the scan network, e.g., TDI and TDO.

In case of a single pair of input/output pins, the graph has a single source vertex
(e.g., TDI) and a single sink vertex (e.g., TDO). In general, it is a directed acyclic
graph (DAG), whose topological ordering has the following properties (according to
the graph theory):

• the network input pins are in the first level (their corresponding vertices are
called source in the graph theory notation);

• the reconfigurable modules and registers are in the intermediate levels (their
corresponding vertices are called internal);

• the network output pins are in the last level (their corresponding vertices are
called sink).

Each vertex of the graph is annotated with the hierarchical depth of the corre-
sponding element in the scan network. As an example, let us consider the scan
network of Fig. 5.6, whose topology graph is shown in Fig. 6.1. In such a graph,
the reconfigurable modules’ vertices are highlighted in grey. For each vertex, the
depth k is also reported in Fig. 6.1 using the notation d = k. In details, the elements
ScanMux and cb3 are placed at the top-level (depth = 1), i.e., they are always part
of the active path. The elements TDR0, SIB1, cb1, SIB2, and cb2 are placed in the
segments controlled by ScanMux, thus their vertices are annotated with depth = 2.
Finally, the vertices TDR1 and TDR2 are annotated with depth = 3, since they are
placed in the segments controlled by SIB1 and SIB2, respectively. In general, the
depth of a module placed in a certain segment is the depth of the configurable module
controlling that segment incremented by one.

Each vertex has as many outgoing edges as the number of alternative paths it
produces in all its configurations. Configuration values are used to annotate edges
outgoing from a given vertex. A simple case is the SIB, which can be either asserted
or de-asserted. This means that each SIB vertex has two outgoing edges, labeled
asserted and de-asserted, respectively. In the scan network of Fig. 5.6, the vertex for



6.2 Network Representation 143

SIB1 has two outgoing edges: the first edge is connected to TDR1 and corresponds
to the case in which SIB1 is asserted, while the other one is connected to cb1.

Similarly, a vertex associated to a ScanMux has as many outgoing edges as the
number of inputs to the multiplexer. Each edge is labeled with the values of the
multiplexer’s configuration bits that select the corresponding segment. For example,
the vertex associated to the ScanMux in Fig. 5.3 has four outgoing edges, each one
connected to a TDR. It is important to note that the vertex associated to a ScanMux
precedes the vertices of each element on its segments in the topological ordering
of the graph. When building the topology graph, the vertex of a multiplexer is
associated to the fork of its segments, rather than to the element itself. Moreover,
the last elements on the segments are directly connected to the vertex associated to
the element that succeeds the ScanMux in the network. In the reference network,
starting from TDI, the scan path is forked into two segments, one including TDR0,
and the other with SIB1 and SIB2 (and their configuration bits cb1 and cb2). The
two segments are connected to the element ScanMux. In the corresponding topology
graph (see Fig. 6.1), the vertex associated to TDI is directly connected to ScanMux,
which has two outgoing edges: one connected to TDR0 and one to SIB1. The
vertex TDR0 is directly connected to cb3, as well as the vertex cb2. Finally, a vertex
associated to a TDR has a single outgoing edge. In the topology graph of Fig. 6.1,
edges that are activated upon reset are highlighted.

Every possible path in the scan network is represented by a path in the topology
graph from source to sink vertices. When the network is in a certain configuration,
each reconfigurable module selects a given segment. Similarly, one active edge
comes out from the related vertex in the topology graph. Moreover, each source
vertex is connected to a sink vertex by means of an active path.

6.2.2 Configuration graph

The topology graph offers a view of the interconnections between scan modules of
the network. Such a representation, however, does not include information about
the time (in terms of scan clock cycles) required to move the network from one
configuration to another. Thus, an alternative representation is needed.

The list of configurations and the neighborhood relation are used to build a
directed graph G = (V,E). Each vertex Vi corresponds to a network configuration



144 Testing

TDO

TDR2

d = 3

SIB2

d = 2

TDR1

d = 3

SIB1

d = 2

TDR0

d = 2
ScanMux
d = 1

TDI

cb1

d = 2

cb2

d = 2

cb3

d = 1
0

1

A

D

A

D

Fig. 6.1 Topology graph of the example network in Fig. 5.6.

σi. The reset state V0 is used to refer to σ0. Each edge (Vi,Vj) represents a transition
from σi to σ j with σ j neighbor of σi and it is labeled with its transition cost, equal
to the active path length of σi (if need be incremented by one, i.e., the extra clock
cycle for the update operation). The active path of a vertex is obtained by applying
its configuration to the topology graph.

The configuration graph can be built by applying the following procedure. As
many vertices are created as the number of possible network configurations. In
details, for each configuration σi, the following steps are performed:

1. a vertex Vi is created, if not existing;
2. the neighborhood Σi is identified;
3. for each configuration σ j ∈ Σi, a vertex Vj is created, if not existing, and an

edge (Vi,V j) is created and labeled with the active path length of σi.

The process can be implemented as a recursive procedure that starts from the reset
configuration and returns when all neighbor configurations are extracted from the
neighborhood set.

As an example, the procedure has been applied on the network represented in
Fig. 5.6. The adjacency matrix of the resulting graph is shown in Table 6.2. Each
row of the matrix reports the transition cost of the outgoing edges from a vertex
to other vertices, or ’–’ when the two vertices are not connected by an edge. It
can be noticed that the first four configurations have only one outgoing edge each.



6.3 Proposed Test Strategies 145

Table 6.2 Adjacency matrix of the configuration graph built on network in Fig. 5.6.

0,D,D 0,D,A 0,A,D 0,A,A 1,D,D 1,D,A 1,A,D 1,A,A
0,D,D – – – – 4 – – –
0,D,A – – – – – 4 – –
0,A,D – – – – – – 4 –
0,A,A – – – – – – – 4
1,D,D 4 4 4 4 – 4 4 4
1,D,A 12 12 12 12 12 – 12 12
1,A,D 12 12 12 12 12 12 – 12
1,A,A 20 20 20 20 20 20 20 –

In such configurations, in fact, the ScanMux is configured to the value 0, thus the
other configuration bits are not part of the active path. On the contrary, all the other
configurations can reach all the other vertices of the graph. Moreover, all outgoing
edges from a certain vertex are labeled with the same transition cost, equal to the
active path of the vertex plus one.

6.3 Proposed Test Strategies

The complete test of a reconfigurable network must pass through a certain number
of configurations, each one able to include in the active path a subset of the registers
and the reconfigurable modules. Once each target configuration is reached, the active
path of the network is tested and the response is observed by monitoring the scan
output values. In Section 6.1, the concepts of configuration and test vectors and
sessions have been introduced.

After the system reset, the network is set to its initial configuration (which is
known). The overall test procedure requires a certain amount of sessions. After each
session, the network target configuration is changed and the target configuration of
the previous session becomes the starting configuration.

During the test phase, the active path includes a certain number of reconfigurable
modules to be tested. The test vectors to be applied in this phase depend on the
specific defects under analysis. Since the main focus of this work is not to improve
state-of-the-art scan cell testing techniques but to support minimum-length test
of reconfigurable modules, each Tsti simply consists of an initialization vector
composed of as many 0s as the longest path length, followed by a test vector



146 Testing

composed of an alternate sequence of 0s and 1s. Clearly, more complex sets of
vectors can be used in this phase.

Since the amount of possible configurations of a network grows exponentially
with the number of reconfigurable modules, the problem of identifying a sequence
of sessions which guarantees the full network test coverage while minimizing the
overall test time is not trivial. This work achieves the intended goal with a tractability
limitation of the approach on large circuits, due to the size of the search space. In the
next sections, an approach implementing a minimum cost search on the configuration
graph is presented. An enhancement of the proposed approach based on a space
pruning heuristic is then shown. Such a variant is able, in some cases, to reduce
dramatically the search space, thus speeding up the search algorithm.

The proposed optimal approach is also useful for evaluating the effectiveness, in
terms of total test time, of alternative solutions to the same problem, e.g., based on
heuristics or optimization techniques. Later on in this section, a pair of sub-optimal
approaches based on the topology graph traversal are presented. The main advantage
of these solutions is that they are easy to implement and successfully applicable to
very large circuits.

6.3.1 Optimal Approach

The approach proposed in this section formulates the problem as a graph search
at the minimum cost. The cost to be minimized is the total test time, as expressed
in Eq. (6.1). The configuration graph, enriched with test information, is traversed
using a modified version of the A∗ algorithm [135]. In the following, the classical A∗

formulation is presented. Later on, the proposed modifications to the algorithm are
shown in details.

A∗ is an informed search algorithm, which operates by searching among all
possible paths to the solutions (goals) for the one that incurs the smallest cost. In
a labeled graph, vertices are the problem states, while each edge represents the
transition cost to move from a state to another. The goal is typically identified by a
certain vertex. Starting from a specific vertex of the graph, A∗ constructs a tree of
paths rooted in that vertex, expanding paths one step at a time, until one of its paths
ends at the predetermined goal vertex.



6.3 Proposed Test Strategies 147

At each iteration of its main loop, A∗ determines which of its partial paths to
expand into one or more longer paths. It does so based on an estimate of the cost
(total weight) still to reach the goal vertex. Specifically, A∗ selects the path that
minimizes the following function:

f (n) = g(n)+h(n) (6.2)

where n is the last vertex on the path, g(n) is the cost of the path from the source
vertex to n, and h(n) is a heuristic that estimates the cost of the cheapest path from
n to the goal. The heuristic function must be admissible, meaning that it never
overestimates the actual cost to get to the goal vertex.

The problem at hand is different from the classic A∗ formulation in which there
is not a predetermined goal state. The goal is to reach the full test coverage of the
network, thus it cannot be associated to a certain state of the configuration graph.
Instead, whether or not a given state is the goal depends on the path followed to
reach it. In other words, the algorithm is looking for a goal path instead of a goal
state.

The algorithm traverses the configuration graph. In such a graph, each vertex is
associated to a network configuration. By moving to the next vertex, a configuration
pattern is applied. The optimal test procedure has to determine whether or not a
test phase is necessary before moving to the next configuration (in the latter case,
the configuration is intermediate). Since A∗ is a graph traversal algorithm, such
information has to be embedded into the graph representation. The proposed solution
is to add new vertices to the configuration graph. In details, for each vertex Vi, a
new vertex Ti is created. The vertex Ti can be reached only from Vi through an edge
whose transition cost is the number of clock cycles needed for the test phase. After
the test phase, the network configuration is not changed, thus it is the same of Vi. In
order to keep the representation able to reach other configurations after the test phase,
Ti is connected to all Vi’s neighbor vertices through edges with the same transition
cost.

The graph is traversed starting from the network’s reset configuration state V0.
When a Ti vertex of the graph is visited, the fault list is updated, by removing faults
that are covered by the corresponding test phase. Starting from V0, a path represents
an ordered list of configuration and test phases. A fault F affecting the network



148 Testing

modules might deviate the expected behavior of the path, and one or more test phases
may fail. If such a situation happens, the path is a test for F .

The proposed formulation of the A∗ algorithm minimizes the following function:

f (n) = g(n,F )+h(p) (6.3)

where p is a path, n is the last vertex on p, and F is the list of faults that are detected
by p. Moreover, a goal function G(p) is introduced, that states whether or not p is
a goal path (i.e., if it covers the whole list of testable faults). This means that the
estimates of the cost from a state to the goal must be a function of the current path
as well. The heuristic function that computes those estimates is therefore denoted
as h(p) in Eq. (6.3) as well. Details about the heuristic function are given later in
this section. In classic A∗ we keep a frontier of open vertices that corresponds to
a tree of partial paths rooted in the initial state. Each of these vertices is labeled
with information that is used to keep track of the current best path (in terms of
actual cost plus estimated cost to the goal) from the initial state to such a vertex.
Every time a path to a vertex with a lower actual cost is found, such information
(predecessor vertex) is updated. This approach is sound because the estimated cost
for the vertices does not change. Therefore, a lower actual cost makes the new path
always preferable. In our case, depending on the path we follow to reach a given
vertex, the set of faults that are covered by the path may vary. Therefore, we need
to keep multiple instances of each vertex open at any given time, in order to take
into account the different paths to reach the vertex along with their different set of
detected faults. The proposed solution is to keep a frontier of open vertices like in
classic A∗, however each of these vertices maintains a hash table of paths with keys
equal to the set of detected faults. When a new path to a vertex is found, if it has the
same set of detected faults of a previously found path, its actual cost is checked and,
if lower that the previous path, the latter is updated. This contribution is indicated
with g(n,F ) in Eq. (6.3).

In other words, each vertex keeps track of a set of paths, each with different set
of detected faults. A new path overwrites a previously stored one if it detects the
same set of faults but has a lower actual cost. For each state we also keep track of the
current best path to reach it, that is the currently open path to the state that has the
lower combined cost (i.e., actual cost plus estimated cost to the goal). The estimated
cost to the goal is computed by means of an admissible heuristic function.



6.3 Proposed Test Strategies 149

begin A-star
OpenQueue← /0;
ClosedPaths← /0;
insert reset configuration state V0 into OpenQueue;
while OpenQueue ̸= /0 do

extract Vi with the lowest f (Vi) from OpenQueue;
p← best path to Vi;
put p into ClosedPaths;
if G(p) is true then

return p;
end
N← neighbors of Vi;
foreach Vj ∈ N do

q← path p connected to Vj;
if q /∈ClosedPaths then

key← faults covered by q;
costp← actual cost of path p;
costi j← transition cost from Vi to Vj;
if costp + costi j < g(Vj,key) then

update g(Vj,key);
update f (Vj) with h(q);

end
put Vj into OpenQueue;

end
end

end
end

Fig. 6.2 Pseudo-code of the optimal approach based on the A∗ algorithm.

The pseudo-code of the algorithm is reported in Fig. 6.2, where the f , g, and
h functions are referred to Eq. (6.3), G is the goal function, key corresponds to F ,
OpenQueue is the frontier, and ClosedPaths contains the list of paths that are proved
to be non-optimal (i.e., they either do not detect all faults or they do but with a higher
test time than the current best path). Briefly, the algorithm iteratively extracts the
current best open path from the frontier, visits its neighborhood by updating/adding
open paths until the goal is reached or no more open paths remain. When a best
path to a node is extracted from the frontier, so that the goal function is satisfied, it
represents the optimal solution (the algorithm is exhaustive in its search).



150 Testing

The performance in terms of run-time needed to reach the goal highly depends
on the heuristic function. The proposed heuristic uses the length of the segments
connected to each configurable element to estimate the cost of the remaining tests
required to fully cover the network faults. Given a reconfigurable module M with k
selectable segments, a fault F that forces M to select the segment si can be detected
by configuring M so that a segment s j, with j different than i, is included in the
active path, and then shifting a test vector into the network. Such test vector is at
least as long as s j. According to this reasoning, the contribution of F to the heuristic
function is comparable to the length of the shortest segment other than si, plus the
number of configuration bits of the F−related module; if such a segment includes
other reconfigurable modules, such modules and the segments they control are not
counted; this permits not to take a segment into consideration multiple times in
the heuristic function computation. For example, the fault that forces the ScanMux
module of Fig. 5.6 to the value 1 is detected by a configuration in which ScanMux is
set to 0 and selects the segment that includes TDR0. The contribution to the heuristic
function of such a fault is the TDR0 length plus the configuration bit (i.e., 2+1 = 3).
The cost of the opposite ScanMux fault is estimated as the length of a modified
version of the other segment (i.e., the one which includes the two SIBs), in which
the inner SIBs have been removed; thus, the cost is zero for the segment plus the
configuration bit (i.e., 0+1 = 1).

The heuristic function value is computed while considering each of the remaining
untested faults (i.e., the active faults) of the fault list. When the active fault list is
empty, the goal is reached (i.e., the path is a test sequence). The application of the
algorithm on the example network in Fig. 5.6 produces the following test sequence
after reset:

• Session 1
1. Configuration 1,D,D
2. Test: SIB1 stuck-at-A, SIB2 stuck-at-A

• Session 2
1. Configuration 1,A,A
2. Test: SIB1 stuck-at-D, SIB2 stuck-at-D,

ScanMux stuck-at-0
• Session 3

1. Configuration 0,A,A
2. Test: ScanMux stuck-at-1



6.3 Proposed Test Strategies 151

6.3.2 Enhanced Version

The time and memory requirements of the complete algorithm proposed in the
previous subsection depend on the total number of possible configurations in the
network. In general, with n configuration bits (one or more for every reconfigurable
module), there are 2n configurations. In this section, an heuristic strategy able to
reduce the search space is proposed. This goal is achieved by reducing the list of
admitted (i.e., considered by the search algorithm) network configurations, through
an analysis of the network topology. The strategy is composed of two phases. In
the first phase, the configuration list is reduced, by applying some constraints. The
collateral effect of such a reduction is that some faults may become untestable
using the admitted configurations, only. Thus, the second phase consists of adding
some of the removed configurations back into the configuration list up until the full
network testability is guaranteed again. As a result, the optimal approach performs
the minimum cost search on a reduced configuration graph, improving both run-time
and memory requirements.

First Phase

The main idea behind the first phase is to remove all the configurations such that,
given a certain reconfigurable module Mi:

1. Mi is not controllable, i.e., it cannot be programmed with a single configuration
vector, because its configuration bits are not part of the active path;

2. Mi is not observable, i.e., it is not part of the active path, thus the effects of its
faults cannot be observed.

If the above conditions are both true, Mi is forced to its reset state (i.e., it is configured
to select the same segment of the network reset configuration). The same reasoning
is applied for all reconfigurable modules in the network. This phase is represented
as a Boolean problem. For each reconfigurable module, the above predicates are
represented with controllability, observability, and reset Boolean constraints.

In the following, the procedure is explained in details. The topology graph
(introduced in Section 6.2.1) is annotated with Boolean variables, according to the
following procedure:



152 Testing

1. each vertex associated to a reconfigurable module Mi is annotated with a set
of controlling variables, i.e., the configuration of the reconfigurable module
controlling the segment of the network that includes the configuration bits of
Mi;

2. each edge is annotated with a set of observing variables, i.e., the configuration
of the reconfigurable module controlling the segment of the network associated
to the edge;

3. for each reconfigurable module vertex, the outgoing edge that corresponds to
the segment selected on the network reset is marked.

A controlling variable typically is equal to an observing variable of the graph.
As an example, let us consider the annotated graph reported in Fig. 6.3, which
corresponds to the example network in Fig. 5.6 (the original topology graph is shown
in Fig. 6.1). In this graph, Boolean variables si j are used to represent the state of
each segment. The controlling variable of module ScanMux is equal to the observing
variable of the egde connecting TDI to ScanMux. In the network topology, this
edge is associated to the top-level segment (i.e., the segment outgoing from TDI,
before the fork, and then outgoing from ScanMux up to TDO), which includes the
configuration bit of ScanMux. In the same way, the modules SIB1 and SIB2 are
controlled by the variable associated to one of the outgoing edges of ScanMux. In
particular, this edge corresponds to the segment of the network that includes the
configuration bits of SIB1 and SIB2 (they are referred to as SIBs with local control
in [92]).

Given a reconfigurable module Mi, the following constraints are defined:

• C(Mi) is the controllability constraint. It corresponds to the logical conjunction
of each controlling variable that annotates the vertex associated to Mi. A
module Mi is controlled iff C(Mi) is satisfied, i.e., its configuration bits are
part of the active path, thus it can be programmed with a single configuration
vector.

• O(Mi) is the observability constraint. It corresponds to the logical conjunction
of each observing variable associated to the segment that includes Mi. In
the graph, this variable annotates the edge outgoing from the reconfigurable
module that controls such a segment. A module Mi is observed iff O(Mi) is
satisfied, i.e., it is part of the active path. For the modules at top level, the
observability constraint is assumed to be always true (⊤).



6.3 Proposed Test Strategies 153

• R(Mi) is the reset constraint. It corresponds to the logical conjunction of each
observing variable of the marked outgoing edge of the vertex associated to Mi.
It denotes the reset configuration of Mi.

In case of a module Mi with local control (as defined in [92]), the constraints
C(Mi) and O(Mi) are coincident. As an example, the constraints derived from the
graph in Fig. 6.3, which only contains modules with local control, are the following:

C(ScanMux) =⊤ O(ScanMux) =⊤
C(SIB1) = s12 O(SIB1) = s12

C(SIB2) = s12 O(SIB2) = s12

From such representation we can derive a Boolean formula that has to be satisfied
by all admitted configurations, as follows:

∧
Mi

(
R(Mi)∨C(Mi)∨O(Mi)

)
(6.4)

For the network of the graph in Fig. 6.3, the resulting Boolean formula is the
following:

(s22∨ s12)∧ (s32∨ s12) (6.5)

Second Phase

For each configuration, the list of testable faults can be identified. Hence, the
undetected faults of the admitted configuration list (i.e., the subset of configurations
satisfying Eq. (6.4)) can be derived. Each escaping fault can be either untestable
(by any possible configuration) or testable by some configuration not satisfying
the Boolean formula. For each of such faults, an iterative process starts from
the reconfigurable module affected by the fault, and at each iteration relaxes the
constraints on the modules in the controlled segment (each fault on a reconfigurable
module can be associated to a controlled segment). The process stops when either
the fault becomes testable or is proved to be untestable. If the fault is untestable, the
original constraints are resumed.



154 Testing

TDO

TDR2
SIB2

s12
TDR1

SIB1

s12

TDR0
ScanMux

s00
TDI

cb1 cb2

cb3
s00 s11

s12

s11

s21

s22

s21

s31

s32
s31

s12

s12

s00

Fig. 6.3 Topology graph of the example network in Fig. 5.6 annotated for heuristic optimiza-
tion.

In the previous example of the graph in Fig. 6.3, as already discussed in Sec-
tion 6.1.2, the fault that forces the ScanMux to always select the segment connected
to input 1 (see Fig. 5.6) can be detected only by a subset of configurations in which
the ScanMux is part of the active path. In particular, according to Table 6.1, the
configuration in which the ScanMux selects the segment connected to input 0 (i.e.,
the segment which excites the fault) and the modules SIB1 and SIB2 are de-asserted
creates a faulty path with the same length of the active path (see Table 5.1). Thus,
this configuration is not able to detect the fault, while all others are. Since SIB1 and
SIB2 are neither controllable nor observable in such a configuration of the ScanMux,
they are constrained to their reset configurations by the Boolean formula. In order to
make such a fault detectable, an iterative process is started. By relaxing the constraint
that forces SIB1 to its reset state, an admitted configuration in which the active path
and the faulty path have different length is found (configuration 0,A,D in the table).
The formula becomes the following:

s32∨ s12 (6.6)

After the application of the heuristic optimization on the example network, the
optimal approach based on A∗ uses a graph composed of 12 vertices only (6 for
configuration and 6 for test) instead of 16. The optimal solution is not compromised
and the test sequence found by the algorithm is the same.



6.3 Proposed Test Strategies 155

6.3.3 Sub-Optimal Approaches

For large networks, the optimal approach based on A∗ is hardly applicable due to
the excessive search space size. The proposed heuristic optimization is helpful to
dramatically reduce it, but it does not solve the problem for all networks. In such
situations, a scalable approach is preferred, even if the total test time obtainable is
sub-optimal. In the following, two alternative approaches are shown, both based on
topology graph traversal: a depth-first approach and a breadth-first approach.

When a test phase is performed, the fault list can be updated by removing the
faults that have been tested. Faults affecting reconfigurable modules are associated
to outgoing edges of their corresponding vertices.

The proposed strategies apply a sequence of test sessions by traversing the
topology graph. At each step, a vertex associated to a reconfigurable module Mi

is found in the graph. In order to change the configuration of Mi, a configuration
phase is performed, which consists of one or more configuration vectors. After
the configuration phase, a different outgoing edge of vertex Mi becomes active (as
defined in Section 6.2.1), while the previously selected edge becomes inactive. As
a result, the active path of the network changes. Then, a test phase is performed
and the fault list is updated. By carefully identifying target edges on the graph, the
process alternates these two phases, until the full test coverage is reached. The two
strategies differ in the way these edges are selected.

Depth-First

The topology graph is traversed by following a depth-first approach. At each step of
the graph traversal, a subset of reconfigurable modules is selected, that are part of
the current active path. In the set of selected modules, the configuration is changed
only for each module that is able to excite some of the untested faults and lies at the
maximum depth. The depth of each module is found as an annotation of the topology
graph vertices (see Section 6.2.1). All new configurations are applied together by
means of a single configuration pattern, in case all the configuration bits are part of
the active path (i.e., reconfigurable modules with local control), otherwise multiple
configuration patterns are needed. A configuration in which all excited faults become
observable is reached (i.e., in which the selected modules are part of the active path),



156 Testing

begin Depth-first
FL← all testable faults;
while FL ̸= /0 do

M← reconfigurable modules in the active path;
d← maximum depth of m ∈M which is able to excite a fault in any
configuration;

foreach m ∈M do
if depth(m) = d and m is able to excite a fault then

activate an outgoing edge from m that excites a fault;
end

end
foreach just configured m ∈M do

reach a configuration in which m is part of the active path;
end
apply a test pattern;
remove observed faults from the fault list;
if all m ∈M are fully tested then

reach a configuration in which untested modules are part of the
active path;

end
end

end

Fig. 6.4 Pseudo-code of the sub-optimal approach based on the depth-first algorithm.

then a test pattern is applied. The process is repeated until all faults are covered. The
pseudo-code of the depth-first approach is reported in Fig. 6.4.

As an example, the application of the depth-first strategy on the graph in Fig. 6.1
produces the following test sequence after reset:

• Session 1
1. Configuration 1,D,D
2. Test: SIB1 stuck-at-A, SIB2 stuck-at-A

• Session 2
1. Configuration 1,A,A
2. Test: SIB1 stuck-at-D, SIB2 stuck-at-D,

SMux stuck-at-0
• Session 3



6.3 Proposed Test Strategies 157

1. Configuration 0,A,A
2. Test: SMux stuck-at-1

In the case of the example, the algorithm is able to produce the same test sequence
produced by A∗.

Breadth-First

The topology graph is traversed by following a breadth-first approach. The algorithm
groups reconfigurable modules into levels, according to their hierarchical depth.
Starting from the top-level, modules are tested level by level. At each iteration, the
network is configured such that one or more modules of the target level are part of
the active path and new faults can be excited. Then, a test pattern is applied and
new faults that are excited and observed are removed from the fault list. Once all
reconfigurable modules of the target level have been fully tested, the next level is
considered, until the maximum depth of the network has been reached or all faults
have been detected. The pseudo-code of the breadth-first approach is reported in
Fig. 6.5.

As an example, the application of the breadth-first strategy on the graph in Fig. 6.1
produces the following test sequence after reset:

• Session 1
1. Configuration 1,D,D
2. Configuration 0,A,D
3. Test: SMux1 stuck-at-1

• Session 2
1. Configuration 1,A,D
2. Test: SIB1 stuck-at-D, SIB2 stuck-at-A,

SMux stuck-at-0
• Session 3

1. Configuration 1,D,A
2. Test: SIB1 stuck-at-A, SIB2 stuck-at-D



158 Testing

begin Breadth-first
FL← all testable faults;
d← 1;
while FL ̸= /0 do

M← reconfigurable modules of level d;
while all m ∈M are not fully tested do

foreach m ∈M do
if m is able to excite a fault then

activate an outgoing edge from m that excites a fault;
end

end
repeat

reach a configuration in which one or more m are part of the
active path;

apply a test pattern;
remove observed faults from the fault list;

until all previously configured m ∈M have been considered;
end
d← d +1;

end
end

Fig. 6.5 Pseudo-code of the sub-optimal approach based on the breadth-first algorithm.

6.4 Experimental results

The effectiveness in terms of test duration of the proposed algorithms has been
evaluated with an in-house tool on the ITC’16 benchmarks of IEEE Std 1687 scan
networks [90]. Moreover, additional networks have been synthesized, which show
the main differences between the proposed algorithms. The A∗ algorithm has been
compared against the depth-first search and the breadth-first search algorithms.

The tool, written in Java, is able to read the network topology described in
different formats. The ICL Tools Software library from [128] has been included in
the developed tool. The tool also allows to configure the cost parameters tc

i and tt
i

presented in Section 6.3.

The experiments were run on a server equipped with a dual Intel Xeon CPU
E5-2680 v3 and 256 GB of RAM. Each benchmark network has been tested using



6.4 Experimental results 159

Table 6.3 Characteristics of the ITC’16 benchmark networks

Network #SIBs #ScanMuxes
#Config.

bits
Max
depth

Longest
path

Total
scan cells

Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat_Ex 57 3 62 5 5,100 5,195
TreeUnbalanc. 28 – 28 11 42,630 42,630
a586710 – 32 32 4 42,381 42,410
p22810 270 – 270 2 30,356 30,356
p34392 – 96 96 4 27,899 27,990
p93791 – 596 596 4 100,709 101,291
q12710 27 – 27 2 26,185 26,185
t512505 159 – 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 96,158
N73D14 29 17 46 12 190,526 218,869
NE1200P430 381 430 811 127 88,471 108,148
NE600P150 207 194 401 78 23,423 28,250

A∗ (in the optimized version) and both sub-optimal approaches (depth-first and
breadth-first). Each experiment used a maximum heap size of 64 GB.

6.4.1 Experiments with Known Benchmarks

The key characteristics of the ITC’16 benchmark networks are detailed in Table 6.3.
For each network, the table reports first the number of SIBs and ScanMuxes. The
fourth column refers to the number of configuration bits that control the configuration
of SIBs and ScanMuxes. The column Max depth indicates the maximum hierarchical
depth of each network (for SIB-based networks this value equals to the maximum
number of nested SIBs, according to [90]). Finally, the column Longest path reports
the maximum possible number of scan cells on active path, while Total scan cells is
the sum of lengths of all scan registers in each network.

In the experiments, the cost for a configuration pattern has been set to the active
path length plus the JTAG protocol overhead (to move from shift to update, see [97]).
The cost for a test pattern has been set to the sum of the following contributions:



160 Testing

1. the JTAG protocol overhead (to move from update to shift), which has been
set to 5;

2. the longest path length (initialization vector, see Section 6.1.2);
3. the active path length plus two (a sequence of alternated 0s and 1s as long as

the active path followed by two consecutive 1s).

Due to tractability limitations (given the size of the search space), A∗ resulted in
out-of-memory failures for most of the benchmarks, while the sub-optimal algorithms
were occupying few memory resources even for very large networks (no out-of-
memory has been experienced by reducing the heap size up to 1GB). Experimental
results on ITC’16 benchmarks are shown in Table 6.4. For each algorithm (depth-first
is referred to a DF, while BF indicates breadth-first), the table reports the number
of sessions (#S in column 3), each one composed of one or more configuration
vectors and a test vector. The total number of configuration vectors is also reported
(#cv in column 4). The table also indicates the number of clock cycles required by
configuration patterns (Tc in column 5) and test patterns (Tt in colum 6), as well
as their sum (column 7). Finally, for sub-optimal approaches, the ratio of the total
time over the A∗ total time is reported (column 8), when A∗ succeeded, i.e., only
for the networks Mingle and N17D3. All modeled faults have been covered in each
experiment (i.e., test coverage is 100%).

An analysis of Table 6.4 shows that the two sub-optimal approaches produced
the same results (i.e., the total time) for most of the benchmark networks. The reason
for this is due to the topology of the benchmarks: all networks but TreeBalanced
and TreeFlat_Ex contain SIBs and 2-to-1 ScanMuxes (i.e., with one configuration
bit). Moreover, in all such networks that have only 2-to-1 ScanMuxes, one of the
two segments controlled by a ScanMux does not include any other nested SIB
or ScanMux, with the only exception of the network Mingle. In the following,
ScanMuxes of this kind are referred to as Unbalanced ScanMuxes, while ScanMuxes
that have nested reconfigurable modules on both segments (more than one segment,
in case of ScanMuxes larger than 2-to-1) are referred to as Balanced ScanMuxes.
Balanced ScanMuxes are one category of the modules that determine a different
result between depth-first and bread-first, as for the network Mingle. The other factor
is the presence of ScanMuxes with more than one configuration bits (i.e., larger
than 2-to-1) not placed at the maximum hierarchical depth (level) of the network.
In the benchmarks, the networks TreeBalanced and TreeFlat_Ex both have one
ScanMux with 3 configuration bits. The only difference between them is that the



6.4 Experimental results 161

Table 6.4 Experimental results on the ITC’16 benchmark networks

Network Alg. #S #cv Tc [cc] Tt [cc] T [cc] T/TA∗

Mingle A∗ 7 7 337 1,684 2,021 –
DF 7 6 362 1,920 2,282 1.13
BF 8 8 453 2,173 2,626 1.30

TreeB. DF 8 7 8,580 60,789 69,369 –
BF 8 7 8,580 60,789 69,369 –

TreeFl. DF 6 5 15,263 56,078 71,341 –
BF 7 8 30,250 66,177 96,427 –

TreeUnb. DF 12 11 237,475 834,324 1,071,799 –
BF 12 11 237,475 834,324 1,071,799 –

a586710 DF 5 4 1471 298,153 299,624 –
BF 5 4 1,471 298,153 299,624 –

p22810 DF 3 2 573 152,364 152,937 –
BF 3 2 573 152,364 152,937 –

p34392 DF 5 4 697 196,005 196,702 –
BF 5 4 697 196,005 196,702 –

p93791 DF 5 4 1,950 706,928 708,878 –
BF 5 4 1,950 706,928 708,878 –

q12710 DF 3 2 43 130,979 131,022 –
BF 3 2 43 130,979 131,022 –

t512505 DF 3 2 494 385,530 386,024 –
BF 3 2 494 385,530 386,024 –

N132D4 DF 6 5 9,332 29,399 38,731 –
BF 6 5 9,332 29,399 38,731 –

N17D3 A∗ 5 5 900 3,007 3,907 –
DF 5 4 802 3,341 4,143 1.06
BF 5 4 802 3,341 4,143 1.06

N32D6 DF 5 4 183,439 759,031 942,470 –
BF 5 4 183,439 759,031 942,470 –

N73D14 DF 13 12 1,577,674 4,400,373 5,978,047 –
BF 13 12 1,577,674 4,400,373 5,978,047 –

NE1200P. DF 128 127 5,014,931 16,500,774 21,515,705 –
BF 128 127 5,014,931 16,500,774 21,515,705 –

NE600P. DF 79 78 916,829 2,809,897 3,726,726 –
BF 79 78 916,829 2,809,897 3,726,726 –



162 Testing

ScanMux of network TreeBalanced is placed in the bottom hierarchical level, while
in TreeFlat_Ex it is placed in an intermediate level. For this reason, only the network
TreeFlat_Ex presents different results between depth-first and breadth-first.

6.4.2 Experiments with Synthesized Benchmarks

The effectiveness of the proposed algorithms has been also evaluated on new synthe-
sized networks. A tool able to generate random networks (constrained with some
parameters that affect the topology shape) has been purposely devised. The tool
has been used in an evaluation experiment, where around 20k networks have been
generated. Networks include both unbalanced and balanced ScanMuxes, also larger
than 2-to-1, and are manageable with the A∗ approach. The characteristics of the
generated networks are the following:

• number of ScanMuxes between 2 and 16;
• number of configuration bits between 2 and 19;
• longest path between 22 and 55,428 scan cells;
• cumulative path between 22 and 70,088 scan cells;
• maximum depth between 2 and 9 levels.

For each network, the total time of the test developed by depth-first and breadth-
first approaches have been divided by the total time of the test generated by A∗ (as
for the column T/TA∗ of Table 6.4). The normal distribution of the results of the
depth-first approach has a mean of 1.08 and a standard deviation of 0.11, while
the breadth-first has mean equal to 1.15 and standard deviation equal to 0.15. The
maximum values are 1.99 for depth-first and 2.15 for breadth-first. The cumulative
distribution functions (CDF) of the two algorithms are reported in Fig. 6.6. The
figure shows that depth-first and breadth-first approaches have been able to find the
optimal solution (ratio over A∗ equal to 1) in 23% and 17% of the cases, respectively,
while in 90% of the cases the test sequence produced by the two algorithms is long
1.23 and 1.34 times with respect to A∗ or shorter.

In order to understand how good these results are with respect to the worst case,
another set of experiments have been performed. The purpose of these experiments
has been to find some networks that are critical (in terms of test sequence duration)
for depth-first and breadth-first. We used an evolutionary-based approach, using the



6.4 Experimental results 163

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

Ratio over A∗

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Depth-first
Breadth-first

Fig. 6.6 Normal cumulative distribution function (CDF) of the ratio between sub-optimal
approaches (depth-first in black, breadth-first in gray) and A∗ on the randomly generated
networks.

evolutionary engine µGP (MicroGP) [136]. The approach is based on a loop, in
which every iteration consists of the following steps:

1. µGP generates a scan network topology, according to some constraints;
2. the topology is read by the tool implementing the test algorithms and the

fitness value of the network is computed;
3. µGP reads the fitness value and associate it to the corresponding network.

µGP maintains a population of networks and each time generates a new one by
applying well-known genetic operators (based and mutation and crossover). After
reading the fitness of the new generated network, µGP updates the population and
other internal parameters. The loop is repeated until a stop condition is met (e.g.,
the fitness reaches a certain maximum value, or after reaching a fixed amount of
wall-clock time or generated networks).

We have performed two evolutionary-based experiments. In the first one, the
fitness value is the total time ratio between depth-first and A∗. In the second one, the
ratio is between breadth-first and A∗. The experiments have been parallelized over
30 cores. After 45 days, 46,066 networks have been generated in the first experiment



164 Testing

0 50 100 150 200 250 300 350 400 450
1

1.5

2

2.5

3

Generation Era

R
at

io
ov

er
A
∗

Depth-first
Breadth-first

Fig. 6.7 Progression in time of the maximum fitness value for the evolutionary-based experi-
ments.

and 46,823 networks in the second. The fitness in the depth-first experiment started
from a maximum value of 1.89 after the first generation era (i.e., the first population
of networks) and reached 2.53 after 315 eras. In the breadth-first experiment the
maximum fitness started from 2 and reached 2.98 after 354 eras. The fitness evolution
of the best network in the population is shown in Fig. 6.7.

Some interesting networks have been extracted from the population and their
characteristics are reported in Table 6.5. The experimental results on the selected
network are reported in Table 6.6. In the first network, depth-first resulted as efficient
as A∗, while breadth-first has slightly worst performances. The opposite behavior
can be observed for the second network, where breadth-first resulted to be highly
efficient. Finally, the last two networks are the worst ones generated by the first and
the second experiments, respectively.

It is important to highlight that evolutionary experiments do not guarantee that the
global optimum is found, thus fitness values have not to be considered as worst-cases.
However, evolutionary experiments outperformed random network generation in
terms of maximum fitness values.



6.5 Chapter Summary 165

Table 6.5 Characteristics of the selected networks

Network #SIBs #ScanMuxes
#Config.

bits
Max
depth

Longest
path

Total
scan cells

Network 1 – 4 6 3 8,142 8,884
Network 2 – 5 8 3 6,325 6,557
Network 3 – 6 8 3 24,580 24,851
Network 4 – 7 10 3 34,169 34,543

Table 6.6 Experimental results on the selected networks

Network Alg. #S #cv Tc [cc] Tt [cc] T [cc] T/TA∗

Network 1 A∗ 4 3 909 49,500 50,409 –
DF 4 3 772 49,637 50,409 1.00
BF 6 6 24,716 74,827 99,543 1.97

Network 2 A∗ 5 4 6,796 38,650 45,446 –
DF 4 5 12,717 56,413 69,130 1.52
BF 5 5 6,838 38,811 45,649 1.004

Network 3 A∗ 9 8 24,968 246,299 271,267 –
DF 10 9 196,237 491,192 687,429 2.53
BF 10 12 269,832 491,192 761,024 2.81

Network 4 A∗ 5 4 34,586 205,458 240,044 –
DF 5 4 101,916 340,616 442,532 1.84
BF 7 8 237,434 476,999 714,433 2.98

6.5 Chapter Summary

The chapter presented several methods for the functional test of reconfigurable
modules of a scan network.

The proposed methodology represents the network topology and configurations
as graphs. An optimal test sequence in terms of total test time is generated by
applying the A∗ search algorithm on the configuration graph, with a suitable heuristic
to reduce the search space without compromising the final results. Sub-optimal
approaches traverse the topology graph and are based on depth-first and breadth-
first algorithms. Such approaches scale well on large networks, when the optimal
approach is not applicable, while still producing a test set whose duration compares
well with the optimal one.



Chapter 7

Diagnosis

Once a RSN has been found faulty, it may be important to identify the faulty elements.
The objective of the work presented in this chapter is to extend the testing approach
to diagnosis, i.e., providing a solution for the generation of a sequence of stimuli
allowing to identify the faulty element in a faulty RSN. This work uses the same
fault model adopted in Chapter 6, with some extensions to TDR faults.

While several methods have been proposed to identify the faults possibly affecting
a scan chain, such as [137, 138, 134, 139, 140, 141, 142, 143], to the best of my
knowledge this is the first attempt to attack the issue of diagnosis in a RSN. The main
difference with respect to regular scan-chain diagnosis is that RSNs also include
configurable modules: hence, from one side we need to deal with different possible
paths, from the other we need to take faults affecting reconfigurable modules into
account.

The approach proposed in this work is based on the usage of a fault dictionary,
where the behavior of the network when each of the faults belonging to a given set
of possible faults arises is stored. By comparing the observed faulty behavior with
those in the dictionary, one can identify the fault which may be responsible for the
observed behavior. Since only scan output signals (e.g., TDO) can be observed, the
different faulty behaviors only differ for the values appearing on these signals.

Based on the analysis of the effects of permanent faults affecting the different
elements in a network (TDRs, SIBs, ScanMuxes), one can determine the diagnostic
properties of an existing test sequence. If the achieved diagnostic capabilities are not



7.1 Terminology and Fault Model 167

enough, one could try to generate further stimuli able to achieve improved diagnostic
capabilities. The proposed techniques allow the generation of test stimuli able to
distinguish between any possible pair of faults in a network (if existing). The main
contribution of the work presented in this chapter lies in describing a method to
generate some distinguishing input stimuli for any pair of single permanent faults.
Moreover, rules for the identification of classes of undistinguishable faults are
provided. By definition, all faults in the same class always behave in exactly the
same manner, no matter which input stimuli is applied to the network.

Experimental results gathered on a set of benchmark networks show the feasibility
of the approach, and provide figures allowing to quantitatively estimate the length of
the stimuli for the diagnosis of an IEEE 1687 network.

Depending on the application scenarios (and in particular on when the instruments
are accessed), the diagnostic approach presented here can be used either at the end
of manufacturing, or in the field (or in both cases).

The rest of this chapter is organized as follows: Section 7.1 introduces the
basic vocabulary and notions about diagnosis, and briefly summarizes the functional
fault model. Section 7.2 describes the proposed approach, which is first based
on a diagnostic analysis (Section 7.2.1) followed by the test patterns generation
(Section 7.2.2). Some experimental results an benchmark RSNs are presented in
Section 7.3. Finally, Section 7.4 draws some conclusions.

The concepts and the results presented in this chapter have been also published
in [15, 144, 90].

7.1 Terminology and Fault Model

The concepts related to configurations, vectors, and test time have been presented
Section 6.1. In this section, the basic terminology is extended to diagnosis.

A given session Si is composed of two phases: a configuration phase Cnf i, in
which configuration vectors are applied, and a test phase Tsti, in which test vectors
are applied. A session Si is able to excite a set of faults SFSi.

The active path (or session path) is the path connected between the scan input
and scan output pins, while the faulty path is the path that would be selected if a



168 Diagnosis

certain reconfigurable module Mi in the active path was in the opposite state to the
expected one. Details are given in Section 6.1.2, where faulty paths due to the faulty
ScanMux in Fig. 5.6 are shown in Table 6.1.

Given two reconfigurable modules Mi and M j, they are defined to be independent
whether a path between the scan input and scan output ports can be found, to which
only one of the two modules belongs.

In the following, the concepts of fault dictionary and fault classes are introduced.
Moreover, the functional fault model already introduced for reconfigurable modules
(cf. Section 6.1.2) is summarized and extended to TDRs.

7.1.1 Fault Dictionary and Fault Classes

The approach to diagnosis proposed in this work is based on a pre-computed fault
dictionary [3]: for each possible fault in the network, it is assumed that the corre-
sponding behavior of the network when a given set of input stimuli (called diagnostic
sequence) is applied has been stored in a suitable database, named fault dictionary.
In the ideal case, the input stimuli devised for diagnosis are able to force the network
to produce a different behavior for every possible fault. Hence, by looking at the
observed behavior and by accessing to the database, one can identify the fault respon-
sible for the misbehavior. In this case, taking any pair of faults Fi, Fj from the list of
N possible faults, it is guaranteed that the behavior of the network under Fi is different
than the one produced under Fj. In this case Fi and Fj are said to be distinguished.
In practice, it is possible that a diagnostic sequence is not able to distinguish all fault
pairs, i.e., it is possible that some fault pairs remain undistinguished.

A common procedure used to generate the diagnostic sequence is based on
starting from an existing test sequence, i.e., a set of input stimuli generated for test
purpose. By performing some diagnostic analysis of the test sequence it is possible to
compute the behavior of each of the N faults in the fault list, and identify those fault
pairs that are still undistinguished. For each of these pairs a diagnostic procedure is
performed, which is able to generate an improved diagnostic sequence (adding new
stimuli to the existing ones). The generated diagnostic sequence is able to distinguish
between the faults in the target pair.

In some cases the diagnostic procedure may be unable to generate any distin-
guishing sequence for the target fault pair, either for excessive computational or



7.1 Terminology and Fault Model 169

memory efforts (in which case the fault pair is marked as aborted), or because
the procedure identified the two faults as undistinguishable (i.e., it proved that the
network will always produce the same output in the presence of one or the other
faults, no matter the input stimuli). Such faults are referred to as Undistinguished
Pairs (UPs), in particular UPTDR are the UPs affecting TDRs, while UPRM are UPs
on the reconfigurable modules.

All faults which are undistinguishable pairwise are said to belong to the same
equivalence class. If a new test sequence has been generated, it is once again fault
simulated, possibly labeling new fault pairs as distinguished; the process is then
repeated again until a given stopping condition is reached, corresponding either to
the case in which a maximum computational effort has been spent, or to the one in
which all fault pairs have been considered, marking them either as aborted, or as
distinguished, or as undistinguishable.

7.1.2 Fault Model

Following the approach already adopted in Chapter 6 for testing reconfigurable
modules, this work tries to be as independent as possible on the implementation
details of the RSN. Hence, the topology graph presented in Section 6.2.1 is used,
in which the network is modeled as an interconnection of TDRs and switches
(corresponding to SIBs and ScanMuxes).

Moreover, the possible defects affecting each element of the network are modeled
at the highest possible level. In the following, details about the fault model for each
kind of elements are given. For the purpose of this work, only single and permanent
faults are considered.

Test Data Registers

It is assumed that each shift flip-flop (FF) in a TDR can be affected by a pair of
stuck-at faults on its output (TDR stuck-at-0 and stuck-at-1). When one such fault
exists in a TDR, the output of the network will produce a sequence of 0s or 1s
(respectively) when the TDR is accessed. Since a stuck-at fault affecting one of the
FFs in a TDR cannot be distinguished from a stuck-at fault in another FF in the
same TDR without recurring to known responses of the attached instruments (as for



170 Diagnosis

regular scan-chain diagnosis), only two TDR faults are defined, that group together
stuck-at-0 and stuck-at-1 faults of all the TDR’s FFs, respectively.

Other faults affecting FFs are not considered in this work. For example, a given
FF may be stuck at the transparent mode. In such a situation, the length of the active
path is reduced.

Reconfigurable Modules

The fault model for reconfigurable modules is the same described in Section 6.1.2
and briefly summarized in the following:

• the high-level fault model considers the faulty SIB to be always asserted (SIB
stuck-at-asserted) or de-asserted (SIB stuck-at-de-asserted), independently on
the configuration of the network. The effect of such a fault is that the path
connecting scan input (e.g., TDI) to scan output (e.g., TDO) pins after the
network has been configured is not the expected one. Hence, a given sequence
(e.g., composed of alternated 0s and 1s) is forced on the scan input, it will
appear on scan output after a number of clock pulses different than expected,
whose value depends on the path which has been erroneously selected due to
the fault (i.e., the faulty path).

• the high-level fault model corresponds to forcing the ScanMux to select as
input the wrong one. Considering 2-to-1 ScanMuxes for simplicity (the same
will be done in the rest of this section), this fault model corresponds to a Scan-
Mux always selecting the upper (ScanMux stuck-at-up) or lower (ScanMux
stuck-at-down) input, independently on the value on the control input (and
hence on the current configuration of the network). When one fault of this
type affects a ScanMux in the network, the path introduced between scan
input and scan output pins is different than the correct one. Hence, if a given
sequence (e.g., composed of alternated 0s and 1s) is forced on the scan input,
the sequence will appear on the scan output after a number of clock pulses
which may be different than expected, and this number corresponds to the
length of the faulty path which has been erroneously selected due to the fault
(see example in Table 6.1).



7.2 Proposed Diagnostic Approach 171

7.2 Proposed Diagnostic Approach

When considering the test and diagnosis of an IEEE 1687 network, the used input
stimuli correspond to a sequence of test sessions. Assuming that a test sequence
has been properly generated, according to the guidelines given in Chapter 6, the
following conditions hold:

1. each TDR is accessed at least once;
2. each SIB appears as asserted in at least one session, and as deasserted in at

least one session
3. Each ScanMux appears configured in each possible configuration in at least

one session.

All possible untestable faults in the network (e.g., faults affecting a ScanMux
which switches between two TDRs having the same length) are ignored. All such
untestable faults belong to the same equivalence class of the fault-free network1.

7.2.1 Diagnostic Analysis

The proposed approach at first identifies the diagnostic properties of the existing
test sequence, i.e., which fault pairs can be distinguished by it, and which cannot.
The diagnostic analysis is based on simulation and determines the behavior of the
network when each possible fault is present and some given input stimuli are applied.

Please note that during test application, each session may result in one of the
three possible outcomes:

1. The expected output is produced: the first bit of the alternated sequence appears
at the expected clock cycle on the scan output.

2. The output sequence does not include the alternated sequence: a fixed value (0
or 1) is produced on the scan output. This means that one of the TDRs in the
path is faulty (stuck-at-0 or stuck-at-1).

3. The alternated sequence appears on the scan output at an unexpected time.
This means that a SIB or a ScanMux belonging to the path is faulty, i.e., works

1These faults could be tested in functional mode if suitable assumptions on the instruments can be
made (e.g., if they are input instruments and the values they produce are known). However, for sake
of generality, this approach is not considered in this work.



172 Diagnosis

in the opposite mode than expected (e.g., a SIB is configured as asserted, but
behaves as de-asserted). Hence, the path between scan input and scan output
is different than the expected one.

The goal of the diagnostic analysis phase is to compute for each possible fault
which is the behavior of the network, and then to determine which pairs of faults are
distinguished, and which are not.

Diagnostic Analysis on TDRs

According to the presented functional fault model, faults affecting TDRs produce a
different network behavior than faults affecting reconfigurable modules. Hence, all
faults affecting TDRs are by definition distinguished from faults affecting reconfig-
urable modules.

In order to determine which pair of TDR faults are distinguished by a given test
session, one may note that if a faulty TDR exists in the RSN, at least one session will
fall into case 2 (among the three outcomes mentioned above). The faulty TDR can
thus be identified by checking which sessions fail. All sessions whose path includes
it should fail. In other words, the following properties can be stated:

• If two TDRs belong to the same segment, they will always appear together in
any session, and all the related faults are undistinguishable.

• If two TDRs belong to different segments, but appeared together in all sessions
of the current diagnostic sequence, the related faults are undistinguished.

Hence, the algorithm for diagnostic analysis should:

1. identify all TDRs tested in each session;
2. for each pair of TDRs, check whether there is at least one session, in which

only one of the two TDRs appear:
(a) if this is the case, the two TDRs are marked as distinguished;
(b) otherwise, the two TDRs are marked as undistinguished.

Diagnostic Analysis on Reconfigurable Modules

In order to determine which fault pairs composed of faults affecting SIBs and
ScanMuxes are distinguished by a given test session, one may note that if a faulty



7.2 Proposed Diagnostic Approach 173

SIB or ScanMux exists in the network (according to the presented fault model), at
least one session will fall into case 3. By looking at when the alternated sequence
appears on the scan output, the length of the path existing between the scan intput
and scan output pins is obtained. Using this length, a diagnostic procedure can
try to identify the faulty SIB or ScanMux. In practice, the faulty paths should be
preliminary computed for every session Si.

By computing, for every session Si, the related fault set SFSi, the following
properties can be stated:

1. given a session Si in the existing test sequence, all faults belonging to SFSi

are distinguished from all faults related to SIBs and ScanMuxes which do not
belong to the session path; in fact, if one of the faults in SFSi arises, Si will
produce a failure, and a diagnostic procedure will be able to state that the fault
responsible for the failure belongs to SFSi;

2. given Si in the existing test sequence, and for every pair of faults both belonging
to SFSi, they can be distinguished one from the other if the two faulty paths
have different lengths.

Using the example RSN of Fig. 5.6, and focusing a session Si which selects the
path highlighted in Fig. 7.1a, the diagnostic analysis will come to the following
conclusions:

• in case the network is fault free, the first bit of the alternated sequence will
appear on TDO 11 clock cycles after it has been shifted in through TDI;

• in case any FF in TDR2 is affected by a fault, the alternated sequence will not
appear on TDO; by looking at the fixed value on TDO one can understand
whether the fault is a stuck-at-0 or stuck-at-1; faults on TDR2 are distinguished
from all the other TDR faults, since any other TDR fault will not cause any
effect during this session;

• in case a stuck-at-asserted fault in SIB1 exists in the network, the segment
controlled by SIB1 will be added to the active path; thus, the faulty path length
will be increased by the length of TDI1 (i.e., 11+8 = 19);

• in case of SIB2 stuck-at-de-asserted fault, the segment it controls will be re-
moved from the active path, which simply becomes TDI→sc1→sc2→sc3→TDO;
the faulty path length will be reduced by the length of TDR2 (i.e., 11−8 = 3):
the first bit of the alternated sequence will appear on TDO three clock cycles
after having being shifted-in;



174 Diagnosis

0

1

ScanMux

TAP

TDR0

SIB1 SIB2

TDR1 TDR2

TDOTDI

length = 8 length = 8

length = 2

sc1 sc2

sc3

Fault Len

– 11
SIB1 stuck-at-ass. 19
SIB2 stuck-at-de-ass. 3
ScanMux stuck-at-0 3

(a) Active path: TDI→sc1→TDR2→sc2→sc3→TDO

0

1

ScanMux

TAP

TDR0

SIB1 SIB2

TDR1 TDR2

TDOTDI

length = 8 length = 8

length = 2

sc1 sc2

sc3

Fault Len

– 19
SIB1 stuck-at-de-ass. 11
SIB2 stuck-at-de-ass. 11
ScanMux stuck-at-0 3

(b) Active path: TDI→TDR1→sc1→TDR2→sc2→sc3→TDO

Fig. 7.1 Examples of active path in a RSN and related faulty path lengths

• in case of ScanMux stuck-at-0 (or stuck-at-up), the selected segment will be
the one including TDR0, thus the active path length becomes 3 (i.e., the length
of TDR0 plus one);

• the faults SIB1 stuck-at-asserted is distinguished from SIB2 stuck-at-de-asserted
and ScanMux stuck-at-0, since the latter will produce different observable
misbehavior during Si; moreover, SIB2 stuck-at-de-asserted and ScanMux
stuck-at-0 are undistinguished, since their faulty path lengths will be the same.



7.2 Proposed Diagnostic Approach 175

7.2.2 Generation of New Patterns

The second phase in the proposed approach aims at generating new test sessions to
be added to the existing test sequence, whose purpose is to increase its diagnostic
capabilities.

At the end of the diagnostic analysis, a given number of fault pairs will have been
marked as distinguished, while others will still be undistinguished. The diagnostic
test session generation phase will perform the following operations:

1. select one pair of undistinguished faults;
2. generate a new test session able to distinguish them, if any; alternatively, the

fault pair may be identified as a undistinguishable one;
3. if a new test session has been generated, the whole set of newly distinguished

fault pairs is identified;
4. repeat from step 1 until either all distinguishable fault pairs have been distin-

guished, or a given threshold of computational effort has been reached.

Let us now focus on step 2. If the selected fault pair is composed of two
undistinguished TDR faults, they can be distinguished by adding one further session
to the diagnostic sequence, in which one of the two TDRs appears, while the other
does not. Clearly, if the two TDRs belong to the same segment, the related faults are
undistinguishable: no additional session can be found in this case.

If the selected fault pair is composed of two undistinguished SIB or ScanMux
faults, the diagnostic procedure should first check whether the corresponding re-
configurable modules Mi and M j are independent: if this is the case, the proposed
method will generate a new test session, which will correspond to a path in which
only one of Mi and M j belongs. The new session will be able to distinguish the two
faults, which can thus be marked as distinguished.

If the two configurable modules are not independent, the diagnostic procedure
needs to generate a test session whose path includes both reconfiguration modules.
In this case the network should be configured in such a way that the faulty paths
of the two faults have different lengths. The new session (if any) will be able to
distinguish the two faults, which can thus be marked as distinguished.

To clarify the proposed procedure, the RNS in Fig. 5.6 is used. In the previous
example, the faults SIB2 stuck-at-de-asserted and and ScanMux stuck-at-0 have been



176 Diagnosis

declared undistinguished by applying a session whose active path is highlighted in
Fig. 7.1a. SIB1 and the ScanMux are clearly not independent, since any path from
TDI to TDO includes or excludes both. Hence, the diagnostic procedure will look
for a session, corresponding to a path including both. The new session should be
characterized by the fact that the faulty path for the fault SIB2 stuck-at-de-asserted
should have a different length than the faulty path for ScanMux stuck-at-0, as for the
active path highlighted in Fig. 7.1b, in which the two faulty paths have lengths 11
and 3, respectively, thus the two faults are distinguished.

If a session able to distinguish two faults does not exist, the two faults are marked
as undistinguishable.

At the moment, the identification of the required configuration is performed by
exhaustive enumeration of all possible configurations until one matching the target
requirements is found. Clearly, this is not the optimum solution from the point of
view of the total length required for applying the whole diagnostic sequence (which
may be a very important parameter especially for on-line applications), but it still
represents a computationally feasible solution, as far as networks with some tens of
TDRs and reconfigurable elements are considered. More effective solutions could
be adopted (e.g., based on the techniques proposed in [100] or in Chapter 6) if the
identification of the shortest diagnostic sequence is targeted.

7.3 Experimental Results

The correctness of the above algorithms has been experimentally validated with
a prototypical tool of about 1200 lines of C# code, implementing the proposed
technique.

A subset of the ITC’16 benchmarks [90] has been used, together with a few
other synthesized RSNs. The new generated networks include both SIBs and 2-to-1
ScanMuxes. The characteristics of the ITC’16 benchmarks are reported in Table 6.3,
while Table 7.1 reports the characteristics of the new synthesized networks.

For each of the benchmarks, a first set of test sessions has been derived and used
as the original test sequence. The number of test sessions S and the duration T T (in
terms of number of clock cycles) of this sequence is reported in columns 2 and 3
of Table 7.2. The sequences have been encoded in a database, where each record



7.3 Experimental Results 177

Table 7.1 Characteristics of the new synthesized networks

Network #SIBs #ScanMuxes #TDRs
Max
depth

Total
scan cells

Synthetic1 31 37 63 3 2,225
Synthetic2 16 18 31 1 1,080
Synthetic3 11 21 40 2 1,354
Synthetic4 38 21 64 7 247,428
Synthetic5 32 32 56 4 1,949
Synthetic6 31 33 62 6 313,890
Synthetic7 44 50 90 3 427,776

contains the scan-path length for each fault; thus, the database size is proportional to
the number of test sessions and the amount of faults. Then, the tool implementing
the proposed methodology has been run and the number of Undistinguished Pairs
(UPs, as defined in Section 7.1.1) produced by the existing test sequence has been
derived. Columns 4 and 5 of the table separately provide the number of UPTDR and
UPRM. The tool was then run to add new sessions to the existing sequence to cover
all UPs: as a result, the tool generated a diagnostic sequence, whose characteristics,
in terms of number of sessions, duration (T D), duration increase ratio with respect
to the original test sequence (T D/T T ), and number of Undistinguished Pairs are
reported in columns 6 to 10. The tool was always able to generate new sessions
and to distinguish all possible fault pairs. The table also shows that the original test
sequence is often already capable of distinguishing the reconfigurable modules fault
pairs, while the added sessions are crucial to eliminate the undistinguished TDR
pairs. The number of added sessions (as well as the increase in the length of the
diagnostic sequence duration with respect to the original test one) depends on the
number of possible pairs of faults, and thus exponentially depends on the number of
reconfigurable modules.

The significant increase in the duration of the diagnostic sequence with respect
to the initial test sequence can be partly explained with the increase in the number of
sessions. On the other side, it should also be recalled that every session during the
test lasts only until the moment in which the alternated sequence emerges from the
scan output (which is expected to happen after a number of clock cycles equal to the
selected path), so that it is possible to check if the alternated sequence appears on
TDO at the right time. If not, the network is labeled as faulty. Conversely, during



178 Diagnosis

Table
7.2

Testand
diagnostic

sequences
characteristics

N
etw

ork
Testsequence

D
iagnostic

sequence
U

nd.able
pairs

offaults

#S
T

T
[cc]

U
P

T
D

R
U

P
R

M
#S

(added)
T

D
[cc]

T
D
/T

T
U

P
T

D
R

U
P

R
M

T
D

R
R

M

TreeU
nb.

12
709,038

306
7

16
113,064,612

146.8
14

0
0

0
a586710

3
209,933

10
0

4
3,879,326

18.5
0

0
0

0
p22810

3
154,734

379
1

28
46,601,832

301.2
0

0
0

0
p34392

3
117,499

174
5

20
20,665,284

175.9
0

0
0

0
p93791

4
587,400

584
5

46
273,091,791

464.9
0

0
0

0
N

132D
4

6
30,934

1,048
3

56
3,900,952

128.7
0

0
435

0
N

17D
3

5
3,795

10
0

3
48,099

13.0
0

0
4

0
N

32D
6

5
816,664

54
0

9
25,038,071

30.7
0

0
16

0
N

73D
14

13
4,377,101

239
0

17
320,437,112

73.2
0

0
78

0
N

E
1200P.

128
14,447,050

31,906
216

262
66,415,530,376

4,164.6
643

0
598

0
N

E
600P.

79
2,495,300

9,343
104

141
4,373,190,098

1,560.8
427

0
305

0
Synthetic1

4
16,032

577
1

52
2,219,397

141.9
0

0
206

0
Synthetic2

2
4,746

225
6

37
263,866

56.9
0

0
105

0
Synthetic3

4
10,978

305
1

20
333,280

31.0
0

0
260

0
Synthetic4

9
3,312,514

452
0

30
353,225,042

106.6
0

0
63

0
Synthetic5

5
16,596

378
8

44
2,065,800

127.5
0

0
68

0
Synthetic6

7
3,577,391

434
0

25
267,851,629

74.9
0

0
204

0
Synthetic7

5
3,565,527

992
0

40
480,683,792

134.8
0

0
301

0



7.4 Chapter Summary 179

diagnosis, this is not enough, since it is needed to also know when the alternated
sequence arrives on the scan output: if the alternated sequence does not come within
a given time, then the fault affects a TDR; if it arrives, the time of its arrival on the
scan output suggests us which configurable element is faulty. Hence, the duration of
each session when performing diagnosis is extended up to the length of the longest
faulty path.

In the last two columns, the table finally reports the number of faulty TDR and
reconfigurable modules (RM) pairs that the tool proved to be undistinguishable.

It is worth mentioning that the total running time of the tool for performing both
the diagnostic analysis and the diagnostic test generation is negligible, accounting to
less than a few seconds even for the larger networks.

7.4 Chapter Summary

This chapter addressed the issue of generating a sequence of input stimuli able to
identify the faults possibly affecting TDRs and reconfigurable modules in IEEE Std
1687 networks. The proposed solution is based on the functional fault model and
assumptions already introduced in Chapter 6. The described approach is able to
first identify the diagnostic capabilities of an existing sequence (e.g., developed for
testing purposes), and then to improve them by adding new sessions to the existing
sequence. The resulting sequences can be applied at the end of manufacturing, or
in-field, depending on when the instruments made accessible by the network are
used. Rules are given, such that their fulfillment allows the generated test sequence
to distinguish any pair of distinguishable faults. Experimental results are reported on
a set of benchmark networks.

Future works are intended to target more complex fault models (e.g., affecting
the reset and clock signals) and on the optimization of the proposed technique, thus
reducing the length of the generated sequences.



Chapter 8

Summary of Part II

Reconfigurable scan networks have been the subject of this part of the thesis. These
networks represent a way of interconnecting on-board instruments, more and more
often embedded in modern electronic devices.

Given the existence of standards such as IEEE Std 1687, the design, integration,
and usage of instruments and interconnecting infrastructure is attracting the interest
of EDA vendor and new tools are being developed. The purpose of this thesis has
been presenting the problem of testing the infrastructure offered by RSNs. Different
methodologies have been proposed in this thesis, for the test and the diagnosis of
possible faults affecting specific RSN structures, according to a high-level fault
model. Such algorithms are completely automatic and rely on high-level network
description, so their implementation in EDA tools is a real possibility.

One of the problems that has been addressed in this thesis is minimizing test
time. It has been shown that this problem can be solved optimally, but it faces a
severe scalability limitation as it requires exploring the network configuration space.
However, non-optimal approaches have been presented, which explore the network
topologically with little computational effort.



Conclusions

This thesis addressed the problem of generating high-quality functional tests for
microprocessor based systems, by combining different techniques, such as Software-
Based Self-Test and systematic test pattern generation for Reconfigurable Scan
Networks.

The first research question, concerning the adoption of SBST for the test of
real-word processor based system has been tackled in the first part of this thesis.
Several systematic algorithms have been proposed to support the work of test en-
gineers in the development of a suite of test programs for the specific DUT. Each
proposed algorithm has covered a particular sub-module of modern processors, such
as the instruction decode unit, the register forwarding and pipeline interlocking unit,
and the floating-point unit. Moreover, hard-to-test components managing multiple
issue of instructions in RISC processors have been analyzed, such as duplicated
computational modules, multi-port register files, and instruction prefetch buffer. An
effective development flow for SBST generation has been also proposed, based on
various levels, branches, and synchronization steps. The limitations imposed by
operating systems have been handled, concerning solutions to deal with on-line
constraints, and robust execution and management of SBST programs. Experimental
results on several industrial and academic processors have shown the feasibility and
the effectiveness of the proposed development flow, thus positively answering to the
research question.

The second research question, concerning test and diagnosis of RSNs, has been
tackled by providing systematic algorithms able to automatically generate test and
diagnostic patterns able to cover functional faults, according to a proposed fault
model. Contrarily to SBST, this work is relatively new in literature and represents a
reference for future development on the topic. In details, the problem of minimizing
the overall test time has been solved for the first time with an optimal solution, but



182 Summary of Part II

scalability limitations have been shown. Alternative sub-optimal solutions based
on heuristics can be applied to overcome such a limitation. Finally, a diagnostic
approach has been proposed for the first time. The devised algorithms have been
experimented on a representative set of benchmark networks by means of prototypical
tools, thus positively answering to the second research question and showing that
such methodology can be integrated in commercial EDA tools.

List of Research Contributions

A significant amount of work has been spent in devising deterministic algorithms for
developing test programs for particular components of modern pipelined processors.
In details:

• A new SBST technique based on partitioning the Instruction Set to system-
atically cover faults possibly affecting the functionality of Decode Units in
RISC processors has been proposed and published in [8]. The paper has been
slightly rephrased in Section 2.1, which also reports published results.

• Structural components implementing the register forwarding and the pipeline
interlocking mechanisms in RISC processors have been tested using a SBST
approach, which is based on the conversion of test patterns for such compo-
nents (such as multiplexers) to sequences of instructions. Algorithms and
experimental results published in [9] have been reported in Section 2.2.

• Several SBST algorithms have been proposed in Section 2.3 for the test of pro-
cessors that implement multiple issue of instructions. At time of writing, only
algorithms concerning duplicated computational modules (cf. Section 2.3.3)
as well as related experimental results have been published in [10], while the
other modules have been tacked for the first time in this thesis only, i.e., multi-
port register file (cf. Section 2.3.4), feed-forward paths (cf. Section 2.3.5),
pipeline interlocking (cf. Section 2.3.6), and instruction prefetch buffer (cf.
Section 2.3.7).

• A SBST approach for floating-point units based on both conversion of test
patterns and systematic functional floating-point operations has been published
in [11] and reported in Section 2.4.

The proposed algorithms have been applied to real-world processors following a
systematic development flow. Part of my research has been finding best practices to



183

make such a development feasible even for large processors. In [12] the practical
limitations imposed by the operating system have been introduced and a clever
partitioning of the development flow in various levels, branches, and synchronization
steps has been presented (and reported in Chapter 3). Moreover, the development
flow presented in [12] has been applied to an extensive set of real-world processors
from the automotive industry and experimental results have been published for the
first time in this thesis only (cf. Section 3.4).

Concerning RSNs, the main contribution has been to address the problem of test
(cf. Chapter 6) and diagnosis (cf. Chapter 7) of the main reconfigurable elements of
the network. In details:

• the basic concepts of fault model, topology graph used to describe RSNs, and
a first heuristic algorithm to test the target faults have been published in [13];

• the problem of minimizing the overall test time has been tacked in [14], based
on a minimum-cost search among the possible network configurations;

• for the first time, a diagnostic analysis on RSNs has been published in [15],
which introduces the basic concepts of fault pairs;

• a first diagnostic approach based on the enrichment of test vectors to support
diagnosis has been published in [144].

At time of working on the above publications, freely-available benchmarks of
RSNs were not existing, thus experiments were performed on in-house synthesized
RSNs. Some of these network have then been selected and included in the ITC’16
set of benchmarks [90].

Chapter 6 is an extension of the ideas presented in [13, 14]. At time of writing,
the amount of material published for the first time in this thesis only is substantial.
In details:

• the description of the addressed problem and of all the proposed algorithms
have been enhanced, in particular by formally describing the graphs (cf. Sec-
tion 6.2) and presenting all the algorithms in details with their pseudo-codes
(cf. Section 6.3);

• a new heuristic algorithm has been introduced and evaluated on all the selected
benchmark networks;

• concerning the experimental results (cf. Section 6.4), the benchmark networks
are now taken from the ITC’16 suite and a new set of benchmarks networks



184 Summary of Part II

have been added, which have been synthetically generated to explore the limits
of the exact algorithms.

Future Works

Future works in the SBST field are focused on three main aspects: integration of
SBST in the design flow supported by EDA tools, optimization of time and memory
budgets, and extension to new fault models. Regarding the last point, some works can
be already found in the literature targeting dynamic faults (e.g., small delay faults).
However, at the time of writing this thesis, the industrial domain where SBST is
actually implemented (i.e., safety-critical systems, such as for automotive and avionic
applications) only targets static fault models such as stuck-at faults to comply with
safety regulations. Finally, commercial fault simulators are currently well-optimized
for scan designs, while is not always feasible to implement an efficient fault grading
environment for SBST, even worse if fault models different than stuck-at are targeted.

Future works on RSNs are mainly aimed at improving the techniques presented
and incorporate them into the test flow and diagnosis of the complete design. Re-
member that one of the hypothesis of the proposed methodology has been that the
knowledge of attached instruments is neglected. This means that part of the network
that interfaces with the instruments is not tested systematically. Once this knowledge
is granted and if a gate-level description of the system is available, it is possible to
target test generation for conventional fault models such as stuck-at or transition
delay.

The flexible and standardized way to access on-board instruments via RSNs is
also attractive from the point of view of the system’s self-test capability. Functional
testing techniques such as SBST can benefit from the presence of the IEEE Std 1687
infrastructure. This scenario will also be examined in future activities.



References

[1] Hans-Joachim Wunderlich. Models in Hardware Testing: Lecture Notes
of the Forum in Honor of Christian Landrault. 1st. Springer Publishing
Company, Incorporated, 2009. ISBN: 9048132819, 9789048132812.

[2] Technopedia. Device Under Test (DUT). URL: https://www.techopedia.com/
definition/25924/device-under-test-dut (visited on 06/08/2017).

[3] M. Bushnell and Vishwani Agrawal. Essentials of Electronic Testing for Dig-
ital, Memory and Mixed-Signal VLSI Circuits. Springer Publishing Company,
Incorporated, 2013. ISBN: 9781475781427.

[4] A. Touati, A. Bosio, P. Girard, A. Virazel, P. Bernardi, and M. S. Reorda.
“Improving the Functional Test Delay Fault Coverage: A Microprocessor
Case Study”. In: 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). July 2016, pp. 731–736. DOI: 10.1109/ISVLSI.2016.42.

[5] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer Software.
2006.

[6] D. Moundanos, J. A. Abraham, and Y. V. Hoskote. “Abstraction techniques
for validation coverage analysis and test generation”. In: IEEE Transactions
on Computers 47.1 (Jan. 1998), pp. 2–14. ISSN: 0018-9340. DOI: 10.1109/
12.656068.

[7] P. Mishra, N. Dutt, N. Krishnamurthy, and M. S. Ababir. “A top-down
methodology for microprocessor validation”. In: IEEE Design Test of Com-
puters 21.2 (Mar. 2004), pp. 122–131. ISSN: 0740-7475. DOI: 10.1109/MDT.
2004.1277905.

[8] P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. Sonza Reorda, S. De
Luca, R. Meregalli, and A. Sansonetti. “On the in-field functional testing of
decode units in pipelined RISC processors”. In: 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT). Oct. 2014, pp. 299–304. DOI: 10.1109/DFT.2014.6962090.

[9] P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. Sonza Reorda,
M. Grosso, and O. Ballan. “On the Functional Test of the Register Forward-
ing and Pipeline Interlocking Unit in Pipelined Processors”. In: 2013 14th
International Workshop on Microprocessor Test and Verification. Dec. 2013,
pp. 52–57. DOI: 10.1109/MTV.2013.10.

https://www.techopedia.com/definition/25924/device-under-test-dut
https://www.techopedia.com/definition/25924/device-under-test-dut
http://dx.doi.org/10.1109/ISVLSI.2016.42
http://dx.doi.org/10.1109/12.656068
http://dx.doi.org/10.1109/12.656068
http://dx.doi.org/10.1109/MDT.2004.1277905
http://dx.doi.org/10.1109/MDT.2004.1277905
http://dx.doi.org/10.1109/DFT.2014.6962090
http://dx.doi.org/10.1109/MTV.2013.10


186 References

[10] P. Bernardi, C. Bovi, R. Cantoro, S. De Luca, R. Meregalli, D. Piumatti,
E. Sanchez, and A. Sansonetti. “Software-based self-test techniques of com-
putational modules in dual issue embedded processors”. In: 2015 20th IEEE
European Test Symposium (ETS). May 2015, pp. 1–2. DOI: 10.1109/ETS.
2015.7138730.

[11] R. Cantoro, D. Piumatti, P. Bernardi, S. De Luca, and A. Sansonetti. “In-field
functional test programs development flow for embedded FPUs”. In: 2016
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). Sept. 2016, pp. 107–110. DOI: 10.1109/
DFT.2016.7684079.

[12] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, and A. Sansonetti. “Devel-
opment Flow for On-Line Core Self-Test of Automotive Microcontrollers”.
In: IEEE Transactions on Computers 65.3 (Mar. 2016), pp. 744–754. ISSN:
0018-9340. DOI: 10.1109/TC.2015.2498546.

[13] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson.
“On the testability of IEEE 1687 networks”. In: 2015 IEEE 24th Asian
Test Symposium (ATS). Nov. 2015, pp. 211–216. DOI: 10.1109/ATS.2015.
7447934.

[14] R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda. “Test Time Mini-
mization in Reconfigurable Scan Networks”. In: 2016 IEEE 25th Asian Test
Symposium (ATS). Nov. 2016, pp. 119–124. DOI: 10.1109/ATS.2016.58.

[15] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson.
“On the diagnostic analysis of IEEE 1687 networks”. In: 2016 21th IEEE
European Test Symposium (ETS). May 2016, pp. 1–2. DOI: 10.1109/ETS.
2016.7519294.

[16] R. Cantoro, M. Sonza Reorda, A. Rohani, and H. G. Kerkhoff. “On the
maximization of the sustained switching activity in a processor”. In: 2015
IEEE 21st International On-Line Testing Symposium (IOLTS). July 2015,
pp. 34–35. DOI: 10.1109/IOLTS.2015.7229826.

[17] J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, and G. Squillero.
“Observability Solutions for In-field Functional Test of Processor-based
Systems. a survey and quantitative test case evaluation”. In: Microprocessors
and Microsystems 47.PB (Nov. 2016), pp. 392–403. ISSN: 0141-9331. DOI:
10.1016/j.micpro.2016.09.002.

[18] Li Chen and S. Dey. “Software-based self-testing methodology for processor
cores”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 20.3 (Mar. 2001), pp. 369–380. ISSN: 0278-0070. DOI:
10.1109/43.913755.

[19] Jian Shen and J. A. Abraham. “Native mode functional test generation for
processors with applications to self test and design validation”. In: Proceed-
ings International Test Conference 1998 (IEEE Cat. No.98CH36270). Oct.
1998, pp. 990–999. DOI: 10.1109/TEST.1998.743296.

http://dx.doi.org/10.1109/ETS.2015.7138730
http://dx.doi.org/10.1109/ETS.2015.7138730
http://dx.doi.org/10.1109/DFT.2016.7684079
http://dx.doi.org/10.1109/DFT.2016.7684079
http://dx.doi.org/10.1109/TC.2015.2498546
http://dx.doi.org/10.1109/ATS.2015.7447934
http://dx.doi.org/10.1109/ATS.2015.7447934
http://dx.doi.org/10.1109/ATS.2016.58
http://dx.doi.org/10.1109/ETS.2016.7519294
http://dx.doi.org/10.1109/ETS.2016.7519294
http://dx.doi.org/10.1109/IOLTS.2015.7229826
http://dx.doi.org/10.1016/j.micpro.2016.09.002
http://dx.doi.org/10.1109/43.913755
http://dx.doi.org/10.1109/TEST.1998.743296


References 187

[20] Jian Shen and Jacob Abraham. “Synthesis of Native Mode Self-Test Pro-
grams”. In: Journal of Electronic Testing 13.2 (1998), pp. 137–148. ISSN:
1573-0727. DOI: 10.1023/A:1008305820979.

[21] S. M. Thatte and J. A. Abraham. “Test Generation for Microprocessors”. In:
IEEE Transactions on Computers C-29.6 (June 1980), pp. 429–441. ISSN:
0018-9340. DOI: 10.1109/TC.1980.1675602.

[22] P. Parvathala, K. Maneparambil, and W. Lindsay. “FRITS - a microprocessor
functional BIST method”. In: Proceedings. International Test Conference.
2002, pp. 590–598. DOI: 10.1109/TEST.2002.1041810.

[23] L. Fournier, Y. Arbetman, and M. Levinger. “Functional verification method-
ology for microprocessors using the Genesys test-program generator. Ap-
plication to the x86 microprocessors family”. In: Design, Automation and
Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No.
PR00078). 1999, pp. 434–441. DOI: 10.1109/DATE.1999.761162.

[24] S. Gurumurthy, M. Pratapgarhwala, C. Gilgan, and J. Rearick. “Comparing
the effectiveness of cache-resident tests against cycleaccurate deterministic
functional patterns”. In: 2014 International Test Conference. Oct. 2014,
pp. 1–8. DOI: 10.1109/TEST.2014.7035348.

[25] G. Theodorou, S. Chatzopoulos, N. Kranitis, A. Paschalis, and D. Gizopoulos.
“A Software-Based Self-Test methodology for on-line testing of data TLBs”.
In: 2012 17th IEEE European Test Symposium (ETS). May 2012, pp. 1–1.
DOI: 10.1109/ETS.2012.6233043.

[26] E. Sanchez and M. Sonza Reorda. “On the Functional Test of Branch Predic-
tion Units”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23.9 (Sept. 2015), pp. 1675–1688. ISSN: 1063-8210. DOI: 10.1109/
TVLSI.2014.2356612.

[27] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis. “Software-based
self-testing of embedded processors”. In: IEEE Transactions on Computers
54.4 (Apr. 2005), pp. 461–475. ISSN: 0018-9340. DOI: 10.1109/TC.2005.68.

[28] F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero. “Automatic test
program generation: a case study”. In: IEEE Design Test of Computers 21.2
(Mar. 2004), pp. 102–109. ISSN: 0740-7475. DOI: 10.1109/MDT.2004.
1277902.

[29] A. Jasnetski, R. Ubar, and A. Tsertov. “On automatic software-based self-
test program generation based on high-level decision diagrams”. In: 2016
17th Latin-American Test Symposium (LATS). Apr. 2016, pp. 177–177. DOI:
10.1109/LATW.2016.7483357.

[30] Y. Zhang, A. Rezine, P. Eles, and Z. Peng. “Automatic Test Program Gener-
ation for Out-of-Order Superscalar Processors”. In: 2012 IEEE 21st Asian
Test Symposium. Nov. 2012, pp. 338–343. DOI: 10.1109/ATS.2012.43.

[31] L. Lingappan and N. K. Jha. “Satisfiability-Based Automatic Test Program
Generation and Design for Testability for Microprocessors”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 15.5 (May 2007),
pp. 518–530. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2007.896908.

http://dx.doi.org/10.1023/A:1008305820979
http://dx.doi.org/10.1109/TC.1980.1675602
http://dx.doi.org/10.1109/TEST.2002.1041810
http://dx.doi.org/10.1109/DATE.1999.761162
http://dx.doi.org/10.1109/TEST.2014.7035348
http://dx.doi.org/10.1109/ETS.2012.6233043
http://dx.doi.org/10.1109/TVLSI.2014.2356612
http://dx.doi.org/10.1109/TVLSI.2014.2356612
http://dx.doi.org/10.1109/TC.2005.68
http://dx.doi.org/10.1109/MDT.2004.1277902
http://dx.doi.org/10.1109/MDT.2004.1277902
http://dx.doi.org/10.1109/LATW.2016.7483357
http://dx.doi.org/10.1109/ATS.2012.43
http://dx.doi.org/10.1109/TVLSI.2007.896908


188 References

[32] A. Dalirsani, M. E. Imhof, and H. J. Wunderlich. “Structural Software-Based
Self-Test of Network-on-Chip”. In: 2014 IEEE 32nd VLSI Test Symposium
(VTS). Apr. 2014, pp. 1–6. DOI: 10.1109/VTS.2014.6818754.

[33] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker. “On
the automatic generation of SBST test programs for in-field test”. In: 2015
Design, Automation Test in Europe Conference Exhibition (DATE). Mar.
2015, pp. 1186–1191. DOI: 10.7873/DATE.2015.0271.

[34] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker. “A
Flexible Framework for the Automatic Generation of SBST Programs”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.10
(Oct. 2016), pp. 3055–3066. DOI: 10.1109/TVLSI.2016.2538800.

[35] D. Sabena, M. Sonza Reorda, and L. Sterpone. “On the Automatic Generation
of Optimized Software-Based Self-Test Programs for VLIW Processors”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22.4 (Apr.
2014), pp. 813–823. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2013.2252636.

[36] Y. Zhang, H. Li, and X. Li. “Automatic Test Program Generation Using
Executing-Trace-Based Constraint Extraction for Embedded Processors”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21.7
(July 2013), pp. 1220–1233. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2012.
2208130.

[37] Li Chen and S. Dey. “Software-based diagnosis for processors”. In: Pro-
ceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).
2002, pp. 259–262. DOI: 10.1109/DAC.2002.1012632.

[38] D. Appello, P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza Reorda.
“Effective Diagnostic Pattern Generation Strategy for Transition-Delay Faults
in Full-Scan SOCs”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 17.11 (Nov. 2009), pp. 1654–1659. DOI: 10.1109/TVLSI.
2008.2006177.

[39] M. Schölzel, T. Koal, and H. T. Vierhaus. “Systematic generation of di-
agnostic software-based self-test routines for processor components”. In:
2014 19th IEEE European Test Symposium (ETS). May 2014, pp. 1–6. DOI:
10.1109/ETS.2014.6847795.

[40] M. Schölzel, T. Koal, S. Müller, S. Scharoba, S. Röder, and H. T. Vier-
haus. “A comprehensive software-based self-test and self-repair method for
statically scheduled superscalar processors”. In: 2016 17th Latin-American
Test Symposium (LATS). Apr. 2016, pp. 33–38. DOI: 10.1109/LATW.2016.
7483336.

[41] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker. “Effective
generation and evaluation of diagnostic SBST programs”. In: 2016 IEEE
34th VLSI Test Symposium (VTS). Apr. 2016, pp. 1–6. DOI: 10.1109/VTS.
2016.7477279.

http://dx.doi.org/10.1109/VTS.2014.6818754
http://dx.doi.org/10.7873/DATE.2015.0271
http://dx.doi.org/10.1109/TVLSI.2016.2538800
http://dx.doi.org/10.1109/TVLSI.2013.2252636
http://dx.doi.org/10.1109/TVLSI.2012.2208130
http://dx.doi.org/10.1109/TVLSI.2012.2208130
http://dx.doi.org/10.1109/DAC.2002.1012632
http://dx.doi.org/10.1109/TVLSI.2008.2006177
http://dx.doi.org/10.1109/TVLSI.2008.2006177
http://dx.doi.org/10.1109/ETS.2014.6847795
http://dx.doi.org/10.1109/LATW.2016.7483336
http://dx.doi.org/10.1109/LATW.2016.7483336
http://dx.doi.org/10.1109/VTS.2016.7477279
http://dx.doi.org/10.1109/VTS.2016.7477279


References 189

[42] A. Paschalis and D. Gizopoulos. “Effective software-based self-test strategies
for on-line periodic testing of embedded processors”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 24.1 (Jan.
2005), pp. 88–99. ISSN: 0278-0070. DOI: 10.1109/TCAD.2004.839486.

[43] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza Re-
orda. “Test Program Generation for Communication Peripherals in Processor-
Based SoC Devices”. In: IEEE Design Test of Computers 26.2 (Mar. 2009),
pp. 52–63. ISSN: 0740-7475. DOI: 10.1109/MDT.2009.43.

[44] P. Bernardi, L. Ciganda, M. Sonza Reorda, and S. Hamdioui. “An Efficient
Method for the Test of Embedded Memory Cores during the Operational
Phase”. In: 2013 22nd Asian Test Symposium. Nov. 2013, pp. 227–232. DOI:
10.1109/ATS.2013.50.

[45] M. G. Karpovsky and V. N. Yarmolik. “Transparent memory BIST”. In:
Proceedings of IEEE International Workshop on Memory Technology, Design,
and Test. Aug. 1994, pp. 106–111.

[46] S. Di Carlo, P. Prinetto, and A. Savino. “Software-Based Self-Test of Set-
Associative Cache Memories”. In: IEEE Transactions on Computers 60.7
(July 2011), pp. 1030–1044. ISSN: 0018-9340. DOI: 10.1109/TC.2010.166.

[47] J. Sosnowski. “Improving Software Based Self - Testing for Cache Mem-
ories”. In: 2007 2nd International Design and Test Workshop. Dec. 2007,
pp. 49–54. DOI: 10.1109/IDT.2007.4437427.

[48] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael. “DaemonGuard: En-
abling O/S-Orchestrated Fine-Grained Software-Based Selective-Testing in
Multi-/Many-Core Microprocessors”. In: IEEE Transactions on Computers
65.5 (May 2016), pp. 1453–1466. ISSN: 0018-9340. DOI: 10.1109/TC.2015.
2449840.

[49] Janusz Sosnowski. “Software-based Self-testing of Microprocessors”. In: J.
Syst. Archit. 52.5 (May 2006), pp. 257–271. ISSN: 1383-7621. DOI: 10.1016/
j.sysarc.2005.05.004.

[50] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan.
“On-line functionally untestable fault identification in embedded processor
cores”. In: 2013 Design, Automation Test in Europe Conference Exhibition
(DATE). Mar. 2013, pp. 1462–1467. DOI: 10.7873/DATE.2013.298.

[51] P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan. “Fault grading of
software-based self-test procedures for dependable automotive applications”.
In: 2011 Design, Automation Test in Europe. Mar. 2011, pp. 1–2. DOI:
10.1109/DATE.2011.5763092.

[52] Freescale Semiconductor. e200z4 Power Architecture Core Reference Man-
ual. Oct. 2009. URL: http : / /www.nxp.com/assets /documents /data /en/
reference-manuals/e200z4RM.pdf (visited on 05/21/2017).

[53] ARM Limited. AMBA AHB Trace Macrocell (HTM). 2008. URL: http:/ /
infocenter.arm.com/help/topic/com.arm.doc.ddi0328e/DDI0328E_amba_
htm_r0p4_trm.pdf (visited on 05/21/2017).

http://dx.doi.org/10.1109/TCAD.2004.839486
http://dx.doi.org/10.1109/MDT.2009.43
http://dx.doi.org/10.1109/ATS.2013.50
http://dx.doi.org/10.1109/TC.2010.166
http://dx.doi.org/10.1109/IDT.2007.4437427
http://dx.doi.org/10.1109/TC.2015.2449840
http://dx.doi.org/10.1109/TC.2015.2449840
http://dx.doi.org/10.1016/j.sysarc.2005.05.004
http://dx.doi.org/10.1016/j.sysarc.2005.05.004
http://dx.doi.org/10.7873/DATE.2013.298
http://dx.doi.org/10.1109/DATE.2011.5763092
http://www.nxp.com/assets/documents/data/en/reference-manuals/e200z4RM.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/e200z4RM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0328e/DDI0328E_amba_htm_r0p4_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0328e/DDI0328E_amba_htm_r0p4_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0328e/DDI0328E_amba_htm_r0p4_trm.pdf


190 References

[54] P. Bernardi, M. Grosso, M. Rebaudengo, and M. Sonza Reorda. “Exploiting
an I-IP for both Test and Silicon Debug of Microprocessor Cores”. In: 2005
Sixth International Workshop on Microprocessor Test and Verification. Nov.
2005, pp. 55–62. DOI: 10.1109/MTV.2005.11.

[55] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-Benites, E.
Sanchez, M. Sonza Reorda, and O. Ballan. “On-line software-based self-test
of the Address Calculation Unit in RISC processors”. In: 2012 17th IEEE
European Test Symposium (ETS). May 2012, pp. 1–6. DOI: 10.1109/ETS.
2012.6233004.

[56] M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis. “A method-
ology for detecting performance faults in microprocessors via performance
monitoring hardware”. In: 2007 IEEE International Test Conference. Oct.
2007, pp. 1–10. DOI: 10.1109/TEST.2007.4437646.

[57] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos. “Software-
Based Self-Test for Small Caches in Microprocessors”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 33.12
(Dec. 2014), pp. 1991–2004. ISSN: 0278-0070. DOI: 10.1109/TCAD.2014.
2363387.

[58] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos. “Software-
Based Self Test Methodology for On-Line Testing of L1 Caches in Multi-
threaded Multicore Architectures”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 21.4 (Apr. 2013), pp. 786–790. ISSN: 1063-
8210. DOI: 10.1109/TVLSI.2012.2191000.

[59] W. Lindsay, E. Sanchez, M. Sonza Reorda, and G. Squillero. “Automatic test
programs generation driven by internal performance counters”. In: Micro-
processor Test and Verification (MTV’04), Fifth International Workshop on.
2004, pp. 8–13. DOI: 10.1109/MTV.2004.5.

[60] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda. “Micropro-
cessor Software-Based Self-Testing”. In: IEEE Design Test of Computers
27.3 (May 2010), pp. 4–19. ISSN: 0740-7475. DOI: 10.1109/MDT.2010.5.

[61] G. Squillero. “Artificial evolution in computer aided design: from the opti-
mization of parameters to the creation of assembly programs”. In: Computing
93.2 (2011), pp. 103–120. ISSN: 1436-5057. DOI: 10.1007/s00607-011-
0157-9.

[62] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011. ISBN: 9780123838728.

[63] X. Yang, L. Yu, W. Zhuang, Y. Wu, and L. Hao. “Design of instruction decode
logic for dual-issue superscalar processor based on LEON2”. In: 2013 IEEE
Third International Conference on Consumer Electronics - Berlin (ICCE-
Berlin). Sept. 2013, pp. 1–4. DOI: 10.1109/ICCE-Berlin.2013.6697986.

http://dx.doi.org/10.1109/MTV.2005.11
http://dx.doi.org/10.1109/ETS.2012.6233004
http://dx.doi.org/10.1109/ETS.2012.6233004
http://dx.doi.org/10.1109/TEST.2007.4437646
http://dx.doi.org/10.1109/TCAD.2014.2363387
http://dx.doi.org/10.1109/TCAD.2014.2363387
http://dx.doi.org/10.1109/TVLSI.2012.2191000
http://dx.doi.org/10.1109/MTV.2004.5
http://dx.doi.org/10.1109/MDT.2010.5
http://dx.doi.org/10.1007/s00607-011-0157-9
http://dx.doi.org/10.1007/s00607-011-0157-9
http://dx.doi.org/10.1109/ICCE-Berlin.2013.6697986


References 191

[64] Freescale Semiconductor. EREF 2.0 : A Programmer’s Reference Manual
for Freescale Power Architecture Processors. Sept. 2011. URL: http://cache.
freescale .com/files /32bit /doc / ref_manual /EREF_RM.pdf (visited on
05/21/2017).

[65] P. S. Ahuja, D. W. Clark, and A. Rogers. “The performance impact of
incomplete bypassing in processor pipelines”. In: Proceedings of the 28th
Annual International Symposium on Microarchitecture. Nov. 1995, pp. 36–
45. DOI: 10.1109/MICRO.1995.476809.

[66] T. Y. Hsieh, M. A. Breuer, M. Annavaram, S. K. Gupta, and K. J. Lee.
“Tolerance of performance degrading faults for effective yield improvement”.
In: IEEE International Test Conference (ITC). Nov. 2009, pp. 1–10. DOI:
10.1109/TEST.2009.5355594.

[67] S. R. Makar and E. J. McCluskey. “On the testing of multiplexers”. In:
IEEE International Test Conference (ITC). Sept. 1988, pp. 669–679. DOI:
10.1109/TEST.1988.207851.

[68] H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian.
“Generic BIST architecture for testing of content addressable memories”.
In: 2011 IEEE 17th International On-Line Testing Symposium. July 2011,
pp. 86–91. DOI: 10.1109/IOLTS.2011.5993816.

[69] miniMIPS :: Overview. June 2004. URL: https : / /opencores .org/project ,
minimips (visited on 04/20/2017).

[70] B. Sprunt. “The basics of performance-monitoring hardware”. In: IEEE
Micro 22.4 (July 2002), pp. 64–71. ISSN: 0272-1732. DOI: 10.1109/MM.
2002.1028477.

[71] W. J. Perez, J. Velasco, D. Ravotto, E. Sanchez, and M. Sonza Reorda. “A
Hybrid Approach to the Test of Cache Memory Controllers Embedded in
SoCs”. In: 2008 14th IEEE International On-Line Testing Symposium. July
2008, pp. 143–148. DOI: 10.1109/IOLTS.2008.22.

[72] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis,
A. Raghunathan, and S. Ravi. “Systematic Software-Based Self-Test for
Pipelined Processors”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 16.11 (Nov. 2008), pp. 1441–1453. ISSN: 1063-8210. DOI:
10.1109/TVLSI.2008.2000866.

[73] R. S. Tupuri and J. A. Abraham. “A novel functional test generation method
for processors using commercial ATPG”. In: IEEE International Test Con-
ference (ITC). Nov. 1997, pp. 743–752. DOI: 10.1109/TEST.1997.639687.

[74] D. Sabena, M. Sonza Reorda, and L. Sterpone. “A new SBST algorithm for
testing the register file of VLIW processors”. In: 2012 Design, Automation
Test in Europe Conference Exhibition (DATE). Mar. 2012, pp. 412–417. DOI:
10.1109/DATE.2012.6176506.

[75] “IEEE Standard for Binary Floating-Point Arithmetic”. In: ANSI/IEEE Std
754-1985 (1985). DOI: 10.1109/IEEESTD.1985.82928.

http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf
http://dx.doi.org/10.1109/MICRO.1995.476809
http://dx.doi.org/10.1109/TEST.2009.5355594
http://dx.doi.org/10.1109/TEST.1988.207851
http://dx.doi.org/10.1109/IOLTS.2011.5993816
https://opencores.org/project,minimips
https://opencores.org/project,minimips
http://dx.doi.org/10.1109/MM.2002.1028477
http://dx.doi.org/10.1109/MM.2002.1028477
http://dx.doi.org/10.1109/IOLTS.2008.22
http://dx.doi.org/10.1109/TVLSI.2008.2000866
http://dx.doi.org/10.1109/TEST.1997.639687
http://dx.doi.org/10.1109/DATE.2012.6176506
http://dx.doi.org/10.1109/IEEESTD.1985.82928


192 References

[76] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (Aug.
2008), pp. 1–70. DOI: 10.1109/IEEESTD.2008.4610935.

[77] S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener. “P6 Binary
Floating-Point Unit”. In: 18th IEEE Symposium on Computer Arithmetic
(ARITH ’07). June 2007, pp. 77–86. DOI: 10.1109/ARITH.2007.26.

[78] J. Rupley, J. King, E. Quinnell, F. Galloway, K. Patton, P. M. Seidel, J. Dinh,
H. Bui, and A. Bhowmik. “The Floating-Point Unit of the Jaguar x86 Core”.
In: 2013 IEEE 21st Symposium on Computer Arithmetic. Apr. 2013, pp. 7–16.
DOI: 10.1109/ARITH.2013.24.

[79] V. Patil, A. Raveendran, P. M. Sobha, A. David Selvakumar, and D. Vivian.
“Out of order floating point coprocessor for RISC V ISA”. In: 2015 19th
International Symposium on VLSI Design and Test. June 2015, pp. 1–7. DOI:
10.1109/ISVDAT.2015.7208116.

[80] G. Xenoulis, M. Psarakis, D. Gizopoulos, and A. Paschalis. “Testability
Analysis and Scalable Test Generation for High-Speed Floating-Point Units”.
In: IEEE Transactions on Computers 55.11 (Nov. 2006), pp. 1449–1457.
ISSN: 0018-9340. DOI: 10.1109/TC.2006.187.

[81] I. Bayraktaroglu and M. d’Abreu. “ATPG based functional test for data
paths: application to a floating point unit”. In: Proceedings. Ninth IEEE
International High-Level Design Validation and Test Workshop (IEEE Cat.
No.04EX940). Nov. 2004, pp. 37–40. DOI: 10.1109/HLDVT.2004.1431230.

[82] S. Sobek and K. Burke. PowerPC Embedded Application Binary Interface
(EABI): 32-Bit Implementation. Ed. by Inc. Freescale Semiconductor. 2004.
URL: http://www.nxp.com/assets/documents/data/en/application-notes/
PPCEABI.pdf (visited on 05/18/2017).

[83] ARM Limited. Application Binary Interface for the ARM Architecture. 2008.
URL: http : / / infocenter. arm . com / help / topic / com . arm . doc . ihi0036b /
IHI0036B_bsabi.pdf (visited on 05/18/2017).

[84] E. Christopher. mips eabi documentation... 2003. URL: http://www.cygwin.
com/ml/binutils/2003-06/msg00436.html (visited on 05/18/2017).

[85] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopoulos.
“Hybrid-SBST Methodology for Efficient Testing of Processor Cores”. In:
IEEE Design Test of Computers 25.1 (Jan. 2008), pp. 64–75. ISSN: 0740-
7475. DOI: 10.1109/MDT.2008.15.

[86] P. Singh, D. L. Landis, and V. Narayanan. “Test Generation for Precise
Interrupts on Out-of-Order Microprocessors”. In: 2009 10th International
Workshop on Microprocessor Test and Verification. Dec. 2009, pp. 79–82.
DOI: 10.1109/MTV.2009.14.

[87] AUTOSAR. Standard Platform. URL: https://www.autosar.org/standards/
classic-platform/ (visited on 05/20/2017).

[88] Doxygen Web-site. URL: http://www.stack.nl/~dimitri/doxygen/ (visited on
05/20/2017).

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/ARITH.2007.26
http://dx.doi.org/10.1109/ARITH.2013.24
http://dx.doi.org/10.1109/ISVDAT.2015.7208116
http://dx.doi.org/10.1109/TC.2006.187
http://dx.doi.org/10.1109/HLDVT.2004.1431230
http://www.nxp.com/assets/documents/data/en/application-notes/PPCEABI.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/PPCEABI.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036b/IHI0036B_bsabi.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036b/IHI0036B_bsabi.pdf
http://www.cygwin.com/ml/binutils/2003-06/msg00436.html
http://www.cygwin.com/ml/binutils/2003-06/msg00436.html
http://dx.doi.org/10.1109/MDT.2008.15
http://dx.doi.org/10.1109/MTV.2009.14
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/classic-platform/
http://www.stack.nl/~dimitri/doxygen/


References 193

[89] ISO/DIS 26262 - Road vehicles — Functional safety. Tech. rep. Geneva,
Switzerland, 2009.

[90] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath. “A suite of IEEE
1687 benchmark networks”. In: IEEE International Test Conference (ITC).
Nov. 2016, pp. 1–10. DOI: 10.1109/TEST.2016.7805840.

[91] “IEEE Standard for Test Access Port and Boundary-Scan Architecture”. In:
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001) (May 2013),
pp. 1–444. DOI: 10.1109/IEEESTD.2013.6515989.

[92] “IEEE Standard for Access and Control of Instrumentation Embedded within
a Semiconductor Device”. In: IEEE Std 1687-2014 (Dec. 2014), pp. 1–283.
DOI: 10.1109/IEEESTD.2014.6974961.

[93] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson. “Access Time
Analysis for IEEE P1687”. In: IEEE Transactions on Computers 61.10 (Oct.
2012), pp. 1459–1472. ISSN: 0018-9340. DOI: 10.1109/TC.2011.155.

[94] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson. “Design automa-
tion for IEEE P1687”. In: 2011 Design, Automation Test in Europe. Mar.
2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763228.

[95] F. G. Zadegan, E. Larsson, A. Jutman, S. Devadze, and R. Krenz-Baath.
“Design, Verification, and Application of IEEE 1687”. In: 2014 IEEE 23rd
Asian Test Symposium. Nov. 2014, pp. 93–100. DOI: 10.1109/ATS.2014.28.

[96] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson. “Test Time Analy-
sis for IEEE P1687”. In: 2010 19th IEEE Asian Test Symposium. Dec. 2010,
pp. 455–460. DOI: 10.1109/ATS.2010.83.

[97] F. G. Zadegan, U. Ingelsson, G. Asani, G. Carlsson, and E. Larsson. “Test
Scheduling in an IEEE P1687 Environment with Resource and Power Con-
straints”. In: 2011 Asian Test Symposium. Nov. 2011, pp. 525–531. DOI:
10.1109/ATS.2011.80.

[98] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Modeling, Verification
and Pattern Generation for Reconfigurable Scan Networks”. In: 2012 IEEE
International Test Conference. Nov. 2012, pp. 1–9. DOI: 10.1109/TEST.2012.
6401555.

[99] Rafal Baranowski, Michael A. Kochte, and Hans-Joachim Wunderlich. “Re-
configurable Scan Networks: Modeling, Verification, and Optimal Pattern
Generation”. In: ACM Trans. Des. Autom. Electron. Syst. 20.2 (Mar. 2015),
30:1–30:27. ISSN: 1084-4309. DOI: 10.1145/2699863.

[100] R. Krenz-Baath, F. G. Zadegan, and E. Larsson. “Access Time Minimization
in IEEE 1687 Networks”. In: 2015 IEEE International Test Conference (ITC).
Oct. 2015, pp. 1–10. DOI: 10.1109/TEST.2015.7342408.

[101] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Scan Pattern Re-
targeting and Merging with Reduced Access Time”. In: 2013 18th IEEE
European Test Symposium (ETS). May 2013, pp. 1–7. DOI: 10.1109/ETS.
2013.6569354.

http://dx.doi.org/10.1109/TEST.2016.7805840
http://dx.doi.org/10.1109/IEEESTD.2013.6515989
http://dx.doi.org/10.1109/IEEESTD.2014.6974961
http://dx.doi.org/10.1109/TC.2011.155
http://dx.doi.org/10.1109/DATE.2011.5763228
http://dx.doi.org/10.1109/ATS.2014.28
http://dx.doi.org/10.1109/ATS.2010.83
http://dx.doi.org/10.1109/ATS.2011.80
http://dx.doi.org/10.1109/TEST.2012.6401555
http://dx.doi.org/10.1109/TEST.2012.6401555
http://dx.doi.org/10.1145/2699863
http://dx.doi.org/10.1109/TEST.2015.7342408
http://dx.doi.org/10.1109/ETS.2013.6569354
http://dx.doi.org/10.1109/ETS.2013.6569354


194 References

[102] F. Ghani Zadegan, U. Ingelsson, E. Larsson, and G. Carlsson. “Reusing
and Retargeting On-Chip Instrument Access Procedures in IEEE P1687”.
In: IEEE Design Test of Computers 29.2 (Apr. 2012), pp. 79–88. ISSN:
0740-7475. DOI: 10.1109/MDT.2012.2182984.

[103] M. A. Kochte and H. J. Wunderlich. “Dependable on-chip infrastructure
for dependable MPSOCs”. In: 2016 17th Latin-American Test Symposium
(LATS). Apr. 2016, pp. 183–188. DOI: 10.1109/LATW.2016.7483366.

[104] M. A. Kochte, R. Baranowski, M. Schaal, and H. J. Wunderlich. “Test
Strategies for Reconfigurable Scan Networks”. In: 2016 IEEE 25th Asian
Test Symposium (ATS). Nov. 2016, pp. 113–118. DOI: 10.1109/ATS.2016.35.

[105] J. Dworak and A. Crouch. “A call to action: Securing IEEE 1687 and the
need for an IEEE test Security Standard”. In: 2015 IEEE 33rd VLSI Test
Symposium (VTS). Apr. 2015, pp. 1–4. DOI: 10.1109/VTS.2015.7116256.

[106] C. Clark. “Anti-tamper JTAG TAP design enables DRM to JTAG registers
and P1687 on-chip instruments”. In: 2010 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST). June 2010, pp. 19–24.
DOI: 10.1109/HST.2010.5513119.

[107] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Securing Access to
Reconfigurable Scan Networks”. In: 2013 22nd Asian Test Symposium. Nov.
2013, pp. 295–300. DOI: 10.1109/ATS.2013.61.

[108] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Access Port Protection
for Reconfigurable Scan Networks”. In: Journal of Electronic Testing 30.6
(2014), pp. 711–723. ISSN: 1573-0727. DOI: 10.1007/s10836-014-5484-2.

[109] H. Liu and V. D. Agrawal. “Securing IEEE 1687-2014 Standard Instrumen-
tation Access by LFSR Key”. In: 2015 IEEE 24th Asian Test Symposium
(ATS). Nov. 2015, pp. 91–96. DOI: 10.1109/ATS.2015.23.

[110] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter. “Making it harder
to unlock an LSIB: Honeytraps and misdirection in a P1687 network”. In:
2014 Design, Automation Test in Europe Conference Exhibition (DATE).
Mar. 2014, pp. 1–6. DOI: 10.7873/DATE.2014.208.

[111] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton. “Don’t
forget to lock your SIB: hiding instruments using P1687”. In: 2013 IEEE
International Test Conference (ITC). Sept. 2013, pp. 1–10. DOI: 10.1109/
TEST.2013.6651903.

[112] J. Dworak, Z. Conroy, A. Crouch, and J. Potter. “Board security enhancement
using new locking SIB-based architectures”. In: 2014 International Test
Conference. Oct. 2014, pp. 1–10. DOI: 10.1109/TEST.2014.7035355.

[113] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Fine-Grained Access
Management in Reconfigurable Scan Networks”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34.6 (July 2015),
pp. 937–946. ISSN: 0278-0070. DOI: 10.1109/TCAD.2015.2391266.

http://dx.doi.org/10.1109/MDT.2012.2182984
http://dx.doi.org/10.1109/LATW.2016.7483366
http://dx.doi.org/10.1109/ATS.2016.35
http://dx.doi.org/10.1109/VTS.2015.7116256
http://dx.doi.org/10.1109/HST.2010.5513119
http://dx.doi.org/10.1109/ATS.2013.61
http://dx.doi.org/10.1007/s10836-014-5484-2
http://dx.doi.org/10.1109/ATS.2015.23
http://dx.doi.org/10.7873/DATE.2014.208
http://dx.doi.org/10.1109/TEST.2013.6651903
http://dx.doi.org/10.1109/TEST.2013.6651903
http://dx.doi.org/10.1109/TEST.2014.7035355
http://dx.doi.org/10.1109/TCAD.2015.2391266


References 195

[114] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H. J. Wunderlich.
“Formal Verification of Secure Reconfigurable Scan Network Infrastructure”.
In: 2016 21th IEEE European Test Symposium (ETS). May 2016, pp. 1–6.
DOI: 10.1109/ETS.2016.7519290.

[115] A. Jutman, S. Devadze, and J. Aleksejev. “Invited paper: System-wide fault
management based on IEEE P1687 IJTAG”. In: 6th International Workshop
on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC).
June 2011, pp. 1–4. DOI: 10.1109/ReCoSoC.2011.5981520.

[116] E. Larsson and K. Shibin. “Fault management in an IEEE P1687 (IJTAG)
environment”. In: 2012 IEEE 15th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS). Apr. 2012, pp. 7–7.
DOI: 10.1109/DDECS.2012.6219013.

[117] A. Jutman, S. Devadze, and K. Shibin. “Effective Scalable IEEE 1687 Instru-
mentation Network for Fault Management”. In: IEEE Design Test 30.5 (Oct.
2013), pp. 26–35. ISSN: 2168-2356. DOI: 10.1109/MDAT.2013.2278535.

[118] K. Shibin, S. Devadze, and A. Jutman. “Asynchronous Fault Detection in
IEEE P1687 Instrument Network”. In: 2014 IEEE 23rd North Atlantic Test
Workshop. May 2014, pp. 73–78. DOI: 10.1109/NATW.2014.24.

[119] K. Petersen, D. Nikolov, U. Ingelsson, G. Carlsson, F. G. Zadegan, and E.
Larsson. “Fault injection and fault handling: An MPSoC demonstrator using
IEEE P1687”. In: 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS). July 2014, pp. 170–175. DOI: 10.1109/IOLTS.2014.6873664.

[120] K. Shibin, S. Devadze, and A. Jutman. “On-line fault classification and
handling in IEEE1687 based fault management system for complex SoCs”.
In: 2016 17th Latin-American Test Symposium (LATS). Apr. 2016, pp. 69–74.
DOI: 10.1109/LATW.2016.7483342.

[121] F. G. Zadegan, D. Nikolov, and E. Larsson. “A self-reconfiguring IEEE 1687
network for fault monitoring”. In: 2016 21th IEEE European Test Symposium
(ETS). May 2016, pp. 1–6. DOI: 10.1109/ETS.2016.7519288.

[122] G. Ali, A. Badawy, and H. G. Kerkhoff. “Accessing on-chip temperature
health monitors using the IEEE 1687 standard”. In: 2016 IEEE Interna-
tional Conference on Electronics, Circuits and Systems (ICECS). Dec. 2016,
pp. 776–779. DOI: 10.1109/ICECS.2016.7841317.

[123] A. Ibrahim and H. G. Kerkhoff. “Analysis and design of an on-chip retar-
geting engine for IEEE 1687 networks”. In: 2016 21th IEEE European Test
Symposium (ETS). May 2016, pp. 1–6. DOI: 10.1109/ETS.2016.7519301.

[124] M. Portolan. “A novel test generation and application flow for functional
access to IEEE 1687 instruments”. In: 2016 21th IEEE European Test Sym-
posium (ETS). May 2016, pp. 1–6. DOI: 10.1109/ETS.2016.7519302.

[125] A. Jutman, K. Shibin, and S. Devadze. “Reliable health monitoring and
fault management infrastructure based on embedded instrumentation and
IEEE 1687”. In: 2016 IEEE AUTOTESTCON. Sept. 2016, pp. 1–10. DOI:
10.1109/AUTEST.2016.7589605.

http://dx.doi.org/10.1109/ETS.2016.7519290
http://dx.doi.org/10.1109/ReCoSoC.2011.5981520
http://dx.doi.org/10.1109/DDECS.2012.6219013
http://dx.doi.org/10.1109/MDAT.2013.2278535
http://dx.doi.org/10.1109/NATW.2014.24
http://dx.doi.org/10.1109/IOLTS.2014.6873664
http://dx.doi.org/10.1109/LATW.2016.7483342
http://dx.doi.org/10.1109/ETS.2016.7519288
http://dx.doi.org/10.1109/ICECS.2016.7841317
http://dx.doi.org/10.1109/ETS.2016.7519301
http://dx.doi.org/10.1109/ETS.2016.7519302
http://dx.doi.org/10.1109/AUTEST.2016.7589605


196 References

[126] J. C. Ye, M. A. Kochte, K. J. Lee, and H. J. Wunderlich. “Autonomous
Testing for 3D-ICs with IEEE Std. 1687”. In: 2016 IEEE 25th Asian Test
Symposium (ATS). Nov. 2016, pp. 215–220. DOI: 10.1109/ATS.2016.56.

[127] E. J. Marinissen, V. Iyengar, and K. Chakrabarty. “A set of benchmarks for
modular testing of SOCs”. In: Proceedings. International Test Conference.
2002, pp. 519–528. DOI: 10.1109/TEST.2002.1041802.

[128] FP7 Project BASTION Web-Site. 2014. URL: http://fp7-bastion.eu/ (visited
on 04/27/2017).

[129] K. J. Lee and M. A. Breuer. “A Universal Test Sequence for CMOS Scan
Registers”. In: IEEE Proceedings of the Custom Integrated Circuits Confer-
ence. May 1990, pp. 28.5/1–28.5/4. DOI: 10.1109/CICC.1990.124822.

[130] R. Guo, L. Lai, H. Yu, and W. T. Cheng. “Detection and Diagnosis of Static
Scan Cell Internal Defect”. In: 2008 IEEE International Test Conference.
Oct. 2008, pp. 1–10. DOI: 10.1109/TEST.2008.4700596.

[131] M. K. Reddy and S. M. Reddy. “Detecting FET Stuck-Open Faults in CMOS
Latches And Flip-Flops”. In: IEEE Design Test of Computers 3.5 (Oct. 1986),
pp. 17–26. ISSN: 0740-7475. DOI: 10.1109/MDT.1986.295040.

[132] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomeranz.
“Detection of Internal Stuck-Open Faults in Scan Chains”. In: 2008 IEEE
International Test Conference. Oct. 2008, pp. 1–10. DOI: 10.1109/TEST.
2008.4700577.

[133] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomeranz.
“Detectability of Internal Bridging Faults in Scan Chains”. In: 2009 Asia and
South Pacific Design Automation Conference. Jan. 2009, pp. 678–683. DOI:
10.1109/ASPDAC.2009.4796558.

[134] D. Adolfsson, J. Siew, E. J. Marinissen, and E. Larsson. “On Scan Chain
Diagnosis for Intermittent Faults”. In: 2009 Asian Test Symposium. Nov.
2009, pp. 47–54. DOI: 10.1109/ATS.2009.74.

[135] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (July 1968), pp. 100–107. ISSN: 0536-1567.
DOI: 10.1109/TSSC.1968.300136.

[136] MicroGP Web-Site. 2002. URL: http://ugp3.sourceforge.net/ (visited on
04/27/2017).

[137] S. Kundu. “On diagnosis of faults in a scan-chain”. In: Digest of Papers
Eleventh Annual 1993 IEEE VLSI Test Symposium. Apr. 1993, pp. 303–308.
DOI: 10.1109/VTEST.1993.313363.

[138] Y. Huang, R. Guo, W. T. Cheng, and J. C. M. Li. “Survey of Scan Chain
Diagnosis”. In: IEEE Design Test of Computers 25.3 (May 2008), pp. 240–
248. ISSN: 0740-7475. DOI: 10.1109/MDT.2008.83.

http://dx.doi.org/10.1109/ATS.2016.56
http://dx.doi.org/10.1109/TEST.2002.1041802
http://fp7-bastion.eu/
http://dx.doi.org/10.1109/CICC.1990.124822
http://dx.doi.org/10.1109/TEST.2008.4700596
http://dx.doi.org/10.1109/MDT.1986.295040
http://dx.doi.org/10.1109/TEST.2008.4700577
http://dx.doi.org/10.1109/TEST.2008.4700577
http://dx.doi.org/10.1109/ASPDAC.2009.4796558
http://dx.doi.org/10.1109/ATS.2009.74
http://dx.doi.org/10.1109/TSSC.1968.300136
http://ugp3.sourceforge.net/
http://dx.doi.org/10.1109/VTEST.1993.313363
http://dx.doi.org/10.1109/MDT.2008.83


References 197

[139] Y. Huang, X. Fan, H. Tang, M. Sharma, W. T. Cheng, B. Benware, and S. M.
Reddy. “Distributed dynamic partitioning based diagnosis of scan chain”.
In: 2013 IEEE 31st VLSI Test Symposium (VTS). Apr. 2013, pp. 1–6. DOI:
10.1109/VTS.2013.6548916.

[140] W. H. Lo, A. C. Hsieh, C. M. Lan, M. H. Lin, and T. Hwang. “Utilizing
Circuit Structure for Scan Chain Diagnosis”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 22.12 (Dec. 2014), pp. 2766–2778.
ISSN: 1063-8210. DOI: 10.1109/TVLSI.2013.2294712.

[141] H. Chen, Z. Qi, L. Wang, and C. Xu. “A scan chain optimization method
for diagnosis”. In: 2015 33rd IEEE International Conference on Computer
Design (ICCD). Oct. 2015, pp. 613–620. DOI: 10.1109/ICCD.2015.7357172.

[142] S. Kundu, S. Chattopadhyay, I. Sengupta, and R. Kapur. “Scan Chain Mask-
ing for Diagnosis of Multiple Chain Failures in a Space Compaction Envi-
ronment”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23.7 (July 2015), pp. 1185–1195. ISSN: 1063-8210. DOI: 10.1109/
TVLSI.2014.2333691.

[143] J. Ye, Y. Huang, Y. Hu, W. T. Cheng, R. Guo, L. Lai, T. P. Tai, X. Li, W.
Changchien, D. M. Lee, J. J. Chen, S. C. Eruvathi, K. K. Kumara, C. Liu,
and S. Pan. “Diagnosis and Layout Aware (DLA) Scan Chain Stitching”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23.3 (Mar.
2015), pp. 466–479. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2014.2313563.

[144] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Larsson.
“Automatic generation of stimuli for fault diagnosis in IEEE 1687 networks”.
In: 2016 IEEE 22nd International Symposium on On-Line Testing and Robust
System Design (IOLTS). July 2016, pp. 167–172. DOI: 10.1109/IOLTS.2016.
7604692.

http://dx.doi.org/10.1109/VTS.2013.6548916
http://dx.doi.org/10.1109/TVLSI.2013.2294712
http://dx.doi.org/10.1109/ICCD.2015.7357172
http://dx.doi.org/10.1109/TVLSI.2014.2333691
http://dx.doi.org/10.1109/TVLSI.2014.2333691
http://dx.doi.org/10.1109/TVLSI.2014.2313563
http://dx.doi.org/10.1109/IOLTS.2016.7604692
http://dx.doi.org/10.1109/IOLTS.2016.7604692

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Formulation

	I Software-Based Self-Test Enhancements
	1 Background
	1.1 Basic Concepts
	1.2 Software-Based Self-Test (SBST)
	1.3 Fault Grading Process for SBST
	1.4 Observability Solutions
	1.4.1 Module-Level
	1.4.2 Processor-Level
	1.4.3 System Bus
	1.4.4 Memory Content
	1.4.5 Performance Counters

	1.5 Generation Flows
	1.5.1 ATPG-based
	1.5.2 Deterministic
	1.5.3 Feedback-based


	2 SBST Algorithms
	2.1 Decode Unit
	2.1.1 Architectural Overview
	2.1.2 Instruction Set Analysis
	2.1.3 Signature Mechanisms
	2.1.4 Proposed Test Strategies
	2.1.5 Experimental Results

	2.2 Register Forwarding and Pipeline Interlocking
	2.2.1 Architectural Overview
	2.2.2 Proposed Test Strategies
	2.2.3 Experimental Results

	2.3 Dual-Issue Processors
	2.3.1 Architectural Overview
	2.3.2 Scheduling Issues
	2.3.3 Duplicated Computational Modules
	2.3.4 Multi-Port Register File
	2.3.5 Feed-Forward Paths
	2.3.6 Pipeline Interlocking
	2.3.7 Instruction Prefetch Buffer
	2.3.8 Case Studies

	2.4 Floating Point Unit
	2.4.1 Architectural Overview
	2.4.2 Proposed Test Strategies
	2.4.3 Experimental Results

	2.5 Chapter Summary

	3 Development Flow for On-Line SBST
	3.1 On-Line Constraints
	3.2 Execution Management
	3.2.1 Test Encapsulation
	3.2.2 Context Switching to Test Procedure
	3.2.3 Interruption Management and Robustness

	3.3 Development Flow
	3.3.1 Resources Partitioning
	3.3.2 Optimized Test Programs Generation Order

	3.4 Case Studies
	3.4.1 Automotive Microprocessor
	3.4.2 Embedded Floating-Point Unit
	3.4.3 Cumulative Results

	3.5 Chapter Summary

	4 Summary of part:SBST

	II Test and Diagnosis of Reconfigurable Scan Networks
	5 Background
	5.1 Network Constructs
	5.1.1 IEEE Std 1149.1-2013
	5.1.2 IEEE Std 1687
	5.1.3 Example Network

	5.2 Related Works
	5.3 IEEE 1687 Benchmark Networks

	6 Testing
	6.1 Terminology and Fault Model
	6.1.1 Configurations, Vectors, and Test Time
	6.1.2 Fault Model for Reconfigurable Modules

	6.2 Network Representation
	6.2.1 Topology Graph
	6.2.2 Configuration graph

	6.3 Proposed Test Strategies
	6.3.1 Optimal Approach
	6.3.2 Enhanced Version
	6.3.3 Sub-Optimal Approaches

	6.4 Experimental results
	6.4.1 Experiments with Known Benchmarks
	6.4.2 Experiments with Synthesized Benchmarks

	6.5 Chapter Summary

	7 Diagnosis
	7.1 Terminology and Fault Model
	7.1.1 Fault Dictionary and Fault Classes
	7.1.2 Fault Model

	7.2 Proposed Diagnostic Approach
	7.2.1 Diagnostic Analysis
	7.2.2 Generation of New Patterns

	7.3 Experimental Results
	7.4 Chapter Summary

	8 Summary of part:RSN
	Conclusions
	List of Research Contributions
	Future Works

	References


