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Abstract

The architecture of current aircraft turbofan engines consists of multi-stage assem-
blies resulting from the coupling of bladed disks by means of bolted flange joints.
The efficiency of such systems in real working condition is strictly related to the
dynamic properties of blades and disks constituting them. According to the current
design practices, blades and disks are designed so that their weights are reduced
and their slenderness increased. Therefore, latest generation turbofan engine thus
result much more sensible to mechanical vibrations that may cause failure by high
cycle fatigue phenomena. For these reasons robust computational techniques and
innovative measurement systems have become necessary tools for the design and
validation of multi-stage bladed disks assemblies, in order to preserve their structural
integrity while operating in real working conditions. The topics developed in this
Ph.D. thesis concern aspects of linear and non-linear dynamics in the turbomachinery
field and give a series of important guidelines for the study of multi-stage bladed
disks systems from both a numerical and experimental point of view.

The research activity has been mainly focused on the following two topics:

1. Development of reduced order model techniques for the prediction of forced
response of multi-stage bladed disk assemblies. The main challenge associated
with modeling multi-stage assemblies is strictly related to the possible different
cyclic symmetry characterizing the coupled stages. In such case a sector
representative of the whole multi-stage system does not exist in general and
typical dynamic calculations based on cyclic constraints can not be performed
as in the case of single bladed disks. Therefore, two novel reduced order model
techniques for multi-stage systems have been developed in order to overcome
the mentioned drawback while guaranteeing high fidelity in modeling the
system dynamics. Furthermore, for the first time the bolted flange joint
coupling two bladed disks is considered as a possible source of damping
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due to friction phenomena. Understanding the effects of such non-linearities
in damping blade vibrations could be crucial in design of bolted flange joint.
The proposed reduction techniques then also allow the prediction of the forced
response of a multi-stage system when friction contacts are present at the
flange joint interface while maintaining low computational costs.

2. Validation of the Blade Tip-Timing measurement technique, for the identifica-
tion of the modal properties of two laboratory dummy disks. In this frame an
experimental procedure to validate the Blade Tip-Timing system against the
strain gauges measurement has been proposed. Furthermore, a novel method-
ology for the identification of the operative deflection shape of a vibrating
bladed disks in presence of small mistuning has been developed.
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Chapter 1

Introduction

1.1 The Jet Engine

A jet engine is a reaction engine discharging a fast-moving stream of fluid, or simply
a jet, that generates thrust by jet propulsion. In general, jet engines are combustion
engines that can be either airbreathing or non-airbreating.

Jet propulsion is a practical application of Newton’s third law of motion, stating
that, "for every force acting on a body there is an opposite and equal reaction". For
aircraft propulsion, the "body" is atmospheric air that is forced to accelerate as it
passes through the engine. The force required to give this acceleration has an equal
effect in the opposite direction acting on the system producing the acceleration. A
jet engine produces thrust by propelling a large weight of air backwards in the form
of a very high speed jet of gas. The resultant thrust acting on the engine is given by
the general thrust equation:

F = ṁeve − ṁ0v0 +(pe − p0)Ae (1.1)

where ṁ is the the mass rate, v the air flow velocity, p the pressure, the subscripts
e and 0 refers to the exhausted and the entering quantities respectively and Ae is
the exit area (Figure 1.1). From Eqn. 1.1 it can be noted how the same thrust can
be obtained either by giving a small velocity to a large mass of air, or vice-versa, a
large velocity to a small mass of air. In practice the former is preferred, since by
lowering the jet velocity relative to the atmosphere a higher propulsive efficiency
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Fig. 1.1 Propulsion device working scheme: the resultant thrust acting on the engine depends
on the entering (0) and exhausted (e) quantities according to Eqn 1.1

is obtained. The different type of jet engine, whether gas turbine, ram jet, rocket,
turbo/ram jet or turbo-rocket, differ only in the way how the "propulsion provider",
or engine, converts and supplies the energy into thrust.

Most passenger and military aircraft are powered by gas turbine engines that fall
in the class of airbreathing jet engines. The latest version of the basic gas turbine
engine is the so called turbofan, which basically represents the combination of the
earlier turbojet engine with a ducted fan.

Fig. 1.2 Turbofan cross-section and list of its basic components.

The architecture a of turbofan engine is quite simple. For instance, on Figure 1.2 the
cross-section of a typical dual-shaft engine is shown; it is possible to single out some
basic components:
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• Air Intake: all turbine engines have an air intake, or simply an inlet to bring
free stream air into the engine. The inlet sits upstream of the low pressure
compressor and generally has a divergent shape in order to decelerate the air
flow. Especially for supersonic aircrafts the inlet must slow the flow down to
subsonic speeds before the air reaches the compressor.

• Fan and Low pressure compressor (LPC): LPC consists of one or two stages,
each one compound by a row of rotating blades mounted on a disk followed
by a stator vane. In the two-spool engine arrangement the LPC and Fan are
connected to a low pressure shaft, which is driven by the low pressure turbine.
While the LPC has the important role to perform an initial compression of the
air flow, the Fan contributes to the engine’s thrust by accelerating the cold air
flow rearwards. The stator vanes, fixed on the engine case, are necessary to
straighten the air flow back to the axial direction, but they can be also useful
to perform a secondary flow compression by means of an opportunely design
of the air ducts between airfoils of adjacent blades.

• High pressure compressor (HPC): is the first part of the core engine, and
consists of several stages (10-12 or more) connected with a high pressure shaft.
Here the hot flow undergoes a high compression (compression rate equal to 30
or higher) and consequently warming, up to about 900 K temperature. From
the front to the rear of the compressor, i.e. from the low to the high pressure
end, there is a gradual reduction of the air annulus area between the rotor shaft
and the stator casing. This is necessary to maintain a near constant air axial
velocity as the density increases through the length of the compressor.

• Combustion chamber (CC): has the task of burning large quantities of fuel,
supplied through several fuel spray nozzles, with extensive volumes of air,
supplied by the compressor, in order to release the heat in such a manner that
the air is expanded and accelerated to give a smooth stream of uniformly heated
gas at all conditions required by the turbine. The amount of fuel added to the
air will depend upon the temperature rise required. However, the maximum
temperature is limited within the range of 1100 K to 1900 K by the material
from which the turbine blades and nozzles are made.

• High pressure turbine (HPT): the turbine has the task to provide the power to
drive the compressor and the accessories. It consists of few stages, typically
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2-3, each one formed by a rotor following the stator: the former is connected
to the high pressure shaft (in order to supply power to the high pressure
compressor), the latter is fixed to the casing. Here, rotor and stator airfoils are
usually both designed to provide an expansion of the flow. The pressure drop
across a single turbine stage can be much greater than the pressure increase
across a corresponding compressor stage. A single turbine stage can thus be
used to drive multiple compressor stages.

• Low pressure turbine (LPT): connected to the low pressure shaft, supplies the
power to the LPC and Fan.

• Exhaust system: aero gas turbine engines have an exhaust system that passes
the turbine discharge gasses to atmosphere at a velocity, and in the required
direction, in order to provide thrust. The design of the exhaust system therefore,
exerts a considerable influence on the performance of the whole engine. The
areas of the jet pipe and propelling nozzle affect the turbine entry temperature,
the mass air flow and the and pressure of the exhaust jet.

Turbofan uses two separate air flows in working conditions. The first, the hot
flow, traverses the core of the engine from the inlet to the propelling nozzle, through
the fan, compressor, combustion chamber and turbine. The second flow, called cold
flow, bypasses the core going from the fan directly to the nozzle. According to this
description a turbofan can be thought of as a turbojet being used to drive the fan, with
both contributing to the resultant thrust. The ratio of the mass-flow of air bypassing
the engine core compared to the mass-flow of air passing through the core is referred
to as the bypass ratio. Engines that exploit more jet thrust relative to fan thrust are
known as low-bypass turbofans, conversely those that have considerably more fan
thrust than jet thrust are known as high-bypass. Due to their high fuel efficiency
high-bypass ratio turbofans are employed for civil aviation, while low-bypass ratio
turbofans equipped with afterburns are used on modern military fighters.
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The thermodynamic cycle upon which the gas turbine engine works is, in its
simplest form, the Brayton’s cycle shown in Figure (1.3).

Fig. 1.3 Idealized Brayton’s cycle: airflow path over the engines’ main components, P-V and
T-S diagrams.

Using the turbine engine station numbering system, the cycle begins with free
stream conditions at station 0. In cruising flight, the inlet slows the air stream as
it is brought to the compressor face at station 1. As the flow slows, some of the
energy associated with the aircraft velocity increases the static pressure of the air
and the flow is compressed. Ideally, the compression is isentropic and the static
temperature is also increased as shown on the plot. The compressor does work on
the gas and increases the pressure and temperature isentropically to station 2 the
compressor exit. Since the compression is ideally isentropic, a vertical line on the
T-s diagram describes the process. In reality, the compression is not isentropic and
the compression process line leans to the right because of the increase in entropy
of the flow. The combustion process in the burner occurs at constant pressure from
station 2 to station 3. The temperature increase depends on the type of fuel used
and the fuel-air ratio. The hot exhaust is then passed through the power turbine in
which work is done by the flow from station 3 to station 4. Because the turbine and
compressor are on the same shaft, the work done on the turbine is exactly equal to
the work done by the compressor and, ideally, the temperature change is the same.
The nozzle then brings the flow isentropically back to free stream pressure from
station 4 to station 5. Externally, the flow conditions return to free stream conditions,
which completes the cycle. The area under the T-s diagram is proportional to the
useful work and thrust generated by the engine.
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1.2 Turbine

The general arrangement and working principle of a modern turbofan engine were
briefly described in the previous sections. This section is mainly focused on the
general design of turbines, representing the most critical rotating components of
a jet engine. Although common geometrical and structural characteristics can be
found between turbine and compressor stages, it is known that the former work in a
much more hostile environment than the latter. In fact, sitting just downstream of the
burner, the turbine blades experience flow temperatures higher than the those typical
of the compressor air flow (see section 1.1).

As already mentioned the main task of a turbine is to transform the gas potential
energy into mechanical energy, in order to provide the power needed by the compres-
sor stages. This energy conversion is possible through two rows of blades, a stator
followed by a rotor (Figure 1.4).

Fig. 1.4 Turbine driven by the impulse of the gas flow and its subsequent reaction as it
accelerates through the converging blade passage.

Each pair of stator blades realizes a convergent duct with the scope to deviate and
accelerate the axial gas flow. The flow deviation causes tangential forces acting on
rotor blades in the same sense of rotation, and consequently power transmitted to the
shaft. Further flow acceleration and deviation (flow expansion) are then performed
by the convergent ducts in between adjacent rotor blades, before the flow encounters
the following stator.
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1.2.1 Turbine Design

The design of a turbine is an iterative procedure aimed at achieving the best compro-
mise between aerodynamic and structural requirements. The aerodynamic aspects
of the design have to be carefully faced first by defining the turbine flowpath. For a
certain working condition known as design point the flowpath denotes the channel
traveled by the air flow while expanding. From a geometric point of view it is simply
a 2-D sketch defined by a collection of corner points representing the projection on
the engine cross-section of the maximum size of stator and rotor aerodynamic blade
profiles (Figure 1.5).

Fig. 1.5 2-D flowpath of a 6 stages LPT: the sketch defined by the corner points (+) identifies
the position and maximum size of both stator (S) and rotor (R) blade profiles in hot conditions.

The definition of the flow path is followed by the blade design in working
condition (hot condition). Firstly, the bi-dimensional profiles corresponding to the
blade cross-sections from the root to the tip needed to realize the optima velocity
triangles have to be defined. The tri-dimensional geometry of the blade airfoil is then
obtained by interpolating the bi-dimensional profiles in the radial direction. Due to
the different values of the stagger angle, larger at the tip than at the root (Figure 1.6),
the turbine blades result "twisted", which ensure equal work done by the gas flow at
all locations along the length of the blade.
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Fig. 1.6 Typical turbine blade showing twisted contour. The variation of the stagger angle
from the root to the tip ensures equal work done by the gas flow at all locations along the
length of the blade.

One of the most important aspects in the design of either rotating or non-rotating
elements of a turbine is the hot to cold scaling. As already mentioned the flowpath
and the blade profiles are determined in hot condition. Conversely, the turbine is
assembled in cold condition, but it has to guarantee the correct positioning of the
blade profiles such that in working condition designed flowpath can be realized. For
both rotor and stator blades the operations needed for scaling the profiles from hot to
cold condition are briefly listed below.

• Scaling: represents the scale reduction of the blade profiles from the designed
geometry by removing the material dilatation due to the high temperatures.

• Twisting: the blade cross-sections in hot condition have to be "twisted" around
their radial direction if the blade in cold condition is required. The effects of
such twisting disappear in working condition when the blades are loaded by
the hot gasses.

• Positioning: defines the position of the platforms needed to keep fixed the
blade profiles; the outer bands connected to the engine casing for the stator,
the platforms and shrouds for the rotor.
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The "cold" blade profiles have to be structurally verified since they suffer several
types of mechanical stress, which can be collected in four main categories: thermal,
centrifugal, bending and vibration.

Thermal Stress

The high temperature of the exhaust gas flowing through the first HPT stage causes
thermal expansion on all the components involved. Referring to the relationship
between the extensional strain and the change in temperature of a generic body, the
engine’s components experience a thermal strain εT that is generally proportional to
the difference between the hot gasses and the entering air flow temperature ∆T :

εT = α∆T (1.2)

where the parameter α is the coefficient of thermal expansion. Although the tem-
perature change does not lead to mechanical stresses in a component that is free
to expand, thermal stresses occur in components that are either restrained (i.e. not
completely free to expand) or featuring a non-uniform coefficient of thermal ex-
pansion. For instance, shrouded turbine blades during operation nearly behave as
clamped-clamped structures due to the centrifugal twist-back moment enabling a
tight contact between adjacent shrouds (Figure 1.9). Such condition clearly avoid
the natural extension of the blade involving a stress distribution in their structure.

Besides the thermal expansion the other phenomenon correlated with the high
working temperature typical of turbine blades is the creep. Creep generally occurs
as a result of long term exposure to levels of stress that are below the yield strength
of the material, and especially for turbine blades, which are permanently loaded in
working conditions by high centrifugal stress and bending stress, it results accelerated
by the high temperature.

Two are the possible solutions to limit the thermal stresses: the first is the correct
material choice, the second is to provide a cooling system for the blade. The second
solution is extensively employed and requires to spill out from the compressor a
certain amount of air that is forced to pass through a series of ducts realized inside
the airfoil (Figure 1.7).
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Fig. 1.7 Developement of HPT blade cooling systems. Turbine blade life depends not only
on their shape but also on the method of cooling. Generally, single pass internal (convection)
cooling was of great practical benefit, but further developments have lead to multipass
internal cooling with external air film cooling.

Centrifugal Stress

Due to the high rotation speed characterizing the bladed disks in working conditions,
i.e. ≈ 7000 rpm for the LP shaft and 1200 rpm for the HP shaft, centrifugal loads
have to be considered in the structural validation of a rotor blade. If r denotes the
generic radial coordinate of a blade cross-section from the blade root and R is the
maximum blade radius, the centrifugal force acting on the selected cross-section is
given by:

Fc =
∫ R

r
dFc = ρω

2
∫ R

r
r ·dV = ρω

2
∫ R

r
rA(r) ·dr (1.3)

where ρ is the material density, ω the rotation speed and A(r) the blade cross section
a t radius r.

The blade section most suffering centrifugal stress is intuitively the root. In order
to prevent the blade root failure, a possible solution would consist on a suitable design
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of the shank between the root and the platform in order to opportunely undertake
centrifugal stresses.

Bending Stress

Besides centrifugal loads the blade root is also subjected to the bending moment due
to the pressure exerted by the hot gasses over the pressure side of the blade (Figure
1.8 a)). The effects of the bending moment MFLOW , involving bending stresses at the
blade root, are attenuated by skewing the blade in the flow direction. This practice,
which is called camber, requires to tilt the blade airfoil of 1 or 2 degrees with respect
its center of gravity, such that a new moment MC, generated by the centrifugal force
FC and opposite to MFLOW , can be obtained (Figure 1.8 b)).

Fig. 1.8 a) Radial cross section of a turbine blade and airflow action over the blade’s pressure
side. The pressure distribution acting on the blade’s pressure side involves a bending moment
at the blade’s root as happens at the clamped end of a clamped-free beam under the action of
a distributed load. b) The camber moment MC generated by the centrifugal force FC acting
on a tilted blade compensates for the bending moment MFLOW at the blade’s root.

The mechanical equilibrium between the two moments is achieved only at a
certain rotation speed and a value of centrifugal force. For all the other working
conditions the bending stresses will be considerably decreased but not completely
eliminated.
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Vibration Stress

Vibration stresses in turbine bladed disks result from dynamic excitations. These can
be grouped in two main classes depending on the nature of the source generating
them:

• Mechanical excitations: ascribable to the wrong rotor balance (whirl), blade tip
- casing contacts and possible impacts between either rotating or non-rotating
components with items sucked into the engine while working.

• Aerodynamic excitations: while bending stresses are caused by the stationary
component of the gas flow pressure (mean value), vibration stresses are induced
by its non-stationary components. These are attributable to the gas flow -
structure interaction concerning the non-uniform circumferentially distributed
pressure, stator - rotor interactions and self-excited aeroelastic phenomena
(flutter).

In bladed disks both mechanical and aerodynamic excitations are the main respon-
sible for High Cycle Fatigue (HCF), which is considered the "major cost, safety
and reliability issue for gas turbine engine" [1]. Therefore blades and disks require
special attention and a very careful design due to the crucial role they play during
the operation of gas turbine engines. As so much is dependent on the reliability of
these components, the tendency of manufacturers would be to over-design them in
order to largely cope the safety specifications. On the other hand, limited weights
are necessary to achieve the high efficiency characterizing the latest generation gas
turbine engines. This aspect unavoidably leads to design much slender blades and
thinner disks, making them more sensible to mechanical vibrations.

Due to the large operative speed range, bladed disks cannot work outside of
all resonant zones. In fact, since their configuration is obtained from preliminary
aerodynamic and efficiency calculations, it cannot be easily modified. In this regard,
some critical resonances cannot be avoided and a way to provide additional damping
to the system is necessary. One of the most used practices to reduce vibration stresses
consists in exploiting the dry friction occurring at the interfaces of joints employed in
the bladed disk assemblies. Nowadays the mechanical arrangements used to perform
this energy dissipation are mainly three:
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1. Blade root joint: the method of attaching the blades to the turbine disk is
of considerable importance, due to the high stress concentration at disk rim
around the fixing slot or at the blade root. Blades are connected to the disk rim
by means of firtree or dovetail roots, inserted in the corresponding disk slots.
These configurations enable friction damping at the contact interfaces between
the blade root and the disk slot during the vibration of the assembly.

2. Blade shrouds: As shown on Figure 1.9, the shroud is a sort of roof placed at
the tip of each blade. The key idea behind the shrouds design is to damp the
blade vibration amplitudes through dry friction. Typically the shrouds have an
"S" shape which guarantees an optimal blade-to-blade interface for efficient
damping. Moreover, to further increase the damping level, the blades can be
pre-twisted during the rotor assembly.

Fig. 1.9 Contact between adjacent shrouded blades: the centrifugal load acting on the blades
during operation causes a twisting moment around the blade axis that brings the shrouds into
contact.

3. Underplatform dampers: Blade shrouds can considerably influence the aero-
dynamic configuration of the rotor, increasing, for instance, the level of low
turbulence or disturbing the air-cooling flow exiting from the blades internal
duct, especially in HPT stages. An alternative damping device able to damp
vibrations by dry friction is the underplatform damper. This is basically a
piece of metal with a suitable shape that is pressed against the blade platforms
during rotation by the centrifugal force (Figure 1.10). Underplatform dampers
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are particularly effective when the adjacent blades vibrate with a phase lag of
π .

Fig. 1.10 Simplified scheme of under-platform damper placements: during rotation the
damper (black body) is pressed against the blades’ platforms by the centrifugal force Fc.

1.3 Dynamics Prediction and Testing of a Bladed Disk

Although established, the mentioned arrangements exploit as sources of friction
damping specific blade locations, being focused on the attenuation of the dynamic
response of a single-stage bladed disk. Recently, the interest of the scientific com-
munity is moving towards other types of joints whose nonlinear behavior may affect
the dynamic response of the aircraft engine at a system level. This is the case of the
bolted flange joint connecting two bladed disks, where the contact phenomena at the
inter-stage boundary may lead to further sources of friction damping (see Chapter 5).

In order to optimize the design of bladed disks, all the mentioned sources of stress
have to be carefully taken into account, but nonetheless, due to the complexity of the
dynamic phenomena involved in a turbomachinery, time-varying excitations play the
most important role. In fact, much research has addressed the design optimization
process towards the dynamical investigation of single components first and partial
assemblies recently, according to the following three steps: design, analysis and
testing (Figure 1.11).



1.3 Dynamics Prediction and Testing of a Bladed Disk 15

Fig. 1.11 Steps in a dynamical investigation [1].

The most demanding step of this complex procedure is the creation of accurate
mathematical models capturing the structure dynamics. In this frame, modeling
the non-linearities due to friction contacts in turbomachinery and their effects on
the bladed disks dynamics is not a trivial task. It has been, and still it is, the main
objective of several studies carried out by the LAQ AerMec group of the Politecnico
di Torino and few other research groups around the world. As a result of this vigorous
research, several Finite Element based computer codes have been developed in order
to predict either the linear or non-linear forced response of bladed disk assemblies,
facilitating the design process. The development of such codes, being thought mainly
for industrial applications, requires the capability of modeling contacts and high
expertise in model order reduction. This last feature makes more efficient the design
process since allows reducing the number of degrees of freedom involved in the
simulation and then a faster evaluation of the effects that small modifications of the
design parameters have on the system’s dynamics.

In order to guarantee accuracy and predictability, a numerical tool has to be
validated against real structures preferably in realistic working conditions. Otherwise,
the lack of experimental validations makes the manufacturers reluctant to use such
codes in their design practices. An extensive experimental validation would avoid
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possible sources of mismatch between the real and simulated data and guide the
codes through corrections to produce acceptable and reliable outputs.

Generally, discrepancies between computer model predictions and actual system
responses are due either to the inaccurate modeling of the system dynamics or to the
lack of modeling them at all. Therefore, the only way to ensure whether the numeri-
cal models are efficient or not is to check their predictions against measurements.
However, the experimental validation of a model simulating vibration responses of
real gas turbines is an extremely difficult task for different reasons:

• Measurements should be performed on the most critical components as the
blades in a turbofan engine are. Due to the complexity of the global engine
architecture, the presence of several other components inevitably affects the
blades response, with obvious difficulties in modeling the resulting dynamic
coupling mathematically;

• The high temperature characterizing the engine in working condition prevents
the employment of well-established measurement systems which need to be in
contact with the blades (e.g. the strain gauges);

• From a practical point of view there is no enough room to install measurement
systems able to monitor the blades response in real-time during operation.

For all these motivations it is a common practice to carefully design experimental
setups which exhibit only the dynamic phenomena under investigation. Once the
numerical model are demonstrated to be accurate representation of the experimental
data, they can be used can be used as optimization tool for real bladed disks design.

1.4 Thesis Objectives & Outline

The present work gives an insight into how the forced response of multi-stage bladed
disk assemblies can be efficiently predicted by using tailor-made reduction tech-
niques. Such models can be widely employed for industrial applications concerning
the dynamic study of complex multi-stage systems usually analyzed as a whole by
finite element commercial codes. Due to the large number of degrees of freedom
involved the simulation, also the simple evaluation of eigenfrequencies and mode



1.4 Thesis Objectives & Outline 17

shape may become prohibitive for the large computational costs. Consequently, a
model simplification is usually requested without any loss of accuracy.

Three novel reduction approaches are developed throughout this thesis. All of
them take their basis on the well-know Craig-Bampton technique and go further
by exploiting ad-hoc interface reduction methods. The first reduction technique,
presented at the ISMA 2016 [4], is here named as CC-CMS method and represents the
extension of the classic modal interface reduction method based on the Characteristic
Constraint Modes formulation proposed by Castanier et al. [5]. The CC-CMS
method is here developed to perform two different tasks, i.e. dynamic coupling of
two component having non compatible meshes at the interface and the reduction of
the independent frontier of a bladed disk sector treated in cyclic symmetry conditions.
The other two techniques are developed for application concerning multi-stage
structures. In a different fashion these allow the single-stages’ reduction and their
subsequent coupling by exploiting the spatial harmonic periodicity of the mode
shapes of cyclic symmetric structures [6, 7]. The mentioned reductions allow a
substantial simplification of the forced response prediction of multi-stage bladed
disks featuring friction contacts at the inter-stage boundary. In this regard for the first
time it will be possible to consider the bolted flange joint linking two bladed disks as
a source of friction damping useful to mitigate the blades vibration amplitudes.

In the last part of this work the capabilities of the Blade Tip-Timing measurement
system are explored in order to understand whether it can be used as a valid tool for
the modal identification of real bladed disk assemblies. In this frame and extensive
experimental campaign was performed on two dummy bladed disks having different
geometric, structural and dynamical properties and a novel method to experimentally
identify the operative deflection shape of bladed disk is presented [8].

The present thesis is organized as following:

Chapter 2 introduces to the dynamics of cyclic symmetric structures. Here the
theory developed in literature is reviewed and its application on bladed disks
is discussed. Furthermore, a new important feature of the mode shapes of
cyclic symmetric structures is presented: the extra harmonics pattern. These
small wavelenght vibratory phenomena characterizing the motion of cyclic
symmetric structures at the interface, where the continuity of the material is
guaranteed in the circumferential direction, are useful when the bladed disk’s
dynamics has to be precisely approximated at the flange joint.
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Chapter 3 reviews the commonest dynamic substructuring methods in the class
of component mode synthesis. Here the most used fixed-interface methods,
i.e. the Guyan and Craig-Bampton methods, are reviewed. Interface reduc-
tion techniques are later introduced and the novel Gram-Schmidt Interface
reduction method is developed from the pre-existing Characteristic Constraint
Mode formulation.

Chapter 4 introduces the existing state of the art on multi-stage reduction techniques
and proposes two novel reduction methods for the dynamic response prediction
of multi-stage bladed disk assemblies. The first approach starts from the Craig-
Bampton reduced order models of the full-wheel stages and goes further
by reducing the physical displacements at the inter-stage boundaries by few
harmonic basis functions [6, 7]. The second approach starts from the two
fundamental sectors that are reduced by using a modified version of the cyclic
symmetry Craig-Bampton method [9]. In both cases the multi-stage dynamics
is studied in the reduced order space only.

Chapter 5 concerns the study of the bolted flange joint between two bladed disks as
a possible source of friction damping capable to mitigate the blades’ vibration
amplitudes. This aspect, which is not yet present in the current state of the art,
is carried out by combining the multi-stage reduction techniques developed
in Chapter 4 with the macroslip contact model involving the classic spring-
slider contact element. The validity of the mentioned practice is checked on a
multi-stage system under simplified hypotheses.

Chapter 6 evaluates the accuracy of a latest generation Blade Tip-Timing system
by means of an extensive experimental campaign on two dummy blisks. Here,
a new sensor arrangement named beam shutter configuration is proposed
in order to detect the vibrations of shrouded bladed disks. Furthermore an
original method used to identify the operative deflection shape of a bladed disk
through the experimental determination of its nodal diameters is presented.



Chapter 2

Dynamics of Cyclic Symmetric
Structures

Among the possible sources of stress affecting the bladed disks particular emphasis
has been given to time-varying excitations, being the major responsible of failure
due to HFC. Understanding the bladed disks dynamics is thus essential to accurately
predict their natural frequencies and mode shapes, so that the effects of unavoidable
strong resonances can be limited.

Bladed disks fall in the class of structures exhibiting rotational periodicity or
cyclic symmetry, meaning that they consist of a finite number of identical substruc-
tures or sectors forming a closed geometry (Figure 2.1).

Fig. 2.1 Cyclic symmetric structure.
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In the simplest case the substructure consists of one disk sector and one attached
blade, but several other types of bladed disk assemblies showing different geometric
and structural features exist. Examples of bladed disks featuring cyclic symmetry
are those characterized by:

• Unshrouded identical blades on a disk (Figure 2.2 a));

• Continuously tip-shrouded blades on a disk (Figure 2.2 b));

• Mid-height shrouded blades on a disk (Figure 2.2 c));

• Blades that are integral parts with the disk; in this case the bladed disk is
simply referred to as blisk (Figure 2.2 d)).

Fig. 2.2 Examples of cyclic symmetric structures.

Mathematically, the disk geometry for any radial and axial position at a certain angle
θ is identical to itself at the angular position (θ +nαn), where αn = 2π/N represents
the so called sector angle. Both N and n are integers: the first denotes the number of
disk’s sectors, the second is defined as n = 1, . . . ,N. A satisfactory description of
the cyclic symmetric structures dynamics has been given by Thomas in [10, 11]. The
mode shape classification made in his work will be briefly reviewed in the following
sections, since they are essential for subsequent developments on reduced order
model techniques for multi-stage bladed disks.
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2.1 Mode Shapes of Cyclic Symmetric Structures

The evaluation of natural frequencies and mode shapes of complex structures is
commonly carried out by means of Finite Element (FE) dynamic calculations, which
involve to discretize the structure in elements. This procedure, also known as
meshing, allows to turn a continuous structure in a discrete mathematical model
from which the real mass and stiffness matrices, M and K respectively, can be set up.
The dynamic study of a bladed disk has no exceptions. After the aforementioned
discretization, the bladed disk can be studied as a multi-degrees of freedom system,
whose linear and conservative equation of motion (EQM) can be expressed according
to the following general form:

Mẍ(t)+Kx(t) = f(t) (2.1)

where x(t) is the vector of degrees of freedom (DoFs) listing the nodal displacements,
while f(t) represents the corresponding vector of external forces. If nn is the total
number of nodes resulting from the structure discretization, for the matrices and
vectors of Eqn. 2.1 the following statements hold:

M ∈ R3nn×3nn K ∈ R3nn×3nn

x(t) ∈ R3nn×1 f(t) ∈ R3nn×1 (2.2)

M is positive definite since non-vanishing mass is associated to all DoFs, while K
is at least semi-positive definite. K becomes positive definite for well-constrained
structures, i.e. no rigid body modes are allowed.

Fig. 2.3 Cylindrical reference frame.
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For cyclic symmetric structures it is convenient to write Eqn. 2.1 in a cylindrical
coordinate system with the z-axis coinciding with the structure’s revolution one
(Figure 2.3) and to rearrange the matrices and vectors such that the ns DoFs of the
first sector are followed by ns DoFs of the second sector and so on. Under these
hypotheses the matrices M and K and the vectors x and f can be written as follows:

M =



M0 M1 M2 . . . M2 M1

M1 M0 M1 . . . M3 M2

M2 M1 M0 . . . M4 M3
...

...
... . . . ...

...
M2 M3 M4 . . . M0 M1

M1 M2 M3 . . . M1 M0


K =



K0 K1 K2 . . . K2 K1

K1 K0 K1 . . . K3 K2

K2 K1 K0 . . . K4 K3
...

...
... . . . ...

...
K2 K3 K4 . . . K0 K1

K1 K2 K3 . . . K1 K0



x =



x1

x2

x3
...

xN-1

xN


f =



f 1

f 2

f 3
...

f N-1

f N


(2.3)

M and K have a block circulant symmetric structure, where the blocks Mh and
Kh (h = 0, . . . , int(N/2) if N is even or h = 0, . . . , int

(
(N − 1)/2

)
if N is odd) are

symmetric matrices whose dimension equals the number ns of each sector’s DoFs
[12, 8]. It must be remarked that the fashion assumed by M and K in Eqn. 2.3 only
occurs if the DoFs are collected sector by sector, by placing the homologous ones
in the same positions within the subvectors xn (n = 1, . . . ,N). Note that a cyclic
symmetric structure can always be considered as an entire wheel whose sectors
are physically constrained to each other. From a mathematical point of view this
condition is guaranteed by the non-null off-diagonal entries of K, while the matrix
M still remains diagonal. An example on how the matrices M and K are obtained
from a lumped parameters cyclic symmetric structure is shown in Appendix A.
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When the mass and stiffness matrices are derived from the FE model, mode
shapes and corresponding natural frequencies can be found by solving he following
eigenproblem:

(K−ω
2
i M)ui = 0 i = 1, . . . ,Nns (2.4)

where ω2
i and ui are the real ith eigenvalue and eigenvector respectively. Assuming

the DoFs partition of Eqn. 2.3, the ith eigenvector can be written as follows:

ui =
[
(u1i)

T (u2i)
T . . . (uNi)

T
]T

(2.5)

where uni (n = 1, . . . ,N) is a vector of size ns containing the modal displacements of
nth substructure when the ith mode shape occurs.

As happens for axisymmetric structures, for the cyclic symmetric ones it is found
that most vibration modes occur in orthogonal pairs. In fact, for axisymmetric
strutures it is clear that if a mode shape shows the maximum deflection at some point
on the structure, a rotation of the same mode through an arbitrary angle does not
change the corresponding frequency of vibration. The same effect holds for cyclic
symmetric structures, where the rotation that leaves the mode identical to itself is
an integer multiple of the sector’s angle αn. As a consequence, the possible mode
shapes of a cyclic symmetric structure ui fall into three classes, depending on the
relative motion between the individual sectors:

(a) Each sector has the same mode shape as its neighbors and vibrates in-phase
with them:

uni = u(n+1)i ∀ n (2.6)

Since the mode shape of the complete structure can be expressed as ui =[
(u1i)

T (u1i)
T . . . (u1i)

T
]T

, it is obvious that rotating the mode shape through
any arbitrary number of sectors leaves the mode unchanged. This is a standing
wave mode shape that is described by a single eigenvalue and eigenvector
(Figure 2.4).
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Fig. 2.4 Example of an out-of-plane standing wave mode shape on a dummy disk with 12
blades: all the blades have the same mode shape and vibrate in-phase to each other. The
modal displacement shows its minimum at the disk’s center (blue zone) and reaches its
maximum at the blades’ tips (red zone) at a time instant that is the same for all the blades.

(b) Each sector has the same mode shape as its neighbors, but vibrates in anti-
phase with them:

uni =−u(n+1)i ∀ n (2.7)

For this second class the mode shape of the whole structure can be written

as ui =
[
(u1i)

T − (u1i)
T (u1i)

T . . . (u1i)
T − (u1i)

T
]T

. It can be noted that
rotating the mode shape through an even number of sectors leaves the mode
unchanged, while the rotation through an odd number of sectors makes the
modes equal to −ui. This however does not represents a new mode shape,
but just a change in phase of π in the vibration. As in the previous case the
mode is standing and a single eigenvector and eigenvalue are necessary for its
complete description (Figure 2.5).

Fig. 2.5 Example of an out-of-plane standing wave mode shape on a dummy disk with 12
blades: all the blades have the same mode shape and vibrate in anti-phase to each other. The
mode shape exhibits the alternation in sign of the maximum blades’ vibration amplitude,
negative for the blue zones and positive for the red ones.
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(c) All other possible mode shapes, meaning that:

uni ̸= u(n+1)i uni ̸=−u(n+1)i ∀ n (2.8)

These modes occur in orthogonal pairs of standing waves corresponding to the
same eigenvalue. Their combination results in a rotating mode shape.

The third class of mode shapes requires further considerations. Since all the
sectors are identical, when the mode shape ui is shifted of one sector’s angle αn, a
new mode shape u′

i with the same eigenvalue is found. The set of all the possible
eigenvectors obtained by subsequent shifts of ui, each one of αn, is spanned by the
following basis:

Ui = [ui ūi] (2.9)

where ūi is an eigenvector orthogonal to ui with the same eigenvalue ω2
i :

uT
i ūi = 0 (2.10)

The eigenvector u′
i can thus be expressed as a linear combination of ui and ūi as

follows:
u′

i = cui + sūi c,s ∈ R (2.11)

Assuming the eigenvectors ui, ūi and u′
i normalized so that:

uT
i ui = 1, ūT

i ūi = 1, (u′
i)

Tu′
i = 1 (2.12)

it can be demonstrated that c and s can be written respectively as cos(ϕh) and
−sin(ϕh), where ϕh would be the generic rotation angle of which the eigenvector ui

should be rotated in order to give u′
i. However, since u′

i has been already defined as
resulting from one sector’s angle rotation of ui, and considering that the application
of Eqn. 2.11 N times leaves ui unchanged, the angle ϕh must take one of the following
values:

ϕh =±2π

N
h (2.13)

where h is an integer that measures the periodicity of the mode shape over the
structure (Figure 2.6).
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Fig. 2.6 The periodicity of the mode shape over the structure can be expressed in terms of
number of nodal diameters. This Figure shows a mode shape having h = 1 nodal diameter,
denoting a nodal line (dashed line) along which the modal quantities are equal to zero.

Similarly, the eigenvector ū′
i orthogonal to u′

i, defined by shifting the eigenvector ūi

by αn, can also be expressed as a linear combination of ui and ūi:

ū′
i =−sui + cūi c,s ∈ R (2.14)

The transformation that rotates both ui and u′
i round one substructure is obtained

rewriting the Eqns. 2.11 and 2.14 in matrix form:{
u′

i

ū′
i

}
=

[
cINns sINns

−sINns cINns

]{
ui

ūi

}
= R

{
ui

ūi

}
(2.15)

where INns is the identity matrix of order Nns. The result of Eqn. 2.15 can be finally
exploited to the write the mode shape of one sector in terms of mode shape of any
other sector as follows:{

u(n−1)i

ū(n−1)i

}
=

[
cIns sIns

−sIns cIns

]{
uni

ūni

}
∀ n (2.16)

where Ins is the identity matrix of order ns.

According to Eqns. 2.11 and 2.14, every linear combination of standing modes
falling in the class (c) is a new real eigenvector still satisfying the eigenproblem of
Eqn. 2.4. However, also the complex vectors zi and z̄i, defined as:

zi = ui + ι ūi z̄i = ui − ι ūi (2.17)
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are valid solution of Eqn. 2.4, being eigenvectors with the same eigenvalue ω2
i

of ui and ūi. The physical meaning of real and complex eigenvectors of a cyclic
symmetric structure is strictly related to their time evolution over the structure itself.
In particular, it has been already stated that the classes of modes (a) and (b) collect
real eigenvectors denoting standing wave mode shapes. The spatial configuration
or operative deflection shape (ODS) of a standing mode shape ui at a certain time
instant t is given by the real part of the complex quantity uieιωt :

ℜ[uieιωt ] = ℜ[ui cos(ωt)+ ιui sin(ωt)] = ui cos(ωt) (2.18)

The result of Eqn. 2.18 shows that all the DoFs pulsate without any relative time
delay between them. In fact, assuming at t = 0 a non null ODS such that ∥ui∥ ̸= 0,
at t = π/(2ω) all the DoFs cross the zero value simultaneously (Figure 2.7)

Fig. 2.7 Schematic representation of a standing mode shape of a cyclic symmetric structure:
assuming a certain configuration of the mode shape at t = 0 such that ∥ui∥ ̸= 0, at t = π/(2ω)
the modal displacement of each DoF is equal to zero.

The same does not happen for the complex eigenvector zi. In this case the
instantaneous ODS can be found as the real part of zieiωt :

ℜ

[
zieιωt

]
= ℜ

[(
ui + ι ūi

)[
cos(ωt)+ ι sin(ωt)

]]
=

= ui cos(ωt)− ūi sin(ωt) (2.19)

By looking at the time evolution of the mode shape it can be noted that at t = 0
Eqn. 2.19 gives exactly the ODS ui, while at t = ϕh/ω it gives:

ℜ

[
zieιϕ

]
= ui cos(ϕh)− ūi sin(ϕh) (2.20)
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which is exactly u′
i (Eqn. 2.11). Therefore, the complex eigenvector zi describes a

rotating vibration mode, where the same instantaneous ODS appears after successive
time intervals t = ϕh/ω , rotated round an additional substructure each time (Figure
2.8).

Fig. 2.8 Schematic representation of a rotating mode shape of a cyclic symmetric structure:
after successive time intervals t = ϕh/ω the mode shape rotates round an additional sector.

It must be pointed out that zi contains information of both standing modes ui and ūi.
According to Eqn. 2.19, the complex eigenvectors zi appears as rotating since their
components are in quadrature in space (Eqn. 2.10) but also in time. If zi corresponds
to a clockwise rotating eigenvector, the complex eigenvector z̄i, orthogonal to zi

(z̄∗i zi = 0)1, rotates in a counter-clockwise direction.

The direction characterizing the rotation of a complex mode shape can be bet-
ter defined by looking at the relationship between the deflections of neighboring
substructures. This can be derived by rewriting Eqn. 2.15 in terms of zi:

z′i = zieιϕh (2.21)

and isolating the DoFs of the generic nth substructure the following relationship can
be found:

z(n−1)i = znie
ιϕh (2.22)

It can be easily proved that Eqn. 2.22 corresponds to Eqn. 2.16 if the real and imagi-
nary part are written separately. Eqn. 2.22 is of practical importance for a complete
understanding of cyclic symmetric structures dynamics: the angle ϕh already intro-
duced in Eqn. 2.13 will be hereafter identified as Inter-Sector Phase Angle2 (ISPA)

1The * superscript stands for conjugate transpose.
2In the case of bladed disks ϕh is called Inter-Blade Phase Angle (IBPA).
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and represent the phase lag between adjacent vibrating sectors. Conventionally, if a
clockwise increasing number of sectors is adopted (Figure 2.1), negative values of
ϕh refer to clockwise propagating waves over the structure, since the (n−1)th sector
vibrates with a phase lag of ϕh with respect the nth. Conversely, positive values of
ϕh are associated to counter-clockwise rotations.

Eqn. 2.22 has been deducted for the mode shape of the class (c), but can be
easily extended for those of the classes (a) and (b). In fact, since the mode shapes
belonging to those classes do not have their orthogonal counterparts, zi coincides to
ui and Eqn. 2.22 becomes:

u(n−1)i = unie
ιϕh (2.23)

Regardless of the class, the instantaneous ODS of a mode shape is always
modulated by harmonic functions like cos(hθ) and sin(hθ). The angle θ identifies
the circumferential coordinate over the cyclic symmetric structure, while h gives
information about the periodicity of the mode. From a physical point of view h
represents the number of nodal diameters of a mode shape, i.e. the number of
nodal lines crossing the center of the structure along which the modal quantities
(displacements, strains, stresses, ect.) are equal to zero (Figure 2.9).

Fig. 2.9 Nodal diameters of a cyclic symmetric structure: a) Mode shape with h = 0 nodal
diameters, b) Mode shape with h = 2 nodal diameters.

Although h has been simply introduced as an "integer", the set of its possible values
depends on the number of sectors N. In fact, not all the possible modes with a cosine
or sine shape can be correctly represented by a finite number of sectors. In particular,
for structure with N equally spaced sectors h can assume integer values such that
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0 ≤ h ≤ h̃, where h̃ is defined as:

h̃ =


N
2

if N is even

N −1
2

if N is odd

(2.24)

Once the number of nodal diameter h is given, the ISPA ϕh between sectors can
be found according to Eqn. 2.13. The definitions given about the three classes of
modes at the beginning of this section can be completed by associating them the
corresponding values of h and ϕh:

• The mode shapes of the class (a) exist for every possible cyclic symmetric
structure. These have all the sectors vibrating in-phase to each other, which
leads to have ϕh = 0 in Eqn. 2.23 and then real eigenvectors (eιϕh = 1). The
modes falling in this class are characterized by a number of nodal diameters
h = 0 (Eqn. 2.13).

• The mode shape of the second class are those for which adjacent sectors vibrate
in anti-phase to each other (ϕh = ±π). This condition is clearly possible if
and only if the number of sectors N is even. In that case the number of nodal
diameters h corresponding to ϕh =±π is necessary h̃ = N/2. Furthermore the
quantity eιϕh is in this case equal to −1, which ensure again real eigenvectors
(Eqn. 2.13). The class (b) of mode shapes does not exist if N is odd.

• The modes of the third and last class are those such that 0 < h < h̃ if N is even,
or 0 < h ≤ h̃ if N is odd.

Finally, although h is always a positive integer, the values assumed by ϕh for all the
classes of modes together are:

ϕh ∈
[
−π,−

2π(N
2 −1)
N

, . . . ,−4π

N
,−2π

N
,0,

2π

N
,
4π

N
, . . . ,

2π(N
2 −1)
N

,π
]

if N is even, and:

ϕh ∈
[
−2π(N −1)

2N
, . . . ,−4π

N
,−2π

N
,0,

2π

N
,
4π

N
, . . . ,

2π(N −1)
2N

,π
]

if N is odd.
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2.2 Modal Analysis of Cyclic Symmetric Structures

In the previous section the mode shapes of a cyclic symmetric structure have been
classified and the kinematic relationship between the vibrating sectors has been found.
This section presents three different mathematical approaches used to efficiently
perform the modal analysis of a cyclic symmetric structure for a prescribed value of
the ISPA.

2.2.1 Thomas’ Approach

The kinematic relationship expressed by Eqn. 2.22 is also valid when applied to the
physical DoFs of adjacent sectors. In particular, if the mode shape corresponding to
ϕh is searched, the following coordinate transformation holds:

x1

x2
...

xN

=


Ins

Inse
iϕh

...
Inse

i(N−1)ϕh

xh
1 = Th

Txh
1 (2.25)

where Th
T is the Thomas’ transformation matrix and xh

1 is the reduced vector of
physical DoFs for the coordinates transformation involving the harmonic index h.
Eqn. 2.25 results from the recursive application of Eqn. 2.22, where the DoFs of the
generic nth sector are expressed in terms of those of the first one. By applying the
former transformation to Eqn. 2.1, a reduced set of EQM is obtained:

Mh
T ẍh

1 +Kh
Txh

1 = f h
T ; (2.26)

where
Mh

T = (Th
T)

∗MTh
T ∈ Rns×ns Kh

T = (Th
T)

∗KTh
T ∈ Cns×ns

f h
T = (Th

T)
∗f ∈ Cns×1 (2.27)

are the reduced mass and stiffness matrices and the reduced vector of external forces.
The dynamic behavior of the cyclic symmetric structure for a certain ϕh can thus be
evaluated by solving the following reduced eigenproblem:(

Kh
T −ω

2
i Mh

T

)
zh

1 = 0 (2.28)
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whose solution gives the cyclic eigenvector zh
1, i.e. the modal displacement of the 1st

sector, and the corresponding eigenfrequencies ωi. Despite the complexity of Kh
T the

eigenvalues ω2
i are real, while the eigenvectors zh

1 are complex in general. Therefore,
the jth component of zh

1 can be expressed as:

zh
1 j
= Z1 je

ιφ j ∀ j = 1, . . . ,ns (2.29)

where Zh
1 j

and φ j can be physically interpreted as the amplitude and phase of the hth

order harmonic function that modulates the mode shape over the cyclic symmetric
structure (Figure 2.10).

Fig. 2.10 Harmonic function modulating the mode shape over the cyclic symmetric structure.

The solution obtained for the 1st sector can be finally expanded on the other sectors
by using the Thomas’ transformation matrix defined in Eqn. 2.25.

2.2.2 Mead’s Approach

The same results can be obtained by setting the modal analysis from the mass and
stiffness matrices Ms and Ks of the generic isolated sector. As well described by
D. J. Mead [13, 14], the vector xs of the sector’s DoFs can be partitioned as:

xs =


xl

xi

xr

 (2.30)
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Fig. 2.11 DoFs partitions for the nth fundamental sector.

where:

• xl are the DoFs at the left frontier of the fundamental sector, i.e. those at the
boundary with the (n−1)th sector (Figure 2.10). The number of DoFs in xl is
denoted by nl .

• xi are the internal DoFs of the fundamental sector, i.e. those not shared with
the neighboring sectors. The number of DoFs in xi is denoted by ni.

• xr are the DoFs at the right frontier of the fundamental sector, i.e. those at the
boundary with the (n+1)th sector (Figure 2.10). The number of DoFs in xr is
denoted by nr.

Note that the number of DoFs at the left and right frontier is the same (nl = nr).
Moreover, if the whole cyclic symmetric structure is taken as reference, the number
of DoFs per sector ns is equal to nl +ni (ni +nr), since the DoFs at the right (left)
frontier of one sector shall be considered as belonging to the left (right) frontier
of the following (previous) sector. The Mead’s approach starts from the model of
an isolated sector consisting of nl +ni +nr DoFs, leading to a reduced model with
nl +ni DoFs.
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According to Eqn. 2.30 it is possible to coherently partition the vector of external
force, the mass and the stiffness matrices of the isolated sector:

Ms =

Mll Mli Mlr

Mil Mii Mir

Mrl Mri Mrr

 Ks =

Kll Kli Klr

Kil Kii Kir

Krl Kri Krr



f s =


f l

f i

f r

 (2.31)

By expressing right frontier DoFs in terms of left’s one (Eqn. 2.22), xs can be reduced
as:

xs =


xl

xi

xr

=

 I 0
0 I

Ieιϕh 0

{xh
l

xh
i

}
= Th

M

{
xh

l

xh
i

}
(2.32)

where Th
M is the Mead’s transformation matrix and

{
(xh

l )
T (xh

i )
T
}T is the reduced

vector of DoFs for the coordinate transformation involving the harmonic index h.
When transformation of Eqn. 2.32 is applied to the mass and stiffness matrices Ms

and Ks, the new eigenproblem corresponding to ϕh is found:(
Kh

M −ω
2
i Mh

M

)
zh

i = 0 (2.33)

where:
Mh

M = (Th
T)

∗MsTh
T =

=

[
Mll +Mrr +Mlreiϕh +Mrle−iϕh Mli +Mrie−iϕh

Mil +Mireiϕh Mii

]
=

=

[
Mll +Mrr 0

0 Mii

]
∈ R(nl+ni+nr)×(nl+ni) (2.34)

is a real matrix since the blocks of Ms out of the main diagonal are zero matrices,
while the matrix Kh

M is defined as:

Kh
M = (Th

T)
∗KsTh

T =

=

[
Kll +Krr +Klreiϕh +Krle−iϕh Kli +Krie−iϕh

Kil +Kireiϕh Kii

]
=
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=

[
Kll +Krr Kli +Krie−iϕh

Kil +Kireiϕh Kii

]
∈ C(nl+ni+nr)×(nl+ni) (2.35)

The main effect of the reduction is that the number of equations has been de-
creased from (nl +ni +nr) to ns. The importance of this approach is quite evident:
by varying the value of ϕh it is possible to evaluate the dynamic behavior of the
whole structure starting from the matrices of isolated sectors.

Although the eigenproblems of Eqns. 2.28 and 2.33 have the same dimension, the
size of the mass and stiffness matrices required by the Thomas and Mead’s approach
at the beginning of the corresponding reduction process is different. In the first case
the matrices of the whole cyclic symmetric structure have to be apriori set up and
then reduced by employing the transformation matrix of Eqn. 2.25. Differently, the
Mead’s transformation (Eqn. 2.32) is less costly from a computational point of view,
since it just operates on the sector’s matrices.

All the considerations carried out for the cyclic eigenvector obtained by the
Thomas’ approach still remain valid for the eigenvectors of Eqn. 2.33.

2.2.3 Fourier Matrix’s Approach

Another possible formulation used for the analysis cyclic symmetric structures was
proposed by Óttarson [15, 12]. In his work the properties of the mass and stiffness
matrices of cyclic symmetric structures were exploited in order to isolate the dynamic
behavior of the system for a certain ϕh.

As already introduced in section 2.1 the mass and stiffness matrices of any linear
cyclic symmetric system have a block-circulant symmetric form (Eqn. 2.3). The
general form of a square block-circulant matrix is:

C = Bcirc
(

C1,C2, . . . ,CN

)
=


C1 C2 C3 . . . CN-1 CN

CN C1 C2 . . . CN-2 CN-1
...

...
... . . . ...

...
C3 C4 C5 . . . C1 C2

C2 C3 C4 . . . CN C1

 (2.36)
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All circulant matrices of order N share the same set of eigenvectors that are arranged
as the columns of the Fourier matrix E:

E =



1 1 1 · · · 1
1 eι

2π

N eι2 2π

N · · · eι(N−1) 2π

N

1 eι2 2π

N eι4 2π

N · · · eι2(N−1) 2π

N

...
...

... . . . ...
1 eι(N−1) 2π

N eι2(N−1) 2π

N · · · eι(N−1)(N−1) 2π

N


(2.37)

which in compact form becomes:

E = esh = e
ι
2π

N
(h−1)(s−1)

s,h = 1, . . . ,N

E is a symmetric matrix (E = ET), it is not Hermitian (E ̸= E∗) and its main diagonal
is not real. Starting from E, the unitary Fourier matrix Eu can be defined as:

Eu =
1√
N

E (2.38)

which the following property holds:

E∗
uEu =

(
1√
N

E∗

)(
1√
N

E

)
= I (2.39)

According to the definition of Fourier matrix, Eu diagonalizes any block-circulant
matrix C: (

E∗
u ⊗ Ins

)
·C ·
(

Eu ⊗ Ins

)
= Bdiag

(
C̃1, C̃2, . . . , C̃N

)
, (2.40)

where ⊗ denotes the Kronecher product.

The Fourier matrix arises from the numerical calculation of the inverse Fast
Fourier Transform (iFFT) [16]. In particular, the relationship between the generic
discrete signal g and the complex set of Fourier coefficients f denoting the importance
of the its harmonic components is:

g = Eu f g ∈ RN×1, f ∈ CN×1 (2.41)
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Similarly, the generic physical configuration x of a cyclic symmetric structure results
from the weighted sum of its harmonic mode shapes. In particular, adopting the
DoFs partition of Eqn. 2.3, x can be written as:

x =



x1

x2

x3
...

xN-1

xN


=
(

Eu ⊗ Ins

)


c0

c1

c2
...

c∗2
c∗1


(2.42)

where ch and c∗h (0 ≤ h ≤ h̃) are the hth order complex and conjugate Fourier co-
efficients. For cyclic symmetric structure the columns of Eu assume an important
physical meaning: they are the eigenvectors of the classes (a), (b) and (c) described
in section 2.1. In fact, the modal matrix resulting from the eigenproblem Eqn. 2.3 di-
agonalizes the block-circulant matrix M and K exactly as Eu does. The real columns
of Eu corresponds to the eigenvectors of the class (a) and (b), while the complex
ones are those of the class (c).

The complex coefficients cn can be turned into real quantities if the real valued
Fourier matrix is used instead of Eu. For N cyclic symmetric components the real
valued Fourier matrix is defined as [12]:

FNN = fsh =



1√
N

if h = 1

√
2
N

cos

[
2π(h−1)(s−1)

N

]
if 1 < h <

N +2
2

(−1)s−1
√

N
if h =

N +2
2

√
2
N

sin

[
2π(h−1)(s−1)

N

]
if

N +2
2

< h ≤ N

(2.43)
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which is an orthogonal matrix, i.e. FT
N,NFN,N = IN . The coordinate transformation

expressed by Eqn. 2.42 can thus be rewritten employing FN,N:

x =
(

FN,N ⊗ IN

)
a (2.44)

where
a =

[
aT

0 (ac
1)

T . . . (ac
h̃−1)

T aT
h̃ (as

h̃−1)
T . . . (as

1)
T]T (2.45)

denotes the vector of real Fourier coefficients with superscript c and s identifying
the cosine and sine components respectively. When the coordinate transformation
of Eqn. 2.45 is applied to the matrices of Eqn. 2.4, the following block-diagonal
eigenproblem is obtained:

K̃0 0 0 . . . 0 0
0 K̃c

1 0 . . . 0 0
0 0 K̃c

2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . K̃s

2 0
0 0 0 . . . 0 K̃s

1





a0

ac
1

ac
2
...

as
2

as
1


=

= ω
2
i



M̃0 0 0 . . . 0 0
0 M̃c

1 0 . . . 0 0
0 0 M̃c

2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . M̃s

2 0
0 0 0 . . . 0 M̃s

1





a0

ac
1

ac
2
...

as
2

as
1


= 0

(2.46)

In this way the modal analysis of a cyclic symmetric structure can be performed
for each harmonic component separately. For instance, the sine mode shapes corre-
sponding to the harmonic index 2 (i.e. the imaginary part of the mode shapes with
h = 2 nodal diameters) can be found by solving the reduced eigenproblem:(

K̃s
2 −ω

2
i M̃s

2

)
as

2 = 0 (2.47)

which effectively reduces the size of the problem to that of only one sector.
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When the modal analysis is performed after having performed the coordinate
transformation of Eqn. 2.42, the mode shapes are found in terms of complex harmonic
coordinates for each harmonic index h. The corresponding pair of counter-rotating
physical mode shape expanded over the entire structure can be generated by using
the Kronecker product:

zh = eh ⊗ ch, z∗h = e∗h ⊗ c∗h (2.48)

where eh is the hth column of the unitary Fourier matrix Eu. Being eh complex, it can
be written in terms of its real and imaginary components. This, applied to Eqns. 2.48
yields:

zh,z∗h = [ℜ(eh)⊗ℜ(ch)−ℑ(eh)⊗ℑ(ch)]±
±i[ℑ(eh)⊗ℜ(ch)+ℜ(eh)⊗ℑ(ch)]

(2.49)

which can be also expressed by resorting to the columns of the real valued Fourier
matrix F:

zh,z∗h =
1√
2
[f c

h ⊗ℜ(ch)− f s
h ⊗ℑ(ch)]±

±i
1√
2
[f s

h ⊗ℜ(ch)+ f c
h ⊗ℑ(ch)]

(2.50)

where f c
h and f s

h denote the hth harmonic cosine and sine vector columns of F.
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2.3 Extra Harmonics

The mode shapes introduced in the previous sections were described by looking
at the structure as composed by a discrete number of identical sectors. According
to this point of view, the mode shapes discretization by N homologous locations3

would lead to see them exactly as they were classified in section 2.1 (Figure 2.12).

Fig. 2.12 Homologous locations on a cyclic symmetric structure’s FE model: the red circles
at the same radial coordinate are equally spaced along the circumferential direction.

For example, the discretization of the mode shape having h = 1 nodal diameters
by N homologous locations results, as expected, in a sinusoidal wave like cos(θ)
or sin(θ). This happens because the N equally spaced nodes are able to correctly
discretize the mode’s kinematic for 0 ≤ h ≤ h̃ avoiding the aliasing phenomenon.

Consider now as a cyclic symmetric structure a simple blisk (Figure 2.13). By
"observing" its modes over a circumference where the continuity of the geometry
is guaranteed, not only the cos(hθ) or sin(hθ) shapes can be detected. Small wave-
length spatial harmonics can also be visible. These are referred to as extra harmonics
and were described for the first time in a recent paper concerning a reduced order
model technique for multi-stage bladed disks [6].

The extra harmonic existence can be empirically proved by analyzing the eigen-
vectors resulting from the FE modal analysis of the blisk. It is required that the
fundamental sector’s mesh is realized so that at least one arc of narc equally spaced

3If a cylindrical coordinate system with the z-axis coincident to that of the cyclic symmetric
structure is considered, the homologous locations are those having the same ρ and z coordinates with
an angular distance between them equal to the sector’s angle αn.
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Fig. 2.13 Mode shape with h = 2 nodal diameters. The mode shape at the blue circumference
can be decomposed into a series of harmonics featuring increasing order.

nodes can be identified (Figure 2.14). By repeating the FE model of the fundamental
sector N times until a closed structure is obtained, the arc is expanded giving a
discrete circumference with nc = N(narc −1) nodes .

Fig. 2.14 Arc of narc equally spaced nodes on the fundamental sector’s FE model.

Although the relationship between the modal quantities of adjacent sectors has been
derived (Eqn. 2.22), no information are available on the shape of the modes within a
sector. In general, the modal quantities’ trend along the previously defined circumfer-
ence cannot be described only by a pure cos(hθ) or sin(hθ), although these functions
still remain dominant over the global structure dynamics. Given these considerations,
the harmonic content of a mode shape can be calculated by performing the Fourier
transform of a certain modal quantity along the previously defined circumference of
nodes (e.g. the modal displacement in one direction). Being this sampled at the nc

finite locations, the generic mode shape can thus show at most a number of spatial
harmonics equal to nc/2. In particular, for a mode shape of order h, it can be verified
that the complete set harmonics indexes k denoting the non-null harmonics along the
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circumference is given by:

k = z ·N ±h z = 0, . . . ,
(nc

2
+ h̃
) 1

N
(2.51)

The extra harmonics are those corresponding to the set of harmonic indexes k ̸= h.
For example, if a blisk with N = 12 sectors is considered, the complete set of
harmonics detectable when a mode shape of order h = 2 occurs is:

k = 0 ·12±2 → k− =✟✟−2, k+ = 2

k = 1 ·12±2 → k− = 11, k+ = 13

k = 2 ·12±2 → k− = 23, k+ = 25
...

k = ns ·12±2

(2.52)

Negative harmonic indexes are neglected since they do not have physical meaning.

Different order harmonics do not have the same importance. For cyclic symmetric
structures exhibiting a well-defined cyclic symmetry the amplitude of the dominant
harmonic is larger than the extra ones. In general it is found that the larger the
harmonic index k, the smaller the extra harmonic amplitude (Figure 2.15).

Fig. 2.15 Fourier transform of a mode shape detected along region denoted by the blue
circumference. The mode shape does not appear as a pure sinusoidal wave, but shows a
multi-harmonics content.

Note that the amplitude of each harmonics, either dominant or extra, only depends
on the geometric characteristics of the cyclic symmetric structure and on the nature
of mode shapes. However, although the mesh roughness is strictly related to the
maximum order of the detectable extra harmonics (Eqn. 2.51), it might affect the
harmonics’ amplitude if the number of location nc is not so large. Intuitively, the
larger the harmonics’ order, the larger the approximation on the harmonics’ amplitude
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with respect the actual ones. Although in most of the cases such approximation is
negligible, the detection of the harmonics amplitude with high accuracy in general
requires a very refined mesh.

As it will be shown in Chapter 4 the extra harmonics pattern is found useful
when the model order reduction on a single-stage bladed disk is performed.

2.3.1 Extra Harmonics: Analitycal Proof

Besides their empirical observation, the extra harmonic existence can be analytically
proved. As already stated in section 2.1, the modes of the three classes were defined
assuming identical shape for each vibrating sector with a phase shift between them
that depends on h. Let us consider the case of a mode with zero nodal diameters
(ϕh = 0). In this case each mode repeats the same shape sector by sector, meaning
that the mode shape is spatially periodic with a period that is equal to the sector
angle αn. Therefore, the distribution of the modal quantities within a single sector
can be expressed by employing the Fourier series in complex notation:

f (ϑ) =
+∞

∑
s=0

Aseisϑ 0 ≤ ϑ ≤ αn (2.53)

The number of harmonics of Eqn. 2.53 is theoretically infinite, but in the case narc

equally spaced locations (Figure 2.14) Eqn 2.53 becomes:

f (ϑ) =
narc−1

∑
s=0

Aseisϑ 0 ≤ ϑ ≤ αn (2.54)

Then, the function f (ϑ) can be expanded from the single sector to the whole disk
(Fig. 2.16):

f (θ) =
narc−1

∑
s=0

AseisNθ 0 ≤ θ ≤ 2π (2.55)

However, Eqn. 2.55 does not yet take into account any phase between the vibrating
sectors. In order to enforce the phase shift, f (θ) has to be modulated by the dominant
mode corresponding to h. Finally, the function representing the mode shape at the
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Fig. 2.16 The Fourier series of Eqn 2.54 is expanded from the single sector to the whole
cyclic symmetric structure.

interface is given by:

F(θ) =

(
narc−1

∑
s=0

AseisNθ

)
e±ihθ 0 ≤ θ ≤ 2π (2.56)

where e±ihθ refers to either the clockwise (+) or anticlockwise (-) rotating mode
shape if 1 ≤ h < h̃.

The Fourier coefficients Fk ∈ C corresponding to the harmonic functions consti-
tuting F(θ) are computed as:

Fk =
1
Θ

∫ 2π

0
F(θ)e−ikωθ θ dθ (2.57)

where Θ is period of F(θ) and ωθ = 2π/Θ is the fundamental harmonic. Since
F(θ) has a periodicity of 2π , Eqn. 2.57 becomes:

Fk =
1

2π

∫ 2π

0
F(θ)e−ikθ dθ (2.58)

The integral of Eqn. 2.58 can be solved considering each term of the sum separate
from the others:

Fk =
1

2π

∫ 2π

0
AseisNθ e±ihθ e−ikθ dθ =

As

2π

∫ 2π

0
eicθ dθ =
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=
As

2π

1
ic

[
eicθ

]2π

0
=

As

2iπc

[
e2iπc −1

]
(2.59)

where c = zN − k±h. It can be noted that the result of Eqn. 2.59 is equal to zero
when c ̸= 0, but represents an indeterminate from (0/0) when c = 0:

lim
c→0

As

2iπc

[
e2iπc −1

]
=

0
0

(2.60)

The indeterminate form can be solved by applying the L’Hôpital’s rule:

lim
c→0

As

2iπ

d
dc [e

2iπc −1]
d
dcc

= lim
c→0

As

2iπ
2iπe2iπc = As (2.61)

From Eqn. 2.61 it can be concluded that if c = 0, i.e. k = zN ±h, Fk = As ̸= 0.

2.3.2 Extra Harmonics Properties

Fig. 2.17 Example of structures exhibiting different cyclic symmetry.

As already introduced at the beginning of this section, the spectrum of a modal
quantity detected at the disk level shows harmonics with decreasing amplitude as
the harmonic index increases (Figure 2.15). The ratio ε between the amplitudes of
the dominant harmonic and the highest magnitude extra harmonic depends on the
geometrical properties of the structure and cannot be a priori known. For structures
exhibiting a "strong" cyclic symmetry it was observed that ε ≫ 1. Contrarily, when
an axi-symmetric structure is studied as it was cyclically symmetric, the highest
magnitude extra harmonics becomes dominant, since its amplitude appears larges
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than that of the h-order one. In general, the extra harmonics importance depends on
the cyclic symmetry characterizing the structure: they are less important for structure
exhibiting a strong cyclic symmetry, while their amplitude increases for structure
showing a "weak" cyclic symmetry (Figure 2.17).

When a mode shape with h nodal diameters occurs a certain ISPA exists between
adjacent sectors, or equivalently, between the left and right sector’s frontiers. This
phase angle has been defined in Eqn. 2.13 without any consideration for the cor-
responding extra harmonics pattern (Eqn. 2.51). However, for each k-order extra
harmonic a new phase angle can be defined as:

ϕk =
2π

nc
k (2.62)

which gives information about the periodicity of the extra harmonic over the struc-
ture. Being the phase angle between two adjacent nodes at the disk level ϕk is here
denoted as inter-node phase angle (INPA) (Figure 2.18)

Fig. 2.18 Schematic representation of ϕh and ϕk. a) The ISPA expresses the phase lag
existing between the left and right frontiers; b) the INPA expresses the phase lag between
two adjacent nodes at the disk level.

Although the different definitions, ϕh and each ϕk have to be consistent to each other.
In particular, the INPA ϕk has to guarantee a phase shift of ϕh between the left and
right frontiers of a sector. In order to clarify this last concept, let us consider the FE
model of a blisk consisting of N = 8 sectors having at the disk level nc = 24 nodes
(Figure 2.19).
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Fig. 2.19 Example of cyclic symmetry structure with N = 8 sectors and nc = 24 nodes at the
disk level.

If a mode shape with h = 2 nodal diameters is considered, the complete extra har-
monic pattern is given by:k = 0 ·8±2 → k−0 =✟✟−2, k+0 = 2

k = 1 ·8±2 → k−1 = 6, k+1 = 10
(2.63)

According to Eqns. 2.13 and 2.22, considering an anti-clockwise rotating mode
shape, the ISPA corresponding to the dominant harmonic h is positive and equal to
π/2 (ϕh = π/2). This kinematic condition can be schematized in Figure 2.20 by
using rotating vectors on the complex plane.

Fig. 2.20 The left frontier vibrates in anticipation with respect the right one. The phase shift
between zl and zr is equal to the ISPA ϕh.
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Here, the two arrows represent the left and right sector’s interfaces, vibrating with
a phase lag of ϕh. The counter-clockwise rotation of the mode shape corresponds
to a counter-clockwise rotation of the vectors on the complex plane, with the left
interface moving in anticipation with respect the right one.

Similar kinematic conditions can be expressed between adjacent nodes if the
extra harmonics are considered. In particular, let us consider first the extra harmonic
of index k−1 = 6. In this case the INPA is given by:

ϕk−1
=±2π

nc
k−1 =±2π

24
6 =±π

2
(2.64)

In order to obtain the ISPA ϕh between the left and right frontiers, ϕk−1
has to be

summed up recursively (narc −1) times.

(narc −1)ϕk−1
=±(4−1)

π

2
=±3

π

2
(2.65)

If the plus sign was chosen in Eqn. 2.65, the phase lag between the left and right
frontiers would be equal to (3π/2) (Figure 2.21).

Fig. 2.21 Phase lag between the left and right sector’s frontiers corresponding to an INPA
ϕk−1

= 3
π

2
. The diagram in the right shows the relative position of the frontiers by means of

rotating vectors.



2.3 Extra Harmonics 49

This choice however does not guarantee the correct mutual position between the left
and right sector’s frontier (compare Figure 2.21 with Figure 2.20). Contrarily, if the
minus sign is considered in Eqn. 2.65, the correct relative position of the left frontier
with respect the right one is found (Figure 2.22):

(narc −1)ϕk−1
=−(4−1)

π

2
=−3

π

2
(2.66)

Fig. 2.22 Phase lag between the left and right sector’s frontiers corresponding to an INPA
ϕk−1

=−3
π

2
. The diagram in the right shows the relative position of the frontiers by means

of rotating vectors.

This last case shows that the rotation of an extra harmonic whose index k is obtained
by using the minus sign in Eqn. 2.63, is opposite to that of the harmonic of index h.
For the case examined since the harmonic h is counter-clockwise rotating, the extra
harmonic k−1 rotates in a clockwise direction.

Similar considerations hold for the harmonic k+1 . In this case the correct INPA is
given by:

ϕk+1
=

2π

nc
k+1 =

2π

24
10 =

5
6

π (2.67)

which gives the following phase lag between the left and right frontiers:

(narc −1)ϕk+1
= (4−1)

5
6

π =
5π

2
(2.68)
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As it can be seen from Figure 2.23, this value ensure the correct relative position
between the frontiers. The extra harmonics corresponding to harmonic indexes k+

therefore rotate in the same direction of the h order harmonic.

Fig. 2.23 Phase lag between the left and right sector’s frontiers corresponding to an INPA

ϕk+1
=

5π

2
. The diagram in the right shows the relative position of the frontiers by means of

rotating vectors.

It can be concluded that an extra harmonic of index k obtained by using the
minus sign in Eqn. 2.51 rotates with a versus that opposite to that of the dominant
harmonic h. On the contrary, the an extra harmonic of index k obtained by using the
plus sign in Eqn.2.51 rotates with the same versus of the dominant harmonic h.

2.4 Tuned Bladed Disk Dynamics

As shown in the previous sections, the mode shapes of a tuned cyclic symmetric
structure exhibit a periodicity described in terms of values assumed by the ISPA ϕh.
Since the correlation between an observed mode shape and its value of ϕh is not so
immediate, it is common to measure the periodicity of a mode shape by its number
of nodal diameters h. The diagram ordinarily used to synthesize the bladed disk
dynamics is the so called FreND diagram which represents the plot of the natural
frequencies versus the number of nodal diameters characterizing the associated mode
shapes. An example of FreND diagram for a blisk consisting of 24 sectors is shown
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in Figure 2.24. The natural frequencies associated to the modes having the same

Fig. 2.24 Example of a FreND diagram of a bladed disk with N = 24 sectors.

sector deformed shape (e.g. flap (1F-2F), torsional (1T-2T) or edge-wise (1E-2E))
are grouped into distinct families of modes, each of which corresponds to a line
connecting the modes from h = 0 to h̃. The number of modal families is equal to the
number of fundamental sector’s DoFs.

The shape of each family provides important information on the vibratory nature
of the bladed disk as the number of nodal diameters h increases. In most of the
cases the curve starts with a parabolic-like shape denoting disk dominated mode
shapes: for low h’s the blades are dragged by the disk during vibration. As the
number h increases, the disk becomes stiffer leading to growing natural frequencies.
After a certain value of h the modal family asymptotically approach one natural
frequency, corresponding to that of the clamped, blade-alone configuration. This
quasi-horizontal curve refers to blade-dominated vibration modes, where the disk is
nearly motionless and the blades are weakly coupled among themselves.

Another notable feature is the presence of a veering regions (Figure 2.24), which
occur when two different families become quite close to each other. The fifth and
sixth modal families of Figure give a clear example of this phenomenon. The former
starts (for low h) with disk dominated modes, the latter with blade-dominated modes:
at h = 6 they veer away from each other, exchanging the slope between themselves.
Veering regions are symptomatic of large vibration amplitudes due to mistuning
phenomena [17]. For this reason they have to be avoided in order to prevent HCF
problems.
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The natural frequencies of rotordynamical systems often depend on the rotation
speed, due to the gyroscopic phenomena, and, in the case of gas-turbine engine, to
the stiffening effects induced by large centrifugal forces. The excitation frequency
also depends on the rotation speed. In fact, except for mechanical impacts and
self-excited phenomena, all the dynamic excitation types introduced in Chapter 1
lead to synchronous vibrations. This means that their excitation frequency ω is in
direct ratio to the rotor angular velocity Ω according to the following relationship:

ω = EO · Ω

2π
(2.69)

where ω and Ω are expressed in Hz and round per minutes (rpm) respectively and
the coefficient EO, called Engine Order, denotes the periodicity of the excitation
over the bladed disk. For instance, if the excitation is caused by the previous stator
wakes, EO represents the number of stator vanes.

In order to graphically study the forced response of a bladed disk, the Campbell
diagram is commonly used (Figure 2.22).

Fig. 2.25 Example of Campbell diagram.

Here, the natural frequencies are plotted as horizontal lines depending on the rotor
speed Ω, while the EO excitation frequencies are shown as straight lines starting
from the axis origin. The resulting intersections between the two set of lines may
represent possible resonance. Among all the several crossing, just few of them
correspond to actual resonance conditions, while the others, although the excitation
frequencies coincide to the natural frequencies of the crossed modes, do not refer
to any critical situation. In general the critical intersections are those for which the
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following condition holds:

EO = z ·N ±h ∀ z ∈ N∗ (2.70)

By looking at the previous equation it is quite intuitive to understand what happens
when z = 0: the EO equals the number of nodal diameters h of the mode shape.
The physical reason for which a mode shape is excited in resonance condition when
EO = h is intuitive: the force distribution over the structure exactly match the shape
of the mode and, consequently, the maximum response amplification is achieved
when the excitation frequency coincides to the natural frequency of the mode shape.
Given a certain EO, the mode shapes such that h ̸=EO cannot be excited in resonance
condition because the force projection onto the mode, i.e. the modal force, is null.

Less intuitive is the condition described by the Eqn 2.70 for z ̸= 0. In this case a
mode with h nodal diameters is critically excited by the EO force due to the aliasing
phenomenon: the rotating force is in fact "erroneously" sampled by the sectors,
which allows the disk to "see" the force as it was of EO = h (Figure 2.26).

Fig. 2.26 Discretization of an EO = 24 excitation by means of a blisk with 32 blades. In
this case the EO = 24 may excite in resonance condition a mode shape with h = 8 nodal
diameters.



Chapter 3

Reduced Order Model Techniques

3.1 Introduction

In Chapter 2 most of the considerations on mode shapes of cyclic symmetric struc-
tures were carried out by assuming FE discretization of a generic rotationally periodic
structure. Mass and stiffness matrices can thus be derived from FE models in order
to evaluate eigenfrequencies and mode shapes through the modal analysis. However,
the dynamic design of large complex structural systems requires more than a simple
modal analysis. For instance, dynamic calculations aimed at predicting either the
linear or non-linear forced response of real bladed disk assemblies have become
essential parts of industrial practices. In general, performing such analyses on FE
models consisting on hundreds of thousands (or even millions) DoFs is sometimes
prohibitive due to the exceptional cost required in terms of computation time.

It was the roman emperor Julius Caesar who in ancient times introduced the
principle of "divide and conquer". Ever since, this tactic has been successfully ap-
plied in a range of domains: from economics to warfare and from computer science
to politics. In the past century the same idea has been successfully extended to
structural dynamic analyses. In particular, the dynamic behavior of large complex
structures can be evaluated by decomposing them into several smaller, simpler sub-
structures (or components), whose dynamic behavior is generally easier to determine.
Thereafter, the dynamic model of the total structure is then obtained by assembling
the dynamic models of the components, an approach that is nowadays known as
dynamic substructuring (DS). Although DS arises when the available resources in
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terms of computing power were very limited, this approach remains highly relevant
as the huge advances in modeling capabilities are balanced by increasingly complex
engineering structures and ever shorter design cycles.

Analyzing the system’s structural dynamics in such a componentwise fashion
has proven to have important advantages over the methods requiring to handle the
entire problems at once:

• It allows the evaluation of structures that would otherwise be large and/or
complex to be simulated or measured as a whole.

• By analyzing each subsystem, local dynamic behavior can be recognized much
more easily than when the entire system is analyzed. This also allows for local
optimization of the design, but also for model simplification by eliminating
local subsystem behavior which has no significant impact on the assembled
system’s dynamics.

• It gives the possibility to combine numerically modeled parts and experimen-
tally identified components.

• When a single component is substituted, only that component needs to be
reanalyzed; the total system dynamics can be evaluated at low additional cost.

• It allows sharing and combining component models design by different project
groups.

3.2 Dynamic Substructuring

The most well-known DS methods combines the concepts of componentwise analysis
and model order reduction. The basic idea behind them is quite simple: instead of
describing the dynamics of a complex FE model at all its nodal DoFs, it is described
in terms of dominant mode shape vectors or simply modes. In this way very compact
descriptions of component FE models are obtained. These models are subsequently
assembled to obtain the numerical model of the entire system, which can be analyzed
at low computational cost to obtain the global dynamic behavior.

The development of these methods was triggered by the initial ideas of Hurty
in 1960 [18], which were further worked out in [19]. Most probably these ideas
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came forth from the very limited computation power in those days, making the
reduction of FE models a bare necessity to analyze any realistic structure. Rapidly
the scientific and engineering communities discovered the benefits of DS, which
became an important research topic in the field of structural dynamics. Some major
developments followed shortly, resulted in the classic methods by Guyan [20], Craig
[21], Rubin [22] and MacNeal [23] in the late 1960’s and 1970’s.

The creation of a substructured dynamic model starts with the decomposition
of the structure into non-overlapping components. For each of these components
a FE model is then created. In practice, these component FE models are also
used for detailed static stress analyses. Since the small geometric details often
determine the stress concentrations, these often requires very fine meshes. For
a few static analysis runs the computational cost associated with these models is
still manageable. However, structural dynamic analysis generally requires solving
many static-like problems and working with such refined models quickly becomes
unfeasible. Furthermore, coarser models are usually sufficient, since the dynamic
behavior is governed by the structure’s global mass and stiffness distributions. The
engineer thus faces a choice: either use the very fine model or create a coarser mesh.
Both options are not very time efficient, as creating a good mesh can be a time
consuming process too.

A more elegant approach would therefore be to decrease the number of DoFs
without modifying the FE mesh. Such methods exist and are known as model order
reduction methods. In structural dynamics these methods consist in replacing a set
of physical DoFs by a much smaller set of generalized DoFs, using the principles
of modal superposition and truncation. In other words, instead of describing the
structure’s dynamic behavior at a very large number of points along the structure,
the behavior is expressed in terms of a limited number of deformation shapes with
associated amplitudes.

The mathematical principle behind all the reduction methods involved in DS
is basically the same: these aim at defying a reduction basis R, which collects the
mode shape vectors that are sufficient to well-capture the dynamic behavior of the
analyzed component. The differences between the several reduction methods lie in
the nature of this transformation matrix. However, it is possible to individuate two
main categories in which all the techniques can be grouped:
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1. Component Mode Synthesis (CMS) methods

2. Generalized modal reduction.

3.2.1 Component Mode Synthesis Methods

The term component modes is used to signify Ritz vectors, or assumed modes,
that are used as basis vectors for describing the displacement of points within a
substructure. Component normal modes, or eigenvectors, are just one class of
component modes. For this class of methods the transformation matrix R is referred
to as component-mode matrix and includes modes of the following types:

• Normal or vibration modes, either computed in free or constraint condition, to
account for the component’s dynamics.

• Static modes to describe the interaction with neighboring substructures.

The starting point for the derivation of the mentioned modes is the set of conser-
vative EQM describing the linear dynamic behavior of the generic cth component:

M(c)ẍ(c)(t)+K(c)x(c)(t) = f (c)(t) (3.1)

where, being N the number of DoFs of the whole structure, M(c) and K(c) are the
N ×N component’s mass and stiffness matrices, x(c)(t) the N ×1 vector of physical
DoFs and f (c)(t) the corresponding N ×1 vector of external forces. Hereafter in this
section the superscript c and the explicit time dependence will be omitted for sake of
clarity.

The most general type of substructure is that connected to one or more adjacent
components by redundant interfaces. Figure 3.1 illustrates a simple cantilever beam
that is divided into three components.

Fig. 3.1 Example of a coupled system and DoFs partitioning for a typical substructure.
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As shown in the previous figure, the unconstrained DoFs of the generic substruc-
ture can be partitioned into three set of DoFs:

• Interface DoFs xi: denoted by the letter i, this set includes the DoFs that
are shared with adjacent substructures when conforming meshes occur at the
common interface.

• Interior or exceeding DoFs xe: denoted by the letter e, this set collects the
DoFs that are not shared with neighboring substructures.

• Accessories or active DoFs xa: denoted by the letter a, to this set belong the
DoFs used either to exert forces on the substructure or to monitor its response
(see section 3.4).

The numbers of displacement coordinates belonging to the former sets are ni, ne and
na respectively. Interface and active DoFs can be grouped together in a set called
boundary that is here denoted by the letter b: xb =

{
xT

i xT
a
}T . The number nb of

boundary DoFs is thus given by: nb = ni + na. According to the previous DoFs
partition, Eqn. 3.1 can be rewritten in matrix form as follows:[

Mbb Mbe

Meb Mee

]{
ẍb

ẍe

}
+

[
Kbb Kbe

Keb Kee

]{
xb

xe

}
=

{
f b

f e

}
(3.2)

where the subscripts refer to the submatrices and subvectors’ dimensions.

In general, vibration and static modes can be derived by splitting the interior
DoFs’ response into its static and dynamic parts:

xe = xs
e +xd

e (3.3)

Firstly, the static response is obtained by setting to zero the accelerations in Eqn. 3.2
and xd

e in Eqn. 3.3: [
Kbb Kbe

Keb Kee

]{
xb

xs
e

}
=

{
f b

f e

}
(3.4)

Assuming no external excitation at the DoFs in xe (i.e. f e = 0), the second equation
of Eqn. 3.4 gives the static part of xe in terms of the boundary DoFs:

xs
e =−K−1

ee Kebxb =Ψebxb (3.5)
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where the matrix Ψeb collects nb static modes, i.e. the static deformation of the DoFs
in xe as a result of displacement or force application at the boundary DoFs xb.

Secondly, the dynamic part of xe is approximated by a set of nv vibration modes
using the classic modal superposition:

xd
e ≈

nv

∑
j=1

φe, jη j = Φvηv (3.6)

where the vibration modes φe, j are obtained solving the eigenvalue problem for the
DoFs in xe:

(Kee −ω
2
e, jMee)φe, j = 0 (3.7)

The model reduction can be achieved by taking not all the possible ne normal modes,
but just a subset of them. Usually the modes corresponding to the lowest eigenvalues
are sufficient to accurately describe the component’s dynamics, since they capture
most of the structure’s mass and stiffness. The reduction of the dynamic part of the
response is therefore effective for nv ≪ ne.

By substituing Eqns. 3.5 and 3.6 into Eqn. 3.3, xe can thus be approximated as:

xe ≈Ψebxb +Φvηv (3.8)

Eqn. 3.8 clearly shows the explicit dependency of xe on xb. For this reason, xe and
xb are commonly referred to as slave and master DoFs respectively. Considering the
approximation in Eqn. 3.8, the global component’s displacements vector x= [xT

b xT
e ]

T

can be expressed as:

x =

{
xb

xe

}
≈

[
Ibb 0bv

Ψeb Φv

]{
xb

ηv

}
= Rq (3.9)

where R is the component-mode, or transformation matrix, and q is the reduced
vector of DoFs, which is often referred to as generalized coordinates vector.

When the coordinate transformation of Eqn. 3.9 is substituted into the compo-
nent’s EQM, the following relationship is obtained:

MRq̈+KRq = f + r (3.10)
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where the residual r comes out due to the approximation introduced by Eqn. 3.8.
The reduced EQM are then obtained by setting the residual equal to zero in the
space spanned by both static and vibration modes, i.e. RT r = 0. In mathematics
this is know as Galerkin projection1, but in mechanics this often referred to as a
Rayleigh-Ritz procedure. After having projected the component’s EQM onto the
reduction basis, the reduced component’s EQM are obtained:

M̃q̈+ K̃q = f̃ (3.11)

where
M̃ = RT MR K̃ = RT KR f̃ = RT f (3.12)

Note that due to the reduction of the number of DoFs, the reduced component model
will be stiffer than the full model and consequently has higher eigenfrequencies. This
effect is similar to the stiffening caused by the FE discretization of the structure. The
results of the analyses performed on the reduced model can be expanded in order to
obtain the solution at the original set of DoFs. This procedure, which accounts for
the use of the reduction matrix of Eqn. 3.9, is commonly known as data recovery.

The differences between the several component model reduction methods lie
in the nature of the modes constituting the reduction basis R. In this regard, CMS
methods can be further divided in three subclasses, depending on the boundary
conditions imposed to each component-alone interface [1]:

• Fixed-interface methods: each single component is taken with its interfaces
kept fixed (xb = 0). For this class of methods the component-mode matrix R
includes a set of fixed-interface normal modes, which however does not allow
to correctly model the static deformation of the structure due to the interfaces
motion. Therefore, R has to be expanded with a set of static deformed shapes,
referred as constraint modes, which are obtained imposing, one by one, a unity
displacement to one interface DoF, keeping contemporaneously fixed all the
other interface DoFs (see subsection 3.3.1).

• Free-interface methods: each single component is taken with its interfaces kept
free. As happens with fixed-interface methods, the inclusion in the component-

1If a different basis is chosen for the projection than for the reduction this is known as a Petrov-
Galerkin projection.
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mode matrix of the so-called free-interface normal modes, purified of the rigid
body modes, does not allow to correctly model the static deformation of the
structure. The physical information about the coupled-interfaces motion is then
introduced through a set of attachment modes, obtained imposing, way by way,
a unity force to one interface degree of freedom, keeping contemporaneously
free all the other interface DoFs. For further details on the evaluation of
attachment modes see [1].

• Hybrid methods: to this class belong the methods that are a combination of
the two listed above. The component-mode matrix R may contain normal and
both constraint and attachment modes [23, 24].

3.2.2 Generalized Modal Reduction

This reduction is generally utilized for structure that are not separated into component.
In this case the DoFs are reduced all together by using a small subset of the structure’s
vibration modes. These are obtained solving the eigenvalue problem defined by the
whole structure’s mass and stiffness matrices:

(K−ω
2
j M)φ j = 0 (3.13)

Similarly to the case of Eqn. 3.9 the whole set of DoFs x is approximated by nv

vibration modes through the modal superposition:

x ≈
nv

∑
j=1

φ jη j = ΦNnvηv (3.14)

where ΦNnv is the N × nv modal matrix and ηv the nv × 1 generalized coordinates
vector. The modal reduction can be considered effective when the reduction basis
contains nv ≪ N vibration modes.

3.3 Fixed-interface Methods

Among the reduction techniques previously introduced, CMS fixed-interface methods
are those much used by the structural dynamics community. Such techniques,
as the Guyan and Craig-Bampton methods, are integrated in many FE software
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packages and widely used in practical design processes. The derivation of the modes
constituting the component-mode matrices of both methods is treated in the next two
subsections.

3.3.1 Constraint Modes

Static constraint modes used in fixed-interface reduction methods can be derived
by partitioning the component’s displacement vector x into interior and boundary
as done in Eqn. 3.2. Using the same procedure employed in the previous section,
the static constraint modes can be computed from Eqn. 3.2 by neglecting the inertia
forces and retaining as a master the set of boundary DoFs xb. This gives:

xe =−K−1
ee Kebxb =Ψebxb (3.15)

The term Ψeb = −K−1
ee Keb is referred to as the static condensation matrix. Using

these modes, the original set of DoFs x is therefore reduced to the set of boundary
DoFs xb as follows:

x =

{
xb

xe

}
≈

[
Ib

−K−1
ee Keb

]
xb =

[
Ibb

Ψeb

]
xb (3.16)

where

ΨNnb =

[
Ibb

Ψeb

]
(3.17)

is the N ×nb constraint-mode matrix. Physically, these modes represent the static
deformation shape due to a unit displacement applied to one boundary DoF, while the
remaining boundary DoFs are constrained and the internal DoFs are force-free. The
constraint modes thus contain the substructure’s static response to applied interface
displacements. An example of a static constraint mode is illustrated in Figure 3.2.
Here the black circles represent the boundary nodes and the grey arrow denotes an
imposed interface displacement. Note that all the boundary nodes are kept fixed
except that where the unit displacement is applied.
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Fig. 3.2 Illustration of a static constraint mode [2]. The mode represents the static deformation
of the component due to a unit displacement applied to one boundary DoF, while the others
are constrained and the internal DoFs are force-free.

3.3.2 Fixed-Interface Normal Modes

The fixed-interface normal modes are the component’s vibration shapes when it is
constrained at the boundary. Similar to the constraint modes, the first step in their
computation is the partitioning of the DoFs vector into interior and boundary DoFs.
Component fixed-interface normal modes are then obtained by restraining all the
boundary DoFs and solving the following eigenproblem:(

Kee −ω
2
e, jMee

)
φe, j = 0ee (3.18)

where ω2
e, j and φe, j are the jth eigenvalue and mass normalized eigenvector. The

complete set of ne fixed-interface normal mode can be labeled as Φee and assembled
for increasing ω2

e, j as columns of the following modal matrix:

ΦNe =

[
0be

Φee

]
(3.19)

Figure 3.3 gives an illustration of a fixed-interface vibration mode.

Fig. 3.3 Illustration of a fixed-interface normal mode [2]: it represent the one component’s
vibration shape obtained by constraining all the boundary DoFs.
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Finally, note that the fixed-interface vibration modes, like the static constraint
modes, are hard to obtain experimentally. This is due to the fact that the interface
DoFs need to be constrained, a condition that is very difficult to realize in practice.

In the previous two sections the most common types of modes used for fixed-
interface CMS methods have been outlined. The following two sections addresses
the Guyan and Craig-Bampton methods by defining the corresponding component-
mode matrices by mixing the static and dynamic components modes provided in the
previous sections.

3.3.3 Guyan Method

One of the oldest reduction methods is the Guyan reduction. In his classic half
page long paper [20], Guyan proposed in 1965 an idea that is still actively used
in structural dynamics today. This method is also referred to as the Guyan-Irons
method, since Irons proposed the same idea five years later [25].

Starting from the component EQM in Eqn. 3.1 and assuming the global DoFs
vector partitioned as done in Eqn. 3.2, the Guyan method condenses the set xe to the
boundary DoFs by just employing static constraint modes (see subsection 3.3.1):

ue =Ψebxb (3.20)

Therefore, the Guyan coordinate transformation/reduction can be expressed as:

x =

{
xb

xe

}
≈

[
Ibb

Ψeb

]
xb =ΨNbxb = RG xb (3.21)

where the columns of the Guyan component-mode matrix RG consists of static
constraint modes only. By projecting Eqn. 3.1 onto the reduction basis RG, the
following reduced system of equation is obtained:

MG ẍb +KG xb = f G (3.22)
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where

MG = RT
GMRG = Mbb −KbeK−1

ee Meb −MbeK−1
ee Keb +KbeK−1

ee MeeKeeKeb

KG = RT
GKRG = Kbb −KbeK−1

ee Keb
(3.23)

are the Guyan condensed mass and stiffness matrices and

f G = RT
G f = f b −KbeK−1

ee f e (3.24)

is the condensed vector of generalized forces.

Since in the derivation of the condensed stiffness the inertia forces are neglected,
the exact solution is found if this technique is applied to static problems. If it is
applied to dynamic problems, an approximate solution is found. This is due to the
fact that the internal inertia forces of the substructure are statically condensed on the
boundary. This approximation is valid as long as the highest eigenfrequency one
wants to compute for the entire structure is much lower than the lowest eigenfre-
quency of the substructure clamped at its interface.

Since the interface DoFs of the substructure model are retained, assembly to
other (reduced) models is very straightforward. Due to this property, such reduced
models are referred to as superelements.

3.3.4 Craig-Bampton Method

To overcome the main drawback of the Guyan method, the classic Craig-Bampton
technique (CB-CMS) proposes an expansion of this method by including information
on the internal dynamics in the reduced component model [21]. This is achieved by
expanding the reduction basis with fixed-interface vibration modes, thereby obtaining
a more complete and versatile basis to describe the component’s dynamic behavior.

Starting again from the EQM partitioned into boundary and interior DoFs, the
latter can be approximated as follows:

xe ≈Ψeexb +Φekηk (3.25)

Here Φek denotes the reduced set of nk ≪ ne fixed-interface normal modes, obtained
by keeping the the ne lowest eigenvalues modes of the full fixed-interface modal
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matrix Φee (Eqn. 3.19). As in the case of the Guyan method the boundary DoFs are
retained as master, leading to the following coordinate transformation:

x =

{
xb

xe

}
≈

[
Ibb 0bk

Ψeb Φek

]{
xb

ηk

}
= RCB xCB (3.26)

where RCB is the CB-CMS component-mode matrix. The application of the reduction
basis in the usual fashion gives the reduced equations of motion:[

M̃bb M̃bk

M̃kb Ikk

]{
ẍb

η̈k

}
+

[
K̃bb 0
0 Ω 2

kk

]{
xb

ηk

}
=

{
f̃ b

f̃ k

}
(3.27)

with

M̃bb = Mbb −MbeK−1
ee Meb −KbeK−1

ee Meb +KbeK−1
ee MeeK−1

ee Keb

K̃bb = Kbb −KbeK−1
ee Keb

Mkb = MT
bk = Φ

T
ek
(
Meb −MeeK−1

ee Keb
)

f̃ b = f b −KbeK−1
ee f e

f̃ k = Φ
T
ek f e

(3.28)

and Ω 2
kk is a diagonal matrix containing the first nk fixed-interface eigenfrequencies

ω2
e, j.

One of the strengths of the CB-CMS method is the straightforward calculation of
its reduction basis. Secondly, like in the Guyan method, the physical boundary DoFs
xb are retained in the reduced model, which facilitates easy assembly of the reduced
substructure as a superelement in common FE codes.

3.4 Interface Reduction Methods

In the previous sections a complete classification of the component-mode reduc-
tion techniques has been given. Furthermore, the component-modes utilized in
fixed-interface CMS methods have been deeply discussed in order to introduce the
most used reduction techniques, i.e the Guyan and CB-CMS method. As already
stated, both methods aim at building superelements by condensating most of the
component’s DoFs on a smaller set of boundary DoFs, but just a subset of them
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enables either the static or dynamic coupling with neighboring components. In this
way the reduced order model (ROM) of a complex structure can be finally created.

From the definition of constraint-mode given in section 3.3.1 it is clear the
important role they play in describing the motion of the boundary DoFs. However,
there is a high computational cost associated with these modes, since the resulting
CMS models must have one DoF for each DoF at the boundary. This means that,
whereas dramatic order reduction may be achieved for individual substructures
(reduction of the normal-mode generalized DoFs), there is no order reduction of
the DoFs at the interfaces between components. In particular, complex engineering
structures generally consist in a large number of components, and an even larger
number of interfaces between them may exists. These interfaces may be extensive
and complex, meaning that when the dynamic model of such structures is created in a
componentwise fashion, the ratio of interface DoFs over the whole set of generalized
DoFs becomes unacceptably high. This can make the CMS model cumbersome to
use especially for analysis of large-scale structures with many components.

The difficulty of handling such large number of interface DoFs can be overcome
using interface reduction techniques. Similar to component-mode methods, these
consist in the approximation of the boundary DoFs by means of a truncated set
of deformation shapes, called interface modes. As such, they constitute a second
reduction step that leads to more compact EQM as well as smaller sized component
reduction matrices. Depending on the geometric and structural characteristics of
the component, the interface reduction can be performed by following two different
approaches:

1. When the interface is located on a stiff part of a substructure, or its dimensions
are relatively small compared to those of the total substructure, one could
approximate its behavior with a local rigid region. The resulting rigidification
hence neglects local deformation of the interface, being this described by only
six rigid motions, i.e. three translations and three rotations. Therefore a very
compact representation of the substructure interface is obtained.

2. In many other cases however, interfaces can not be assumed to behave rigidly.
A more accurate method, which can be seen as a generalization of the previous
approach, is then to apply a modal reduction to the interface DoFs. Similar to
the component reduction techniques of section 3.2, a modal basis is computed
for the interface DoFs by solving an eigenvalue problem. By truncating the
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resulting interface modes the physical interface DoFs can be replaced by a
smaller subset of modal coordinates.

Interface reduction can be applied either on substructure level or on assembly
level. Since the interface behavior is dependent on all components that it connects, it
is likely that component’s interface reduction in general gives less accurate results
than when information of the assembled structure are used to reduce the interface
DoFs. However, it has been demonstrated how a component level reduction of the
interface is successful when the interfaces of components connected together are
reduced using the same basis [4]. For this reason in the following much emphasis will
be given to the approach accounting for the interface modal reduction at substructure
level. This idea will then be employed on applications concerning the dynamic
coupling of extended moving interfaces and the reduction of cyclic symmetric
structures (Chapter 4).

Although the interface DoFs approximation by rigid motions is useful for some
structures, it is often preferred to allow interface deformation. In those cases the more
general modal truncation method can be applied. The methodology here presented
is based on the observation that the interface behavior does not require in general
detailed insight in the components’ dynamics, since an accurate representation of
the static behavior at the interface is often sufficient. This condition is guaranteed
by both Guyan and CB-CMS method. In fact, for these methods the component’s
interface motion is uniquely described by a subset constraint modes2, whose number
ni strictly depends on the FE mesh at the boundary.

For large and complex component’s interfaces the number of constraint modes
(and the number of interface DoFs they involve) is usually large and a further
reduction is often desirable. In this regard, among the various approaches proposed,
that of the Characteristic Constraint modes (CC modes) [5] appears as the most
appealing. According to this method, the interface DoFs xi can be reduced by using a
new set of modes that correspond to the more natural physical motion of the interface.
Generally, this is posed as an eigenvalue problem for the constraint mode partitions of
the previously condensed Guyan or CB-CMS mass and stiffness matrices (Eqns. 3.23
and 3.28). This idea was first proposed in [26] and later worked out by Tran [27, 28]
for the reduction of cyclic symmetric structures.

2In general the interface DoFs are included into the set of boundary DoFs: xb =
{

xT
i xT

a
}T (see

subsection 3.2.2).
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In this section the original Gram-Schmidt Interface (GSI) reduction method
for the modal reduction of interface DoFs is presented. Such technique, already
proposed in [4], is an upgrade of the pre-existing method based on the CC modes
formulation given by Castanier et al. [5] and has as a main objective the extension of
its applicability to the following two cases:

1. Dynamic assembly of components having non-conforming meshes at the
coupling interfaces.

2. Modal reduction of the DoFs at independent frontier of a bladed disk sector
treated in cyclic symmetry conditions.

3.4.1 Modal Reduction of Interface Displacements

The starting point for the formulation of the interface reduction method is given by
the component’s CB-CMS EQM (Eqn. 3.27):[

M̃bb M̃bk

M̃kb Ikk

]{
ẍb

η̈k

}
+

[
K̃bb 0
0 Ω 2

kk

]{
xb

ηk

}
=

{
f̃ b

f̃ k

}

By taking only the constraint modes partitions M̃bb and K̃bb of the CB-CMS mass
and stiffness matrices, one finds:

M̃bb ẍb + K̃bb xb = f̃ b (3.29)

Assuming the external forces equal to zero and looking for the non-trivial solution,
the following eigenproblem is found:

(K̃bb −ω
2
b, jM̃bb)ϕb, j = 0 ∀ j = 1, . . . ,nb (3.30)

where ω2
b, j and ϕb, j are the jth eigenvalue and mass normalized CC mode respectively.

The complete set of CC modes can be arranged (for increasing eigenvalues) as the
columns of the following CC modal matrix:

Φbb =
[
ϕb,1 ϕb,2 . . . ϕb,nb

]
(3.31)
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However, the definition of a subset with nw ≪ nb CC modes necessary to operate
the component’s interface reduction, depends on which sets of DoFs are actually
included into xb. In this regard, the method based on the CC modes has been
improved by Battiato et al. [4] since two different cases may occur:

1. The boundary DoFs coincides with the interface DoFs: xb ≡ xi;

2. The boundary DoFs includes the sets of interface and active DoFs: xb ≡{
xT

i xT
a
}T .

Boundary Including Only Interface DoFs

When xb ≡ xi the whole modal matrix of Eqn. 3.31 can be employed to express the
interface displacements xi in terms of the modal coordinates ηi:

xi = Φbbηb = Φiiηi (3.32)

where the subscript "b" has been replaced by "i". If a subset of nw ≪ ni CC modes
describing the dominant physical modes at the interface is retained, Eqn. 3.32 is no
more an equality and the following approximation occurs:

xi ≈
nw

∑
j=1

ϕi, jη j = Φiwηw (3.33)

Finally, starting from the CB-CMS generalized coordinate vector, the transformation
leading to a reduced set of interface DoFs is:

xCB =

{
xi

ηk

}
≈

[
Φiw 0ik

0kw Ikk

]{
ηw

ηk

}
= RCC

{
ηw

ηk

}
(3.34)

where the new reduction basis is thus given by:

RCC =

[
Φiw 0ik

0kw Ikk

]
(3.35)

By projecting Eqn. 3.27 onto RCC, a further reduction of the equations of motion is
obtained:

MCC ẍCC +KCC xCC = f CC (3.36)
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where

MCC = RT
CCMCBRCC =

[
Iww ΦT

iwM̃ik

M̃kiΦiw Ikk

]

KCC = RT
CCKCBRCC =

[
Ω 2

ww 0ik

0kw Ω 2
kk

] (3.37)

are the CC component’s mass and stiffness matrices and:

xCC =

{
ηw

ηk

}
f CC =

{
ΦT

iw f̃ i

f̃ k

}
(3.38)

are the CC generalized coordinates and force vectors. Note that KCC is now fully di-
agonal since the partition Ω 2

ww is a diagonal matrix containing the first nw eigenvalues
ω2

b, j (Eqn. 3.30).

Boundary Including Interface and Active DoFs

For general applications concerning dynamic analyses on ROM of complex struc-
tures, no other sets of master DoFs have to be retained besides those belonging to
the interfaces. For instance, ROMs of bladed disks do not necessarily require active
DoFs for the direct application of physical excitations. In fact, in the case of complex
pressure distributions acting on the blades’ airfoils it is common to modalize the
nodal forces. Moreover, if stresses and strains have to be determined on already con-
densed physical DoFs, their distributions can be easily recovered by expanding the
component’s response through the component-mode matrix R. However, retaining a
set of active DoFs as a master may be convenient when the following two scenarios
occur:

1. For non-linear dynamic analyses involving contacts phenomena occurring at
the interface between adjacent substructures, a set of active DoFs may help in
the direct estimation of the physical contact forces.

2. The storage of the component-mode matrix is often prohibitive when the
full FE model of a structure consists on a huge number of DoFs. Hence, at
a preliminary design stage when sensitivity analyses on model parameters
(geometric, contact, ect.) have to be performed, a further set of master DoFs
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may be retained either for the physical forces application or the component’s
response monitoring.

For these reasons it is often required to create the ROM of substructures where
besides the interface DoFs also an active set of DoFs is retained. Therefore, the
modal transformation based on the CC modes has to be applied only to the interface
DoFs partition, leaving the active DoFs physical as they are. In this regard, the CC
modal transformation involving the whole set of boundary DoFs is given by:

xb =

{
xi

xa

}
= Φbb

{
ηi

ηa

}
=

[
Φii Φia

Φai Φaa

]{
ηi

ηa

}
(3.39)

where the modal matrix Φbb has been partitioned according to the two sets of modal
coordinates ηi and ηa with size ni and na respectively. By solving the second
equation for ηa and substituting the result into the first, Eqn. 3.39 becomes:

xb =

{
xi

xa

}
=

[
Φii −ΦiaΦ−1

aa Φai ΦiaΦ−1
aa

0ai Iaa

]{
ηi

xa

}
(3.40)

Eqn. 3.40 clearly shows the coupling between xi and xa. Since the CC modal matrix
Φbb has been built by ordering the CC modes for increasing eigenvalues (Eqn. 3.31),
a first DoFs’ reduction can be achieved by performing the modal truncation of the
highest eigenvalues CC modes. Under this consideration, the coupling between xi

and xa might be removed by truncating the last na columns (CC modes) of the modal
matrix in Eqn. 3.39, which corresponds to get rid of the submatrices Φia and Φaa.
Hence, the coordinates transformation of Eqn. 3.40 becomes:

xb =

{
xi

xa

}
=

[
Φii −✘✘✘✘✘✘

ΦiaΦ−1
aa Φai ✘✘✘✘✘

ΦiaΦ−1
aa

0ai Iaa

]{
ηi

xa

}
≈

[
Φii 0ia

0ai Iaa

]{
ηi

xa

}
(3.41)

and the interface DoFs partition of the CB-CMS generalized coordinates vector
would thus be modalized by means of the following coordinates transformation:

xCB =

{
xb

ηk

}
=


xi

xa

ηk

≈

Φii 0ia 0ik

0ai Iaa 0ak

0ki 0ka Ikk




ηi

xa

ηk

 (3.42)
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Being the eigenvectors of the eigenproblem in Eqn. 3.30, the columns of Φbb are
linearly independent to each other by definition. However, the same does not hold
for the columns of Φii, which is just a submatrix of Φbb (Eqn. 3.39). In fact, Φii

appears to be in general ill-conditioned, meaning that some of its columns are nearly
aligned to each other, i.e. they are nearly linear depended. This may lead to some
null eigenvalues when an eigenanalisys on the MCC and KCC is performed, even if the
substructure is constrained so that no rigid body modes occur. In order to avoid this
problem, the columns of Φii may be orthonormalized by using the Gram-Schmidt
algorithm:

Φii
Gram-Schmidt−−−−−−−−→ Φ̂ii (3.43)

The principle of the Gram-Schmidt algorithm is graphically explained in Figure 3.4.
Two modes, nearly linear dependent to each other (represented by the two vectors
ϕi,1 and ϕi,2, almost parallel) are replaced by two orthonormalized modes (vectors
ϕ̂i,1 and ϕ̂i,2). At the end of this process the columns of Φ̂ii satisfy the following
conditions:

ϕ̂
T
i, jϕ̂i,z =

0 when j ̸= z (orthogonal vectors)

1 when j = z (unit vectors: ∥ϕ̂i, j∥= 1)
(3.44)

and Eqn. 3.42 becomes:

xCB =


xi

xa

ηk

≈

Φ̂ii 0ia 0ik

0ai Iaa 0ak

0ki 0ka Ikk




ηi

xa

ηk

 (3.45)

Henceforth in this section the "hat" is omitted and the Gram-Schmidt orthonormal-
ization is considered applied to the columns of Φii unless otherwise specified.

The number of interface DoFs can actually be reduced if a subset of nw ≪ ni

columns of Φii is kept. Therefore, Eqn. 3.45 can be further approximated as:

xCB =


xi

xa

ηk

≈

Φiw 0ia 0ik

0aw Iaa 0ak

0kw 0ka Ikk




ηw

xa

ηk

= RGS


ηw

xa

ηk

 (3.46)
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Fig. 3.4 Gram-Schmidt orthonormalization of two modes. Two modes, nearly linear depen-
dent to each other (represented by the two vectors ϕi,1 and ϕi,2, almost parallel) are replaced
by two orthonormalized modes (vectors ϕ̂i,1 and ϕ̂i,2).

where Φiw is the truncated basis of Gram-Schmidt Interface modes (GSI modes) and
RGS represents the new reduction basis. Finally, the reduced EQM have the same
form of those in Eqn. 3.36. The component’s reduced matrices and force vector
are obtained by employing the matrix RGS instead of RCC in the transformations of
Eqns. 3.37 and 3.38.

3.4.2 Multiple Interfaces Reduction

Components sharing more than one interface with their neighbors are no exceptions.
For example, any of the middle components of the beam shown in Figure 3.1 could be
representative of the mentioned situation. In those cases the various sets of interface
DoFs have to be reduced one by one. The procedure adopted to carry out these
subsequent reductions is still that accounting for a partitioning of the boundary DoFs
xb into the sets xi and xa (Eqn. 3.39). In particular, let us consider the CB-CMS ROM
of a component having Ni interfaces (Figure 3.5). The global vector of interface
DoFs xi can therefore be partitioned by grouping the DoFs interface by interface:

xi =
{

xT
i1 . . . xT

i j
. . . xT

iNi

}T
(3.47)

When reducing the size of the jth interface, a new set of active DoFs x′a j
has to be

defined as:
x′a j

=
{

xT
i1 . . . xT

i j−1
xT

i j+1
. . . xT

iNi
xT

a

}T
(3.48)



3.4 Interface Reduction Methods 75

Fig. 3.5 Example of component with multiple interfaces.

which collects the DoFs of all the interfaces except those of the jth and the original
set of active DoFs xa. Therefore, as done in Eqn. 3.41 the boundary DoFs can be
partitioned as:

xb =

{
xi j

x′a j

}
(3.49)

To this point the procedure leading to the matrix Φi jw j , aimed at reducing the jth

interface with nw j GSI modes, is exactly that defined by all the equations between
Eqn. 3.39 and Eqn. 3.43. Once this procedure is carried out for all the interfaces,
Ni matrices Φi jw j are found and the CB-CMS generalized coordinate vector can be
further condensed as:

xCB =



xi1
...

xiNi

xa

ηk


≈



Φi1w1 · · · 0i1wNi
0i1a 0i1k

... . . . ...
...

...
0iNi

w1 · · · ΦiNi
wNi

0iNi
,a 0iNi

k

0a,w1 · · · 0a,wNi
Iaa 0ak

0k,w1 · · · 0k,wNi
0ka Ikk





ηw1
...

ηwNi

xa

ηk


(3.50)
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where

RGS =



Φi1w1 · · · 0i1wNi
0i1a 0i1k

... . . . ...
...

...
0iNi

w1 · · · ΦiNi
wNi

0iNi
a 0iNi

k

0aw1 · · · 0awNi
Iaa 0ak

0kw1 · · · 0kwNi
0ka Ikk


(3.51)

is the interface reduction basis, which transforms the CB-CMS EQM into the form
of Eqn. 3.36. The component’s reduced matrices and force vector are therefore
obtained by employing the matrix RGS of Eqn. 3.50, in the transformations of
Eqns. 3.37 and 3.38.

Besides reducing the total number of component’s DoFs, interface reduction
methods can also be used to decrease the size of the component-mode matrix.
Thereby, handling with the large component-mode matrices, which can easily take
up many gigabytes of memory and storage space, is greatly simplified if a data
recovery has to be performed. This can be achieved by simply combining the two
subsequent coordinate transformations that have led Eqn. 3.36:

1. Component’s reduction using the CB-CMS method:{
xi

xe

}
≈

[
Iie 0
Ψee Φek

]{
xi

ηk

}
= RCBxCB

2. Application of the interface reduction basis:{
xi

ηk

}
≈

[
Φiw 0ik

0kw Ikk

]{
ηw

ηk

}
= RGS

{
ηw

ηk

}

In general, due to the large number of interior DoFs, the first transformation requires
the largest amount of memory space. By combining the two transformation the
reduced component-mode matrix can be found:{

xi

xe

}
≈

[
Iie 0
Ψee Φek

][
Φiw 0ik

0kw Ikk

]{
ηw

ηk

}
= RCBRGS

{
ηw

ηk

}
= RTOT

{
ηw

ηk

}
(3.52)

Due to the interface reduction, the size of RTOT is much smaller than that of RCB.
Therefore handling with the GSI reduced system becomes much easier, while the
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results for the condensed DoFs can still be obtained by expanding the solutions found
by means of RTOT .

3.4.3 Interface Reduction Via Gram-Schmidt Interface Modes:
Procedure Summary

The GSI reduction method presented in the previous sections is particularly useful
when the interface DoFs partitions of a previously condensed CB-CMS model have
to be reduced is size. The GSI reduction method can be summarized in the following
few steps:

1. Create the CB-CMS ROM of the analyzed component by retaining as master a
set of boundary DoFs xb (Eqn. 3.27);

2. For each set of interface DoFs xi j contained in xb, rearrange the DoFs as done
in Eqn. 3.49 and partition the corresponding CB-CMS matrices accordingly;

3. For each couple of CB-CMS matrices, i.e. the CB-CMS mass and stiffness
matrices, compute the CC modal matrix Φbb by solving the eigenproblem of
Eqn. 3.30;

4. Apply the Gram-Schmidt ortonormalization process to the columns of Φi ji j

(partition of Φbb) and retain the first nw j GSI modes;

5. Reduce the CB-CMS model by using the coordinate transformation of Eqn.
3.49.

3.5 Assembly of Component Models

After having created the ROMs of components according to the methods presented in
the previous sections, the next step is to assemble these models so that the structural
dynamic model of the whole system can be obtained. The idea behind the classic
components’ assembly procedure is the same adopted for regular FE models. Here
the physical DoFs at coincident interfaces are enforced to be equal by writing simple
compatibility equations. As it will be shown in the next sections, this procedure is
straightforward for either FE models or superelements having conforming interfaces,
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meaning that their nodes share the same geometric locations and the element shape
functions are matching. Differently, the assembly of substructures featuring non-
conforming meshes leads to a further approximated ROM of the assembled structure.

This section outlines the most common substructures’ assembly approaches and
highlights the advantages of performing the component’s coupling by enforcing the
compatibility conditions in a space spanned by the interface modes. Such coupling
process appears particularly useful when components with non-conforming meshes
at the coupling interfaces are assembled.

3.5.1 Assembly of Components with Conforming Interfaces

Let us consider the superelements created by applying the CB-CMS method on two
substructures denoted by α and β . The CB-CMS generalized coordinates vectors for
the two components are xα

CB and xβ

CB respectively (Eqs. 3.26). Moreover, for both
components let us assume the sets of boundary DoFs xα

bα
and xβ

bβ
consisting of both

interface and active DoFs:

xα
bα

=

{
xα

iα
xα

aα

}
xβ

bβ
=

{
xβ

iβ

xβ
aβ

}
(3.53)

where xα
iα ∈ Rniα ×1 xβ

iβ
∈ Rni

β
×1 with niα = niβ = ni

xα
aα

∈ Rnaα ×1 xβ
aβ

∈ Rna
β
×1 with naα

̸= naβ

(3.54)

Physical Compatibility Conditions

If conforming interfaces were present in the original FE models, the superelements
coupling can be easily performed by just writing the following compatibility condi-
tions:

xα
i = xβ

i = xi (3.55)
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These can be enforced by means of the boolean matrix CCB that is here named as
compatibility matrix:

{
xα

CB

xβ

CB

}
=



xα
i

xα
aα

ηα
kα

xβ

i

xβ
aβ

η
β

kβ


=



0 0 I 0 0
I 0 0 0 0
0 0 0 I 0
0 0 I 0 0
0 I 0 0 0
0 0 0 0 I





xα
aα

xβ
aβ

xi

ηα
kα

η
β

kβ


= CCB



xα
aα

xβ
aβ

xi

ηα
kα

η
β

kβ


(3.56)

Lastly, the assembled CB-CMS matrices and vectors are given by:

MA
CB = CT

CB

[
Mα

CB 0
0 Mβ

CB

]
TCB KA

CB = CT
CB

[
Kα

CB 0
0 Kβ

CB

]
CCB

xA
CB =



xα
aα

xβ
aβ

xi

ηα
kα

η
β

kβ


f A

CB = CT
CB

{
f α

CB

f β

CB

}
(3.57)

where the superscript A stands for assembled. Once the assembled ROM is obtained,
the assembled interface DoFs xi may be reduced by employing the method proposed
in section 3.4.1.

Modal Compatibility Conditions

An alternative assembly procedure is that involving the modal coordinates of a set of
interface GSI modes. This however is not straightforward as in the case previously
discussed. In particular, let us suppose the substructures α and β reduced by using
the coordinates transformation of Eqn. 3.46. Since the interface modal coordinates
ηα

wα
and η

β
wβ

refer to different reduction bases of GSI modes, the coupling between
the two substructure can not be directly imposed. The compatibility conditions
between these sets of modal coordinates can be enforced if and only if a common
basis Φ

γ

iwγ
of nwγ

GSI modes is defined from the truncated bases Φα
iwα

and Φ
β

iwβ
. The

new modal matrix Φ
γ

iwγ
can then be used to reduce both the interfaces according to
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the following transformations:

xα
i ≈ Φ

γ

iwγ
η

α
wγ

xβ

i ≈ Φ
γ

iwγ
η

β
wγ

(3.58)

The assembled ROM is thus obtained by enforcing the compatibility conditions
ηα

wγ
= η

β
wγ

= ηwγ
. Therefore, considering for each substructure the reduced order

vector at the right-hand side of Eqn. 3.46, the assembled ROM is obtained by using
the boolean matrix CGS:

ηα
wγ

xα
aα

ηα
kα

η
β
wγ

xβ
aβ

η
β

kβ


=



0 0 I 0 0
I 0 0 0 0
0 0 0 I 0
0 0 I 0 0
0 I 0 0 0
0 0 0 0 I





xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


= CGS



xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


(3.59)

Finally, the assembled reduced order matrices and vectors are given by:

MA
GS = CT

GS

[
Mα

GS 0
0 Mβ

GS

]
CGS KA

GS = CT
GS

[
Kα

GS 0
0 Kβ

GS

]
CGS

xA
GS =



xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


f A

GS = CT
GS

{
f α

GS

f β

GS

}
(3.60)

Since the interface modes evidence the characteristic motion of the interfaces, the
assembly procedure here presented provides a physical insight into the transmis-
sion of vibration energy between substructures. In detail, the substructures can be
dynamically coupled, and then the energy be transferred from one to the other, if
their interfaces’ motion is described by the same basis of GSI modes. This approach
definitely appears as more beneficial than the previous, due to the less number of
interface DoFs involved in the coupling procedure.
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3.5.2 Assembly of Components with Non-Conforming Interfaces

In the subsection 3.5.1 interface meshes with coincident nodes and matching element
shape functions were assumed. However, substructure models are often created by
different engineers groups without any consideration for the design of neighboring
substructures. Since the models are meshed independently, it is likely that their
interface meshes are incompatible. In this case the substructures coupling may
require special procedures.

Physical Compatibility Conditions

Instead of remeshing the substructures, one approach would be using the node
collocation method [29], for which the physical displacements at the nodes of one
interface are interpolated at the nodes of the other by using the element shape
functions.

Without loss of generality, let us consider again to assemble two superelements
obtained by performing CB-CMS reductions on the FE models of the generic α and
β component. Furthermore it is assumed that the numbers niα and niβ of interface
DoFs are different to each other (niα < niβ ). Due to the unequal number of interface
DoFs, the compatibility conditions can not longer be expressed using the boolean
matrices as in Eqn. 3.56. Instead, a coordinate transformation is needed in order to
force the number of interface DoFs of one component (β ) to be equal to those of
the adjacent one (α). This can be achieved by transforming the nodal displacements
at the finer interface (β ) into the corresponding displacements at the nodes of the
coarser interface (α). The mentioned transformation therefore requires to consider
the DoFs xα

iα as master, while xβ

iβ
as slave:

xβ

iβ
= Dβαxβ

iα (3.61)

where Dβα is the so called collocation matrix of size niβ ×niα , containing the values
of the α interface element shape functions at the locations of the β interface nodes,
while xβ

iα are the nodal displacements of the β interface interpolated at the nodes of
the coarser grid α (Figure 3.6)
According to Eqn. 3.61 the generalized CB-CMS coordinates vector xβ

CB can then be
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Fig. 3.6 Coordinates transformation operated by the collocation matrix Dβα : the nodal

displacements at the finer interface xβ

iβ
are transformed into the corresponding displacements

at the nodes of the coarser interface xβ

iα .

written as:

xβ

CB =


xβ

iβ

xβ
aβ

η
β

kβ

= RD


xβ

iα
xβ

aβ

η
β

kβ

=

Dβα 0 0
0 I 0
0 0 I




xβ

iα
xβ

aβ

η
β

kβ

 (3.62)

where the matrix RD includes the collocation matrix Dβα and the interpolated CB-
CMS matrices and vectors for the β substructure are:

M̄β

CB = RT
DMβ

CBRD K̄β

CB = RT
DKβ

CBRD

x̄β

CB =


xβ

iα
xβ

aβ

η
β

kβ

 f̄ β

CB = RT
Df β

CB (3.63)

Finally, the assembled ROM can be obtained as already done in Eqn. 3.56, where
the matrices and vectors for the β component are those of Eqn. 3.63. The assembly
procedure is summarized in Figure 3.7
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Fig. 3.7 Coordinates transformation and subsequent compatibility between the α and β inter-
faces. The interpolated displacements xβ

iα are enforced to be equal to the nodal displacement
at the α interface xα

iβ
.

Modal Compatibility Conditions

The substructure coupling procedure discussed in the previous paragraph solves the
problem of non-conforming meshes without significantly reducing the size of the
interfaces. In order to cope with such limitation a novel assembly procedure involving
interface GSI modes has been proposed in [4]. This methodology overcomes the
problem of non-conforming meshes in an elegant manner, being based on the idea of
vibration energy transmission between components. Moreover, as already shown in
the subsection 3.5.1 the assembly methodology takes also huge advantages from the
drastic reduction of the interface DoFs.

Let us consider again the assembly of superelements resulting from the CB-CMS
reduction of two substructures denoted by α and β . An additional interface reduction
for both superelements may be achieved by using two different reduced bases, Φiα wα

and Φiβ wβ
, obtained by selecting the first nwα

and nwβ
columns of the matrices Φiα iα

and Φiβ iβ respectively. However, due to the unequal number of interface DoFs
(niα < niβ ), the full matrices of GSI modes have different number of rows:

Φiα iα ∈ Rniα ×niα Φiβ iβ ∈ Rni
β
×ni

β (3.64)

This means that Φiα wα
and Φiβ wβ

can not be directly compared and the common
basis of GSI modes can not be found. This problem can be overcome by interpolating
the columns of Φiβ iβ at the node locations of the α interface by using the shape
function of the element at the β interface:

Φiα iβ = Dαβ Φiβ iβ → Φiα iβ ∈ Rniα ×ni
β (3.65)
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where Φiα iβ are the GSI mode of the β interface interpolated at the node location of
the α interface, while Dαβ is the interpolation matrix3.

Fig. 3.8 Interpolation of a GSI mode: in to compare the GSI modes those belonging to the
basis Φiβ wβ

are interpolated at the node locations of the α interface.

Being Φiα iβ a rectangular matrix, its rank is at most equal to niα , meaning that not
all its columns are linear independent to each other. By reducing Φiα iβ to its reduced
row echelon form4, niα linear independent GSI modes can be found:

Φiα iβ
row echelon form−−−−−−−−−→ Φ̄iα iα ∈ Rnα

i ×nα
i (3.66)

The bases Φiα iα and Φ̄iα iα have now the same dimensions and the common reduced
basis Φ

γ

iα wγ
can thus be determined as already described in the subsection 3.5.1.

Although this basis can be directly used to reduce the size of the α interface, it can
not be used for the β interface since the number of its DoFs is larger than the size
of each interpolated GSI mode. For this reason Φ

γ

iα wγ
has to be expanded back by

interpolating each of its columns at the DoFs location of the β interface by using the
shape functions of the elements at the α interface:

Φ
γ

iβ wγ
= DβαΦ

γ

iα wγ
→ Φ

γ

iβ wγ
∈ Rni

β
×nwγ (3.67)

3Dαβ is built with the same logic used for the collocation matrix of Eqn. 3.58.
4A matrix that has undergone Gauss-Jordan elimination is said to be in reduced row echelon form.

Such a matrix has the following characteristics:

1. All zero rows are at the bottom of the matrix;

2. The pivot (leading entry) of each nonzero row after the first occurs to the right of the pivot of
the previous row;

3. The pivot in any nonzero row is equal to 1;

4. All entries in the column above and below a leading 1 are zero.
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Although the GSI modes collected by Φ
γ

iα wγ
and Φ

γ

iβ wγ
refer to different mesh

grids, they basically represents same spatial shapes. Therefore, by reducing the
corresponding interface DoFs as follows:

xα
iα ≈ Φ

γ

iα wγ
η

α
wγ

xβ

iβ
≈ Φ

γ

iβ wγ
η

β
wγ

(3.68)

the corresponding set of modal coordinates ηα
wγ

and η
β
wγ

can be enforced to be equal
exactly as done in Eqn. 3.56:

ηα
wγ

xα
aα

ηα
kα

η
β
wγ

xβ
aβ

η
β

kβ


=



0 0 I 0 0
I 0 0 0 0
0 0 0 I 0
0 0 I 0 0
0 I 0 0 0
0 0 0 0 I





xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


= CGS



xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


= CGSxA

GS (3.69)

Finally, the assembled reduced order matrices and vectors are given by:

MA
GS = CT

GS

[
Mα

GS 0
0 Mβ

GS

]
CGS KA

GS = CT
GS

[
Kα

GS 0
0 Kβ

GS

]
CGS

xA
GS =



xα
aα

xβ
aβ

ηwγ

ηα
kα

η
β

kβ


f A

GS = CT
GS

{
f α

GS

f β

GS

}
(3.70)

3.6 Application to Cyclic Symmetric Structures

In Chapter 2 the main properties of cyclic symmetric structures were presented
in order to give an insight into how dynamic analyses on bladed disks could be
performed in a very simple manner. It was shown that performing analyses on
FE models of fundamental sectors instead on full structures is convenient, since a
reduction of the EQM can be achieved by isolating the solution for certain harmonic
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indexes. However, the DoFs reduction resulting from the application of simple cyclic
constraints (Eqn. 2.22) is not sufficient to drastically reduce the size of the dynamic
problem. For this reasons cyclic constraints can be combined with CMS methods in
order to obtain highly reduced models. In this regard the method proposed by Tran
is one of the most successful [27]. In his paper a methodology used to reduce the
DoFs at the independent frontier of a sector is presented. As it will be shown in the
following, the Tran’s method employs more than one CMS condensation to achieve
the mentioned reduction, while the interface reduction method presented in section
3.5 does not requires such large amount of offline reduction costs.

The aforementioned methodologies are here described by taking as reference the
FE fundamental sector of a dummy blisk (Figure 3.9).

Fig. 3.9 FE model of a fundamental sector.
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Due to the subsequent application of cyclic constraints and CMS methods it is
found useful to partition the DoFs of the fundamental sector as follows:

xs =


xa

xl

xr

xe

 (3.71)

where the partitions with subscripts a, l, r and e refer to the vector of active, left
frontier, right frontier and exceeding DoFs respectively.

3.6.1 Tran’s Method

For real turbomachinery bladed disks the FE model of fundamental sectors can
have many thousands of DoFs. This led Tran to develop a methodology aimed at
reducing the size of these models by combining the properties of cyclic symmetric
structures with CMS methods. In particular, this technique appears beneficial when
a significant reduction of the independent frontier of a cyclic symmetric sector has
to be performed.

The first step towards the complete sector’s reduction is represented by the CB-
CMS condensations, which requires considering the active DoFs and those at both
frontiers as boundary DoFs:

xs =

{
xb

xe

}
=


xa

xl

xr

xe

 (3.72)

The coordinate transformation leading to the sector’s CB-CMS reduced vector is
same as Eqn. 3.26: {

xb

xe

}
≈

[
Ibe 0bk

Ψee Φek

]{
xb

ηk

}
= RCBxCB (3.73)

where a subset of nk fixed-interface normal modes has been retained. Since the
former reduction preserves the physical DoFs at the left and right frontier, xr can be
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expressed in terms of xl by using the cyclic constraints given in Eqn. 2.22:

xCB =

{
xb

ηk

}
=


xa

xl

xr

ηk

=


I 0 0
0 I 0
0 Ieιϕh 0
0 0 I




xh
a

xh
l

ηh
k

= Th
CB,csx

h
CB,cs (3.74)

where:

TCB,cs =


I 0 0
0 I 0
0 Ieιϕh 0
0 0 I

 xh
CB,cs =


xh

a

xh
l

ηh
k

 (3.75)

Then, a new Guyan ROM is created by retaining as master the left and right frontiers
DoFs only. By grouping xl and xr into the set of interface DoFs xi, the Guyan ROM
is obtained by using the following coordinates transformation:

xs =


xl

xr

xe

=

{
xi

xe

}
≈

[
Iie

Ψee

]
xi =Ψcxi = RGxi (3.76)

which allows obtaining the Guyan condensed mass and stiffness matrices by using
Eqn. 3.23. Again, xr can be expressed in terms of xl by employing the cyclic
constraints:

xi =

{
xl

xr

}
=

[
I

Ieiϕh

]
xh

l = Rh
G,csx

h
l (3.77)

By projecting the Guyan EQM onto the basis Rh
G,cs, the following cyclic EQM

are obtained:
MG,cs ẍh

l +KG,cs xh
l = f G,cs (3.78)

where
MG,cs = (Rh

G,cs)
∗MGRh

G,cs KG,cs = (Rh
G,cs)

∗KGRh
G,cs

f G,cs = (Rh
G,cs)

∗f G (3.79)

The interface modes reducing the independent frontier xh
l are given by the lowest

eigenfrequecies eigenvectors found by solving the following eigenproblem:(
KG,cs −ω

2
j MG,cs

)
φ j = 0 ∀ j = 1, . . . ,nl (3.80)



3.6 Application to Cyclic Symmetric Structures 89

If a subset of nu interface mode is arranged as the columns of a matrix Φh
lu, xh

CB can
be further reduced as:

xh
CB =


xh

a

xh
l

ηh
k

≈

I 0 0
0 Φh

lu 0
0 0 I




xh
a

ηh
u

ηh
k

 (3.81)

where

xh
T =


xh

a

ηh
u

ηh
k

 (3.82)

is the Tran generalized coordinate vector. The coordinate transformation of Eqn.
3.81 is clearly effective for nu ≪ nl .

Note that the Guyan reduction and the subsequent application of cyclic constraints
(Eqn. 3.76 and 3.77) led to a ROM having as a master the cyclic DoFs xh

l only (Eqn.
3.78). This allowed Tran to compute the modes φ j at the left frontier without the
need to separate them from the active ones5. However, the Tran’s method requires
two reductions of the original FE model (both CB-CMS and Guyan), which makes it
more costly than the GSI method (see section 3.4).

3.6.2 Independent Frontier Reduction via GSI modes

As seen in the subsection 3.6.1 the method by Tran allows the evaluation of the
cyclic frontier modes on a Guyan ROM treated in cyclic symmetry conditions. The
procedure employed to compute these modes is straightforward, since the ROM of
Eqn. 3.78 is condensed on the independent frontier only. However, the creation
of two different CMS models considerably increases the offline reductions costs,
especially when the size of the FE sector is large.

Besides their use for coupling either conforming or non-conforming interfaces
of component’s ROMs, the interface GSI modes can be adopted to overcome the
drawback of the Tran’s method. In particular, starting from the coordinate trans-
formation of Eqn. 3.74, the independent xh

l can be directly reduced using the GSI

5This approach is typical of the GSI reduction technique.
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modes according to the procedure of described in the subsection 3.4.1:
xh

a

xh
l

ηh
k

≈

Iaa 0aw 0ak

0la Φh
lw 0lk

0ka 0kw Ikk




xh
a

ηh
w

ηh
k

= Th
CC


xh

a

ηh
w

ηh
k

 (3.83)

where

xh
GS =


xh

a

ηh
w

ηh
k

 (3.84)

is the GSI generalized coordinates vector. In this way the independent frontier
reduction may be achieved without performing the further Guyan reduction required
by the Tran’s approach.
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3.7 Example

In this section the performances of the GSI reduction technique are tested on the FE
model of a dummy bladed disk’s sector. The reference model consists of one dummy
blade attached to the corresponding disk’s sector by the dove tail joint (Figure 3.10).

Fig. 3.10 Reference model: dummy blade attached to the fundamental sector.

Hereafter the term "interface" is used to identify one of the coupling interfaces
between the blade and sector, while the term "frontier" refers to the disk’s sector
boundaries shared with adjacent sectors (Figure 3.11).

Fig. 3.11 Interfaces and frontiers of the disk’s sector.
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According to the description given in the previous sections, the methodology is
here applied in order to perform two different tasks:

1. Blade-Disk’s sector coupling: as it will be shown in the next subsection the
blade and sector’s interfaces were appositely meshed with non-collocated
nodes. Hence, besides reducing the interface DoFs, the GSI method is also
used to couple the two components by enforcing the compatibility conditions
in the modal space instead on the physical one.

2. Reduction of the sector’s frontier after the application of cyclic constraints:
after having performed the reduction of the disk’s coupling interfaces, cyclic
constraints are applied to the left and right sector’s frontiers (Eqn. 2.32). The
DoFs at the independent frontier may then be reduced by using a suitable basis
of GSI modes.

The two tasks are tackled one by one going through different steps of reduction. The
correctness of the employed procedures is checked by comparing the output of the
reduced models with those of the full ones on a case-by-case basis.

3.7.1 Models Description

Fig. 3.12 Reference model dimensions.

The structure used as a reference can be thought as the assembly resulting from
the coupling of one dummy blade with the corresponding disk’s sector (Figure 3.10).
The geometry of both components was created according to the dimensions specified
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in Figure 3.12. These were meshed using the commercial FE software ANSYS
by employing the solid quadratic elements SOLID 185 with the following material
properties: Young’s modulus E = 210 GPa, Poisson’s ration ν = 0.33 and density ρ

= 7800 kg/m3. These discretizations resulted into two FE models having NB = 6888
and NDS = 5496 DoFs for the blade and sector respectively (Figure 3.13).

Fig. 3.13 FE models of the dummy blade a) and disk’s sector b).

The blade and sector models were appositely created with non-collocated nodes
at the common interfaces. In particular, two regular grids of nib = 100 and nis = 130
nodes were used to mesh the blade and sector interfaces. These grids are here denoted
by CIb and CId. CIb discretizes both right and left blade’s interfaces, while CId does
the same for the sector interfaces (Figure 3.14).

Fig. 3.14 Interface mesh grids for the left and right interfaces.
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The number of elements, nodes and corresponding DoFs for both FE models is listed
in the Table 3.1.

Table 3.1 Features of the blade and sector FE models.

FE Model # elements # nodes # DoFs # DoFs per interface

Blade 4992 2296 6888 300
Disk’sector 4776 1832 5496 390

3.7.2 Craig-Bampton Reduced Order Models

By using the CB-CMS method the FE models were reduced down to nbb = 692 and
nbd = 1196 boundary DoFs, which are almost the 10% and 21.5% of the original
FE models size. The CB-CMS generalized coordinates vector for the blade can be
written as:

xb
CB =


xb

ab

xb
lib

xb
rib

ηb
kb

 (3.85)

where xb
ab

, xb
lib

and xb
rib are the active, left and right interface DoFs retained in the

CB-CMS reduction (Figure 3.15), while ηb
kb

is the vector of modal coordinates
corresponding to the reduced set nkb fixed-interface normal modes.

Fig. 3.15 CB-CMS reduction of the blade FE model: the black circles denote the physical
DoFs retained in the CB-CMS condensation.
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The set of active DoFs xb
ab

was chosen in order to perform two different tasks:

1. Similarly to the case of forced response calculations on real FE models of
turbine blades, where the aerodynamic forces are spread over the blades’s pres-
sure side, the active DoFs in this case allows for the application of distributed
forces over the blade’s perimeter;

2. The distribution of the active DoFs over the blade’s perimeters allows for a
satisfactory check on the mode shape of the ROM when compared to those of
the full FE model.

The sizes of the former subvectors are listed in Table 3.2.

Table 3.2 Sizes of the xb
CB subvectors.

Set # DoFs

xb
ab

42
xb

lib
300

xb
rib 300

ηb
kb

50

xb
CB 692

For reference, the first 50 natural frequencies of the blade CB-CMS ROM are
all within 0.8% of the corresponding FE natural frequencies (Figure 3.16). The
percentage difference between these values was evaluated by using the following
relationship:

e% =
| fCB − fFE|

fFE
·100 (3.86)

where the FE quantities were considered as reference.
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Fig. 3.16 Percentage errors in term of natural frequencies between the blade’s FE model
and the corresponding CB-CMS ROM. The plot shows the typical upward trend of e% as
the natural frequency of the mode shapes increases. The error on the mode 24, significantly
higher than the others, depends on the nature of the mode shape itself. From Figure 3.17 it
can be noted that for mode 24 most of the blade acts as if it was clamped (blue zone). This
means that the active DoFs xb

ab
at the blade’s perimeter do not significantly contribute to the

approximation of a mode shape mainly localized at the blade’s root.

Fig. 3.17 Representation of the blade’s mode shapes 23, 24 and 25: the blade’s structure
participates more when the mode 23 and 25 occur as compared to the mode 24.

Although the blade FE model was condensed in free-free condition, the sector
was reduced by clamping all the nodes having radial coordinate equal to 80 mm
(Figure 3.12). The CB-CMS generalized coordinates vector for the sector ROM can
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be expressed as:

xd
CB =



xd
lid

xd
rid

xd
l fd

xd
r fd

ηd
kd


(3.87)

where xd
lid

and xd
rid are the master DoFs at the left and right coupling interfaces,

xd
l fd

and xd
r fd

the sector’s left and right frontier DoFs and ηd
kd

the modal coordinates
corresponding to the retained fixed-interface normal modes (Figure 3.18).

Fig. 3.18 CB-CMS reduction of the disk’s sector FE model: the black circles denote the
physical DoFs retained in the CB-CMS condensation.

The size of each subvector is given in Table3.3.

Table 3.3 Sizes of the xd
CB subvectors.

Set # DoFs

xd
lid

390
xd

rid 390
xd

l fd
183

xd
r fd

183
ηd

kd
50

xd
CB 1196
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For reference, the first 50 natural frequencies of the sector CB-CMS ROM are all
within 1.1% of the corresponding FE natural frequencies (Figure 3.19).

Fig. 3.19 Percentage errors in term of natural frequencies between the sector’s FE model
and the corresponding CB-CMS ROM. The plot shows the typical upward trend of e% as
the natural frequency of the mode shapes increases. The errors on the modes 33 and 48,
significantly higher than the others, depend on the nature of the mode shapes themselves.
As in the case of the blade from Figure 3.20 it can be noted that some of the active DoFs
(e.i. those at the frontiers for the mode 33 and those at the interfaces for the mode 48) do not
significantly contribute to the definition of the mode shapes.

Fig. 3.20 Representation of the mode shape 33 and 48 for the disk’s sector.
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3.7.3 Interfaces Reduction

After having created the CB-CMS ROMs of blade and sector, further modal interface
reductions were carried out according to the GSI method (see the subsection 3.4.1).
In particular, the method was first applied to the blade and sector interfaces and later
to the independent sector frontier after the application of cyclic constraints.

Blade Interfaces Reduction

In this case the interface DoFs xb
lib

and xb
rib were reduced by applying the GSI method.

The modal reduction of these sets led to a new ROM whose vector of generalized
coordinates can be written as:

xb
GS =


xb

ab

ηb
lib

ηb
rib

ηb
kb

 (3.88)

where ηb
lib

and ηb
rib represent the modal coordinates corresponding to the retained set

of interface GSI modes. An investigation on the number of modes used to reduce
both interfaces was then carried out. Several simulations were performed, where the
effect of 10, 20, 30, and 50 modes on the interfaces reduction was evaluated. In order
to estimate the goodness of this second reduction, the first 50 natural frequencies
of the blade GSI ROMs were compared to those of the corresponding CB-CMS
ROM. The comparison was performed again by using the relationship of Eqn. 3.86,
where the CB-CMS quantities were taken as reference. For all the mentioned test
campaigns the highest e% are listed in Table 3.4.

Table 3.4 Highest e% between the blade natural frequencies evaluated by using the CB-CMS
and GSI ROM.

# GSI modes 10 20 30 50

e% (CB vs GSI) 14.05% 2.6% 9.6 ·10−3% 9 ·10−4%

From the previous table it can be noted that reducing the interfaces with either 30
or 50 GSI modes each ensures high accuracy in the prediction of the blade natural
frequencies. These were collected into two different bases (one for the left and one
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for the right interface), which were exploited for the blade-sector coupling procedure.
The selected bases of GSI modes will be denoted by Φb

l and Φb
r .

The check of the blade GSI ROM was finally concluded by comparing its eigen-
vectors with those of the CB-CMS ROM. The comparison was carried out on the
eigenvectors partition corresponding to the set of active DoFs xb

ab
by using the Modal

Assurance Criterion (MAC):

MAC=
∥φ T

CBφGS∥2(
φ T

CBφCB
)(

φ T
GSφGS

) (3.89)

where φCB and φGS are the physical partitions of the CB-CMS and GSI eigenvectors.
From Figure. 3.21 it can be noted that the mode shapes of both ROMs are identical
to each other, since all the terms on the main diagonal are equal to one. These results
gives confidence in the GSI reduction of the blade interfaces.

Fig. 3.21 MAC between the CB-CMS and GSI blade eigenvectors: the terms on the main
diagonal confirm the perfect agreement between the two sets of eigenvectors. Note that
the off-diagonal terms give just an insight into how similar are two different eigenvectors
arbitrarily chosen from the bases under comparison.
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Disk Interfaces Reduction

The sector’s interface DoFs xd
lid

and xd
rid were reduced in order to obtain a ROM

corresponding to the following vector of generalized coordinates:

xd
GS =



ηd
lid

ηd
rid

xd
l fd

xd
r fd

ηd
kd


(3.90)

where ηd
lid

and ηd
rid represent the modal coordinates of a reduced set of GSI modes.

In particular, the effect of 10, 20, 30 and 50 GSI modes on the interfaces reduction
was evaluated. For all the former cases the fist 50 sector’s natural frequencies were
compared to those of the corresponding CB-CMS model by using the relationship
of Eqn. 3.86. The highest values of e% for all the mentioned cases are listed in
Table 3.5.

Table 3.5 Highest e% between the sector natural frequencies evaluated by using the CB-CMS
and GSI ROM.

# GSI modes 10 20 30 50

e% (CB vs GSI) 4.63% 0.09% 1.7 ·10−3% 4.9 ·10−6%

It can be noted that 20 GSI modes are sufficient to perform a satisfactory interface
condensation, guaranteeing high precision in the prediction of the sector natural
frequencies. Hereafter these basis of 20 GSI modes are denoted as Φd

l and Φd
r .

3.7.4 Interface Coupling and Cyclic Constraints

As already shown in section 3.4, the GSI method gives the possibility to assemble two
or more substructures even if non-conforming meshes are present at the respective
interfaces. This can be achieved by finding a common basis of modes reducing the
left and right interfaces of both blade and sector ROMs.

The criteria adopted here consisted to bring together the smallest subsets of GSI
modes that were sufficient to satisfactorily represent the components’ dynamics.
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Hence, the bases here denoted as Φb
l(r) and Φd

l(r) were put together in order to define
the basis ΦC

l(r) reducing the left (right) interface of both blade and sector. In order
to remove any possible linear dependence between the modes of Φb

l(r) and Φd
l(r), a

Gram-Schmidt orthonormalization of ΦC
l(r) was performed (see the subsection 3.4.1).

At the end of this process the common basis ΦC
l(r) was therefore used to reduce the

size of both blade and sector left (right) interface. For the case under study the
common basis ΦC

l(r) reducing the left (right) interface was obtained by collecting the
first 30 and 20 GSI modes for the blade and sector left (right) interface respectively
(see subsection 3.7.3).

According to the DoFs partitions of Eqns. 3.88 and 3.90, the size of the resulting
subvectors is given in Table 3.7:

Table 3.6 Sizes of the xb
GS and xd

GS subvectors.

Set # DoFs Set # DoFs

xb
ab

42 - -
ηb

lib
50 ηd

lid
50

ηb
rib 50 ηd

rid 50
- - xd

l fd
183

- - xd
r fd

183
ηb

kb
50 ηd

kd
50

xb
GS 192 xd

GS 516

Figures 3.22 and 3.23 shows the errors on the first 50 natural frequencies obtained
by performing modal analyses on the CB-CMS and GSI ROMs of blade and sector
respectively. It can be noted how the expansion of the reduction bases increased the
accuracy of both GSI ROMs. In fact, for the blade the maximum difference on the
natural frequencies decreased from 9.6 ·10−3% (Table 3.4) to less than 6 ·10−4%.
Similar considerations can be carried out for the sector; in this case the maximum
difference decreased from 0.09% (Table 3.5) to less than 0.01%.
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Fig. 3.22 Percentage errors in term of natural frequencies between the blade CB-CMS and
GSI ROM.

Fig. 3.23 Percentage errors in term of natural frequencies between the sector CB-CMS and
GSI ROM.

Note that the different magnitude of the errors in Figures 3.22 and 3.23 depends
on the original number of GSI modes employed in both component’s reduction. In
particular, before employing the common basis the sector’s ROM showed a maximum
e% that was already one order of magnitude larger than that of the blade’s one (0.09%
vs 9.6 ·10−3%). Although the use of the common bases decreased the mention errors,
their difference still remained (0.01% vs 6 ·10−4%). Furthermore, by looking at the
Figures 3.22 and 3.23 other two interesting facts can be highlighted:

1. For both components the highest values of e% corresponds to higher frequency
mode shapes. In the case of the blade (sector) it was shown that reducing both
interfaces with 30 (20) GSI modes guaranteed high accuracy in the prediction
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of the first 50 blade’s (sector’s) eigenfrequencies (Tables 3.4 and 3.5). It
was also stressed that this condition was improved when the common bases
were employed. However, 30 (20) GSI modes approximately guarantee high
accuracy in the prediction of the first 30 (20) mode shapes. The highest errors
on the subsequent modes, still being minimized by the common bases, depend
on the poorest approximation of their interfaces motion (i.e. the GSI modes in
the common basis do not allow the same approximation for all the examined
modes).

2. Figure 3.23 shows a rather sharp error increase from mode 30 on, with some
subsequent modes still being exact: the first 30 GSI modes retained for the
blade’s interface reduction ensure high accuracy in the prediction of the first
30 blade’s mode. When using the common basis some of the sector’s GSI
modes may contribute for a better definition of the blade’s subsequent modes.

Before performing the coupling, cyclic constraints were applied to the sector
frontiers for all the admissible values of ϕh:

xd
GS =



ηd
lid

ηd
rid

xd
l fd

xd
r fd

ηd
kd


=


I 0 0 0
0 I 0 0
0 0 I 0
0 0 Ieιϕh 0
0 0 0 I




η

d,h
lid

η
d,h
rid

xd,h
l fd

η
d,h
kd

 (3.91)

Thereby the modal analysis of each cyclic symmetric eigenproblem was performed
and the disk’s FreND diagram for the first 5 modal families was carried out:
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Fig. 3.24 Disk’s FreND diagram.

Such results were used as a benchmark in order to test the goodness of the
approaches used to reduce the independent frontier of the sector. In particular,
starting from the transformation of Eqn 3.91, for each value of ϕh, other two ROMs
were created by employing the GSI and the Tran’s method. For both cases just 20
GSI modes were retained. The generalized coordinate vectors corresponding to these
ROMs can be expressed as:

xd,h
T =


η

d,h
lid

η
d,h
rid

η
d,h
l fd ,Tran

η
d,h
kd

 xd,h
GS =


η

d,h
lid

η
d,h
rid

η
d,h
l fd ,GS

η
d,h
kd

 (3.92)

where η
d,h
l fd ,Tran and η

d,h
l fd ,Int are the left frontier modal coordinates in the two cases.

Hereafter these ROMs will be denoted as DSInt and DSTran respectively.

A new modal analysis on both cyclic ROMs was performed and the corresponding
FreND diagrams were evaluated. The resulting modal families were then compared
to those of Figure 3.24 by computing the e% as usual. Both comparisons led to
maxima errors smaller than 10−4%, meaning that an excellent reduction of the
independent frontier may be achieved by employing both methods. However, the
DSInt ROM has to be preferred over the DSTran one for obvious reasons: while the
method by Tran requires a further Guyan condensation of the model (see the section
3.6.1), the GSI method does not. Therefore, although the time spent for solving the
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cyclic eigenproblem is the same and the eigenfrequencies are practically identical,
the off-line reduction costs required by the Tran’s method are much larger than those
of the GSI one. For this reason the ROM of the assembled structure will be obtained
by coupling the blade GSI ROM with DSInt.

Finally, the assembled ROM was obtained by enforcing the following compati-
bility conditions in the space of interface modes:ηb

lib
= η

d,h
lid

= ηli

ηb
rib = η

d,h
rid = ηli

∀ h = 0, . . . , h̃ (3.93)

The generalized coordinate vector of the resulting ROM can then be written as:

xh
GS =



xb,h
ab

ηh
li

ηh
ri

η
d,h
l fd ,Int

η
d,h
kb

η
d,h
kd


(3.94)

whose subvectors dimensions are listed in the following table:

Table 3.7 Sizes of the xh
GS subvectors.

Set # DoFs

xb,h
ab 42

ηh
li 50

ηh
ri 50

η
d,h
l fd ,Int 20
η

d,h
kb

50
η

d,h
kd

50

xh
GS 262

These ROMs were directly compared with the full FE model in terms of natural
frequencies, mode shapes and linear forced responses of the system. In particular, by
comparing the FreND diagram of the full FE model (Figure 3.25) with that obtained
from the assembled ROM, the percentage errors of Figure 3.26 can be found:
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Fig. 3.25 FreND diagram of the assembled structure.

Fig. 3.26 Errors on the natural frequencies.

which shows maxima e% less than 0.04% for all the modal families. From Figure
3.26 it can be noted that larger errors on the natural frequencies occur for lower
nodal diameter mode shapes. The physical reason of such trend is quite intuitive:
for low nodal diameters the disk significantly participates to the assembly dynamics
by dragging the blades during vibration. This means that the errors found for small
nodal diameters strongly depend on both disk and blade’s reductions. Differently, for
large nodal diameters the disk becomes stiffer and the blades behave as if they were
clamped at the root. In this second case the effect of the disk’s interfaces reduction
is much less important.
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The physical partition of the reduced eigenvectors (corresponding to xb
ab

in Figure
3.15) were then compared with the full ones. Figure 3.25 shows the MAC number
for the mode shapes computed by isolating the harmonic index h = 2.

Fig. 3.27 Errors on the natural frequencies of the assembled structure.

The unitary values on the main diagonal of the plot denote a perfect matching
between the two sets of modes. Identical results were found for all the other mode
shapes.

Lastly, the forced response of the system for the mode shape with h = 2 nodal
diameters was computed. In particular, the dynamic response was calculated assum-
ing a clockwise traveling wave excitation with EO = 2 and a modal damping ratio of
ζ = 0.001. The results of the analyses performed on the two models are shown in
Figure 3.28.

Fig. 3.28 MAC between the full model and GSI eigenvectors the term on the main diagonal
confirm the perfect agreement between the two sets of eigenvectors.
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The negligible stiffening effect characterizing the ROM is clearly the result of several
reductions. However, no substantial differences can be found between the two plots,
neither in terms of resonance frequency nor in terms of response amplitude. There-
fore, the use of the ROM instead of the full one leads to evident advantages, which
mainly lie on the drastic reduction of the DoFs (262 vs ∼ 12000) and corresponding
computational costs (9 s vs ∼ 600 s for the forced response of Figure 3.28).

3.8 Discussion

In this chapter the novel GSI reduction technique for the modal reduction of the
interface DoFs is presented. The methodology goes through different reduction steps
of the components’ FE models belonging to the same complex structure. In particular,
starting from the Craig-Bampton reduced order model of each substructure, further
model condensations can be achieved by using a suitable set of few Gram-Schmidt
Interface modes (GSI modes). The main advantages of this method are mainly two:

1. Besides reducing the interface DoFs, the method allows the components
coupling even in the case on non-conforming interface meshes. This task is
carried out by reducing the components’ interfaces using the same basis of
interface modes and then by writing the compatibility equations not in the
domain of the physical DoFs but in the modal space of spanned by the selected
Gram-Schmidted GSI modes.

2. It can be used as a valid alternative of the Tran’s method for the reduction of
cyclic symmetric structures. In particular, the independent frontier of a sector
treated in cyclic symmetry conditions can be condensed without performing
ulterior Guyan condensations of the full FE model. In this way the offline
reduction costs can be considerably lowered.

The high precision exhibited in the prediction of the dynamic behavior of assem-
bled structures in terms of natural frequencies, mode shapes and forced response
calculations, makes the GSI technique suitable not only for turbomachinery applica-
tions, but also for many other fields involving dynamic substructuring.



Chapter 4

Multi-Stage Reduced Order Models

4.1 Introduction

The architecture of current aircraft turbojet engines mainly consists of multi-stage
structures resulting from the coupling of bladed disks by means of bolted flange
joints. Despite of the high complexity of the whole system, the design of a multi-
stage assembly is still based on the finite element analyses of its single component.
However, the prediction of their dynamic coupling represents a crucial issue requiring
high computational efforts and the development of innovative numerical techniques.
In this frame ROM techniques become necessary tools for making the FE analyses
faster without losing the accuracy of the full FE model.

ROMs in the class of CMS (see Chapter 3) are being used in the turbomachinery
field for the prediction of the forced response of isolated bladed disks and just few
studies concern their application on multi-stage systems. Nonetheless, the relevance
of bladed disks coupling has been numerically proved and few efficient ROM exist to
precisely determine the mode shapes and the forced response of a linear multi-stage
assembly by overcoming high computational costs.

Although much research has been conducted on single-stage bladed disks, far
less has been done for multi-stage bladed disk systems. Indeed, the main challenge
associated with modeling multi-stage assemblies is strictly related to the possible
different cyclic symmetry of the stages, since the number of sectors is different from
stage to stage. In this case a sector representative of the whole system geometry does
not exist in general, and typical dynamic calculations based on cyclic constraints can
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not be performed as in the case of single bladed disks. Therefore, when dealing with
multi-stage systems the single-stage approach is no more valid and the effects of
dynamic coupling between stages has to be taken into account.

Early ROMs for multi-stage problems used the well-known dynamic substructur-
ing in the class of the CMS methods [18, 21], which involve dividing the system into
components for faster analyses and combining them by using different approaches
like fixed-interface, free interface normal modes or hybrid methods (see Chapter 2).
An investigation of FE models of multi-stage bladed disks with blade mistuning was
conducted by Bladh et al. [30, 31]. It was shown that single-stage bladed disks do
not preserve their dynamic behavior when coupled together. In particular, multi-stage
effects due to the inter-stage coupling occur in a certain frequency range where the
motion of the disk is dominant.

As already stated, in general multi-stage structures do not satisfy cyclic symmetry
requirements. Rare exceptions would be those where the coupled stages have
numbers of sectors that admit a common divisor1. For this reason early multi-stage
problems have been tackled trying to combine integral models of bladed disk, which
unavoidably leads to solve very large systems of equations. An approach used to
obtain ROMs of multi-stage assemblies was proposed by Song et al. [32, 33]. In
his technique each stage is treated as a separate component, while the physical
displacements characterizing the coupling interface between adjacent stages are
projected onto a common set of harmonic basis functions. In Chapter 2 these
harmonics were named as dominant and describe the typical nodal diameters patterns
of a bladed disks. This method has been recently improved by Battiato et al. [6],
by expanding the set of dominant basis functions with a suitable pattern of extra
harmonics, which represent small wave-length spatial phenomena observable at the
inter-stage boundary where the continuity of the material is guaranteed (see Chapter
2). For both ROMs the geometric compatibility conditions needed to dynamically
couple the full stages are enforced in the space of the Fourier coefficients so that the
problem of incompatible meshes at the coupling interface can be easily solved.

From the observation that most of the mode shapes of multi-stage structures
are similar to those of isolated disks, especially for the simultaneous occurrence
of the same nodal diameters pattern for all the disks, multi-stage ROMs were later

1The common divisor can actually be used to divide the whole multi-stage system into a discrete
number of fundamental sectors, allowing dynamic computations in cyclic symmetry conditions.
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formulated in cyclic symmetry conditions. The first multi-stage reduction technique
involving cyclic constraints was proposed by Laxalde et al. [34, 35], who imposed
linear constraints for the inter-stage coupling. Later, Sternchüss et al. [36, 3]
employed CMS methods in order to create superelements of the stages’ reference
sectors, which are subsequently coupled by intermediate rings. Besides reducing the
size of the full model, this approach gives a solution to the problem of incompatible
meshes at the inter-stage boundary. As schematized in Figure 4.1 the ring mesh has
to match those at inter-stage boundaries.

Fig. 4.1 Example of coupled multi-stage system by means of on intermediate ring [3].

However, one should be aware that introducing further components into the model
leads to increase the offline computational costs. Indeed, the amount of time spent
for their modeling and the subsequent reduction is often not negligible.

The strength of the introduced methods mainly lies in the ability of modeling
the dynamic coupling of stages despite their different rotational periodicity. In
practical cases this condition is much more severe than actually appears, since the FE
models of assembled stages have in general incompatible meshes at the inter-stage
boundary (Figure 4.2). Another important feature of such techniques is the capability
of reducing the size of complex models that otherwise would be extremely hard to
analyze. In this context the best reduction technique for multi-stage systems would
be that satisfying all the following requirements:
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• It has to ensure the coupling of stages with different cyclic periodicity and
incompatible meshes at the inter-stage boundary.

• It has to handle with ROMs of fundamental sectors treated in cyclic symmetry
conditions (see Chapter 2).

• The geometric compatibility conditions between the stages ROMs have to be
enforced in a simple manner, without using inter-stage connection elements.

In this Chapter a novel reduction technique fulfilling all these conditions is presented.
The methodology takes its basis from the approach developed in [32] and goes
further to obtain the optimal method allowing better single-stage reductions and
multi-stage coupling in the reduced order space only.

Fig. 4.2 Fundamental sectors of bladed disks having different rotational periodicity. The
sectors feature incompatible meshes at the inter-stage boundary.

4.2 Multi-stage Achitectures

Most aircraft turbojet engines consist of bladed disks coupled to each other by means
of bolted flange joints. This arrangement is used in both multi-stage compressor and
turbine assemblies and ensures the torque transmission from one stage to the adjacent
one. Although the working principle of compressors and turbines remains unaltered,
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several solutions for stages coupling are currently employed by the manufacturers.
Figure 4.3 shows three architectures adopted to joint together the last stages of a
HPT assembly.

Fig. 4.3 Example of flange joint architectures.

These configurations only differ for the geometry of the bolted flange joint connect-
ing neighboring stages that unavoidably involves a different disk’s design. However,
besides the flange joint the any disk architecture always shows the features sum-
marized Figure 4.4: The shape of the disk cross section comes out from design

Fig. 4.4 Disk cross section’s nomenclature.
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criteria mainly based on static considerations. These are related to the necessity of
controlling centrifugal loads and related stresses under the prescribed limits.

In the next sections the multi-stage reduction techniques are presented thinking
their application on the a) geometry of Figure 4.3. Nonetheless, the developed
methods still remain valid for all the bladed disks architectures and generic multi-
stage structures.

4.3 Multi-Stage ROM for Full Stages

In this section most of the considerations carried out for cyclic symmetric structures
will be exploited to introduce the novel ROM technique presented in [6, 7]. For
a better understanding of the reduction procedure some of the equations already
derived in Chapter 2 will be recalled.

A bladed disk can be ideally considered as a cyclic symmetric structure consisting
of N identical sectors. In the most simple case the fundamental sector representative
of the whole structure geometry is composed by one portion of disk with an attached
blade (Figure 4.5).

Fig. 4.5 FE model of a fundamental sector.
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The conservative EQM describing the linear dynamic behavior of a perfect cyclic
symmetric bladed disk is given by:

Mẍ+Kx = f (4.1)

where M and K are the real mass and stiffness matrices, x is the vector of physical
displacements and f is the corresponding vector of external forces. As explained in
Chapter 2, if Eqn. 4.1 is written in a cylindrical coordinate system having the z-axis
coincident with the disk’s revolution one (Figure 2.3), and the DoFs grouped sector
by sector, the matrices M and K and the vectors x and f can be written as follows:

M =



M0 M1 M2 . . . M2 M1

M1 M0 M1 . . . M3 M2

M2 M1 M0 . . . M4 M3
...

...
... . . . ...

...
M2 M3 M4 . . . M0 M1

M1 M2 M3 . . . M1 M0


K =



K0 K1 K2 . . . K2 K1

K1 K0 K1 . . . K3 K2

K2 K1 K0 . . . K4 K3
...

...
... . . . ...

...
K2 K3 K4 . . . K0 K1

K1 K2 K3 . . . K1 K0



x =



x1

x2

x3
...

xN−1

xN


f =



f 1

f 2

f 3
...

f N−1

f N


(4.2)

The matrices M and K have a block circulant symmetric structure and the blocks Mi

and Ki (i = 0, . . . , int(N/2) if N is even or i = 0, . . . , int
(
(N −1)/2

)
if N is odd) are

symmetric matrices whose dimension is equal to the number of DoFs of each bladed
disk sector. When the mass and stiffness matrices are set up from the FE models, the
eigenproblem corresponding to Eqn. 4.1 can be solved:

(K−ω
2
i M)ui = 0 i = 1, . . . ,Nns (4.3)

where ns is the number of DoFs for each disk’s sector, while ω2
i and ui are the ith

eigenfrequency and eigenvector respectively.
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Dynamic analyses of cyclic symmetric structures can be performed on sectors
instead on full FE models. According to the DoF partition adopted in Eqn. (4.2), the
motion of the nth sector can be described by the following Fourier series [37, 6, 7]:

xn =
1√
N

a0 +

√
2
N

h̃−1

∑
h=1

ac
h cos[(n−1)ϕh]+

+

√
2
N

h̃−1

∑
h=1

as
h sin[(n−1)ϕh]+

1√
N
(−1)n−1ah̃ (4.4)

where a is the vector of spatial Fourier coefficients with subscripts c and s identifying
the cosine and sine components respectively, h is the dominant harmonic index of
the mode shape, ϕh = 2πh/N represents the inter-blade phase angle (IBPA) and h̃,
which is equal to N/2 if N is even or (N −1)/2 if N is odd, denotes the maximum
number of the nodal diameters admitted by the disk mode shapes. The last term in
Eqn. (4.4) does not exist if N is odd. By grouping the spatial Fourier coefficients as
follows:

a =
{
(a0)

T ,(ac
1)

T ,(ac
2)

T , . . . ,(ac
h̃−1)

T ,(ah̃)
T ,(as

h̃−1)
T , . . . ,(as

2)
T ,(as

1)
T}T (4.5)

the vector of physical DoF x(t) can be expressed as:

x(t) = (FN,N ⊗ Is)a(t) (4.6)

where Is is the identity matrix of size ns and FN,N is the real valued N ×N Fourier
matrix. FN,N is an orthogonal matrix, i.e. FT

N,NFN,N = IN , whose elements are defined
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as:

fnh =



1√
N

if h = 1

√
2
N

cos

[
2π(h−1)(n−1)

N

]
if 1 < h <

N +2
2

(−1)n−1
√

N
if h =

N +2
2

√
2
N

sin

[
2π(h−1)(n−1)

N

]
if

N +2
2

< h ≤ N

(4.7)

Since the eigenvectors of the block circulant symmetric matrices M and K are
arranged as columns of FN,N , the coordinates transformation expressed by Eqn. (4.6)
allows the eigenproblem in Eqn. (4.3) to be brought into a block diagonal form.
Therefore, N new cyclic symmetric eigenproblems of size equal to nd can be solved
separately [12]. By solving the nth eigenproblem, eigenvalues and eigenvectors for a
specific h can be determined without any approximation (see Chapter 2).

4.3.1 Master Nodes

FE dynamic analyses on multi-stage bladed disks are often impracticable due to the
large number of DoFs involved in the simulation. For this reason substructuring meth-
ods are currently employed in order to create ROMs of the disk’s sub-components
that are subsequently assembled. The ROM technique treated in this section is based
on the CB-CMS ROM of each bladed disk constituting the multi-stage structure
(see Chapter 3 for further details on the Craig-Bampton method). This methodology
requires that at least the DoFs belonging to the inter-stage boundaries of both stages
(also called interfaces) are retained as a master. In the case of a real turbine bladed
disk these set of interface DoFs belongs to the flange joint (Figure 4.6). Hereafter
this set of ni inter-stage boundary DoFs will be identified as xi.
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Fig. 4.6 Interface DoFs at the inter-stage boundary of a bladed disk.

In general, for applications concerning dynamic analyses on FE models of real
bladed disks no other sets of master DoFs would be required. Due to the complex
pressure distribution on the blade airfoils and the need to determine the stresses and
strains in extended regions of the structure, it is common to modalize the nodal forces
and to reconstruct the physical response in an offline post-processing. Although such
approach does not appears as costly from a computational point of view, it requires
the storage of the component-mode matrix. This task could be prohibitive when the
full FE model consists of a huge number of DoFs, and definitely leads to increase
the total duration of the process from the FE model definition to the output results.

For this reason at a preliminary design stage, when sensitivity analyses on certain
geometric quantities should be performed, a further set of master DoFs would be
desirable. This second set is identified as xa and contains na active DoFs, which are
those where the forces are applied and the response monitored (Figure. 4.7).

By following the same logic of the GSI method for the interfaces reduction (see
Chapter 3), in the next subsections it will be shown how the inter-stage boundary
DoFs can be reduced by exploiting the harmonic basis functions describing the disk’s
mode shapes, leaving the active DoFs physical as they are.
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Fig. 4.7 Active DoFs at the blades’ airfoils.

4.3.2 Single Stage Reduction

This subsection shows how a strongly reduced model of a single-stage bladed disk
can be obtained starting from its CB-CMS ROM. The methodology adopted here
takes his basis from Song [32] and D’Souza [37] and shows the importance of
considering the extra harmonics in the reduction of the interface DoFs.

Consider now the full FE model of a bladed disk and let us denote as x the vector
of all its DoFs. Similarly as done for the reduction techniques in Chapter 3, the
vector x can be considered as composed by the sets of interface DoFs xi, active DoFs
xa and exceeding DoFs xe, which represent all the DoFs neither on the interface nor
active. The number of exceeding DoFs is denoted by ne. It is named as boundary the
set xb that gathers the interface and active DoFs together: xb =

{
xT

i xT
a
}T . According

with this DoFs partitions the CB-CMS coordinate transformation is defined as (Eqn
3.26):

x =

{
xb

xe

}
≈

[
Ibb 0bk

Ψeb Φek

]{
xb

ηk

}
= RCBxCB (4.8)

where:

•
[
Ibb ΦT

eb

]T is the constraint modes matrix.
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•
[
0T

bk ΦT
ek

]T is the reduced matrix of nk fixed-interface normal modes.

• ηk is the reduced vector of modal coordinates corresponding to the reduced
set of fixed-interface normal modes.

• RCB is the CB-CMS reduction basis.

• xCB is the CB-CMS generalized coordinates vector.

By projecting Eqn. (4.1) onto the space spanned by the columns of RCB, a reduced
set of EQM is obtained:

MCBẍCB +KCBxCB = f CB (4.9)

where
MCB = RT

CBMRCB KCB = RT
CBKRCB

f CB = RT
CB f (4.10)

are the reduced CB-CMS mass and stiffness matrices and the CB-CMS generalized
forces vector.

A further reduction of xi is possible since they can be approximated by few
harmonics describing the trend of the displacement field at the interface. Consider
the case where a stage is composed by N identical sectors. The FE model of the
sector representative of the whole bladed disk geometry is constructed such that
groups of nodes at its interface have the same angle in a cylindrical coordinate system
that is aligned with the axis of the stage itself. These groups of nodes are referred
to as radial line segments [37, 6], and Z of them exist within each sector (Fig. 4.8).
Therefore, NZ is the total number of radial line segments at the stage interface. The
number of DoFs per radial line segment is nr.

According to the radial line segments definition, the vector xi can be partitioned
as follows:

xi =


xR1

xR2
...

xRNZ

 (4.11)

where the subscript "R" stands for radial line segment and the DoFs at the interface
of the nth sector correspond to the radial line segments xR j for 1+(n−1)Z ≤ r ≤ nZ.
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Fig. 4.8 Inter-stage boundary of a cyclic symmetric stage. Sectors and radial line segments
are denoted by n and r respectively.

If the rth radial line segment is thought as if it was the rth sector of a bladed disk
with NZ sectors, the motion of the rth radial line segment can thus be expressed
using the same Fourier series introduced in Eqn. 4.4:

xRr =
1√
NZ

ai0 +

√
2

NZ

R̃−1

∑
h=1

ac
ih cos[(r−1)ϕk]+

+

√
2

NZ

R̃−1

∑
h=1

as
ih sin[(r−1)ϕk]+

1√
NZ

(−1)r−1aiR̃ (4.12)

where ϕk = 2πk/(NZ), ai denote a vector of interface spatial Fourier coefficients
with subscripts c or s identifying the cosine and sine components respectively and
R̃ = NZ/2 if NZ is even or R̃ = (NZ −1)/2 if NZ is odd. The last term Eqn. (4.12)
does not exist if NZ is odd.

If the spatial Fourier coefficients are grouped as follows:

ai =
{
(ai0)

T ,(ac
i1)

T ,(ac
i2)

T , . . . ,(ac
iR̃−1

)T ,(aiR̃)
T ,

(as
iR̃−1

)T , . . . ,(as
i2)

T ,(as
i1)

T}T (4.13)
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the interface DoFs can be transformed as:

xi = (FNZ,NZ ⊗ Inr)ai = Feai (4.14)

where Inr is the identity matrix of size nr, FNZ,NZ is the NZ ×NZ real valued Fourier
matrix and Fe is the expansion of FNZ,NZ to all the interface DoFs by the Kronecker
product.

By applying the transformation of Eqn. (4.14), the CB-CMS generalized coordi-
nates vector xCB becomes:

xCB =


xi

xa

ηk

=

Fe 0ia 0ik

0ai Iaa 0ak

0ki 0ka Ikk




ai

xa

ηk

 (4.15)

Eqn. 4.15 clearly represents a pure coordinate transformation and does not introduce
any reduction of the interface DoFs xi. However, a further reduction of the Fourier
coefficients ai can be achieved by truncating the columns of FNZ,NZ that do not
significantly contribute to the definition of the mode shapes at the stage’s interface.
In fact, a satisfactory representation of a mode shape can be obtained by considering
the columns of FNZ,NZ corresponding to the disk’s dominant harmonics (0 ≤ h ≤ h̃)
and the small subset of extra harmonics satisfying Eqn. 2.51.

When a bladed disk is subjected to an engine order traveling wave excitation not
all the mode shapes can be excited in resonance condition. In particular, if EO is
the excitation order and h is the number of nodal diameters of the mode shape, Eqn.
2.70 holds:

EO = z ·N ±h ∀ z ∈ N+

In this case the bladed disk reduction can be performed only for the dominant and
extra harmonics corresponding to h. In particular, the Fourier matrix FNZ,NZ can
be reduced by retaining just the columns referring to the dominant harmonic index
h and the extra ones linked to it (Eqn. (2.51)). Moreover, for a certain dominant
harmonic index h, the extra harmonics of order k that significantly contribute to the
definition of a mode shape are those selected by the following relationship:

|Fk| ≥ ε ·Fmax
ε ∈ R+ (4.16)
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where |Fk| is the amplitude of the kth order extra harmonics, Fmax = max(|Fk|) and
ε is an positive real number arbitrary small (Figure 4.9). The harmonic indexes
corresponding to the harmonics of Eqn. 4.16 can thus be grouped into the set σh.

Fig. 4.9 Representation of the highest amplitude harmonics and the generic extras.

If a complete reduction of the bladed disk has to be performed, the former
procedure should be carried out all the dominant harmonic indexes h. Hence, the
global set of harmonic indexes (referring to both dominant and extra harmonics) that
satisfactory reduced the bladed disk’s interface is defined as:

Σ =
h̃⋃

h=1

σh (4.17)

Finally, by picking the columns of FNZ,NZ corresponding to the harmonic indexes
collected into Σ , xi can be reduced as follows:

xi ≈ (FNZ,Σ ⊗ Ind)ãi = F̃eãi (4.18)

and the CB-CMS generalized coordinates vector becomes:

xCB =


xi

xa

ηk

≈

0ia F̃e 0ik

Iaa 0ai 0ak

0ka 0ki Ikk




xa

ãi

ηk

= ΦF xF (4.19)
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where the tilde (˜) identifies the reduced order matrices and vectors. By projecting
Eqn. 4.9 onto ΦbmFe , a further reduced set of EQM is obtained:

MFe ẍFe +KFexFe = f Fe
(4.20)

where

MF = Φ
T
Fe

MCBΦFe KFe = Φ
T
Fe

KCBΦFe f Fe
= Φ

T
Fe

f Fe
(4.21)

are the reduced mass and stiffness matrices and generalized forces vector.

Example: Single-Stage Reduction

The importance of the extra harmonics in the reduction of the coupling interface
DoFs xi can be evaluated by the following example. Let us consider a blisk having
the simple geometry of a flat plate (Figure 4.10).

Fig. 4.10 Blisk with geometry of a flat plate and cantilever beams as blades.

The FE model was created by employing the ANSYS elements SOLID1862 with
the following material properties: Young’s modulus E = 78 GPa, Poisson’s ratio
ν = 0.33 and density ρ = 2800 kg/m3. The blisk can be supposed to be coupled to
another blisk through its interface, which is represented by the blue circumference
highlighted in Figure 4.10. The set of active DoFs xa was defined by selecting
one node per blades in homologous locations (red circles in Figure 4.10). Both the
interface and active DoFs were then retained as master when the CB-CMS ROM
of the blisk was created. According to Eqn. 4.18 xi was further reduced such that
only the mode with 2 nodal diameters could be represented at the interface, while

2The SOLID186 element is used for 3-D modeling of solid structures. It is defined by 20 nodes
having three DoFs at each node: translations in the nodal x, y, and z directions.
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the active DoFs were kept physical to facilitate the force application. The set of
harmonic indexes Σ in this case coincides to the set σ2, which is defined as:

σ2 = 2,10,14,22,26 (4.22)

which is the largest set of extra harmonics satisfying the Eqn. 2.51. Different
ROMs were then created considering the following three reduced sets of harmonic
coefficients: 

ΣI = 2

ΣII = 2,10

ΣIII = 2,10,14

(4.23)

According to Eqn. 4.18 the interface reduction was performed for each set of
harmonics listed in Eqn. 4.23 and the blisk’s frequency response function (FRF)
was evaluated case by case. By assuming a traveling wave excitation on the blades
of order 2 (EO = 2) and a modal damping ζ = 0.001, the FRFs were compared to
that of the CB-CMS ROM calculated in the same conditions (Figure 4.11). From
Figure 4.11 it is clear that the correct description of the mode shape h = 2 requires
at the interface more than one harmonic. In fact, the set ΣI leads to a ROM that is
stiffer than the CB-CMS one. As the number of harmonics increases the FRF’s peak
of the Fourier ROM moves towards that of the CB-CMS ROM. The physical reason
for that lies on the additional flexibility introduced at the blisk’s interface by the
harmonics k = 10 and k = 14.

Fig. 4.11 Comparison in terms of FRFs between the CB-CMS ROM and the ROMs corre-
sponding to the sets ΣI and ΣIII .
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4.3.3 Multi-stage Coupling Procedure

As already introduced at the beginning of this chapter the different cyclic symmetry
characterizing the single-stages of a more complex multi-stage system could make
their coupling challenging. The most efficient and commonest approach for modeling
a bladed disk is based on the definition of the fundamental sector’s FE model, which
is repeated as many time as the number of blades is. Hence, the different number
of sectors of adjacent stages generally results in non-compatible interface meshes,
i.e. the nodes of adjacent interfaces do not share the same geometric locations in the
circumferential direction. In fact, although the interfaces’ modeling can be apriori
performed by adopting an element discretization characterized by compatible radial
line segments of nodes (i.e. the nodes at the disks’ interfaces are located at the
same radial coordinates), the different stages’ periodicity cannot ensure compatible
node locations in the circumferential direction. In this frame the classic coupling
procedure based on the equalities of the interface DoFs cannot be applied.

The procedure described in the subsection 4.3.2 easily solves the problem of
mismatching meshes introduced above. By assuming compatible radial line segments
of nodes at the stages’ interfaces, the coupling procedure can be performed by
enforcing the compatibility conditions not in the physical space, but in the space
of the harmonic Fourier functions approximating the interfaces’ motion along each
circumference of nodes. The multi-stage coupling procedure is here presented in the
case of two stages, but can be extended when more than two stages are involved.

Consider a multi-stage FE model composed by two stages denoted by α and
β with Nα and Nβ sectors respectively. Zα and Zβ are the numbers of radial line
segments at the interface of the fundamental sectors α and β respectively. The
number of the DoFs of the α and β radial line segments is assumed to be the same
(under the hypothesis of compatible radial line segments nrα

= nrβ
= nr). The total

numbers of radial line segments are NαZα for the stage α and Nβ Zβ for the stage β .
Once the sets of harmonic indexes Σα and Σβ (Eqn. 4.17) are defined a new set of
the common harmonic indexes Σγ has to be defined as:

Σγ = Σα ∩Σβ (4.24)

whose is in general smaller than those of Σα and Σβ . The harmonic indexes collected
into the set Σγ select the columns of the Fourier matrices FNα Zα ,Nα Zα

and FNβ Zβ ,Nβ Zβ
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referring to the harmonic functions that describe the same motion at the α and
β interfaces. Therefore, the physical interface DoFs of the two stages can be
approximated as follows:

xα
i ≈ (FNα Zα ,Σγ

⊗ Ind)ã
α
i = Fα

e ãα
i

xβ

i ≈ (FNβ Zβ ,Σγ
⊗ Ind)ã

β

i = Fβ
e ãβ

i (4.25)

According to the Eqn. 4.19 the CB-CMS generalized coordinates vectors xα
CB and

xβ

CB can be then expressed as:

xα
CB =


xα

i

xα
a

ηα
k

≈

0ia Fα
e 0ir

Iaa 0ai 0ar

0ra 0ri Irr




xα
a

ãα
i

ηα
k

= Φ
α
Fe

xα
Fe

xβ

CB =


xβ

i

xβ
a

η
β

k

≈

0ia Fβ
e 0ir

Iaa 0ai 0ar

0ra 0ri Irr




xβ
a

ãβ

i

η
β

k

= Φ
β

Fe
xβ

Fe
(4.26)

The coupling between the stages is performed by enforcing the compatibility con-
ditions ãα

i = ãβ

i = ãi that holds either in the case of compatible or non-compatible
meshes at the interfaces. The compatibility conditions are thus enforced through the
compatibility matrix CF as:

{
xα

Fe

xβ

Fe

}
=



xα
a

ãα
i

ηα
k

xβ
a

ãβ

i

η
β

k


=



I 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 I





xα
a

xβ
a

ãi

ηα
k

η
β

k


= CF



xα
a

xβ
a

âi

ηα
k

η
β

k


= CFxMS

F (4.27)

where the superscript MS stands for Multi-Stage. Lastly, the assembled and reduced
matrices and force vector are given by:

MMS
F = CT

F

[
Mα

F 0
0 Mβ

F

]
CF KMS

F = CT
F

[
Kα

F 0
0 Kβ

F

]
CF
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f MS
F = CT

F

{
f α

F

f β

F

}
(4.28)

For sake of clarity Σγ contains all the harmonic indexes corresponding to the har-
monic coefficients for which the compatibility conditions between stages can be
enforced (Figure 4.12). The harmonic coefficients corresponding to harmonic in-
dexes either belonging only to Σα or Σβ are automatically enforced to be zero when
the coupling is performed.

Fig. 4.12 The harmonic compatibility conditions between stages are enforced through the
equality of the harmonic coefficients representing the common harmonic functions.

As in the case of the method described in chapter 3 the selected harmonic basis
functions describe the characteristic motion of the interfaces. Therefore, the two
single-stage ROMs can be dynamically coupled, and then the vibration energy be
transferred from one to the other, if the harmonic function reducing both interfaces
are the same.

Example: Multi-Stage Coupling

The multi-stage system composed by two bladed disks is considered as the reference
example. It can be thought as the assembly resulting from the coupling of the
two stages with Nα = 50 and Nβ = 53 sectors. The FE models of the two stages
were generated by repeating the FE models of the fundamental sectors Nα and Nβ

times respectively (the FE models of Figure 4.12 are considered as reference). The
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stages were meshed using the SOLID185 3 ANSYS elements to which the following
material properties were associated: Young’s modulus E = 210 GPa, Poisson’s ratio
ν = 0.33 and density ρ = 7800 kg/m3. For both stages the number of radial line
segments per sector is equal to four (Zα = Zβ = 4). The radial line segments of the
stage α are compatible to those of the stage β , meaning that they both have five
nodes at the same radial coordinates. The different periodicity characterizing the two
stages leads to different meshes at the coupling interfaces.

The CB-CMS ROMs were then created by retaining for both stages the sets of
interface (xα

i and xβ

i ) and active DoFs (xα
a and xβ

a ). The number of nodes and DoFs
of the two FE models and the size of the interface and active sets of DoFs are listed
in the Table 4.1.

Table 4.1 Features of the stages α and β FE models.

Stage # nodes # DoFs # interface DoFs (ni) # active DoFs (na)

α 42250 126750 3000 150
β 44202 132606 3180 159

In addition, the first 200 fixed-interface normal modes were also considered for both
the stages, yielding two CB-CMS ROMs with 3350 and 3539 DoFs. For reference,
the first 200 natural frequencies of both CB-CMS ROMs are all within 0.4% of the
corresponding FE natural frequencies. The mentioned difference was evaluated by
the following relationship:

e% =
| fCB − fFE|

fFE
·100 (4.29)

where the FE quantities were considered as reference.

After having created the CB-CMS ROMs of the two stages, the sets Σα and
Σβ of extra harmonics indexes corresponding to different values of ε were defined
(Eqn. 4.16). The values of ε and the corresponding sets of harmonic indexes are
listed in Table 4.2. where Σγ represents the intersection between Σα and Σβ .

The ROMs of the two stages were created using as reduction basis the harmonic
functions corresponding to the three sets Σγ listed in Table 4.2. After having solved
the corresponding eigenproblems, the percentage differences in term of natural

3The SOLID185 element is used for 3-D modeling of solid structures. It is defined by eight nodes
having three DoFs at each node: translations in the nodal x, y, and z directions.
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Table 4.2 Sets of harmonic indexes used for the reduction of the stages α and β .

ε Σα Σβ Σγ

0.5 0 → 25 0 → 27 0 → 25
10−1 0 → 29 0 → 31 0 → 29
10−2 0 → 35 0 → 37 0 → 35

frequencies with respect the CB-CMS ROMs were evaluated by using the Eqn. 4.29.
Figure 4.13 shows the values of e% corresponding to the set Σγ obtained for ε = 0.5.

Fig. 4.13 e% for the first 200 modes of the stages α and β when the first set of hamonic
indexes Σγ is considered.

From Figure 4.13 it can be noted that the stages’ ROMs obtained by using only the set
of dominant harmonics (h = 0,1,2, . . . ,25) leads to small differences on frequencies
when with respect the CB-CMS ones (max(e%) ≈ 2.6 · 10−3%). If the sets Σγ

corresponding to ε = 10−1 and ε = 10−2 are used, the maxima differences decrease
to e% ≈ 3.5 ·10−4% and e% ≈ 3.2 ·10−5% respectively. These results confirm the
importance of expanding the interface reduction basis if a better approximation of
the stage’s dynamics is required.

By following the stages’ coupling procedure described above, three multi-stage
ROMs were created by enforcing the compatibility conditions as suggested in
Eqn. 4.27. Eigenfrequencies and mode shapes of the assembled ROMs were then
compared to those of the full FE model by using Eqn. 4.29 and the Modal Assur-
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Fig. 4.14 e% for the first 200 modes obtained by comparing the frequencies from the full FE
model with those of the multi-stage ROM a), MAC between the the first 50 full FE modes
and ROM modes b).

ance Criterion (Figure 4.14). The plots refer to the case where only the dominant
harmonics (h = 0,1,2, . . . ,25) were used to reduce the interfaces of the two stages.

The comparison between the full and reduced multi-stage models was completed
by computing the forced response of the system when a traveling wave excitation
with EO = 2 was applied to the active DoFs in the z. Due to the excellent results
already obtained for the eigenvalues and eigenvectors comparisons, this further check
was performed on the smaller size ROM.

Fig. 4.15 Forced response comparison between the FE and reduced multi-stage model.
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From Figure 4.15 no significant differences can be noted neither in frequency nor in
amplitude between two plots. However, performing forced response calculations on
the ROM was much more efficient than doing the same for the full assembled FE
model. In fact, due to the different model size (1306 vs ∼ 260000) the computational
time spent for the forced response on the full configuration was almost 138 times
larger than that spent for the reduced one (∼15 s vs ∼ 2075 s).

The small differences on the natural frequencies (max(e%)≈ 0.55%), the perfect
matching on the eigenvectors and the accuracy of the forced response calculations,
make the reduction technique suitable for fast dynamic analyses on complex multi-
stage systems.

Note that the straightforward application of the methodology here described
implies two different conditions:

1. The mesh at each stage’s interface has to be characterized by equally spaced
radial line segments of nodes;

2. The radial line segments at the interface between two adjacent stages have
nodes located at the same radial coordinates.

Although the first condition cannot be relaxed, since it allows the coordinate trans-
formation of Eqn. 4.18, the second one can be overcome by first interpolating the
harmonic Fourier functions of one interface at the circumferences of nodes of the
adjacent one, and then by enforcing the compatibility condition as done in Eqn. 4.27.

4.4 Multi-stage ROM for Sectors in Cyclic Symmetry
Conditions

The number of inter-stage boundary DoFs is often large and creating CB-CMS
ROMs of full stages could be a time consuming process. For this reason a ROM
technique involving FE models of fundamental sectors instead of full stages would be
much more efficient. In this section an original reduction technique for multi-stage
structures involving cyclic constraints on fundamental sectors is presented. The
methods starts from the cyclic Craig-Bampton method (CS-CB) developed by Bladh
et al. [9] and goes further giving a smart solution for the sectors’ interfaces reduction.
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4.4.1 Cyclic Craig-Bampton Method

The CS-CB method is here formulated for bladed disk sectors consisting of one
disk’s sector with an attached blade (Figure 4.2). By using the notation of Figure
4.16 the sector’s DoFs may be partitioned as:

xS =



xi

xa

xl

xr

xe


(4.30)

where:

• xi is the vector of DoFs at the inter-stage boundary non including those at the
left and right sector’s frontier.

• xa is the vector of active DoFs.

• xl is the vector of DoFs at sector’s left frontier.

• xr is the vector of DoFs at sector’s right frontier.

• xe is the vector of exceeding DoFs, i.e. those not belonging to the previous
sets.

The corresponding sector’s matrices and force vector can thus be partitioned as
follows:

MS =


Mii Mia Mil Mir Mie

Mai Maa Mal Mar Mae

Mli Mla Mll Mlr Mle

Mri Mra Mrl Mrr Mre

Mei Mea Mel Mer Mee

 KS =


Kii Kia Kil Kir Kie

Kai Kaa Kal Kar Kae

Kli Kla Kll Klr Kle

Kri Kra Krl Krr Kre

Kei Kea Kel Ker Kee



f S =



f i

f a

f l

f r

f e


(4.31)
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Fig. 4.16 FE model of the fundamental sector: DoFs notation.

According to Eqn. 2.22 cyclic constraints can be enforced between the sector’s left
and right frontiers so that xr can be expressed in terms of xl as follows:

xr = xle±ιϕh (4.32)

Therefore, the vector of physical coordinates xS can be turned into cyclic coordinates
by using the following transformation:

xs =



xi

xa

xl

xr

xe


=


Iii 0ia 0il 0ie

0ai Iaa 0al 0ae

0li 0la Ill 0le

0ri 0ra Irre±ιϕh 0re

0ei 0ea 0el Iee




xh
i

xh
a

xh
l

xh
e

= Th
CSxh

CS (4.33)

where Th
CS is the cyclic transformation matrix, xh

CS is the cyclic coordinates vector
and the superscript h denotes the harmonic index for which the cyclic reduction has
been performed. The cyclic mass and stiffness matrices and the external forces are
finally obtained by using the following relationships:

Mh
CS = (Th

CS)
∗MSTh

CS Kh
CS = (Th

CS)
∗KSTh

CS
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f CS = (Th
CS)

∗ f S (4.34)

The size of the cyclic symmetric sector can be further reduced by resorting to the
CB-CMS reduction technique. In this regard two new vectors of cyclic boundary and
exceeding DoFs can be defined as:

xh
b =

{
xh

i

xh
a

}
xh

e′ =

{
xh

l

xh
e

}
(4.35)

which leads to the following partitioning of the the cyclic coordinates vector:

xh
CS =

{
xh

b

xh
e′

}
(4.36)

The cyclic matrices and force vector of Eqn. 4.55 can then be partitioned accordingly
as:

Mh
CS =

[
Mh

bb Mh
be′

Mh
e′b Mh

e′e′

]
Kh

CS =

[
Kh

bb Kh
be′

Kh
e′b Kh

e′e′

]
f h

CS =

{
f h

b

f h
e′

}
(4.37)

For each harmonic index h the cyclic DoFs xh
e′ can be statically condensed on the

cyclic boundary DoFs exactly as done in Eqn. 3.15:

xh
e′ =−Kh

e′e′K
h
e′bxh

b =Ψ
h

e′bxh
b (4.38)

where the term Ψ h
e′b =−Kh

e′e′K
h
e′b is here referred to as the cyclic static condensation

matrix. Eqn. 4.38 can then be used to express xh
CS in terms of xh

b:

xh
CS =

{
xh

b

x′he

}
≈

[
Ih

b

Ψ h
e′b

]
xh

b (4.39)

where:

Ψ
h

sb =

[
Ih

b

Ψ h
e′b

]
(4.40)

is the ns ×nb cyclic constraint-mode matrix.
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Moreover, the cyclic fixed-interface normal modes are computed for each har-
monic index h from the cyclic eigenproblem:(

Kh
e′e′ −ω

2
e′, jM

h
e′e′
)
φ

h
e′, j = 0e′ ∀ j = 1, . . . ,ne′ (4.41)

where ω2
e′, j and φ h

e′, j are the jth eigenvalue and mass normalized eigenvector. The
complete set of ne′ cyclic fixed-interface normal modes can be labeled as Φh

e′e′ and
assembled for increasing eigenvalues as columns of the following modal matrix:

Φ
h
se′ =

[
0be′

Φh
e′e′

]
(4.42)

Therefore, by keeping a subset of nk ≪ n′e cyclic fixed-interface normal modes, xh
CS

can reduced as (Eqn. 3.26):

xh
CS =

{
xh

b

xh
e′

}
≈

[
Ih

b 0bk

Ψ h
e′b Φh

e′k

]{
xh

b

ηh
k

}
= Rh

CBxh
CB (4.43)

where Rh
CB is the cyclic CB-CMS component-mode matrix. By projecting the sector’s

EQM onto the space spanned by the columns of Rh
CB, the following reduced set of

EQM is obtained:[
M̃h

bb M̃h
bk

M̃h
kb Ih

kk

]{
ẍh

b

η̈h
k

}
+

[
K̃h

bb 0
0

(
Ω 2

kk

)h

]{
xh

b

ηh
k

}
=

{
f̃ h

b

f̃ h
k

}
(4.44)

The submatrices and subvectors of Eqn. 4.44 are defined exactly as already done in
Eqn. 3.28.

4.4.2 Cyclic Interface DoFs Reduction and Inter-Stage Coupling

The ROM obtained at the end of the former procedure well approximate the single-
stage dynamics for mode shapes having h nodal diameters. However, although a
significant reduction of the exceeding DoFs was achieved, the set of cyclic interface
DoFs (xh

i ) remained preserved (Figure 4.17). In general, disk sectors characterized
by different sector angles have non-matching nodes at the inter-stage boundaries.
Therefore, the direct coupling between the cyclic ROMs obtained by employing the
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Fig. 4.17 Cyclic DoFs retained as a master in the CS-CB ROM.

CS-CB method can take place if a further transformation of the interface DoFs is
performed.

In the previous section it was assumed to have regular meshes at the stages’
interfaces, a condition that allowed to group the DoFs in radial line segments. By
using the same logic for fundamental sectors, the interface mesh can be created in
order to have Z radial line segments of DoFs (Figure 4.18):

Fig. 4.18 Radial line segments of DoFs at the cyclic sector interface.
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In this way the interface DoFs can be partitioned as follows:

xh
i =



xh
R1
...

xh
Rr
...

xh
RZ


∀ r = 1, . . . ,Z (4.45)

where xh
Rr

are the cyclic DoFs belonging to the rth radial line segment. The reduction
method proposed in this section aims at reducing all the cyclic interface DoFs xh

i to
those of the first radial line segment xh

R1
. By performing the mentioned reduction

for both cyclic symmetric sectors it will be shown how the compatibility conditions
leading to a highly reduced multi-stage ROM can be enforced in a simple manner.

Before going into the details of this methodology, let us remember the physical
meaning of the generic cyclic eigenvector. As already discussed in Chapter 2 it
represents a vector giving information about the amplitude and phase of the hth order
spatial harmonic used to perform the cyclic reduction (Figure 2.10). However, the
dominant harmonic of order h is not the only one describing the stage’s mode at the
interface, since the importance of the corresponding set of extra harmonics pattern
was also proved (Eqn. 2.51). The interface reduction proposed in this section can
thus be achieved by writing kinematic relationships similar to Eqn. 2.32 between the
radial line segments for all the harmonic indexes linked to h by the Eqn. 2.51.

According to the previous description the cyclic eigenvector corresponding to
the generic radial line segment xh

Rr
can be thought as the sum of dominant and extra

harmonic components:

Xh
Rr
= Xh,d

Rr
+ ∑

k∈σh

Xh,k
Rr

∀ r = 1, . . . ,Z (4.46)

where σh is the set collecting extra harmonics indexes linked to h (see subsection
4.3.2). As already explained in Chapter 2 the same relationship must hold for the
corresponding physical DoFs:

xh
R j
= xh,d

R j
+ ∑

k∈σh

xh,k
R j

(4.47)
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By extending Eqn. 4.47 to the all Z radial line segments, xh
i can then be rewritten as:

xh
i =



xh
R1
...

xh
Rr
...

xh
RZ


=



xh,d
R1
...

xh,d
Rr
...

xh,d
RZ


+ ∑

k∈σh



xh,k
R1
...

xh,k
Rr
...

xh,k
RZ


→ xh

i = xh,d
i + ∑

k∈σh

xk
i (4.48)

Each vector at the right-hand side of Eqn. 4.48 can be further reduced by writing the
kinematic constraint equations between adjacent radial line segments. In particular,
let us start with the vector of dominant cyclic coordinates xh,d

i . Due to the cyclic
constraints enforced at the beginning of the reduction (Eqn. 4.32), the cyclic DoFs
of the rth radial line segment are linked to those of the first one by the following
relationship:

xh,d
Rr

= xh,d
R1

e±ι(r−1)ϕhr (4.49)

where ϕhr is called dominant inter-line phase angle and represents the phase shift
between two radial line segments when the disk’s interface is forced to vibrate with
a spatial harmonic of order h:

ϕhr =
ϕh

Z
(4.50)

Hence, the whole vector of dominant cyclic interface DoFs can be expresses as:

xh,d
i =



xh,d
R1
...

xh,d
Rr
...

xh,d
RZ


≈



I
...

Ie±ι(r−1)ϕhr

...
Ie±ι(Z−1)ϕhr


xh,d

R1
= Γdxh,d

R1
(4.51)

where Γd is the matrix reducing the dominant cyclic interface DoFs to the first radial
line segment (Figure 4.19).
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Fig. 4.19 Reduction of rth radial line segments for the dominant harmonics.

Similar considerations can be carried out for all the terms of the sum at the
right-hand side of Eqn. 4.48. In particular, let us assume σh collecting a number of
nm extra harmonics indexes:

σh = k1, . . . , km, . . . , knm (4.52)

For the mth index let us define the extra inter-line phase angle as:

ϕkm =
2π

NZ
km km ∈ σh (4.53)

which represents the phase shift between two adjacent radial line segments when the
disk’s interface is forced to vibrate with a spatial harmonic of order km. Therefore,
according to the definition of extra harmonic given in Chapter 2, the generic vector
xkm

i can be approximated as follows:

xkm
i =



xkm
R1
...

xkm
Rr
...

xkm
RZ


≈



I
...

Ie±ι(−1)m(r−1)ϕkm

...
Ie±ι(−1)m(Z−1)ϕkm


xkm

R1
= Γkmxkm

R1
(4.54)

where Γkm is a reduction matrix similar to Γh consistent with the extra harmonic index
km (Figure 4.20).
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Fig. 4.20 Reduction of rth radial line segments for the extra harmonics of order km.

By substituting Eqns. 4.51 and 4.54 into the Eqn. 4.48 the cyclic interface DoFs
can be expressed as4:

xh
i =

[
Γh Γk1 · · · Γkm

]


xh
R1

xk1
R1
...

xkm
R1

 (4.55)

and the CS-CB vector generalized coordinates vector be finally approximated as
follows:

xh
CB =


xh

a

xh
i

ηh
k

≈

I 0 0 · · · 0 0
0 Γh Γk1 · · · Γkm 0
0 0 0 · · · 0 I





xh
a

xh
R1

xk1
R1
...

xkm
R1

ηh
k


=

= RΓhxΓh
CB (4.56)

By projecting the EQM of Eqn. 4.44 onto the space spanned by the matrix RΓh a new
highly reduced cyclic ROM is obtained (Figure 4.21)

4Hereafter the superscripts h,d and h,km are replaced by h and km respectively.
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Fig. 4.21 Cyclic ROM for the dominant harmonics of order h and the corresponding extras.

Once the former reduction is performed for both sectors and for all the possible
nodal diameter patterns, the compatibility conditions between the ROMs can be
enforced by equaling the cyclic DoFs at their first radial line segments referring to
the same harmonics (Figure 4.22).

Fig. 4.22 Compatibility conditions between two cyclic ROMs.
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In particular, if x j
R1,α

denotes the cyclic DoFs of order j at the first radial line segment
of the stage α and xw

R1,β
denotes the cyclic DoFs of order w at the first radial line

segment of the stage β , the multi-stage coupling can be performed by writing the
following equations:

x j
R1,α

= xw
R1,β

⇔ j = w (4.57)

The harmonic indexes for which the compatibility equations are written can be
determined exactly as already done in the previous section, i.e. by finding the set Σγ

containing the best harmonic indexes for both stages (Eqn. 4.24).

Note that due to the presence of the extra harmonics patterns and the different
cyclic periodicity of the stages, the multi-stage coupling process may involve more
than two cyclic ROMs. However, in the most simple case where the dynamic behavior
of the multi-stage system has to be predicted for a certain value of h, the model
assembly can be performed by coupling just the DoFs referring to the dominant
harmonic indexes (Figure 4.23).

Fig. 4.23 Compatibility conditions between two cyclic ROMs just for the dominant harmonics
of index h.
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In such cases the presence of the uncoupled extra harmonics DoFs still ensures
additional flexibility to the inter-stage boundaries and then a better approximation of
the multi-stage system’s dynamics.

Example: Multi-stage Coupling

The multi-stage reduction technique involving cyclic ROMs was tested on the refer-
ence model of section 4.2. A preliminary CS-CB reduction was performed for both
α and β sectors for all the common dominant harmonic indexes (h = 0,1, . . . ,25).
The size of the full FE models and those of the resulting CS-CB ROMs are reported
in Table 4.3:

Table 4.3 Features of the sectors α and β FE models.

Sector # DoFs full FE model # DoFs CS-CB ROM

α 5736 53
β 5670 53

The number of DoFs of each sector’s ROM results from the sum of:

• 5×3 interface DoFs at the first radial line for the dominant harmonic h (xh
R1

).

• 5× 3 interface DoFs at the first radial line for the highest amplitude extra
harmonics k (xk1

R1
).

• 3 active DoFs at the blade airfoil (xh
a ).

• 20 cyclic fixed-interface modal coordinates due to the cyclic CB-CMS reduc-
tion.

Figure 4.24 shows the DoFs retained for each cyclic ROM. For reference, first 20
natural frequencies of each ROM are within 0.53% of the corresponding FE natural
frequencies. Also in this case this value was evaluated by using the relationship:

e% =
| fCS-CB − fFE|

fFE
(4.58)

where the FE quantities were considered as reference.
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Fig. 4.24 Cyclic DoFs retained for each cyclic ROM. Two sets of cyclic DoFs are retained: xh
R1

refers to the dominant harmonic, while xk1
R1

refers to the highest amplitude extra harmonics.

By employing the coupling procedure described above, 26 multi-stage ROMs
were created by enforcing the compatibility conditions just for the dominant harmonic
indexes, since it was chosen to predict the the dynamic behavior of the multi-stage
for isolated nodal diameters patterns. Figure 4.25 shows the comparison between the
forced response calculations obtained from the full FE model and the multi-stage
ROM corresponding to the harmonic index h = 2. The calculations were performed
by exciting the models with a traveling wave excitation of order EO = 2.

As in the case of the multi-stage technique presented in section 4.2, no significant
differences can be found neither in terms of resonance frequencies (< 0.005%) nor
in terms of vibration amplitude. However, performing forced response calculations
on the ROM was much more efficient than doing the same for the full assembled FE
model. In fact, due to the different model size (53 vs ∼ 260000) the computational
time spent for the forced response on the full configuration was almost 103 times
larger than that spent for the reduced one (∼2 s vs ∼ 2075 s).
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Fig. 4.25 Forced response comparison between the FE and cyclic reduced multi-stage model.

4.5 Discussion

This Chapter presents two novel reduction techniques for multi-stage systems based
on the same theory background of cyclic symmetric structures, but different mathe-
matical approaches:

1. The first method starts from the finite element models of isolated full stages.
These are individually reduced and then assembled leading to a reduced order
model of the complete multi-stage structure. The first reduction step for each
single-stage is the application of the well-known Craig-Bampton method,
which requires that at least the DoFs at the inter-stage boundary are retained as
master. Later, such physical DoFs are approximated by few spatial harmonic
basis functions taking into account the presence of either dominant of extra
harmonic patterns. Once the mentioned reduction is performed for both stages’
interfaces, the multi-stage coupling procedure is performed by equaling the
same order spatial Fourier coefficients (i.e. the generalized coordinates) of
the functions adopted for the interfaces reduction. The main idea behind this
coupling process can be summarized as follows: the vibration energy can be
transferred from one stage to the adjacent ones if their motion at the interface
has the same spatial shape.

It can be noted that the stages’ coupling is performed for all the harmonic
functions approximating the motion at the stage’s interfaces. The assembled
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multi-stage ROM then allows the force response prediction for any traveling
wave excitation applied to the stages. In the example of section 4.3, the
application of this method led to an effective model size compression (1306 vs
260000) that guaranteed to lower the computational costs of almost 140 times.

2. The second method just requires the finite element models of stand-alone
fundamental sectors representative of the stages’ geometries. Each sector is
reduced by applying a modified version of the cyclic Craig-Bampton method
proposed by Bladh [9], which takes into account a further reduction of the
interface DoFs considering the extra harmonic pattern related to the dominant
harmonic index for which the starting cyclic reduction is performed. At the
end of each stage’s reduction the interface is modeled by few cyclic physical
DoFs. The final multi-stage reduced order model is this time obtained by
enforcing the compatibility conditions in the space of such cyclic DoFs.

For this second case the model size compression was much more effective
than that achieved with the first reduction method (53 vs 1306 vs 260000).
However, the stages reduction is in this case valid just for one dominant
harmonic function. This means that the forced response calculations can be
performed for traveling wave excitations having engine order compatible with
the order of the harmonic function used for the cyclic reduction of the sectors.

It has been proved that the application of both methods on a multi-stage bladed disks
model allows an excellent prediction of its dynamics in terms of natural frequencies,
eigenvectors and forced response calculations. The choice of one method over the
other depends on the objective of the dynamic calculations on a multi-stage ROM. If
the complete system dynamics has to be modeled, the first method is preferred since
it allows to enforce the harmonic compatibility conditions for all the desired set of
harmonic basis functions. Differently, if the behavior of the system for few nodal
diameter patterns is of interest, the second method appears much more efficient and
easily applicable.

Although the methods were applied in order to solve linear dynamic problems,
they appear also promising for modeling non-linear problems concerning friction
contacts at the flange joint connecting two stages (see chapter 5). In particular, the
extra harmonics can be exploited to better approximate the displacements at the
interface between two stages when the damping capability of the flange joint has to
be captured by employing suitable contact models.



Chapter 5

ROM for Multi-Stage Bladed Disks
with Friction at the Flange Joint

5.1 Introduction

The interests of the scientific community in the development of non-linear models for
friction prediction in turbomachinery has been grown recently. Most of them concern
problems related to the presence of possible sources of friction at specific blade’s
locations. In this frame the modeling of non-linearities caused by underplatform
dampers [38–41], blade’s root [42] and shroud contacts [43, 44], has been proved
as effective in predicting of the non-linear blade’s dynamics. Such models have
also become standard tools widely employed by the industries in the design of
single-wheels bladed disk.

Recently the focus of research is moving towards other types of joint involved in
aircraft engines, whose non-linear behavior may affect the dynamics of the whole
system. In this regard, the bolted flange joint connecting neighboring stages of a
complex multi-stage system may represent a possible source of non-linearities due
friction contacts. As in the case of other types of joints used in bladed disk assemblies,
such friction phenomena may lead to a significant amount of damping that can be
exploited to lower the dynamic response of the system under the prescribed limits.

Nowadays the most used and simplest approach to model a flange joint consists
in linking the nodes at the disks’ interfaces either by means of rigid connections
or by a set of springs having equal stiffness. In both cases the resulting coupled
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structure is stiffer than the actual one and may provide high resonance frequencies
since possible stick-slip phenomena at the contact interface are completely prevented.
In order to improve the previous approaches the energy dissipation due to the friction
at the contact surfaces must then be taken into account.

Single bolted joints actually show an evident non-linear behavior that was ex-
perimentally observed and numerically proved in [45–47]. Later, the non-linear
nature of flange joints involved in the casing of aircraft engines was numerically
demonstrated by using non-linear three-dimensional friction elements applied at the
contact interfaces [48–50]. A similar application featuring friction contacts is that
of the flange joints connecting adjacent bladed disks of a real turbofan engine. In
this regard, a novel contact model for the microslip prediction in the flange joint of
a multi-stage bladed disk assembly was proposed by Firrone et al. [7]. Localized
non-linearities associated to the mentioned typologies of joints are not in general
well captured when linear FE models are used. Recently, delli Carri et al. proposed
an extention of existing modal testing techniques in order to enhance the elements of
the FE model that is used to predict the non-linear behavior of the system [51, 52].

In this Chapter the multi-stage ROM techniques developed in Chapter 4 are
combined with the macroslip contact model involving the classic spring-slider contact
element (also known as Jenkins). In this way the non-linear forced response of a
multi-stage bladed disk with friction contacts at the bolted flange joint can be easily
evaluated.

The non-linear numerical solver developed to predict the non-linear forced
responses in the frequency domain is based on the Harmonic Balance Method
(HBM). Here, the periodic response of the system subjected to periodic excitation is
studied as a superposition of harmonics and allows to turn the differential EQM into
a system of non-linear, complex, algebraic equations.

5.2 Reduced Balance Equations and Harmonic Bal-
ance Method

In Chapter 3 and 4 it was shown how the linear dynamics of large complex structures
can be efficiently predicted on highly condensed models. Reduction techniques
have also become essential tools used for non-linear forced response calculations
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on large mechanical systems involving friction contacts. In this regard the case of a
multi-stage bladed disk assembly with friction contacts at the bolted flange joint has
no exceptions. The EQM of such system can be expressed as:

Mẍ(t)+Cẋ(t)+Kx(t) = f e(t)− f n(x, ẋ, t) (5.1)

where M, C and K are the mass, viscous damping and stiffness matrices, x(t) is the
vector of physical DoFs, f e is the vector of the external harmonic forces acting on the
system and f n is the vector of the nonlinear contact forces, generated by the relative
displacement of the contact DoFs.

A multi-stage ROM can be obtained by either using the conventional methods
presented in Chapter 3 or one of the most suitable reduction techniques developed in
Chapter 4. When one of these method is employed, the system dynamics is expressed
in terms of a smaller set of generalized DoFs and the following reduced non-linear
EQM are obtained:

Mrẍr(t)+Crẋr(t)+Krxr(t) = f r,e(t)− f r,n(xr, ẋr, t) (5.2)

where Mr, Cr and Kr are the reduced mass, viscous damping and stiffness matrices,
xr(t) is the reduced vector of generalized DoFs, f r,e is the reduced vector of the
external harmonic forces acting on the system and f r,n is the reduced vector of the
nonlinear contact forces. Hereafter matrices and vectors are assumed to be reduced
and the subscript r will be omitted in order to simplify the following notation.

In order to reduce the large calculation times typical of numerical integration
of non-linear systems, the HBM can be used to compute the steady-state response
of the system [53–55]. In particular, due to the periodicity of the traveling wave
excitations acting on both stages, the displacements x and the non-linear contact
forces f n are periodical at steady-state. Therefore, they can be expressed as the real
part of the following truncated series of harmonic terms:

x(t) = ℜ

(
nh

∑
f=0

X f · ei f EOΩ t

)

f n(x, ẋ, t) = ℜ

(
nh

∑
f=0

F f
n · ei f EOΩ t

)
(5.3)
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where Ω is the rotation speed of the multi-stage bladed disk and nh is the number of
harmonics that has to be chosen in order to approximate the dynamics of the system
with sufficient accuracy. If Eqns. 5.3 are replaced into Eqn. 5.2, the reduced set of
EQM is turned into a set of non-linear, complex, algebraic equations:

D f (Ω)X f = F f
e −F f

n ∀ f = 0, . . . ,nh (5.4)

where
D f = K+ i f ΩC− ( f EOΩ)2M ∀ f = 0, . . . ,nh (5.5)

is the f th order dynamic stiffness matrix and the 0th order represents the static
balance equation.

Since the non-linear contact forces f n depend on the relative displacement of
the contact DoFs, whose number is typically much lower than the total number of
DoFs, it is convenient to rearrange Eqn. 5.4 in order to decouple the solution of the
non-linear part of the problem from its linear part. To do this, the receptance matrix
H f , which is the inverse of D f , can be computed and the set of balance equations
can be written in the receptance form as:

X f = X f
e −H f F f

n (5.6)

where the first term at the right-harnd side of Eqn. 5.6 represents the linear response
due to the external excitation, i.e. Xe = H f F f

e , while the second term takes into
account the contribution of the non-linear forces.

The complex displacement vector X̃ f can be grouped as:

X f =

{
X f

n

X f
l

}
(5.7)

where X f
n is the vector of the non-linear DoFs, i.e. those where the non-linear contact

forces act, and X f
l are all the remaining linear DoFs. By using the DoFs partition of

Eqn. 5.7, Eqn. 5.6 becomes:{
X f

n

X f
l

}
=

{
X f

e,n

X f
e,l

}
−

[
H f

nn H f
nl

H f
ln H f

ll

]{
F f

n

0

}
(5.8)
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Since the non-linear contact forces F f
n only depend on the non-linear displacement

X f
n , only the first matrix equation:

X f
n = X f

e,n −H f
nnF f

n (5.9)

is non-linear and has to be solved iteratively with a non-linear solver. Once the
non-linear forces F f

n are obtained from Eqn. 5.9, the response of the linear DoFs X f
l

can be computed by solving the following equation:

X f
l = X f

e,l −H f
lnF f

n (5.10)

It must be observed that Eqns.5.9 are coupled to each other, because the arbitrary
harmonic component F f

n of the non-linear contact forces depends on all the harmonic
components of the displacement of non-linear DoFs X f

n . In order to solve Eqn. 5.9 a
contact model is necessary to compute the harmonic components F f

n of the periodical
contact forces from a given set of harmonics components X f

n of the non-linear nodal
displacements.

5.3 Contact Models

In order to solve the reduced set of non-linear algebraic EQM given in Eqn. (5.9) it
is required to compute the periodic contact forces due to the relative displacement
occurring for each couple of nodes in contact.

The the problem of modeling periodical contact forces due to friction contacts
and their implementation in numerical solvers for the forced response calculation of
mechanical systems has been addressed by several authors. Most of these models are
based on the so called Alternating Frequency Time (AFT) method [56], also known
as the Hybrid Frequency Time (HFT) method [57].
According to the flow-chart shown in Figure 5.1 the AFT method can be thought as
composed by the following steps:

• For a given set of harmonic Fourier coefficients X f
n representing the abso-

lute displacements of the contact nodes, the relative displacements ∆X f
n are

computed from the contact kinematics.
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Fig. 5.1 Diagram of the AFT/HFT method.

• The periodical time history of the relative displacements is obtained by per-
forming the Inverse Fourier Transform (IFFT) of ∆X f

n .

• The periodical time history of non-linear contact forces is computed by using
the constitutive laws of the contact model.

• The Fast Fourier Transform is applied to f n in order to compute the harmonic
components F f

n of the periodical contact forces, which are then substituted
into the Eqn. (5.10).

Among the contact models existing in the technical literature for the forced
response calculation of mechanical systems, the following two are used in the
application dealt in the present Chapter:

1. One-dimensional contact model with constant normal load [54].

2. One-dimensional contact model with normal load variation [58, 55].

5.3.1 1-D Contact Model with Constant Normal Load

This contact model (Figure 5.2) was described and used for the first time by Griffin in
1980 [54]. It is able to model a 1-D relative displacement in the tangential direction
by taking into account the effect of a constant normal load acting on the contact.
According to the nomenclature used in Figure 5.2, x1(t) denotes the periodic relative
displacement between two nodes in contact, while x2(t) is the amount of tangential
slip between the contact surfaces. A friction coefficient µ is assumed between the
contact surfaces, while a constant normal load f0 keeps the two bodies in contact.
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The tangential contact stiffness is modeled by a spring with elastic constant kt .

Fig. 5.2 1-D contact model with constant normal load.

Only two contact states can be modeled: stick and slip. In the sticking mode the
contact is elastic, no slip occurs and the tangential force at the contact is:

fc = kt · (x1 − x2) with ẋ2 = 0 (5.11)

In the slipping mode, the modulus of the tangential force is equal to the Coulomb
limit value and its versus depends on the versus of the slipping velocity according to
the following relationship:

ft = sgn(ẋ2) ·µ · f0 (5.12)

where sgn(ẋ2) is the sign function which assumes two possible values:

sgn(ẋ2) =


−1 if ẋ2 < 0 (negative slip)

1 if ẋ2 > 0 (positive slip)

(5.13)

Stick and slip alternate each other according to the transition criteria shown in
Table 5.1
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Table 5.1 1-D contact element with constant normal load: transition criteria.

Contact state Transition criterion

Stick to Slip | ft |= µ · f0

Slip to Stick ẋ2 = 0

5.3.2 1-D Contact Model With Normal Load Variation

The contact model described in the previous subsection does not allow to model the
effect of the normal load variation. However, this important feature helps in a better
modeling of the actual contact state, especially when separation or lift-off occurs.
This model was first proposed by Yang et al. [58] for single HBM and then extended
by Petrov and Ewins [55] in the case of multi-harmonic balance method (MHBM).

A schematic view of this contact model can be found in Figure 5.3, where the two-
dimensional relative displacement is decomposed into two perpendicular directions:
two in-plane tangential component represented by x1 and x2 components, and one
out-of-plane normal component xn.

Fig. 5.3 1-D contact model with normal load variation.

The one-dimensional contact model with normal load variation is used to compute
the periodic friction forces for a given periodic relative displacement by taking into
account possible separation of the normal contact. Hence, in this case three possible
contact states can be modeled: stick, slip and separation.
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The contact model’s parameters are represented by the tangential and normal
contact stiffnesses, which are modeled by two springs with stiffness kt and kn

respectively, the coefficient of friction µ and the normal preload f0 (see Figure). The
normal contact force fn(t) is defined as:

fn = max( f0 + kn · xn,0) (5.14)

If f0 is positive, the bodies are in contact before vibration starts, while if f0 is negative
an initial gap g0 =− f0

kn
exists between the two bodies.

Along the tangential direction, the contact force is defined as:

ft =


kt · (x1 − x2) sticking mode

sgn(ẋ2)µ fn slipping mode

0 lift-off mode

(5.15)

Stick, slip and lift-off (see Eqn. 5.14 for the constitutive equations) may alternate
each other during the periodic vibration, according to the transition criteria shown in
Table 5.2.

Table 5.2 1-D contact element with variable normal load: transition criteria.

Initial stage Final state Transition criterion

Stick Slip | ft |= µ · fn
Stick Lift-off fn = 0 and ḟn < 0

Slip Stick ẋn = 0
Slip Lift-off fn = 0 and ḟn < 0

Lift-off Stick fn = 0, ḟn > 0 and | ḟt |< µ · | ḟn|
Lift-off Slip fn = 0, ḟn > 0 and | ḟt |> µ · | ḟn|



158 ROM for Multi-Stage Bladed Disks with Friction at the Flange Joint

5.4 Model’s Hypotheses

In the following sections the reduced non-linear EQM of a multi-stage bladed disk
with friction contacts at the flange joint are derived by using the reduction techniques
presented in Chapter 4. For all these cases the capability of the flange joint in
damping the blades vibrations is tested. In this way the results coming from different
mathematical approaches can be compared in order to identify the best reduction
strategy.

The performances of the mentioned methods are tested on a simplified multi-stage
bladed disk model satisfying the following hypotheses:

1. The traveling wave excitation acting on both stages have the same EO. The
forced response calculations carried out in Chapter 4 clearly show an important
feature of the multi-stage bladed disks dynamics: at a resonance frequency the
response of a multi-stage system is mainly localized on one of the two stages
(Figure 5.4)

Fig. 5.4 Typical forced response of a multi-stage bladed disk: the system’s response is mainly
localized on the stage 1.

The transmission of vibration energy from the most resonant stage to the other
one allows the assembly vibrating according to just one harmonic index h.
Hence, the maximum amplification of the response is obtained when both
stages are excited by traveling wave excitations having the same EO. When
the disks are subjected to rotating excitation having different EOs, just one of
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them give rise to the resonance, while the other, being orthogonal to the mode
shape, does not contribute to the response amplification.

However, this hypothesis is no more valid when modeling the dynamic behav-
ior of bladed disks having critical resonances excitable by different traveling
wave EO excitations in a narrow range of rotation speed. The mentioned case
could be that shown by the Campbell diagram of Figure 5.5.

Fig. 5.5 Example of an experimental Campbell diagram of a bladed disk. In a narrow range
of rotation speed the bladed disk shows several resonances corresponding to different EO
excitations. Therefore, when multiple EO patterns excite the structure, the bladed disk’s
response results from the superposition of the excited resonance.

Here, several critical resonances corresponding to different EOs occur at the
same rotation speed. In such particular case the superposition of the effects
generated by all the excited resonances should be taken into account.

2. The multi-stage ROM is obtained from the ROMs of the single-stages by
enforcing the compatibility conditions just in the axial direction. Due to
the presence of several bolted connection at the flanges, adjacent stages are
tightened together and no relative axial displacement is allowed between
them. The goodness of this hypothesis is proved by the application of the
contact models presented in section 5.3 on a simplified multi-stage system.
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The mentioned check is performed by modeling the friction contacts at the
inter-stage boundary and quantifying their effect in mitigating the blades’
vibrations.

3. The steady state displacements and non-linear contact forces are approxi-
mated with their 1st order Fourier coefficients (Single-HBM). Although this
hypothesis could be interpreted as restrictive of the current practice, consid-
ering the recent state of the art focused on applications where Multi-HBM is
used, Single-HBM can be used to well approximate the multi-stage dynam-
ics since no strong non-linearities are expected. In fact, due to the several
bolted connections along the flange partial lift-off is prevented. Moreover,
considering the harmonic trend of the displacement along the flanges [7],
the alternation of regions where stick and slip are present results in a global
microslip phenomenon (Figure 5.6)

Fig. 5.6 Alternation of stick and slip regions along the flanges joint. Stick takes place where
no relative displacement occurs between the two flanges, i.e. at the locations where the
flanges show the largest vibration amplitude. Slip occurs between two stick regions, due to
the extension and compression of the material close to the contact interface.
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5.5 Multi-Stage CB-CMS ROM & Friction Contacts

In section 5.2 the balance equations of a reduced mechanical system with friction
contacts were derived under the hypothesis of external harmonic excitation (Eqn.
5.6). In this section similar equations will be obtained for a multi-stage ROM
resulting from the coupling of two CB-CMS ROMs of the single-stages.

According to the DoFs notation adopted in the previous Chapters, the CB-CMS
generalized coordinates vector for the jth stage’s ROM can be expressed as:

xCB j =


xi j

xa j

ηk j

 ∀ j = 1,2 (5.16)

where xi j are the physical DoFs at the inter-stage boundary, xa j is the vector of active
DoFs defined by selecting one node per blade at homologous locations and ηk j is
the vector of modal coordinates corresponding to nk j fixed-interface normal modes
retained in the CB-CMS reduction.

Fig. 5.7 CB-CMS physical coordinates for the jth stage.
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By putting the vectors xCB j together and grouping the subvectors concerning the
same class of DoFs, the CB-CMS generalized coordinate vector for the multi-stage
system is obtained:

xCB =



xi1

xi2

xa1

xa2

ηk1

ηk2


(5.17)

From the former equation it can be noted that no compatibility conditions have been
applied between the interface DoFs, since the friction contact forces depending on
their relative displacements have to be evaluated1. Therefore, Eqn. 5.2 can in this
case be expressed as:

MCBẍCB(t)+CCBẋCB(t)+KCBxCB(t) = f CB,e(t)− f CB,n(xr, t) (5.18)

Under the hypothesis n.3 the balance equations given in Eqn. 5.18 can be turned into
the following set of algebraic complex equations:

D1
CB(Ω) ·XCB

1 = F1
CB,e −F1

CB,n (5.19)

where the superscript "1" indicates the first harmonic component of the corresponding
quantity. Hereafter this superscript will be omitted in order to simplify the notation.

According to the DoFs partition given in Eqn. 5.17, the Fourier coefficients of
the displacement and force vectors can be expressed as:

XCB =



Xi1

Xi2

Xa1

Xa2

Ek1

Ek2


FCB,e =



0
0

Fe1

Fe2

0
0


FCB,n =



Fn1

Fn2

0
0
0
0


(5.20)

where:
1Note that for CB-CMS ROMs the contact forces evaluation can be performed exclusively in the

case of compatible meshes at the inter-stage boundary.
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• Xi j and Xa j are the 1st order Fourier coefficients of the physical DoFs xi j and
xa j ;

• Ek j are the 1st order Fourier coefficients of the CB-CMS modal coordinates
ηk j ;

• Fe j are the 1st order Fourier coefficients of the traveling wave EO excitation
discretized at the blades of the jth stage;

• Fn j are the 1st order Fourier coefficients of the contact forces distributed at the
interface of the jth stage.

Since the non-linear contact forces depend on the relative displacements of
equally collocated nodes, the 1st order Fourier coefficients of the relative displace-
ments at the inter-stage boundary can be calculated as:

∆Xi = Xi1 −Xi2 (5.21)

Therefore, the coordinates transformation linking the absolute to the relative complex
displacements is given by:

XCB =



Xi1

Xi2

Xa1

Xa2

Hk1

Hk2


=



I I 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I





∆Xi

Xi2

Xa1

Xa2

Hk1

Hk2


= TrelXrel

CB (5.22)

where Trel is the matrix transforming the interface displacements from absolute to
relative. By substituting Eqn. 5.22 into Eqn. 5.19 and pre-multiplying both sides by
TT

rel , the following system of equation is obtained:

TT
relDCBTrelXrel

CB −TT
relFCB,e +TT

relFCB,n ≈ 0 (5.23)
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Although the pre-multiplication by TT
rel leaves FCB,e unchanged, more attention has

to be paid on the term TT
relFCB,n:

TT
relFCB,n =



I 0 0 0 0 0
I I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I





Fn1

Fn2

0
0
0
0


=



Fn1

Fn2 +Fn2

0
0
0
0


(5.24)

Since the contact forces at the two contact interfaces are equal in amplitude but
opposite in sign, the term Fn1 +Fn2 is null:

TT
relFCB,n =



Fn1

0
0
0
0
0


=



Fn

0
0
0
0
0


(5.25)

In this way only the non-linear equations corresponding to the term Fn have to be
iteratively solved. It must be pointed out that thanks to the coordinates transformation
of Eqn. 5.23 the number of non-linear algebraic equations results halved with respect
that of Eqn. 5.19.

Example

In this subsection a simplified multi-stage bladed disk with friction contacts at the
bolted flange joint is analyzed. By employing the contact models described in
section 5.3, friction contacts at the interface between the stages will be modeled and
their capability in damping the blades’ vibrations is quantified by means of forced
response calculations.

A multi-stage system consisting of two different bladed disks with N = 50 sectors
each was taken as reference (Figure 5.8). The FE models of the two stages were
generated in ANSYS by repeating the FE models of the fundamental sectors N times
around the z-axis. The stages 1 and 2 consist of 43200 and 40300 4-node brick
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elements with 42250 and 38900 node respectively (the stages have the same number
of sectors, but different number of elements per sector). The material properties were
chosen according to the standard values of the steel: Young’s modulus E = 210 GPa,
Poisson’s ration ν = 0.33 and density ρ = 7800 kg/m3. For both stages the number
of radial line segments per sector is Z = 4. All the radial line segments have five
equally spaced nodes, meaning that the two stages have perfectly matching meshes
at the contact interface.

Fig. 5.8 FE model of the reference multi-stage system.

The CB-CMS ROMs of the stages were created by retaining as master the
sets of interface and active DoFs

{
xT

i1 xT
a1

}T and
{

xT
i2 xT

a2

}T for the stage 1 and 2
respectively. The sets xi1 and xi2 are the DoFs of the nodes lying on the medium
radius circumference of the contact surface, while xa1 and xa2 were defined by
selecting one node per blade in the middle of the blades’ airfoils (Figure 5.9). The
size of the mentioned set of master DoFs is listed in Table 5.3.

Table 5.3 Number of master DoFs retained in the CB-CMS reduction of the stages.

Set # DoFs

xi1 600
xa1 150

xi2 600
xa2 150
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Fig. 5.9 Master nodes of the single-stage CB-CMS ROM.

In addition the first 200 fixed-interface normal modes were employed in the
reduction of the two stages, yielding two CB-CMS ROMs with 950 DoFs each. For
reference, the first 200 natural frequencies of the CB-CMS ROMs are within the
0.3% of the corresponding FE natural frequencies. The size of the full and reduced
model are compared in Table 5.4.

Table 5.4 Size of the full and reduced models of the stages 1 and 2.

Stage # DoFs full FE model # DoFs CB-CMS ROM

Stage 1 126750 950
Stage 2 116700 950

A first multi-stage ROM allowing friction contact at the inter-stage boundary was
obtained from the CB-CMS ROMs of the two stages. In particular, the master DoFs
at the stages’ interfaces were coupled in all the directions (ρ , θ and z) by means of
friction contact elements involving the normal load variation (see subsection 5.3.2).
For each couple of nodes two contact elements were employed. In fact, projecting
their in-plane relative displacement onto two directions (ρ and θ ), still guarantees to
catch the fundamental features of the real bi-dimensional trajectory of the contact
[59]. The tangential contact stiffnesses in the radial and circumferential direction
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were set equal to 108 N/m (kρ = kθ = 108), while the normal contact stiffness kz was
assumed equal to 1.5 ·108 N/m.

Due to the perfect matching positions of the master nodes at the stages’ interfaces,
the contact model was therefore applied to all the NZ = 200 pairs of nodes, leading to
1200 non-linear EQM. This number was finally halved by employing the coordinates
transformation of Eqn. 5.22, since the non-linear contact forces only depend on the
relative displacements characterizing each couple of nodes in contact. The resulting
multi-stage ROM is here denoted by I and the dynamic analyses performed on it are
henceforth considered as a benchmark.

The generalized coordinates vector of the multi-stage ROM can thus be written:

xI =



∆xi

xi2

xa1

xa2

ηk1

ηk2


(5.26)

whose corresponding mass and stiffness matrices are here denoted as MI and KI.
The structural damping matrix CI was built by using the eigenvectors of the system
and an assumed value of modal damping ratio ζ . In particular, under the hypothesis
of proportional damping, the matrix CI can be diagonalized by the modal matrix of
the reduced system ΦI:

Φ
T
I CIΦI = diag(2ζiωi) (5.27)

where ζi and ωi represent the modal damping ratio and the eigenfrequecy associated
to the ith mode. By assuming the same modal damping ζ = 0.005 for all the modes,
the reduced damping matrix can be easily obtained as follows:

CI = 2ζ
(
Φ

T
I

)-1diag(ωi)
(
ΦI
)-1 (5.28)

The non-linear forced response calculations were performed by forcing the stages
with two clocked traveling waves excitations of order EO = 2 in the z direction. The
discrete values of such rotating forces can be calculated blade by blade as follows:

feeiEO 2π

N nb nb = 0,1, . . . ,(50−1) (5.29)



168 ROM for Multi-Stage Bladed Disks with Friction at the Flange Joint

where fe is the amplitude of the traveling waves exciting on both stages and nb is an
integer denoting the blade number.

Fig. 5.10 Mean radius of the contact interface.

Several forced response calculations corresponding to different values of fe were
performed in order to evaluate the effect of the friction damping produced by the
flange joint on the blades’ response. For all these cases the value of normal preload
f0 for each contact element was set equal to 350 N, a value that was deducted
from practical considerations on the power transmission between the two stages. In
particular, if P is the power and Ω is the rotation speed of the multi-stage system,
the corresponding transmitted torque can be calculated as:

T =
P
Ω

(5.30)

By denoting with rm the medium radius of the annular ring representing the area at
the contact interface (Figure 5.10), the tangential force producing the torque T is
given by:

Ft =
T
rm

(5.31)
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Finally, assuming a friction coefficient µ at the contact interface, the normal preload
F0 can be evaluated by applying the Coulomb friction law:

F0 =
Ft

µ
(5.32)

By dividing F0 for the number nc of contact node pairs, the normal preload associated
to each contact element is given by:

f0 =
F0

nc
(5.33)

Therefore, according to the given description, the constant normal preload f0 = 350
N was calculated by assuming the following data:

Table 5.5 Data used for the estimation of the normal preload for each pair of nodes in contact.

Quantity Value

P (kW) 7000
Ω (rpm) 11330
rm (m) 0.43112
µ (-) 0.5

Under the hypothesis of SHBM (hypothesis n.3) the non-linear algebraic system
of equation was obtained (Eqn. 5.23), and its solution found by using the Newton-
Raphson algorithm. Typical results of such simulations are shown in Figure 5.11
and 5.12, where the non-linear forced response calculations for the stage 1 and
2, normalized with respect the amplitude of the traveling wave excitations fe, are
plotted. The forced response of Figure 5.11 and 5.12 exhibit the typical behavior
of joints where friction is present. In particular, for low amplitudes of the harmonic
excitation ( fe = 1 N) the fully stick condition is obtained. In this case no large relative
displacements occur at the contact interface, no slip is present and then no energy
dissipation can take place. From a mathematical point of view the contact elements
act as springs2, linking both sides of the joint and then contributing to increase the
stiffness of the system. By increasing the excitation amplitude slip starts, energy
dissipation occurs and the resonance frequency of the system moves towards the free
condition. Here, the large relative displacements at the joint interface are caused by

2The small relative displacements for each couple of contact nodes lead to tangential contact
forces whose amplitudes are lower than the Coulomb limit µ f0.
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large vibration amplitudes that make friction unable to introduce further damping
into the system.

Fig. 5.11 Normalized forced responses for the Stage 1.

Fig. 5.12 Normalized forced responses for the Stage 2.

Note that the forced responses of Figures 5.11 and 5.12 were obtained by assum-
ing an uniform pressure distribution along the flange, which is clearly an approxi-
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mation. In reality the contact pressure along the flange can be considered stationary
(non time-varying) but non-uniform, being mainly localized in the areas where the
bolts are tightened. However, due to the large number of bolts generally involved (i.e.
one third of the number of blades), it was demonstrated that the resulting pressure
localization does not lead to significant modification of the force response neither in
terms of vibration amplitude nor in terms of resonance frequency [60]. Therefore, a
stationary and uniform pressure distribution at the flange interface can be considered
as a valid approximation.

A second multi-stage ROM was created by enforcing the equality of the interface
displacements in the z direction. In particular, by assuming the vectors xi j partitioned
as xi j =

{(
xρ

i j

)T (xθ
i j

)T (xz
i j

)T}T , the mentioned compatibility conditions can be
expressed as xz

i1 = xz
i1 = xz

i . The remaining two DoFs per contact node (ρ and θ )
were coupled by means of Jenkins contact elements (see subsection 5.3.1). For this
ROM the number of non-linear EQM would be equal to 800. However, by employing
the coordinates transformation of Eqn. 5.22, relative displacement at the interface
were obtained from the absolute ones and the number of non-linear EQM decreased
from 800 to 400. Hence, by denoting with II this new ROM the corresponding
generalized coordinates vector can be written as:

xII =



∆xρ

i

xρ

i2
∆xθ

i

xθ
i2

zz
i

xi2

xa1

xa2

ηk1

ηk2



(5.34)

The size of the multi-stage ROMs I and II, and the corresponding number of non-
linear EQM are compared in Table 5.6
By assuming a modal damping ratio of ζ = 0.005, the structural damping matrix
CII was obtained exactly as done for CI. Considering the same contact parameters
and excitation amplitudes used in the previous case, new forced response calculation
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Table 5.6 Size of the multi-stage ROM I and II and corresponding number of non-linear
EQM.

Multi-stage ROM # DoFs # non-linear EQM

ROMI 1900 600
ROMII 1700 400

were performed and compared to those of Figure 5.11 and 5.12. Figure 5.13 and
5.14 clearly show a perfect match between the non-linear forced responses obtained
by using both ROMs. There results actually prove the goodness of the hypotheses
n.2 and n.3 made in section 5.4. In particular, the large value of constant normal
preload assumed for each pair of nodes in contact ( f0 = 350 N) prevents separation
at the inter-stage boundary. For this reason the stages’ coupling in the z direction
and the use simple Jenkins contact elements do not introduce further approximations
of the solution. Moreover, the absence of lift-off during the contact confirms the
hypothesis of a "weak" non-linear behavior of the joint and then justifies the use of
the SHMB approximation.

Fig. 5.13 Comparison of forced response calculation obtained from the ROMI and ROMII .
The plots refer to displacements detected at the blades of the stage 1.
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Fig. 5.14 Comparison of forced response calculation obtained from the ROMI and ROMII .
The plots refer to displacements detected at the blades of the stage 2.

Finally, although identical results were obtained in the two cases, the ROMII has
to be preferred over the ROMI for the smaller number of DoFs involved (1700 vs
1900), the smaller partition of non-linear EQM (400 vs 600) and the least time spent
for the computation of each nonlinear forced response (∼ 890 s vs ∼ 2700 s).

5.6 Multi-Stage ROM for Full Stages & Friction Con-
tacts

The number of non-linear EQM can be strongly reduced by employing the multi-
stage reduction technique presented in section 4.3. It was shown that starting from the
CB-CMS ROMs of two stages, the displacement field at the inter-stage boundary in
all the directions (ρ , θ , z) could be approximated by few spatial harmonic functions.
The set of harmonic indexes corresponding to such functions was denoted by Σ

(Eqn. 4.17). Due to the hypothesis n.1 Σ must contain at least the dominant
harmonic indexes h linked to the EO of the traveling waves exciting both stages
(Eqn. 2.70). Hence, as shown in section 4.3, this condition would allow to write
compatibility equations between stages at least for the harmonic indexes h. However,
such compatibility is here enforced only for the harmonic functions describing the
interfaces motion in the z direction, in order to prevent the contact between the
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flanges in the axial direction. Differently, no geometric compatibility conditions are
enforced along ρ and θ , since a relative displacement along these two directions
is expected. Therefore, when the interface reduction is performed for both stages
and the mentioned compatibility conditions are enforced, a new multi-stage ROM is
obtained. The generalized coordinates vector associated to such ROM can be written
as:

xMS =



aρ

i1
aρ

i2
aθ

i1
aθ

i2
az

i

xa1

xa1

ηk1

ηk2



(5.35)

where

• ad
i j

are the Fourier coefficients of the spatial harmonic function approximating
the displacement at the interface of the jth stage in the d direction (d = ρ,θ ,z).

• xa j are the active DoFs of the jth stage.

• ηk j are the modal coordinates corresponding to nk j fixed-interface normal
modes retained in the CB-CMS reduction of the jth stage.

Therefore, Eqn. 5.2 can in this case be expressed as:

MMSẍMS(t)+CMSẋMS(t)+KMSxMS(t) = f MS,e(t)− f MS,n(xMS, t) (5.36)

Under the hypothesis n.3, the balance equations given in Eqn. 5.36 can be turned
into the following set of algebraic complex equations:

D1
MS(Ω) ·X1

MS = F1
MS,e −F1

MS,n (5.37)
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According to the DoFs partition given in Eqn. 5.35, the Fourier coefficients of
the displacement and force vectors can be expressed as:

XMS =



Aρ

i1
Aρ

i2
Aθ

i1
Aθ

i2
Az

i

Xa1

Xa2

Ek1

Ek1



FMS,e =



0
0
0
0
0

Fe1

Fe2

0
0



FMS,n =



F̄ρ

n1

F̄ρ

n2

F̄θ

n1

F̄θ

n2

0
0
0
0
0



(5.38)

where:

• Ad
i j

are the complex amplitudes of the spatial Fourier coefficient ad
i j

. Ad
i j

gives
information about the amplitude and phase of the cosine and sine harmonic
functions, or simply waveforms, describing the motion at the interface of the
jth stage;

• Xa j are the complex amplitudes of the active DoF of the jth stage;

• Ek j are the complex amplitudes of the CB-CMS modal coordinates ηk j for the
jth stage;

• Fe j are the 1st order Fourier coefficients of the traveling wave EO excitation
discretized at the blades of the jth stage.

• F̄d
n j

are the complex amplitudes of the spatial Fourier coefficients describing
the distribution of the contact force at the interface of the jth stage in the d
direction.

When the difference between Ad
i1 and Ad

i2 is performed, the complex amplitudes of
the dominant and extra waveforms referring to the relative displacement at the joint
interface in the d direction are obtained:

∆Ad
i = Ad

i1 −Ad
i2 d = ρ,θ (5.39)
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Therefore, the coordinates transformation linking the absolute to the relative complex
amplitudes is given by:

Aρ

i1
Aρ

i2
Aθ

i1
Aθ

i2
Az

i

Xa1

Xa2

Ek1

Ek1



=



I I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I





∆Aρ

i

Aρ

i2
∆Aθ

i

Aθ
i2

Az
i

Xa1

Xa2

Ek1

Ek1



= TrelXrel
MS (5.40)

where Trel is the coordinates transformation matrix. By substituting Eqn. (5.40) into
Eqn. (5.36) and pre-multiplying both sides by TT

rel , the following system of equation
is obtained:

TT
relDMSTrelXrel

MS −TT
relFMS,e +TT

relFMS,n ≈ 0 (5.41)

Although the pre-multiplication by TT
rel leaves FMS,e unchanged, more attention has

to be paid on TT
relFMS,n:

TT
relFMS,n =



I 0 0 0 0 0 0 0 0
I I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I





F̄ρ

n1

F̄ρ

n2

F̄θ

n1

F̄θ

n2

0
0
0
0
0



=



F̄ρ

n1

F̄ρ

n1
+ F̄ρ

n2

F̄θ

n1

F̄θ

n1
+ F̄θ

n2

0
0
0
0
0



(5.42)
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The contact forces at the two contact interfaces are equal in amplitude but opposite
in sign, meaning that the terms F̄ρ

n1
+ F̄ρ

n2
and F̄θ

n1
+ F̄θ

n2
are both null:

TT
relFMS,nl =



F̄ρ

n1

0
F̄θ

n1

0
0
0
0
0
0



=



F̄ρ

n

0
F̄θ

n

0
0
0
0
0
0



(5.43)

In this way the non-linear partition of the EQM was reduced of the 50% with respect
that of the system given in Eqn. (5.37).

The Jenkins contact element is used for classical node-to-node contact problems.
However, due to the coordinates transformation defined by the Eqn. (4.18) and the
application of the SHBM, the relative displacements at the inter-stage boundaries
are expressed in term of complex coefficients ∆Ad

i . Therefore, the application of the
mentioned contact model requires to rebuild the physical relative displacements so
that the contact forces fn,t can be evaluated in the physical space too.

The vector of spatial Fourier coefficients ai contains cosine and sine components
referring to the waveforms approximating the motion at the contact interface (Eqn.
4.13). If ς is the generic harmonic index included into the set Σ , ai can be expressed
as:

ai =
(⋃

ς

ac
iς

)
∪
(⋃

ς

as
iς

)
∀ ς ∈ Σ (5.44)

When Eqn. 5.36 is turned in the frequency domain and the coordinates transformation
of Eqn. 5.40 is employed, the Fourier coefficients ai are converted into the following
set of complex cosine and sine amplitudes:

∆Ai =
(⋃

ς

∆Ac
iς

)
∪
(⋃

ς

∆As
iς

)
∀ ς ∈ Σ (5.45)
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The cosine and sine waveforms at the contact interface can be obtained by expanding
the complex coefficients of Eqn. 5.45 through the following relationships:

∆xc
i (θi) = ℜ

(
∑
ς

g|∆Ac
iς |e

ι(ςθi+ϕ∆Ac
iς
)
)

∆xs
i (θi) = ℜ

(
∑
ς

g|∆As
iς |e

ι(ςθi+ϕ∆As
iς
)
)

(5.46)

where:

• g is defined as (see Eqns. 4.4 and 4.12):

g =



1√
NZ

if ς = 0, R̃

√
2

NZ
for all the other ς

(5.47)

• |∆Ac
iς | and |∆As

iς | are the absolute values of the complex coefficients of
Eqn. 5.453;

• ϕ∆Ac
iς

and ϕ∆As
iς

are the phase angles of the complex coefficients of Eqn. 5.44;

• θi is the vector listing the angular locations along the contact interface where
the Jenkins contact elements are employed;

The complex waveform approximating the relative physical displacement field at
the contact interface is finally given by:

∆xi(θi) = ∆xc
i (θi)+ i∆xs

i (θi) (5.48)

The physical contact forces f d
n(θi) in the d direction are then computed applying

the Jenkins contact element at all the locations θi chosen to discretize the physical
relative displacement ∆xd

i (d = ρ,θ ). The real and imaginary parts of f d
n(θi) can be

3Note that ∆Ac
iς and ∆As

iς can be written as ∆Ac
iς = |∆Ac

iς |e
ιϕ∆Ac

iς and ∆As
iς = |∆As

iς |e
ιϕ

∆As
iς

respectively.
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expressed according to the following Fourier series:

ℜ
[
f d

n(θi)
]
= ℜ

(
∑
ς

F̄c,d
iς · eιςθi

)

ℑ
[
f d

n(θi)
]
= ℜ

(
∑
ς

F̄s,d
iς · eιςθi

)
(5.49)

where F̄c,d
iς and F̄s,d

iς represent the spatial Fourier coefficients of the physical con-
tact force f d

n(θi) having harmonic index ς ∈ Σ . Therefore, the cosine and sine
components of Fd

n are defined as:

Fc,d
n =

⋃
ς

1
g

F̄c,d
iς Fc,d

n =
⋃
ς

1
g

F̄s,d
iς (5.50)

and the complex coefficients of the harmonics contact force balancing the non-linear
EQM in Eqn. 5.41 are given by:

Fd
n = [(Fc,d

n )T (Fs,d
n )T ]T (5.51)

Example

The application already presented in section 5.5 is here studied by applying the multi-
stage reduction technique introduced above. Thereby, starting from the CB-CMS
ROMs of the two stages, further reductions of the interface DoFs were achieved by
resorting to the transformation of Eqn. (4.18). The harmonic indexes for which the
mentioned reduction could be performed were deduced from the assumed value of
the EO. In particular, by setting z = 0 in Eqn. 2.70, the dominant harmonic index
reducing the interface of both stages is h = 2. Moreover, from Eqn. 5.51 a the
reduced set Σ of harmonic indexes corresponding to h = 2 was calculated as:

Σ =
(

h (NZ −h) (NZ +h) (2 ·NZ −h)
)
=

=
(

2 (50−2) (50+2) (2 ·50−2)
)
=

=
(

2 48 52 98
)

(5.52)
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Therefore, a third multi-stage ROM was created. Such ROM is here denoted by III
and its reduced vector of generalized coordinates is given by:

xIII =



aρ

i1 −aρ

i2
aρ

i2
aθ

i1 −aθ
i2

aθ
i2

az
i

xa1

xa2

ηk1

ηk2



(5.53)

where:

ad
i j
=
{(

ac,d
i2

)T (
ac,d

i48

)T (
ac,d

i52

)T (
ac,d

i98

)T

(
as,d

i98

)T (
as,d

i52

)T (
as,d

i48

)T (
as,d

i2

)T}T
(5.54)

The size of the multi-stage ROMs I, II and III, and the corresponding number of
non-linear EQM are compared in Table 5.7

Table 5.7 Size of the multi-stage ROM I, II III and corresponding number of non-linear
EQM.

Multi-stage ROM # DoFs # non-linear EQM

ROMI 1900 600
ROMII 1700 400
ROMIII 740 32
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By assuming a modal damping ratio of ζ = 0.005, the structural damping matrix
CIII was obtained exactly as done for CI. Considering the same contact parameters
and excitation amplitudes used in the previous case, new forced response calculation
were performed and compared to those of Figure 5.11 and 5.12.

Fig. 5.15 Comparison of forced response calculation obtained from the ROMI and ROMIII .
The plots refer to displacements detected at the blades of the stage 1.

Figure 5.15 and 5.16 show again a perfect match between the non-linear forced
response calculations carried out with both ROMs. These results confirms the
goodness of the multi-stage reduction technique for full stages developed in section
4.3. In fact, the selected set of harmonic basis functions used to approximate the
interface displacement did not lead to any significant approximation of the solution.
Therefore, performing non-linear forced response calculation on the multi-stage
ROMIII appears much more convenient than using the ROMs I and II. Besides
the smaller number of DoFs involved in such calculations, the performance of the
ROMIII can be better appreciated if the time spent in the simulation is taken into
account (Table 5.9).
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Fig. 5.16 Comparison of forced response calculation obtained from the ROMI and ROMIII .
The plots refer to displacements detected at the blades of the stage 2.

Table 5.8 Average time for the non-linear forced response calculation: comparison between
the multi-stage ROMI , ROMII and ROMIII .

Multi-stage ROM Time (s)

ROMI 2700
ROMII 890
ROMIII 60

5.7 Multi-Stage ROM for Cyclic Stages & Friction
Contacts

In this section the reduced non-linear EQM of a multi-stage system with friction
contacts at the flange joint are obtained starting from the fundamental sectors of two
stages treated in cyclic symmetry conditions. The approach employed to reduce such
sectors is exactly that of section 4.5, where the DoFs at the interface of each sector
are reduced to those of the first radial line segment.

Let Σ be the set of harmonic indexes denoting the harmonics approximating
the DoFs at the interface of both stages. As already stated, due to the hypothesis
n.1 this set must contain at least the dominant harmonic index h, which is linked to
the assumed EO by Eqn. 2.70. In general, if km is the mth extra harmonics index
included into the set Σ , the generalized coordinates vector for the jth cyclic sector
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can be written as:

xCS j ≈



xh
R1, j

xk1
R1, j
...

xkm
R1, j

xh
a j

ηh
k j


=


xΣ

R1, j

xh
a j

ηh
k j

 (5.55)

where xΣ
R1, j is the vector collecting the reduced DoFs at the interface of the jth sector.

By separating its ρ , θ and z components, xΣ
R1, j can be written as:

xΣ
R1, j =


xΣ ,ρ

R1, j

xΣ ,θ
R1, j

xΣ ,z
R1, j

 (5.56)

Therefore, by enforcing the compatibility condition in the z direction between the
interface DoFs of both cyclic sectors (xΣ ,z

R1,1 = xΣ ,z
R1,2 = xΣ ,z

R1
), a new cyclic multi-stage

ROM having the following generalized coordinate vector is obtained:

xCS =



xΣ ,ρ
R1,1

xΣ ,ρ
R1,2

xΣ ,θ
R1,1

xΣ ,θ
R1,2

xΣ ,z
R1

xh
a1

xh
a2

ηh
k1

ηh
k2



(5.57)

Hence, Eqn. 5.2 can in this case be expressed as:

MCSẍCS(t)+CCSẋCS(t)+KCSxCS(t) = f CS,e(t)− f CS,n(xCS, t) (5.58)

Under the hypothesis of SHBM, the former EQM can be turned into a set of non-
linear algebraic complex equation:

D1
CS(Ω) ·X1

CS = F1
CS,e −F1

CS,n (5.59)
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where the superscript "1" indicates the first harmonic component of the corresponding
quantity. Hereafter this superscript will be omitted in order to simplify the notation.

According to the DoFs partition given in Eqn.5.57, the Fourier coefficients of the
cyclic displacement and force vectors can be expressed as:

XCS =



XΣ ,ρ
i1

XΣ ,ρ
i2

XΣ ,θ
i1

XΣ ,θ
i2
Xz

i

Xh
a1

Xh
a2

Eh
k1

Eh
k1



FCS,e =



0
0
0
0
0

Fe1

Fe2

0
0



FCS,n =



FΣ ,ρ
n1

FΣ ,ρ
n2

FΣ ,θ
n1

FΣ ,θ
n2

0
0
0
0
0



(5.60)

where:

• XΣ ,d
i j

and Xh
a j

are the 1st order Fourier coefficients of the physical DoFs xΣ ,d
i j

and xh
a j

respectively.

• Eh
k j

are the 1st order Fourier coefficients of the CB-CMS modal coordinates
ηh

k j
.

• Fh
e j

are the 1st order Fourier coefficients of the harmonic force acting on the
jth cyclic sector.

• FΣ ,d
n j

are the 1st order Fourier coefficients describing the distribution of the
contact force at the interface of the jth stage.

Since the non-linear contact forces depend on the relative displacements of equally
collocated nodes (Figure 5.17), the 1st order Fourier coefficients of the relative cyclic
displacement at the inter-stage boundary can be calculated as:

∆XΣ ,d
R = XΣ ,d

R1,1 −XΣ ,d
R1,2 d = ρ,θ (5.61)

Therefore, the coordinate transformation linking the absolute to the relative cyclic
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Fig. 5.17 Relative displacements from cyclic coordinates at the sectors’ interfaces.

displacements is given by:

Xh
CS =



XΣ ,ρ
R1,1

XΣ ,ρ
R1,2

XΣ ,θ
R1,1

XΣ ,θ
R1,2

XΣ ,z
i

Xh
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Xh
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Eh
k1



=



I I 0 0 0 0 0 0 0
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0 0 I I 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
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0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I
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= TrelXh,rel
CS (5.62)

where Trel is the matrix transforming the interface displacement from absolute to
relative. By substituting Eqn. and pre-multiplying both side by TT

rel , the following
system of equation is obtained:

TT
relDCSTrelX

h,rel
CS −TT

relFCS,e +TT
relFCS,n ≈ 0 (5.63)
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Although the pre-multiplication by TT
rel leaves FCS,e unchanged, more attention

has to be paid on TT
relFCS,n:

TT
relFCS,n =



I 0 0 0 0 0 0 0 0
I I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I
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FΣ ,θ
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FΣ ,θ
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0
0
0
0
0



=
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FΣ ,ρ
n1 +FΣ ,ρ

n2

FΣ ,θ
n1

FΣ ,θ
n1

+FΣ ,θ
n2

0
0
0
0
0



(5.64)

The contact forces at the two contact interfaces are equal in amplitude but opposite
in sign, meaning that the terms FΣ ,ρ

n1 +FΣ ,ρ
n2 and FΣ ,θ

n1
+FΣ ,θ

n2
are both null:

TT
relFMS,n =



FΣ ,ρ
n1

0
FΣ ,θ

n1

0
0
0
0
0
0



=



FΣ ,ρ
n

0
FΣ ,θ

n

0
0
0
0
0
0



(5.65)

In this way only the non-linear equations corresponding to the term Fn have to be
iteratively solved. In must be pointed out that thanks to the coordinates transforma-
tion of Eqn. 5.62 the number of non-linear algebraic equations results halved with
respect that of Eqn. (5.59).

The complex coefficients FΣ ,d
n correspond to the cyclic contact forces f Σ ,d

t that
are applied to the condensed DoFs belonging to first radial line segment of a cyclic
sector (Figure 5.18). In the following it will be shown how the term f Σ ,d

t has to be
evaluated.
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Fig. 5.18 Cyclic interface contact forces exciting the cyclic interface DoFs at the first radial
line segment.

As explained in Chapter 4, xΣ ,d
R1, j results from the condensation of all the sector’s

interface DoFs to the first radial line segment. Similarly, the cyclic contact forces
f h,d

t,Rr
should be the result of a condensation process that reduces the contact forces

acting on the whole sector’s interface to the first radial line segment too.

Since the distribution of the contact forces at the stage’s interface is harmonic
with the same periodicity of the relative displacements generating it, assuming
a spatial harmonics displacement of order h, the non-linear contact forces at the
sector’s interface can be expressed as (Figure 5.19):

f h
t,R1
...

f h
t,Rr
...

f h
t,RZ


=



I
...

Ie±ι(r−1)ϕhr

...
Ie±ι(Z−1)ϕhr


f h

t,R1
(5.66)

where ϕhr is the inter-line phase angle corresponding to the harmonic index h (see
Chapter 4).

The physical contact forces f h,d
t can then be obtained by reducing the force vector

of Eqn. 5.66 to the first radial line segment exactly as done for the displacements.
Hence, by using the interface reduction matrix Γh of Eqn. 4.51 the reduced contact



188 ROM for Multi-Stage Bladed Disks with Friction at the Flange Joint

Fig. 5.19 Non-linear contact forces at the sector’s interface before the condensation on the
first radial line segment.

forces for the harmonic index h are given by:

f h,d
t = Γ

T
h



I
...

Ie±ι(r−1)ϕhr

...
Ie±ι(Z−1)ϕhr


f h

t,R1
=

=
[
I · · · Ie∓ι(r−1)ϕhr · · · Ie∓ι(Z−1)ϕhr

]


I
...

Ie±ι(r−1)ϕhr

...
Ie±ι(Z−1)ϕhr


f h

t,R1
=

= Z · f h
t,R1

(5.67)

The complete set of reduced contact forces can be obtained by employing the
described reduction procedure for each harmonic index collected into the set Σ .
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Example

The application treated in the previous sections is now analyzed by using the multi-
stage reduction technique involving cyclic sectors. In this case a preliminary CB-
CMS reduction of the fundamental sectors was performed by retaining the interface
DoFs at the medium radius of the flange, one active DoFs for the force application
and 20 fixed-interface normal modes. Then, a further interface reduction of both
cyclic sector was carried out for all the harmonic indexes of Eqn. 5.52. Figure 5.20
shows the position of the master DoFs at end of the complete reduction process.

Fig. 5.20 Master DoFs location for the generic cyclic stage.
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A fourth multi-stage ROM was created. Such ROM is here denoted by IV and its
reduced vector of generalized DoFs can be expressed as:

xCS =



∆xΣ ,ρ
R1

xΣ ,ρ
R1,2

∆xΣ ,θ
R1

xΣ ,θ
R1,2

xΣ ,z
R1

xh
a1

xh
a2

ηh
k1

ηh
k1



(5.68)

where:

xΣ ,d
R1, j =


x2,d

R1, j

x48,d
R1, j

x52,d
R1, j

x98,d
R1, j

 (5.69)

The size of the multi-stage ROMI , ROMII , ROMIII and ROMIV , and the corresponding
number of non-linear EQM are compared in Table 5.9

Table 5.9 Size of the multi-stage ROM I, II, III and IV , and corresponding number of
non-linear EQM.

Multi-stage ROM # DoFs # non-linear EQM

ROMI 1900 600
ROMII 1700 400
ROMIII 740 32
ROMIV 66 8

By assuming a modal damping ratio of ζ = 0.005, the structural damping matrix
CIV was obtained exactly as done for CI. Considering again the same contact
parameters and excitation amplitudes adopted in the previous cases, new forced
response calculation were performed and the results compared to those of Figure
5.11 and 5.12.
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Fig. 5.21 Comparison of forced response calculation obtained from the ROMI and ROMIV .
The plots refer to displacements detected at the blades of the stage 1.

Figure 5.21 and 5.22 show a perfect match between the non-linear forced response
calculations performed on both ROMs. Besides confirming the goodness of the multi-
stage ROM technique applied to cyclic stages (see section 4.5), these results give
further confidence in the approximation of the contact interface displacements by
means of few harmonic basis functions.

Performing non-linear forced response calculation on the multi-stage ROMIV

appears much more convenient than using all the previous ROMs. Besides the
smaller number of DoFs involved in the calculations, the performance of the ROMIV

can be better appreciated by comparing the computational times with the other ROMs
(Table 5.10).

Table 5.10 Average time for the non-linear forced response calculation: comparison between
the multi-stage ROMI , ROMII , ROMIII and ROMIV

Multi-stage ROM Time (s)

ROMI 2700
ROMII 890
ROMIII 60
ROMIV 8
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Fig. 5.22 Comparison of forced response calculation obtained from the ROMI and ROMIV .
The plots refer to displacements detected at the blades of the stage 2.

5.8 Discussion

In this Chapter the ROM techniques developed in Chapter 4 were combined with
a macroslip contact model in order the efficiently predict the forced response of a
multi-stage bladed disk with friction contact at the inter-stage boundary.

The approaches proposed were validated on a simplified model composed by two
stages having the same number of sectors (N = 50) and compatible meshes at the
interfaces. Although this second condition does not prevent the use of the multi-stage
ROM techniques, it was necessary to calculate the benchmark forced responses by
using the CB-CMS ROMs of the two stages. In fact, all the interface DoFs were
retained as master in the reduction, so that classic node-to-node contact elements
could be easily applied.

For all the cases analyzed the multi-stage non-linear dynamics was predicted
under the following hypotheses:

1. The traveling waves exciting the stages have the same Engine Order;

2. The multi-stage ROM is obtained from the ROMs of the single-stages by
enforcing the compatibility conditions just in the axial direction;

3. The steady state displacements and the non-linear contact forces are approxi-
mated with their 1st order Fourier coefficients (SHMB).
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Although some of them could be interpreted as restrictive of the current practice, they
are based on practical considerations on the bladed disks dynamics and the bolted
flange joints’ working principle. However, the combination between the contact
models introduced in section 5.3 and the multi-stage reduction techniques developed
in Chapter 4, can be exploited also for the analysis of lap joints featuring circular
geometry. In such cases the joint’s non-linear dynamics may be more complex than
that described for multi-stage bladed disks, since separation of the contact interfaces
may occur. From a numerical point of view the prediction of such non-linear behavior
requires to relax at least the hypotheses 2 and 3, without substantially modifying the
reduction approach described in the sections 5.5, 5.6 and 5.7:

• Relaxing hypothesis 2 coincides to adopt the same approach used in the
example of section 5.5, where the contact model with normal load variation
was employed. In that case the compatibility condition between the stages’
ROMs in the axial direction was not present and the non-linear contact forces
were evaluated in the θ , ρ and z direction;

• When strong non-linearities are present, i.e. when lift-off occurs at the joint’s
contact interface, the steady-state displacements and non-linear contact forces
cannot be satisfactorily approximated by their first order Fourier component.
In such cases the Multi-Harmonic Balance Method has to be used, since the
nature of the mentioned quantities requires a multi-harmonic description.

Relaxing both hypotheses has "just" the effect to increase the non-linear partition of
the EQM and the computational costs associated to their numerical resolution.

Different is the case of hypothesis 1. As shown in the previous sections, the fast
evaluation of the non-linear forced response of a bladed disk assembly requires at
least using the Single-Harmonic Balance Method. According to this approach the set
of non-linear differential EQM in time domain can be turned into a set of non-linear
algebraic equations, by approximating the steady-state displacements and contact
forces with their first order Fourier components. However, the contact forces are
evaluated in the time domain, due to the fact that the contact models just requires as
input the time history of the non-linear displacements. This means that an arbitrary
time discretization of the non-linear displacements is needed before being processed
by the contact model. But the number of time instants of such discretization is strictly
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related to the duration of the oscillation period characterizing the response. In this
regards two different scenarios may occurs:

1. The traveling waves exciting the stages have the same Engine Order: the nodes
at the contact interfaces experience the same number of oscillations during
the multi-stage rotation period T . In the simplest case this number coincides
to EO, and the contact forces can be evaluated by just considering non-linear
displacement into the period of the elementary oscillation Te = T/EO;

2. The traveling waves exciting the stages have different Engine Orders: the
nodes at the contact interfaces experience a different number of oscillations
during the system’s rotation period T . In this case the contact forces have to be
computed by considering the evolution of the non-linear displacement during
the whole period T (the system’s response repeats equal to itself after T ).

By assuming the same period T for the two cases, especially for large EO excitations,
the number of time instants used to satisfactorily discretize the non-linear displace-
ment and contact forces in the second case is much larger than in the first one. For
this reason the evaluation of the Fourier coefficients of the non-linear contact forces
for each pair of nodes in contact becomes extremely expensive from a computational
point of view, and numerical time integration may represent a valid alternative.

In this study the bolted flange joint was considered as a possible source of friction
damping that appears beneficial in terms of attenuation of the blades’ response. In
this regard, the damping was supposed being generated by the relative displacements
occurring at the inter-stage boundary, without explicitly considering the presence of
the bolts. However, it is reasonable to considerate their non-linear behavior as one
with that of the flange. In fact, possible friction phenomena may also occur at the
interfaces bolt’s head-flange and bolt’s nut-flange.

By applying the mentioned contact models and assuming an uniform pressure
distribution along the flange, the expected non-linear behavior of the joint come
out. The same typical non-linear behavior was then obtained by employing different
mathematical approaches without any significant differences in terms of predicted
resonance frequency and blades’ vibration amplitude. However, strong advantages
can be found when the multi-stage ROM techniques are used. In those cases, the
time spent for the prediction of a forced response of the system is much lower than
that required by classic approaches.
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The example developed throughout this Chapter shows identical non-linear forced
responses for the both multi-stage reduction techniques. Such results do not exhibit
any significant approximation with respect the benchmark forced responses obtained
by using the Craig-Bampton model of each stage. However, it should be pointed out
that the use of the multi-stage reduction technique working on fundamental sectors
allowed non-linear forced response calculation almost 9 times faster than the other
multi-stage reduction technique (8 s vs 60 s), and 340 times faster than the classic
approach based on the Craig-Bampton method.



Chapter 6

Blade Tip Timing Measurements on
Bladed Disks

6.1 Introduction

The main goal of the methods described in the previous Chapters concerns the fast
prediction of the multi-stage bladed disk dynamics when friction phenomena at the
inter-stage boundary occur. The results obtained actually confirm the accuracy of
such methods that can be used as powerful tools helping in a robust and safety design.
However, friction is just one of the several aspects that have to be considered in
the design of a complex mechanical system. In fact, the causes leading to strong
resonances of such structures are numerous and nowadays numerical codes dealing
with all of them are either limited or not reliable. Therefore, the commonest approach
used to study the dynamics of component even representing just a part of a complex
turbomachinery requires the integration of numerical and experimental tests.

As already discussed in Chapter 1 turbomachinery blades undergo various types
of vibrations during operation, which may reduce their fatigue life by increasing
the risk of crack formation and the occurring of costly damages. As mentioned in
[61], "High Cycle Fatigue (HCF) is a major cost, safety, and reliability issue for
gas-turbine engines. For example, in 1998 it was estimated by the U.S. Air Force that
about 55% of fighter jet engine safety Class A mishaps (over 1 million in damage or
loss of aircraft) and 30% of all jet engine maintenance costs were due to HCF".
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Due to the nature of rotating machinery, real-time monitoring of blades’ vibration
is an extremely hard task and innovative measurement systems to comply such
challenge are still being developed. In this frame the Blade Tip-Timing (BTT) is
presently the most promising measurement technique for blade health monitoring.
The technique employs a set of non-intrusive sensors mounted on the casing that
detect the passing time or Time-of-Arrival (ToA) of every single rotating blade
[62, 63] (Figure 6.1).

Fig. 6.1 Schematic setup of a Blade-Tip Timing measurement system.

The working principle of this method lie on the analysis of the differences between
the actual and theoretical ToA. In particular, in absence of vibration and in case
of constant rotation speed, a certain sensor would detect the blade passages with a
constant time interval ∆T between them. Whereas, when the blade vibrates such
intervals fluctuate since the actual ToA depends of the blade’s vibration amplitude
(Figure 6.2).
By knowing the radial position of the measurement point on the blade, the rotation
speed of the rotor and the ∆ t between the actual and theoretical ToA, the blade
vibration amplitude can be found.

Being a non-intrusive measurement system, the BTT has a lot of advantages over
the standard method used for blade vibration monitoring:

• Blade vibrations are detected without any mechanical interaction with the
sensors, which can be of optical, capacitive or eddy-current type. In particular,
the sensors are located within the casing, around the disk without interfering
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Fig. 6.2 Detection of the time interval ∆t between the theoretical (upper plot) and actual
(lower plot) ToA.

with the flow path. This means that neither the air flow nor the disk dynamics
are effected during measurements. On the contrary, contact measurement
systems like strain gauges have to be stuck on the blade’s airfoil, a condition
that unavoidably modifies the blade’s dynamics.

• The other crucial advantage of using BTT is that every sensor is being used to
detect vibrations on every blade. Since all the blades are monitored it can be
possible to identify whether a blade is vibrating more than the others as in the
case of typical mistuning problems. This particular feature does not hold when
strain gauges are used. In fact, they are typically mounted on few blades since
their application on a bladed disk with more than hundred blades is unfeasible
for time and cost reasons. Therefore, only the (affected) dynamics of a few
blade can be measured, while all the others are completely missed.

Although the BTT has recently become a typical industry equipment for bladed
disks vibration surveys, the type of sensors, the way how they are positioned around
the disk and the algorithm used for data post-processing are still non-standard. For
this reasons, the reliability of such system has to be proved for different operation
conditions by the comparison with other well-established measurement techniques
like strain gauges.

Dynamic tests aimed at proving the accuracy of a latest generation BTT system
were therefore carried out at the LAQ Aermec laboratory of the Politecnico di
Torino in collaboration with GE Avio Aero. In this frame an extensive experimental
campaign was performed on two dummy blisk. The first have the simple geometry of
a flat plate and it is characterized by bending vibration modes of the blades in the disk
axial direction. The second was designed in order to simulate a dynamic behavior
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closer to that of a real turbine disk where the blades are connected to each other at the
tips by an outer ring. The performance of the BTT technique was then tested not only
for the evaluation of the maximum vibration amplitude and corresponding resonance
frequency of each single blade, but also for the identification of the deformed shape
of the measured mode.

Two key features are described throughout the Chapter. The first concerns
the validation on both blisk of the BTT measurements performed by using a new
sensors placement named as beam shutter configuration. This sensors arrangement
is particularly suitable for measurements on shrouded bladed disks and requires only
one set of optical laser sensors working both as senders and receivers of the reflected
laser beam. The BTT measurements were then validated by comparison with those
acquired by the strain gauges that were glued only to few blades. The second issue
concerns the proposal of an original method to identify, from the response data of all
the blades, the nodal diameter number characterizing the dominant response mode
of the disk. The method does not work when the mistuning is so large to completely
destroy the ideal cyclic symmetry of the disk, but appears reliable when a small
mistuning is present. It is proved, in fact, that a small mistuning pattern induces a
particular modulation of the blades response amplitude. It is shown in different cases,
both experimental and simulated, that the number of wave-length (WLs) of this
modulation is related to the number of the nodal diameter of the dominant response
mode of the disk.

6.2 The Spinning Test Rig

The two dummy disks were tested in a laboratory spinning rig at room temperature
under vacuum conditions [64]. As shown in Figure. 6.3 a) the test rig has a vertical
axis with two cylindrical protective structures (1 and 2) coaxial to the rotating shaft
that is positioned under the floor. At the top of the shaft a flange allows the disk
accommodation 3). The cylinder 1 also supports two static rings (Figure 6.3 b)): the
ring 1 keeps in a fixed position a set of permanent magnets that are used to excite the
rotating disk, while the ring 2 holds the BTT laser sensors.
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Fig. 6.3 The spinning rig a) and the supporting rings for the magnets and laser sensors
positioning b).

6.2.1 The Dummy Disks

The dummy disk 1 (Figure 6.4) is an aluminum disk with a simple geometry of a flat
plate where each blade has the shape of a cantilever beam. The dummy disk 1 has 12
identical blades whose length and width are 150 mm and 25 mm respectively. The
thickness and the outer diameter of the disk are 5 mm and 400 mm. A cylindrical
magnet with a 5 mm diameter and 5 mm height is glued in a housing drilled at the
tip of each blade.

Fig. 6.4 The dummy disk 1 within the spinning test rig.

The dummy disk 2 (Figure 6.5) was designed to have a dynamic behavior closer
to a real turbine disk. The blades are connected to each other at the tips by an
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outer ring as in the case of shrouded bladed disks. It is a single piece made of the
ferromagnetic steel AISI 460, in order to allow the magnetic interaction between the
permanent magnets and the blade airfoils. It has 32 real profiled blades whose length
and aspect ratio are respectively 100 mm and 7.31. Its disk outer diameter and axial
height are 630 mm and 20 mm.

Fig. 6.5 The dummy disk 2 within the spinning test rig.

6.2.2 The Excitation System

The excitation system in the spinning test rig uses cylindrical permanent magnets
(diameter 18 mm, height 10 mm, grade N52). The magnets are mounted in equally
spaced positions on the static ring facing the rotating dummy disk (the Ring 1 in
Figure 6.3 a)). A graduated scale impressed on the ring 1 upper surface is used to fix
the magnets at the right angular positions [64].

Several supporting rings with different inner diameters are available in order to
guarantee the correct radial positioning of the permanent magnets. Each magnet is
glued on the tip of a screw that allows the regulation of the axial gap with respect to
the disk blades (Figure 6.6).
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Fig. 6.6 Fixed magnet and load cell exciting the rotating disk.

Six of the magnets were instrumented with force transducers for the measurement of
the axial force exerted on the blades during the tests [64].

The number of magnets used in a specific test must be equal to the main engine
order (EO) characterizing the excitation force that should be simulated. The main
engine order EO1

m can be defined as the fist not-null harmonic index resulting from
the Fourier transform of the excitation force. In general for m equally spaced magnets,
the EO pattern exciting the disk is defined as follows:

EOi
m = i ·m, ∀ i = 1,2,3, . . . (6.1)

For example, if 3 is the number of equally spaced magnets exciting the disk, the
force profile acting on each blade is that of Figure 6.7 a). The harmonic content
of such profile is shown in Figure 6.7 b), where some EO excitation are plotted.
According to the previous description the main harmonic index is EO1

m = 3, while
the less important harmonic contributes have EO defined Eqn. 6.1 for i ̸= 1. As
already explained in Chapter 2 each harmonic function may excite a mode shape
having h nodal diameters when its EO satisfy Eqn. 2.70:

EO = z ·N ±h, ∀ z ∈ N∗ (6.2)

where Ns is the number of blades and z is a positive integer.
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The disk’s excitation frequency fexc can be calculated as:

fexc =
EO ·n

60
(6.3)

where the rotation speed n and fexc are expressed respectively in rpm and Hz. From
Eqn. 6.3 it can be noted that for increasing EO values the bladed disk can be excited
at the same excitation frequency fexc for lower values of the rotation speed n.

Fig. 6.7 Magnetic force profile acting on each blade a) and its harmonic content b).

6.2.3 The Strain Measurement System

Fig. 6.8 Strain gauge at the blade root of the dummy disk 1 a), strain gauge at the back of the
airfoil of a dummy disk 2 blade b).
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The two dummy disks were instrumented by means of strain gauges. For both the
disks the identification of the strain gauge positions came out from their FE modal
analyses in cyclic symmetry conditions. Areas of high strains and low strain gradients
were identified as the best locations for strain gauges. The strain gauges signals
were acquired through a telemetry system. For the dummy disk 1 the strain gauges
were attached at the two sides of the blade root (Figure 6.8 a)). This position was
chosen in order to measure the Out-Of-Plane (OOP) bending mode (1F) belonging
to its first modal family. The strain gauges adopted are composed by a single grid
of dimension 1.52 mm × 3.05 mm, with a grid resistance of 350 Ω. The two grids
at the two sides of the blade were connected together with a half bridge. For the
dummy disk 2 the strain gauge was applied on the back of a blade airfoil (Figure 6.8
b)). The selected area was not affected by strain gradients for both the flap-restricted
(1FR) and the torsional (1T) mode shapes belonging to its second and third modal
family respectively (Figure 6.9).

Fig. 6.9 FreND diagram for the dummy disk 2.

The strain gauges was a tee rosettes (grid resistance 350 Ω) composed by two
separate grids (1.52 mm × 1.78 mm) with perpendicular axes that were connected
together with a half bridge. During the dynamic tests the strain gauges signals were
sampled with a sampling frequency of 8192 Hz and then post-processed using the
following parameters (Figure 6.10):

• time width of each bin of samples for FFT analysis: 4 s.

• percentage of overlap between bins: 50 %.
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• Ramp speed: 18.75 rpm/s.

Fig. 6.10 Example of strain gauge signal and representation of the bins of samples.

The strain gauges measurement chain was verified by means of static tests on the
dummy disk 1, which consisted in measuring the bending strains at the blade root
due to a set of calibrated masses positioned on its free end. Three static tests were
performed for three masses having different weights. The measured strains were
compared to the corresponding numerical quantities determined by means of a static
FE analysis. The results listed in Table 6.1 show the reliability of the strain gauges
that can be used as a reference measurement system for the validation of the BTT
technique.

Table 6.1 Experimental and numerical strains for the static tests on the dummy disk 1.

Mass Experimental strain Numerical strain

0.76 130.23 130.19
1 169.30 169.27

1.99 342.32 342.25

Although the static measurement was repeated, only negligible differences were
found between the experimental strains since the test showed high repeatability.
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6.3 The Blade Tip-Timing Measurement System

The BTT technique employs a set of non-contact sensors mounted on the casing and
facing the blades of a rotating bladed disk[63, 65, 62]. This technique is based on
the measurement and the subsequent analysis of the difference between the Times-
of-Arrival (ToA) of each vibrating blade passing by the sensors and the theoretical
ToA of the non-vibrating blade [63]. From the post-processing of the collected ToA
the dynamic properties of each blade, i.e. the resonance frequencies, the vibration
amplitudes and the modal damping can be identified. The BTT has two main
advantages over the strain gauges:

• It is a non-contact measurement system that does not affect the dynamic
behavior of the blades.

• It allows the measurement of all the blades of the disk, while the strain gauges
are usually attached only to few blades.

The BTT system adopted in this study is a latest generation system that uses optical
laser sensors. For the dummy disks 1 and 2 all the tests were performed by employing
five sensors for the direct detection of the blades ToA and an additional sensor (1/rev
sensor) measuring the rotational speed and representing the reference for all the
others. The signal from the 1/rev sensor was acquired by both the BTT and the strain
gauges systems in order to synchronize the measured blade vibrations signals during
the post-processing operations.

6.3.1 The Beam Shutter Method and the Sensor Positioning

The standard measurement approach for the BTT method is based on a set of sensors
that are positioned along the radial direction in order to detect the ToA at the blade
tip where the maximum vibration amplitude occurs. Although this sensor positioning
is particularly suitable for disk with tip free blades, it is impracticable for shrouded
bladed disks. In fact, due to the presence of shrouds the laser sensors are not able
to capture the motion at the tips. For this reason a new sensor configuration called
beam shutter was tested on the two dummy disks introduced in section 6.2.1. The
sensors positioning adopted for the two cases are presented in Figure 6.11 and 6.12.
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Fig. 6.11 Beam shutter configuration for the dummy disk 1.

Fig. 6.12 Beam shutter configuration for the dummy disk 2.

While the application of Figure 6.11 tested the capabilities of the beam shutter
configuration when the OOP vibration modes of the blades have to be detected
(see section 6.4), the case of Figure 6.12 clearly shows the need of measuring the
vibrations at the blade trailing and leading edges since a direct detection of the
vibrations at the blade tips cannot take place.

One of the attempts of using the BTT method to measure the blade vibrations at
the trailing and leading edges makes use of the beam interrupt configuration as shown
in [66], where two sets of laser sensors, one acting as a sender of the laser beam and
the other as a receiver , were employed within the flow path of a working engine.
The configuration proposed in the present paper would overcome this inconvenient
because in the case of real applications only one set of sender-receiver optical laser
sensors are embedded in only one probe (Figures 6.11 and 6.12). Since a smaller
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number of sensors is involved in the measurements, the beam shutter appears more
robust and less invasive than the beam interrupt configuration.

For both the applications each sensor was mounted above the disk and produced
a laser beam that was collimated through a lens on a reflective tape stuck on a
fixed surface beneath the disk. During the disk rotation the passing blade acts as a
shutter, blocking the returning light towards the sender-receiver sensor. The system
was set up in order to direct the laser beam towards the leading and trailing edge
locations where the blade experienced the maximum vibration amplitudes. The
optical sensors and the reflective tape were employed in measurements performed
without any significant temperature variation from the room temperature. The
maximum temperature at which the laser probes can work is 315◦C.

The sensors were installed at the same distance from the disk center and their
relative circumferential position was chosen in both the cases by means of an
optimization tool, which avoids the aliasing effect in the identification of the traveling
wave mode shape characterizing the vibrating disk. The optimization tool requires as
input the number of sensors, the expected engine orders and the number of blades.

6.3.2 The Blade Tip-Timing data Post-Processing

The data were post-processed by using a fitting method called Circumferential
Fourier Fit (CFF)1 [67, 68].

This method is particularly useful for cases where the resonance peaks of a
bladed disk forced response are not well-separated (condition typical of mistuned
phenomena). The method requires three or more sensors installed at the same chord-
wise position. Assuming a certain response order, corresponding to the selected EO,
for each averaged rpm a sinusoidal wave is fitted to the data [69–72], in other words,
each blade is assumed to vibrate according to a sinusoidal wave. The equation of the
blade motion seen by the kth sensor is:

yk(ω) = c(ω)+A(ω) · sin
[
2π ·EO · f · t +Φ(ω)

]
= (6.4)

1An exhaustive comparison between three different BTT algorithms for synchronous vibration
analysis can be found in [67]. Here the Auto-Regressive, Circumferential Fourier Fit and Bayesian
regression methods are compared on simulated BTT data in terms of accuracy in estimating blades’
resonance frequency and response amplitude.
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where A(ω), Φ(ω) and c(ω) are the vibration amplitude, the phase and the blade’s
static position between the 1/rev sensor and the generic kth sensor at a certain
frequency ω (Figure 6.13).

Fig. 6.13 Example of data collected by the sensors.

The kth sensor sees the passing blade at the following time instant [62]:

t =
θk +2πnrev

2π fsha f t
(6.5)

where θk is the angular position of the kth sensor, nrev is the number of blade’s
revolution and fsha f t is the frequency associated to the shaft’s rotation speed Ωsha f t .
By substituting Eqn. 6.5 into Eqn. 6.4 yk(ω) becomes:

yk(ω) = c(ω)+A(ω) · sin
[
EO ·θk +Φ(ω)

]
(6.6)

By assuming a number of sensors K ≥ 3, for the ith frequency ωi, Eqn. 6.6 can be
extended to all the sensors and written in matrix form as follows:

y1(ωi)

y2(ωi)
...

yk(ωi)
...

yK(ωi)


=



1 sin(EO ·θ1) cos(EO ·θ1)

1 sin(EO ·θ2) cos(EO ·θ2)
...

...
...

1 sin(EO ·θk) cos(EO ·θk)
...

...
...

1 sin(EO ·θK) cos(EO ·θK)




c(ωi)

A(ωi)cos
[
Φ(ωi)

]
A(ωi)sin

[
Φ(ωi)

]
=
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= y(ωi) = M


χ(ωi)

δ (ωi)

γ(ωi)

 (6.7)

Eqn. 6.7 can be solved in a least square sense in order to minimize the error ε defined
as:

ε = M


χ(ωi)

δ (ωi)

γ(ωi)

− y(ωi) (6.8)

where y(ωi) is the exact solution.

The amplitude and phase of the blade at the ith frequency can be computed by
using the following relationships:

Φ(ωi) = tan−1
[

γ(ωi)

δ (ωi)

]
A(ωi) =

δ (ωi)

cos
[
Φ(ωi)

] (6.9)

The amplitude A(ω) can then be plotted versus the rotation speed and the forced
response of the blade be obtained for the assumed value of EO (Figure 6.10).

6.4 The Results Comparison Method

In order to verify the accuracy of the BTT method, the vibration parameters identified
by the BTT were compared to those detected by the strain gauges in conjunction
to the telemetry system. Simultaneous measurements with the BTT and the strain
gauges systems were performed for a certain set of vibrating modes characterizing
the dummy disks. While the comparison in terms of resonance frequencies is
straightforward and requires a fast data processing, the comparison in terms of
vibration amplitudes is a more demanding task. Indeed, it requires a preliminary FE
modal analysis of the disks, since the strain gauges system measures strains (εSG),
while the BTT measures displacements (uBTT).

By the FE model the parameter Kmod = umod/εmod can be calculated, where:

• umod is the modal displacement of the node corresponding to the laser position
on the blade in the same direction of the displacement detected by the BTT.
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• εmod is the modal strain in the area corresponding to the strain gauges position
in the same direction of the strain detected by the strain gauges.

The same parameters can be defined for the physical measured quantities u (displace-
ment of the blade at the BTT laser position) and ε (strain at the strain gauges position)
Kphy = u/ε . Since the two disks can be considered linear and their responses give
well separated modes, the following relationship should be satisfied:

Kphy = Kmod ⇒ u
ε
= Kmod (6.10)

The displacement of the blade corresponding to the strain measurement from
Eqn. 6.10 can be determined as:

uSG = Kmod · εSG (6.11)

Since the FE model was previously tuned by the strain gauge measurements (see
Table 6.1) the parameter uSG is considered as reference for the displacement value
measured by the BTT system uBTT .

6.5 Results on the Dummy Disk 1

In order to predict the natural frequencies and the mode shapes a FE dynamic
calculation in cyclic symmetry conditions was performed. In Figure 6.14 a) the
natural frequencies of the dummy disk 1 are plotted against the respective NDs
(FreND diagram) resulting in the first modal family called 1F. Each black circle in
Figure 6.14 a) refers to an OOP bending mode of the blade when the disk vibrates
according to a certain ND. From the numerical Campbell diagram in Figure 6.14 b)
the rotational speeds at which the resonances occur can be estimated. The modes
corresponding to ND = 5 and ND = 6 were chosen to be tested since they represent the
different cases of rotating and standing mode shapes respectively [10]. Furthermore,
in order to avoid high operation speeds the mode with h = 6 was excited by a
harmonic force with EO = 6 at 1951 rpm, while the mode with h = 5 was excited by
a harmonic force with EO = 7 (Eqn. 6.2) at 1356 rpm instead of EO = 5 at 1910 rpm.
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Fig. 6.14 Numerical FreND diagram for the dummy disk 1 a), numerical Campbell diagram
for the dummy disk 1 b).

6.5.1 Displacement Measurement with the Blade Tip-Timing

The dummy disk 1 is excited in order to have OOP vibrations of the blades (the
blade vibrates along the axial direction). In order to operate in the beam shutter
configuration in case of an OOP vibration of the blades, the sensors cannot be
positioned in order to have the laser beam pointing along the radial direction. Indeed,
in this case there is no tangential displacement of the blade that can produce a
different ToA with respect to the non-vibrating blade ToA. For this reason the
sensors can be positioned as shown in Figure 6.11, where each sensor is tilted by
an angle of 45◦ with respect to the plane containing the undeformed disk. This
particular angle of the sensors allows the BTT system to detect a ToA of the blade
under the sensor that is not zero as shown by the scheme of the blade interrupting
the laser beam in Figure. 6.15. The time lag ∆t between the detected ToA and the
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theoretical ToA of the undeformed position (∆t in Figure 6.15) is proportional to
a fictitious tangential displacement ∆v of the blade that is equal to the actual axial
displacement ∆u. For this reason the ToA can be used to calculate the blade axial
displacement ∆u.

Fig. 6.15 Beam shutter working principle adopted for detecting the out of plane vibration
modes for the dummy disk 1.

Fig. 6.16 Experimental Campbell diagram for the dummy disk 1.
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6.5.2 Preliminary Test

A preliminary rotating test was performed to identify the actual resonance frequencies.
A single magnet was mounted on the test rig so that the disk could be excited
simultaneously by means of an infinite number of harmonic excitations (EO1 =

1,2,3, . . . ). The test was planned in order to investigate the speed range 600 -
2600 rpm. From the strain gauges time signal the experimental Campbell diagram
(Figure 6.16) was processed using Matlab. The natural frequencies for the modes
corresponding to h = 5 and h = 6, which were determined by reading the y-axis
values of the white points, are listed in Table 6.2.

Table 6.2 The dummy disk 1 resonance frequencies for the mode shapes with h = 5 and
h = 6 (OOP bending modes).

EO ND nres fres

7 5 1356 158.2
6 6 1591 159.1

6.5.3 Test Campaign on the Dummy Disk 1

The test campaign was performed for the modes that were excited by the EOs
determined from Eqn. 6.2 for z = 1. A single permanent magnet was adopted for the
excitation. A gap of 7 mm between the permanent magnet and those glued at the
blades’ tips was set for all the tests. Strain and ToA were acquired simultaneously
for two speed ranges including the values of nres at which the resonances occur. The
main tests parameters are listed in Table 6.3.

Table 6.3 Test campaign for the dummy disk 1.

EO h n-range

7 5 1300 - 1400
6 6 1550 - 1650

The test campaign was repeated 3 times. For each test a linear sweep in speed with
an acceleration of 18.75 rpm/s was performed.
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6.5.4 The Comparison BTT - Strain Gauges on the Dummy Disk
1

The strain gauges and BTT data were post-processed for each of the studied modes
by using the same procedure employed in the preliminary test. The detected and
derived displacements (uBTT and uSG) and the corresponding resonance frequencies
were averaged over the three acquisitions. The values of fSG, fBTT , uSG and uBTT

for the three separate acquisitions are reported in the Table 6.4, where the high
repeatability of the measurements can be noted.

Table 6.4 BTT and strain gauges measurements for the three tests on the dummy disk 1: the
OOP vibration (1F) of the blades corresponding to h = 5 and h = 6 were detected.

Test h Mode fSG fBTT uSG uBTT

- - - Hz Hz µm µm

1 5 1F 158.10 159.80 1657.66 1651.50
2 5 1F 157.90 157.70 1669.50 1611.81
3 5 1F 158.00 156.50 1659.53 1631.13

1 6 1F 160.00 161.90 2314.57 2293.21
2 6 1F 160.00 159.80 2296.27 2289.21
3 6 1F 157.90 158.90 2285.41 2244.38

The mean values of the previous frequencies and displacements at resonance are
listed in the Table 6.5 so that a direct comparison between the two measurement
systems can be carried out using the following relationships:

e f =
| f̄BTT − f̄SG|

f̄SG
·100

eu =
|ūBTT − ūSG|

ūSG
·100

(6.12)

where e f and eu are the percentage differences between the resonance frequencies
and vibration amplitudes detected by the strain gauges and the BTT respectively.
From the Table 6.5 it can be noted that the difference in terms of resonance frequency
is negligible (e f < 0.5%) while the difference in terms of resonance amplitude is
less than 2% (eu < 2%).
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Table 6.5 BTT - strain gauges measurements comparison on the dummy disk 1.

h f̄SG f̄BTT e f ūSG ūBTT eu

- - - Hz Hz µm µm

5 158.0 158.0 0 1662.23 1631.48 1.88
6 159.3 160.2 0.44 2298.75 2275.60 1.02

6.5.5 From a Single Blade Measurement to the Blobal Disk Re-
sponse

One of the advantages of the BTT system over the strain gauges is that every
blade can be measured while, if the strain gauges are used, only the response of
the instrumented blades are detected. However, the measurement of the blades as
independent structures having their own amplitude and resonance frequency does
not allow to catch the global disk behavior when a mode shape with a certain number
h of nodal diameters occurs. The estimation of the h number of a bladed disk
vibrating in resonance condition can be carried out with aid of a numerical Campbell
diagram (e.g. similar to that of Figure 6.14 (b)), obtained from the FE model of
the bladed disk. In particular, when a resonance is detected by the measurements,
the corresponding rotational speed is the input value for the Campbell diagram to
verify the presence of a crossing h line - EO line that satisfies Eqn. 6.2. Instead of
estimating the h number with the numerical Campbell diagram, it is here presented
how it can be identified directly by the BTT measurements.

The forced responses of all the blades post-processed by the BTT for the studied
mode shapes (h = 5 and h = 6) are plotted in Figure 6.17. If the dummy disk were a
perfectly tuned disk, i.e. all the hypotheses for a cyclic symmetric body were satisfied
in terms of geometry, material properties and constraints, the forced response of
each blade would be the same. It can be observed that this holds for the standing
Operating Deflection Shape (ODS) with h = 6 (Figure 6.17 a)), where the response
peak of each blade occurs at the same rotational speed with the same amplitude. This
is not the case of the traveling ODS with h = 5 (Figure. 6.17 b)), where the maxima
amplitudes occur at slightly different rotational speed and their envelope appears as
a spatial wave along the blade number. The same spatial wave can be observed along
the blade number at a given rotational speed.
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Fig. 6.17 Experimental forced responses for the twelve blades of the dummy disk 1 detected
by the BTT in the case of h = 6 a) and h = 5 b) mode shape.

This phenomenon was already observed in [73] where a test campaign on a
non-rotating blisk excited by a set electromagnets producing an EO traveling force
was performed. In that case it was demonstrated that, due to the presence of small
mistuning of the disk, the spatial wave resulting from the envelope of the blade peak
amplitudes for a given excitation frequency had a number of Wavelengths (WLs, see
Figure 6.17) equal to two times the number of the ODS nodal diameters. In detail,
for a dummy bladed disk with 24 blades, four WLs were observed for an ODS with
h = 2 and six WLs were observed for an ODS with h = 3. In the case of Figure 6.17
b), where the ODS with h = 5 is shown, ten WLs are expected. As it is shown in
the same figure, the envelope of the maxima amplitudes clearly shows two WLs
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instead of ten. This is due to the aliasing effect generated by the poor resolution of a
spatial wave with ten WLs discretized by 12 blades only. In detail, assuming N as
the number of blades, Wexp the number of WLs of the expected spatial wave and Ws

the number of WLs of the spatial wave sampled by the blades, two cases can occur:

• if Wexp ≤ N/2, the modulated spatial wave can be well recognized as a wave
with Wexp wavelengths. In this case Wexp =Ws and no aliasing occurs;

• if Wexp > N/2 (Figure 6.17 b)), the number of blades is not large enough to
correctly discretize a spatial wave with Wexp wavelengths. In this case aliasing
occurs and the observed spatial wave has a number of wavelengths Ws which
satisfies the following relationship:

Wexp = z ·N ±Ws, ∀ z ∈ N∗ (6.13)

In order to confirm the experimental observation in a simpler case where no aliasing
occurs, the measurement was performed also in the range of the natural frequency
corresponding to h = 3: the ODS, plotted in Figure 6.18, shows as expected a spatial
wave with six WLs.

Fig. 6.18 Experimental forced responses for the 12 blades of the dummy disk 1 detected by
the BTT in the case of the h = 3 mode shape.

In the next section a simplified lumped parameters system is used to explain the
reason why the spatial wave is characterized by a number of WLs that is twice the
number of h of the traveling response.
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6.5.6 An Analytical Model to Explain the Blade Row Response

The relationship between the number of WLs and the number h is strictly associated
to the existence of two repeated modes in the presence of small mistuning. Repeated
modes occur for 1 < h < N/2 if N is even. When h = 0 or h = N/2 (for an even
number of blades) only one mode is present and the spatial wave does not appear.
This is confirmed by the observation of the flat ODS corresponding to h = N/2 = 6
(Figure 6.17 a)).

Fig. 6.19 Numerical forced responses a) and ODS b) for a cyclic symmetric mode shape
with h = 3.

In order to explain the appearance of the spatial wave, a simple analytic model of
a lumped parameter disk is used. The disk has 12 sectors, each one with one degree of
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freedom coupled by means of springs to the neighbor sectors. The sectors are equal,
therefore the disk is tuned and 12 identical forced response amplitudes are obtained
as shown in Figure 6.19 a) when the mode shape with h = 3 is excited. In Figure 6.19
b) the two repeated mode shapes multiplied by their participation factors are plotted
at resonance for different time instants. Under a traveling excitation the repeated
mode shapes are orthogonal not only in space but also in time. The orthogonality
along the blade number is clearly visible, while the orthogonality in time is indicated
with the two black solid lines: when the first mode is at its maximum amplitude the
second mode is at its neutral position. The linear combination of the two modes
produces a traveling ODS (lowest subplot of Figure 6.19 b)). Since the disk is tuned,
the peak envelope of the blade amplitudes is a straight spatial line (red).

Fig. 6.20 Numerical forced responses a) and ODS b) for a mistuned mode shape with h = 3.
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A random mistuning was then added to the disk model in terms of mass per-
turbation that causes a split of the repeated modes natural frequencies ∆ f of about
0.7 % of the tuned natural frequencies. As it can be seen in Figure 6.20 a), the
consequence is that the sum of the two modes, having slightly different frequencies
and amplitudes, gives an ODS where the peak envelope is a spatial wave with six
WLs for a h = 3 response as they appear in Figure 6.18.

By using the same mistuned model the cases of Figure 6.17 a) and b) can also be
simulated. Figure 6.21 a) shows the simulated forced responses corresponding to the
experimental case of Figure 6.17 a), where a mode with h = 6 is excited. It can be
seen in the simulation (Figure 6.21 b)) that the second mode does not exist since the
mode is standing and then it can not give rise to a spatial wave.

Fig. 6.21 Numerical forced responses a) and ODS b) for a mistuned mode shape with h = 6.
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Fig. 6.22 Numerical forced responses a) and ODS b) for a mistuned mode shape with h = 5.

Figure 6.22 a) shows the result of the simulation for an ODS with h = 5. This
example corresponds to the experimental case of Figure 6.17 b). It can be seen
that the simulated forced responses shows a modulated spatial wave with two WLs
due to aliasing as in the experiments. It can then be concluded that the presence of
small mistuning, which is expected to be present in the real disks, can be useful to
experimentally identified the nodal diameters number.
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6.6 Results on the Dummy Disk 2

The dummy disk 2 was created to reproduce a bladed disk dynamics similar to that
of a real turbine disk. The measurements on this disk allow testing the capability
of the BTT system in the beam shutter configuration even on a disk with a more
complex dynamics. The FE dynamic calculation on the dummy disk 2 showed that
the modes belonging to the first three modal families are characterized by the flap
(1F), flap restricted (1FR) and torsional (1T) mode shape of the blade. The FreND
diagram corresponding to the 1st , 2nd and 3rd modal family is shown in Fig. 6.23.
From the FE analyses on the dummy disk 2 the high strain locations on the blade
airfoil, both for the 1FR and 1T mode shape, were chosen for the strain gauges
installation (Figure 6.8 b)).

Fig. 6.23 Numerical FreND diagram for the dummy disk 2 and identification of the mode
with h = 7 nodal diameters.

6.6.1 Preliminary Hammer Test

A preliminary hammer test was performed to detect the modal parameters of the
disk in static conditions (not rotating). In order to have the same constraints with the
shaft as during the rotation, the disk was kept mounted on the spinning rig during
the hammer test. The response of each blade was measured by a laser scanner at the
same location where the BTT laser sensors detect the blade vibrations.
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It was observed that the cleanest disk responses for both the 1FR and 1T modes
occurred for ND = 7 at 1029 Hz and 1402 Hz respectively. In Figure 6.24 an
example of the response processed by the laser scanner is shown. Considering
these preliminary results, it was chosen to compare the BTT and the strain gauges
measurements when the disk was excited in rotating conditions to vibrate according
the modal families 1FR and 1T for h = 7.

Fig. 6.24 Hammer test on dummy disk 2: 1FR mode identification.

6.6.2 Test Campaign on the Dummy Disk 2

According to Eqn. 6.2, considering that the number of blades is N = 32 and assuming
z = 2, it can be deduced that the mode with h = 7 can be excited by an excitation with
EO = 57. Moreover, assuming i = 3, from Eqn. 6.1 it can be derived that a number
of 19 equally spaced magnets (m = 19) facing the rotating disk can produce an
excitation with EO = 57. The test campaign was then performed with 19 permanent
magnets (Figure 6.25) at a gap of 5 mm from the blade leading edges. This produces
in the disk a travelling excitation with EO3

19 = 57 that into a suitable speed range
excites the modes at h = 7.
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Fig. 6.25 Dummy disk 2 excited by 19 permanent magnets.

The main tests parameters are listed in Table 6.6. Strain and displacement were
acquired simultaneously for 2 speed ranges (Table 6.6) including the values of nres at
which the resonances occur. For each test a linear speed sweep with an acceleration
of 18.75 rpm/s was performed. As in the case of the dummy disk 1 the test campaign
was repeated 3 times.

Table 6.6 Rotational speed ranges for the test campaign on the dummy disk 2.

Mode EO ND n-range

- - - rpm

1FR 57 7 1000 - 1150
1T 57 7 1350 - 1500
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6.6.3 The Comparison BTT - Strain Gauges on the Dummy Disk
2

The strain gauges signals were post-processed using the same procedure adopted for
the dummy disk 1. Also for the dummy disk 2 the detected and derived displacements
(uBTT and uSG) and the corresponding resonance frequencies were averaged over three
acquisitions. As shown in Table 6.7 the measured quantities show high repeatability.

Table 6.7 BTT and strain gauges measurements for the three acquisitions on the dummy disk
2.

Test h Mode fSG fBT T uSG uBT T

- - - Hz Hz µm µm

1 7 1FR 1025.60 1020.30 136.21 130.85
2 7 1FR 1032.20 1026.20 135.30 130.51
3 7 1FR 1030.40 1021.90 137.78 132.75

1 7 1T 1404.30 1371.40 153.62 161.33
2 7 1T 1403.60 1370.60 155.89 161.91
3 7 1T 1398.70 1362.30 156.93 164.38

The mean values of the resonance frequencies, amplitudes and the relative percentage
differences e f and eu (Eqn. 6.12) are listed in Table 6.7.

Table 6.8 BTT-strain gauges comparison for the dummy disk 2 when the CFF method is
adopted.

Mode h f̄SG f̄BTT e f ūSG ūBTT eu

- - Hz Hz % µm µm %

1FR 7 1029.40 1022.80 0.65 136.43 131.37 3.70
1T 7 1402.20 1368.10 2.43 155.48 162.54 4.54

It can be noted that the values of displacement (uBTT or uSG) are an order of magnitude
lower than those detected for the dummy disk 1 (Table 6.5). Even in the case of
small vibration amplitudes the comparison between the two measurement systems
led to acceptable values of e f and eu (Table 6.8).
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6.6.4 Nodal Diameter Identification on the Dummy Disk 2

The forced responses obtained for the mode 1T on each blade of the dummy disk 2
are plotted in Figure 6.26 a).

Fig. 6.26 Experimental measurements on the dummy disk 2 (N = 32) by the BTT, mode
shape with h = 7 mode. a) Forced responses of all the blades, b) spatial wave.

Although the small vibration amplitudes led to a set of noisy data collected by
the BTT sensors, it can however be observed that also in this case the phenomenon
of the spatial wave can still be present as highlighted in Figure 6.26 b). The shape of
the WLs is in this case quite irregular, but it is still possible to recognize a modulated
spatial wave with 14 peaks. In this case 14 peaks are expected since the excited
travelling response is characterized by a number of nodal diameter h = 7.
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The observation of this phenomenon is confirmed by other tests. An excitation
with EO = 19 is produced by 19 magnets. According to Eqn. 6.2, considering the
number of blades (N = 32) and z = 1, the engine order EO = 19 excites the mode
with h = 13. The envelope of the maxima amplitudes of the forced responses in this
case is that of Figure 6.27 a) where six WLs are visible. In this case the presence
of six WLs instead of the expected 26 can be justified by the Eqn. 6.13 since the
aliasing occurs. In fact, the number 26 of the expected WLs of the spatial waves is
higher than N/2. For the aliasing the visible number of WLs is six (32 - 26 = 6).

Fig. 6.27 Envelope of the maxima amplitudes of the experimental forced responses (spatial
waves) for the dummy disk 2 (N = 32). Mode shape with h = 13 a) and h = 2 b).

In order to confirm the results in one case where the aliasing phenomenon
is not present, the measurement was repeated with 5 magnets. According to the
Eqn. 6.1 5 magnets produce on the blades a set of traveling forces characterized by
EO15 = 15,30,45, . . . . In particular, the measurement was performed considering
an excitation corresponding to EO = 30 in order to excite, according to Eqn. 6.2,
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the mode shape with h = 2. The envelope of the maxima amplitudes of the forced
responses in this case is that of Figure 6.27 b) where four WLs, as expected, are
visible since the aliasing is not present.

6.7 Discussion

In this paper a BTT system with a new concept of sensors positioning was tested
on two dummy disks (dummy disk 1 and dummy disk 2). The dummy disk 1 has a
simple flat geometry and its blades show in resonance high displacement amplitudes
(1600 - 2300 µm). The dummy disk 2 is more similar to a real turbine disk and it is
characterized by families of modes close to each others.

Two key features were here presented. First, a new measurement configuration
for the optical probes of a BTT system, the beam shutter configuration, was tested
by comparing the BTT with the strain gauges measurements. The beam shutter
configuration proved to work properly since it gives the expected collection of
measured data from the ToA of each blade under each sensor. In the case of the
dummy disk 1, for the selected modes, high vibration amplitudes (1600 - 2300
µm) were found with an accuracy less than 2% with respect to the strain gauges
measurements. For the dummy disk 2 the vibration amplitudes for the measured
modes (130 - 150 µm) were smaller than in the case of the previous disk. Even if
the small amplitude values led to a set of noisy BTT data, the accuracy with respect
to the strain gauge measurements was still high (differences less than 5%). These
results give confidence in this new way of positioning the optical probes. Second, a
novel method to experimentally identified the nodal diameter number of the detected
mode is proposed. The method takes advantage from the availability of the forced
responses of all the blades that typical of the processed BTT measurements. The
method works when the detected mode is quite isolated from the others and in
presence of small mistuning. It does not work when the mistuning is large enough
to completely decouple the blade row and destroy the ideal cyclic symmetry of the
disk. It was proved that a small mistuning produces a spatial wave modulating the
vibration amplitude of the blade row. It was then shown that the number of nodal
diameter related to the dominant mode can be identified starting from the number of
WLs of this modulation.



Chapter 7

Conclusions

7.1 Summary and Main Achievements

The bladed disks are known to suffer severe vibration problems owed to the non-
stationary components of the gas flow pressure. Such condition is much more
critical for turbines than compressors due the high temperatures of the exhaust gasses
characterizing the environment in which they work. Dynamic stresses on turbine
bladed disks generally depend on excitation causes that can be grouped into the
following two main categories:

• Mechanical excitations: ascribable to the wrong rotor balance (whirl), blade
tip-casing contacts and possible impacts between either rotating or non-rotating
components with items sucked into the engine while working.

• Aerodynamic excitations: while bending stresses are caused by the stationary
component of the gas flow pressure (mean value), vibration stresses are in-
duced by its non-stationary components. These are attributable to the gas flow-
structure interaction concerning the non-uniform circumferentially distributed
pressure, stator-rotor interactions and self-excited aeroelastic phenomena (flut-
ter).

Most of the mentioned excitation causes are the main responsible of high cycle fatigue
damages, which represent the most important cause of failure for bladed disks. Hence,
the prediction of the dynamic behavior of such structure in resonance condition
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becomes of extraordinary importance when the amount of damping necessary to
lower the blades’ vibrations has to be evaluated.

Finite element models of industrial rotors may easily consist of thousands or even
million of nodes. Performing dynamic analyses without reducing their model size
is often prohibitive due to the large number of degrees of freedom (DoFs) involved
in the simulations. For single-wheel bladed disks such analyses can be greatly
simplified by exploiting their ideal cyclic symmetry so that a more compact model
representation can be obtained. Chapter 2 of this thesis presents the commonest
approaches found in literature used to predict the whole tuned bladed disk dynamics,
starting from the finite element model of its fundamental sector. Such approaches,
which are mainly based on studies concerning the waves propagation on periodic
structures, were exploited to give an insight into the physical meaning of a generic
bladed disk’s mode shape. These modes feature particular harmonic distributions of
the displacements over the structure that are commonly identified by their number
of nodal diameters, i.e. nodal lines crossing the disk’s center along which all the
modal quantities are null. However, this description is valid only in the case the
mode is discretized by homologous locations whose number equals the number of
disk’s sectors, but no information are provided on the shape of the mode within a
single sector. By looking at the mode shapes at a disk’s level, new small wavelength
spatial harmonics can also be detected. These were referred to as extra harmonics
and were presented for the first time in a recent paper concerning a reduced order
model technique for multi-stage bladed disks [6, 7].

Interface Reduction Methods for Sub-Systems Coupling

Cyclic symmetric reductions of stand-alone fundamental sectors may be not sufficient
when a significant compression of the number of DoFs is requested. For this reason
dynamic substructuring methods in the class of component mode synthesis (CMS)
are widely employed in the turbomachinery field, since they guarantee high fidelity
in modeling the structure’s dynamic behavior. In this regard Chapter 3 reports a
literature survey on the most used methods utilized to reduce the finite element
model size of a complex structure as a bladed disk is. Among these, particular
emphasis has been given to the well-established Craig-Bampton method, which aims
at defying a superelement by condensing most of the component’s DoFs on a smaller
set of boundary DoFs. However, although a dramatic reduction may be achieved
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for the non-boundary DoFs, all the boundary ones are retained, a condition that
is inconvenient for components having extended interfaces. In this frame Chapter
3 proposes an original interface reduction method that improves the pre-existing
Characteristic Constraint Modes formulation [5]. The developed technique has
been named as Gram-Schmidt Interface reduction method and allows performing the
following two tasks:

1. Besides reducing the interface DoFs, the method allows the components
coupling even in the case on non-conforming interface meshes between them.
This task is carried out by writing the compatibility equations not in the
domain of physical DoFs but in the space of the Gram-Schmited Characteristic
Constrait modes.

2. It can be used as a valid alternative of the Tran’s method for the reduction of
cyclic symmetric structures. In particular, the independent frontier of a sector
treated in cyclic symmetry conditions can be condensed without performing
ulterior static condensations of the full FE model. In this way the offline
reduction costs can be considerably lowered.

Multi-Stage Reduced Order Model Techniques

The idea of interface reduction and subsequent components coupling has been readily
extended to multi-stage bladed disks assemblies. These structures consist of two
or more bladed disks coupled together by means of bolted flange joints. The main
challenge associated with modeling multi-stage assemblies is strictly related to the
possible different cyclic symmetry of the stages, since a sectors representative of the
whole system’s geometry does not exist in general. Hence, when dealing with multi-
stage systems the single-stage approach is no more valid and the effects of dynamic
coupling between stages have to be taken into account. In this context Chapter
4 presents two novel reduction techniques for multi-stage systems based on the
same theory background of cyclic symmetric structures, but different mathematical
approaches:

1. The first method starts from the finite element models of isolated full stages.
These are individually reduced and then assembled leading to a reduced order
model of the complete multi-stage structure. The first reduction step for each
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single-stage is the application of the well-known Craig-Bampton method,
which requires that at least the DoFs at the inter-stage boundary are retained as
master. Later, such physical DoFs are approximated by few spatial harmonic
basis functions taking into account the presence of either dominant of extra
harmonic patterns. Once the mentioned reduction is performed for both stages’
interfaces, the multi-stage coupling procedure is performed by equaling the
same order spatial Fourier coefficients (i.e. the generalized coordinates) of
the functions adopted for the interfaces reduction. The main idea behind this
coupling process can be summarized as follows: the vibration energy can be
transferred from one stage to the adjacent ones if their motion at the interface
has the same spatial shape.

It can be noted that the stages’ coupling is performed for all the harmonic
functions approximating the motion at the stage’s interfaces. The assembled
multi-stage ROM then allows the force response prediction for any traveling
wave excitation applied to the stages. In the example of section 4.3, the
application of this method led to an effective model size compression (1306 vs
260000) that guaranteed to lower the computational costs of almost 140 times.

2. The second method just requires the finite element models of stand-alone
fundamental sectors representative of the stages’ geometries. Each sector is
reduced by applying a modified version of the cyclic Craig-Bampton method
proposed by Bladh [9], which takes into account a further reduction of the
interface DoFs considering the extra harmonic pattern related to the dominant
harmonic index for which the starting cyclic reduction is performed. At the
end of each stage’s reduction the interface is modeled by few cyclic physical
DoFs. The final multi-stage reduced order model is this time obtained by
enforcing the compatibility conditions in the space of such cyclic DoFs.

For this second case the model size compression was much more effective
than that achieved with the first reduction method (53 vs 1306 vs 260000).
However, the stages reduction is in this case valid just for one dominant
harmonic function. This means that the forced response calculations can be
performed for traveling wave excitations having engine order compatible with
the order of the harmonic function used for the cyclic reduction of the sectors.

It has been proved that the application of both methods on a multi-stage bladed disks
model allows an excellent prediction of its dynamics in terms of natural frequencies,
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eigenvectors and forced response calculations. The choice of one method over the
other depends on the objective of the dynamic calculations on a multi-stage ROM.
If the complete system dynamics has to be modeled, the first method is preferred.
Differently, if the behavior of the system for few nodal diameter patterns is of interest,
the second method appears much more efficient.

Multi-Stage Bladed Disks with Friction Contacts at the Bolted Flange Joint

Due to the large operative speed ranges, bladed disks can not work outside of all
the possible resonant zones. In fact, since their configuration is obtained from
preliminary aerodynamic and efficiency calculations, it can not be easily modified.
In this regard, some critical resonances can not be avoided and a way to provide
additional damping to the system is necessary. The commonest approach to reduce
vibration stresses and high cycle fatigue phenomena consists in producing energy
dissipation by dry friction at the interfaces of the joints employed in bladed disk
assemblies. Nowadays the mechanical arrangements used to perform such energy
dissipation are mainly three: blade root joints, blade shrouds and underplatform
dampers.

Although established, all these arrangements exploit as a sources of friction
damping specific blade locations, being focused on the attenuation of the dynamic
response of a single-stage bladed disk. However, the bolted flange joint connecting
adjacent bladed disks may be considered as a further source of friction damping
capable to attenuate mechanical vibrations at a system level. In Chapter 5 the non-
linear behavior of the bolted flange joint is for the first time studied and its effect in
damping blades’ vibrations is evaluated. Here, the multi-stage reduction techniques
of Chapter 4 are combined with the macroslip Jenkins contact element, in order
to efficiently predict the forced response of a simplified multi-stage bladed disk
assuming the following hypotheses:

1. The traveling waves forces exciting the stages have the same engine order.

2. The relative displacement generating the friction forces at the joint interface
occur in the radial and circumferential directions.
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3. The steady state displacements and the non-linear contact forces are approx-
imated with their 1st order Fourier coefficients (Single Harmonic Balance
Method).

By applying the mentioned contact models and assuming an uniform pressure distri-
bution along the flange, the non-linear behavior typical of friction joints come out.
According to the second hypothesis, the damping was supposed being generated by
the relative displacements occurring at the inter-stage boundary, without explicitly
considering the presence of the bolts. However, it is reasonable to consider their non-
linear behavior as one with that of the flange. In fact, possible friction phenomena
may also occur at the interfaces bolt’s head-flange and bolt’s nut-flange.

The example developed throughout Chapter 5 shows that identical non-linear
forced responses were obtained by employing both multi-stage reduction techniques.
Such results do not exhibit any significant approximation with respect the bench-
mark forced responses obtained by using the Craig-Bampton model of each stage.
However, it should be pointed out that the use of the multi-stage reduction technique
involving the fundamental sectors allowed non-linear forced response calculation
almost 9 times faster than the other multi-stage reduction technique (8 s vs 60 s)
and almost 340 times faster than the classic approach based on the Craig-Bampton
method.

Blade Tip-Timing Measurements

Accuracy and predictability of the numerical tools developed in this thesis should be
checked again real structures preferably in realistic working conditions. However,
the experimental validation of a numerical model on real gas turbines is an extremely
difficult task for three main reasons:

1. Numerical tools generally simulate the system or component’s dynamics by
considering just few of the causes leading to critical resonance conditions. In
reality the causes responsible of such resonances are several and in most of
the cases the separation of the effect they involve is an extremely hard.

2. The high temperature characterizing the engine in working condition prevents
the employment of well-established measurement systems that need to be in
contact with the blades (e.g. the strain gauges).
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3. From a practical point of view there is no enough room to install measurement
systems that are able to monitor the blades response during operation.

For all these reasons it is a common practice to carefully design experimental setups
that exhibit only the dynamic phenomena under investigation. Once the numerical
models are demonstrated to be accurate representation of the experimental data, they
can be used can be used as a optimization tools for real bladed disks design.

In this frame Chapter 6 reports an extensive experimental laboratory campaign
aimed at proving the reliability of a latest generation Blade Tip-Timing (BTT) system
on the measure of the forced response of rotating dummy disks. Two key features
were here presented. First, a new sensor placement for the BTT optical sensors, i.e.
the beam shutter configuration, was tested on two dummy blisk by comparing the
BTT with the strain gauges measurements. For both disks the BTT measurements
were consistent to those obtained by the strain gauges (differences < 5%) . These
results give confidence in the proposed sensors’ arrangement and in the method
used for comparing the displacements and strains detected by the two measurements
systems. Second, a novel method to experimentally identify the nodal diameter
number of the detected mode is proposed. The method takes advantage from the
availability of the forced responses of all the blades that is typical of the processed
BTT measurements. The method works when the detected mode is quite isolated
from the others and in presence of small mistuning. It does not work when the
mistuning is large enough to completely decouple the blade row and destroy the
ideal cyclic symmetry of the disk. It was proved that a small mistuning produces a
spatial wave modulating the vibration amplitude of the blade row. It was then shown
that the number of nodal diameter related to the dominant mode can be identified
starting from the number of wavelengths of this modulation.
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7.2 Outlook & Future Directions

The value of a model order reduction technique lays on the remarkable speed up
one can obtain in solving the reduced governing equations as opposed to solving
the full system. However, also the offline costs associated to the construction of the
reduced order models needs to be taken into account. Although acceptable when an
unique reduced order model is used for several and repeatable analyses, the offline
reduction costs may become significantly high when the model’s parameters have
to be investigated. In fact, for a broad class of problems the equations representing
the system dynamics depend on a set of parameters. These parameters may enter
in the models in many ways, representing, for example, material properties, system
geometry, system configuration, initial conditions and boundary conditions. This
parametric dependence represents a challenge for model reduction, since one cannot
afford to create a new reduced model for every change in the parameter values.

In this frame the reduction methods proposed in this thesis would be no excep-
tions, and future developments aiming to extend their applicability to parametric
studies have to be taken into account. However, one should consider that both GSI
and multi-stage methods basically perform secondary reductions on pre-condensed
ROMs. For this reason such methods may be combined with parametric reduction
techniques that preserve physical interface DoFs as a master.

Being developed mainly for turbomachinary applications, where no significant
changes of the model’s parameters are allowed, the reduction techniques here de-
veloped are sufficiently mature to be used for dynamic analyses of bladed disks
involving friction joints. In this regards, although the techniques developed as such
can be used to predict non-linear contact phenomena, their applicability still remain
valid as long the external forces guarantee the linear behavior of the structures (i.e.
no geometric non-linearities occur).

Further possible extensions of both GSI and multi-stage methods may concern
the development of a reduction strategy taking into account the thermomechanical
behavior of the structure under investigation; an aspect that is crucial when analyzing
turbomachinery components.
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The experimental activity presented in Chapter 6 had as a main objective the
definition of a strong know-how on a non-intrusive measurement system featuring
a lot of advantages with respect the classic strain-gauges. In this way most of the
future validations of numerical models predicting the forced response of rotating
bladed disks can be better performed by looking at global response of system.
Although predictability and accuracy of the reduction techniques were already
checked against linear analyses on full finite element models, their application on
problems involving non-linearities due to friction has still to be tested. In this regards,
BTT test campaigns on ad-hoc designed rotating test cases may help in validating
the predictability of the developed numerical techniques.
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Appendix A

Appendix to Chapter 2

A.1 Matrices Derivation of a Lumped Parameters Cyclic
Symmetric Structure

In this section the mass and stiffness matrices of a lumped parameters cyclic sym-
metric structure will be obtained by adopting the DoFs partitioning of Eqn. 2.3. The
cyclic symmetric structure consists of 4 sectors each of which is composed by two
lumped masses (i.e. mn and msn , n = 1,2,3,4) connected to each other with a spring
having stiffness ksn .

Fig. A.1 Example of a lumped parameters cyclic symmetric structure with 4 sectors.
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The masses mn are mutually linked by means of equal springs having stiffness kl and
their connection to the ground is guaranteed by the springs with stiffness kgn (Figure
A.1).

The corresponding system of EQM can be obtained by resorting to the free body
diagram (FBD) of each mass. As an example, Figure A.2 shows the FBDs of the
mass m1 and ms1 belonging to the first sector.

Fig. A.2 a) FBD of the mass m1, b) FBD of the mass ms1 .

According to the previous FBDs the equilibrium equations for m1 and ms1 can thus
be written as:m1ẍ1 + kl(x1 − x4)+ kg1x1 + kl(x1 − x2)+ ks1(x1 − xs1)− f1 = 0

ms1 ẍs1 + ks1(xs1 − x1) = 0
(A.1)

By repeating the same procedure for all the other sectors and grouping all the terms
referring the same DoF (i.e. either xn or xsn , n = 1,2,3,4), the following system of
EQM is obtained:

m1ẍ1 +(2kl + ks1 + kg1)x1 − ks1xs1 − klx2 − klx4 = f1

ms1 ẍs1 − ks1x1 + ks1xs1 = 0

m2ẍ2 − klx1 +(2kl + ks2 + kg2)x2 − ks2xs2 − klx3 = f2

ms2 ẍs2 − ks2x2 + ks2xs2 = 0

m3ẍ3 − klx2 +(2kl + ks2 + kg2)x3 − ks3xs3 − klx4 = f3

ms3 ẍs3 − ks3x3 + ks3xs3 = 0

m4ẍ4 − klx1 − klx3 +(2kl + ks2 + kg2)x4 − ks4xs4 = f4

ms4 ẍs4 − ks4x4 + ks4xs4 = 0

(A.2)
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Under the assumption of cyclic symmetry the parameters shown in Figure A.1 must
satisfy the following relationships:

mn = m ∀ n

msn = ms ∀ n

kgn = kg ∀ n

ksn = ks ∀ n

(A.3)

Therefore, Eqn. A.2 can thus be expressed as:

m1ẍ1 + ktotx1 − ksxs1 − klx2 − klx4 = f1

ms1 ẍs1 − ksx1 + ksxs1 = 0

m2ẍ2 − klx1 + ktotx2 − ksxs2 − klx3 = f2

ms2 ẍs2 − ksx2 + ksxs2 = 0

m3ẍ3 − klx2 + ktotx3 − ksxs3 − klx4 = f3

ms3 ẍs3 − ksx3 + ksxs3 = 0

m4ẍ4 − klx1 − klx3 + ktotx4 − ksxs4 = f4

ms4 ẍs4 − ksx4 + ksxs4 = 0

(A.4)

where ktot = 2kl + ks + kg.

The system of EQM of Eqn. A.4 can be written in matrix form as:

Mẍ+Kx = 0 (A.5)

where:

M =



m 0 0 0 0 0 0 0
0 ms 0 0 0 0 0 0
0 0 m 0 0 0 0 0
0 0 0 ms 0 0 0 0
0 0 0 0 m 0 0 0
0 0 0 0 0 ms 0 0
0 0 0 0 0 0 m 0
0 0 0 0 0 0 0 ms
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K =



ktot −ks −kl 0 0 0 −kl 0
−ks ks 0 0 0 0 0 0
−kl 0 ktot −ks −kl 0 0 0

0 0 −ks ks 0 0 0 0
0 0 −kl 0 ktot −ks −kl 0
0 0 0 0 −ks ks 0 0

−kl 0 0 0 −kl 0 ktot −ks

0 0 0 0 0 0 −ks ks


(A.6)

are the mass and stiffness matrices of the cyclic symmetric structure and:

x =



x1

xs1

x2

xs2

x3

xs3

x4

xs4


f =



f1

0
f2

0
f3

0
f4

0


(A.7)

are the corresponding DoFs and force vectors.

According to Eqn. A.6 M and K have a block circulant symmetric structure,
since they can be finally expressed as in the case of Eqn. 2.3:

M =


M0 M1 M2 M1

M1 M0 M1 M2

M2 M1 M0 M1

M1 M2 M1 M0

 K =


K0 K1 K2 K1

K1 K0 K1 K2

K2 K1 K0 K1

K1 K2 K1 K0

 (A.8)

where:

M0 =

[
m 0
0 ms

]
M1 = M2 =

[
0 0
0 0

]

K0 =

[
ktot −ks

−ks ks

]
K1 =

[
−kl 0

0 0

]
K2 =

[
0 0
0 0

]
(A.9)
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