
02 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High Level Synthesis based FPGA Implementation of H.264/AVC Sub-Pixel Luma Interpolation Filters / Ahmad, Waqar;
Iqbal, Javed; Martina, Maurizio; Masera, Guido. - ELETTRONICO. - (2016), pp. 79-82. (Intervento presentato al
convegno European Modelling Symposium 2016 tenutosi a Pisa, Italy nel November 28 -30, 2016)
[10.1109/EMS.2016.024].

Original

High Level Synthesis based FPGA Implementation of H.264/AVC Sub-Pixel Luma Interpolation Filters

Publisher:

Published
DOI:10.1109/EMS.2016.024

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2658688 since: 2017-09-07T12:40:47Z

IEEE

High Level Synthesis based FPGA Implementation of H.264/AVC
Sub-Pixel Luma Interpolation Filters

Waqar Ahmad, Javed Iqbal, Maurizio Martina, Guido Masera
Department of Electronics and Telecommunication

Politecnico Di Torino, Turin, Italy
waqar.ahmad@polito.it, javed iqbal@polito.it, maurizio.martina@polito.it, guido.masera@polito.it

Abstract—In High Efficiency Video Coding (HEVC) and
H.264/AVC video coding standards, Interpolation filtering used
for sub-pixel interpolation is one of the most computational
intensive parts of the standards. Video processing systems
are becoming more complex thus decreasing the productivity
of the hardware designers and the software programmers,
producing design productivity gap. To fill this productivity gap,
hardware and software fields are bridged through High Level
Synthesis (HLS), thus improving the productivity of the hard-
ware designers. In this paper, we present a HLS based FPGA
Implementation of sub-pixel Luma Interpolation of H.264/AVC.
Xilinx Vivado HLS tools are used for the FPGA implementation
of interpolation filtering on Xilinx xc7z020clg481-1 device. Our
design can achieve the frame processing speed of 41 QFHD,
i.e. 3840x2160@41fps. The development time is significantly
decreased by the HLS tools.

Keywords–H.265; H.264/AVC; HLS; Interpolation; Filters;
FPGA;

I. INTRODUCTION

Significant storage is needed for uncompressed digital
videos. Digital video is handled by high compression and
efficient video coding standards, such as H.264/AVC and
H.265/HEVC. The temporal redundancy present in the video
signal is exploited by the process of Motion Compen-
sated Prediction(MCP). MCP, reduces the amount of data
to be sent to the decoder [1]. We can get rid of large
amount of video data by temporal motion prediction. Current
block/object location is compared with the previous frame
to measure if there exist the same block/object. Hence,
reducing the amount of data required to transmit to the video
decoder. In MCP, to process the current frame, the similar
data/object of the current frame and the previous frame
are measured first by the video encoder. For this purpose
the frame is divided into blocks of pixels. MCP sends
the motion vector as side information to tell the decoder
about the similarity between the current frame and the
previous frame for prediction. Prediction error is also sent
along with the motion vector, for new frame reconstruction.
The objects in the consecutive video frames may differ by
fractional position i.e. these displacements are continuous.
These objects are independent of the sampling grid of the
digital video sequence. Fractional motion vector accuracy
make the video encoder efficient and reduce the prediction

error [2]. Interpolation filter are used for fractional value
motion vector. The design of the interpolation is carried out
by keeping in view the important factors such as visual
quality, coding efficiency and implementation complexity
[3]. H.264/AVC and HEVC video coding standards, support
half and quarter pixel accuracy. Interpolation filtering used
for sub-pixel interpolation is one of the most computational
intensive parts of H.264/AVC and HEVC. Computational
complexity of the interpolation filters is about 20% and
25% of total time in 3D-HEVC encoder and decoder, re-
spectively, as reported in our previous work [4]. In industry
and academia, HLS is being studied for many years and
there exist many operational projects [5]. In maximum
devices the H.264/AVC is still being used, as it is the
marketdominant video coding standard. In new efficient
devices the H.264/AVC is being replaced by state-of-the-art
video standard i.e. High Efficiency Video Coding (HEVC).
This standard migration will occur steadily because HEVC
is only supported by the latest models and H.264/AVC is
already present in the most devices. Interest for efficient
implementation of H.264/AVC is still desirable because both
coding standards will coincide in the market sideways a
number of years. In this article, HLS based FPGA im-
plementation of H.264/AVC sub-pixel luma interpolation is
presented. Xilinx Vivado HLS tools are used for FPGA
implementation of H.264/AVC luma sub-pixel interpolation.
HLS has some specific benefits over the conventional RTL
based VLSI design. One key benefit is its power to render
micro-architectures with specific area vs. performance trade-
offs for the same behavioral description by surroundings
different synthesis choice [6]. To the best of our knowledge,
in the literature, there is no prior work on HLS based FPGA
implementation of H.264/AVC sub-pixel interpolation. In
[7], HLS based FPGA implementation of HEVC sub-pixel
luma interpolation is described. A comparison between
the HLS based FPGA implementation of sub-pixel luma
interpolation of H.264/AVC and HEVC is also carried out
in this article.

This article is organized as follows. Section II describes
interpolation filtering process of H.264/AVC video coding
standard. Section III presents the HLS based FPGA imple-
mentation of the sub-pixel interpolation. Section IV gives

A0,0 a0,0 b0,0 c0,0 A1,0

d0,0 e0,0 f0,0 g0,0 d1,0

h0,0 i0,0 j0,0 k0,0 h1,0

n0,0 p0,0 q0,0 r0,0 n1,0

A0,1 a0,1 b0,1 c0,1 A1,1

Figure 1. Pixel positions for Integer, Luma half and Luma quarter pixels.

the comparison between the HLS based sub-pixel luma
interpolation of HEVC and H.264/AVC. Finally, Section V
gives the conclusion summary and future work.

II. H.264/AVC SUB-PIXEL INTERPOLATION

For 4:2:0 color format video in H.264/AVC, luma samples
supports the quarter-pel accuracy and chroma samples sup-
ports one-eight pel accuracy of the motion vectors [8]. Mo-
tion vector may points to integer and/or fractional samples
position. In the latter case, the fractional pixel are generated
by interpolation. A one-dimensional 6-tap FIR filter is used
for prediction signals at the half-sample value, in vertical
and horizontal directions. Average of the sample values at
full and half-pixel are used for the quarter sample values
generation of the prediction signal.

The luma sub-pixel interpolation process in H.264/AVC
is shown in Fig. 1. The half pixel values b0,0 and h0,0 are
obtained by applying the 6-tap filter in the horizontal and
vertical directions, respectively, as follows:

b0,0 = (A−2,0 − 5 ∗A−1,0 + 20 ∗A0,0 + 20 ∗A1,0

−5 ∗A2,0 +A3,0 + 16) >> 5
(1)

h0,0 = (A0,−2 − 5 ∗A0,−1 + 20 ∗A0,0 + 20 ∗A0,1

−5 ∗A0,2 +A0,3 + 16) >> 5
(2)

where An,0, A0,n with values of n = −2,−1, 0, 1, 2, 3,
are integer pixels in horizontal and vertical directions, re-
spectively. Intermediate half-pel samples b′n or h′n are used
for the calculation of half pixel value j0,0 , by applying the
6-tap filter in the vertical or horizontal directions, as follows:

b
′

n = b
′

n,−2 − 5 ∗ b′n,−1 + 20 ∗ b′n,0 + 20 ∗ b′n,1
−5 ∗ b′n,2 + b

′

n,3

(3)

j0,0 = (b
′

n + 512) >> 10 (4)

where n = −2,−1, 0, 1, 2, 3 and b′ = b << 5 − 16, i.e.
we can use the values of b. We can obtain the values of j0,0
alternatively, as given by (5) and (6).

Figure 2. HLS implementation of H.264/AVC Luma Sub-pixel.

h
′

n = A−2,0 − 5 ∗A−1,0 + 20 ∗A0,0 + 20 ∗A1,1

−5 ∗A2,0 +A3,0
(5)

j0,0 = (h
′

n,−2 − 5 ∗ h′

n,−1 + 20 ∗ h′

n,0 + 20 ∗ h′

n,1

−5 ∗ h′

n,2 + h
′

n,3 + 512) >> 10
(6)

Nearest, half pixel and/or integer pixel averaging is used
for the calculation of the quarter-pixel sample. The samples
used in the averaging could be both half-pel and a combi-
nation of the half-pel and integer-pel samples.

As an example, the following equations show the
method to calculate quarter-pixel samples for some
of the quarter-pixel positions i.e. a0,0, f0,0 and e0,0
out of a0,0, c0,0, d0,0, n0,0, f0,0, i0,0, k0,0, q0,0, e0,0, g0,0, p0,0
and r0,0:

a0,0 = (A0,0 + b0,0 + 1) >> 1 (7)

f0,0 = (b0,0 + j0,0 + 1) >> 1 (8)

e0,0 = (b0,0 + h0,0 + 1) >> 1 (9)

TABLE I
RESOURCES REQUIRED FOR HLS IMPLEMENTATION OF H.264/AVC LUMA SUB-PIXEL INTERPOLATION USING MULTIPLIERS FOR MULTPLICATION.

Opt. BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 706 1188 430 128 1489 0.5

LOOP UNROLL 0 0 3011 5084 1670 110 577 1.5
LOOP UNROLL + ARRAY PARTITION 0 0 3451 8653 2655 112 473 2

PIPELINE + ARRAY PARTITION 0 0 10224 27995 8817 102 19 41

TABLE II
RESOURCES REQUIRED FOR HLS IMPLEMENTATION OF H.264/AVC LUMA SUB-PIXEL INTERPOLATION USING ADD AND SHIFT OPEATIONS FOR

MULTPLICATION.

Opt. BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 302 413 110 129 1432 1

LOOP UNROLL 0 0 2304 3033 422 212 577 3
LOOP UNROLL + ARRAY PARTITION 0 0 2843 4056 748 210 449 3

PIPELINE + ARRAY PARTITION 0 0 11001 12774 2606 102 19 41

III. HLS BASED FPGA IMPLEMENTATION

In Fig. 2, the proposed HLS implementation of
H.264/AVC sub-pixel interpolation is shown. In our pro-
posed design, 13x13 integer pixels are used for the half and
quarter pixel interpolation of the 8x8 PU. For the larger
PU sizes, half and quarter pixel can be interpolated using
each 8x8 PU part of the larger block i.e. dividing the larger
block in PU sizes of 8x8. 13 integer pixesl are given as
input to the first half pixel interpolator array hpi1 in each
clock cycle. 8 half pixels b0,0 are interpolated in parallel
in each clock cycle, so in total it will interpolate 13x8
half pixels in 13 clock cycles. These half pixels are stored
into registers for interpolating the half pixesl j0,0 or quarter
pixels a0,0 and c0,0. During the interpolation of b0,0 half
pixels interpolation, 13x13 integer pixels are stored for the
half pixel interpolation of the h0,0. Then the h0,0 half pixels
are interpolated using these stored 13x13 integer pixels using
hpi1, meanwhile, in parallel the j0,0 half pixel are interpo-
lated using hpi2 from the already available intermediate b0,0
half pixels. The half pixels h0,0 and j0,0 are also stored in
the registers for the quarter pixel interpolation. Finally all the
a0,0, c0,0, d0,0, n0,0, f0,0, i0,0, k0,0, q0,0, e0,0, g0,0, p0,0 and
r0,0 quarter pixels are generated using the already computed
registered half pixels b0,0, h0,0, j0,0 and the 13x13 integer
pixels.

Vivado HLS tools are used for the FPGA implementation
of the design. The HLS implementation is synthesized to
verilog RTL. Xilinx Vivado HLS tools take C,C + + or
SystemC codes as input. In our case the C code is applied
as input to the vivado HLS tool. The C code is written ac-
cording to the H.264/AVC reference software video encoder.
Vivado HLS provides various optimization techniques called
as optimization directives or pragmas. Many variants of the
HLS implementation of H.264/AVC luma sub-pixel interpo-
lation are possible depending on the area vs performance
trade-off requirements. Design Space Exploration (DSE) of
the H.264/AVC luma sub-pixel interpolation is carried out

using these optimization directives.

A. Discussion on Results
Vivado HLS kepts the loops as rolled by default. Loops

are considered and operated as single sequence of operations
defined within the body of the loop. All operations of the
loops defined in the body of the loops are synthesized
as hardware. So, all iterations of the loops use the same
common hardware. Loop UNROLL directive available in the
Vivado HLS, unrolls the loops partially or fully, depending
on the appication requirements. If the application is perfor-
mance critical, then the loop UNROLL directive can be used
to unroll the loops for better optimized hardware in terms
of performance by parallel processing, but it will increase
the area e.g. if the loops are fully unrolled then the multiple
copies of the same hardware will be synthesized. The other
directive which we used in our design is PIPELINE. Pipeline
directive can be applied to function or loop, it is basically
the pipelining. The new inputs can be processed after every
N clock cycles. Here the N is the Initiation Interval (II),
the number of clock cycles after which the new inputs will
be processed by the design.

When the pipeline directive is applied, it automatically
unrolls all the loops within the scope of the pipeline region
i.e. you do not need to apply loop UNROLL directive
separately if the pipeline directive is already applied to the
scope containing loop. For the parallel processing the data
requirement must be satisfied. In our design the arrays are
used as input to the HLS tools. Arrays are by default mapped
to block RAMs in the vivado HLS i.e. you can only read or
write or both read write at the same time if the block RAM
is dual port. So, ARRAY PARTITION directive is used to
partition the arrays into individual registers. It makes the
data available for the parallel processing.

Two different implementations of the H.264/AVC luma
sub-pixel interpolation is carried out using two different
techniques for constant multiplication i.e. multiplication us-
ing multipliers, multiplication using add and shift operations.

Table I and II enlist the optimization directives used and
the corresponding hardware resources required for HLS im-
plementation using the multpliers as constant multplication
and multiplication by shift and add operations. Mainly three
directives are used for the efficient implementation of the
H.264/AVC Luma interpolation designs. As shown in Table
I and II , when there is NO OPTIMIZATION directive
applied, the latency is much higher i.e. to process 8x8 PU
it takes higher clock cycles as compared to the optimized
ones. For the optimized design we use the combination of
optimization directives such as LOOP UNROLL + ARRAY
PARTITION and PIPELINE + ARRAY PARTITION. In
both designs the application of optimizations shows sig-
nificant area vs performance trade-off. In case of constant
multplication using add and shift operations, we have better
optimized design in terms of area and performance.

TABLE III
H.264/AVC LUMA SUB-PIXEL HLS VS MANUAL RTL

IMPLEMENTATIONS.

[9] [10] Proposed

Tech. SMIC 130 nm 130 nm Xilinx Virtex 7
Slice/Gate Count 75 K 67 K 2606

Freq. (MHz) 340 200 102
Fps 30 QFHD 2160p@30fps 41 QFHD

Design ME ME ME + MC

TABLE IV
H.264/AVC VS HEVC LUMA SUB-PIXEL HLS IMPLEMENTATION.

Proposed [7]

Tech. Xilinx Virtex 7 Xilinx Virtex 6
Slice/Gate Count 2606 4426

Freq. (MHz) 102 168
Fps 41 QFHD 45 QFHD

Design ME + MC ME + MC

IV. COMPARISON OF RESULTS

A. Comparison with Manual RTL implementation

Table III gives the comparison between HLS and man-
aul RTL implementations of H.264/AVC luma sub-pixel
interpolation. It is evident that the HLS implementation is
more efficient in terms of performance. Even though the
other two implementations are VLSI based, we expect the
same performance for the FPGA implementations of the
corresponding implementations.

B. Comparison with HLS implementation of HEVC

Table IV gives the comparison between HLS implementa-
tions of H.264/AVC and HEVC luma sub-pixel interpolation.
The proposed implementation takes less area as compared
to the HLS implementation of HEVC because the HEVC

uses larger interpolation filters and hence larger area. The
throughput of the HEVC luma interpolation is also higher
because the quarter pixel interpolation is independent of the
half pixel interpolation e.g. a0,0, b0,0, d0,0 and h0,0.

V. CONCLUSION

HLS tools provide wider scope for Design Space Explo-
ration (DSE) of complex systems through the use of opti-
mization directives/pragmas. HLS based implementation of
complex systems like HEVC and H.264/AVC video coding
standards algorithms can be implemented as optimized as
manual RTL implementation. The design time and time to
market could be reduced significantly by the use of HLS
tools. HLS tools give the flexibilty to easily implement
the optimization techniques for efficient and optimtimized
designs by the application of optimization directives or
pragmas.

REFERENCES

[1] K. Uger, A. Alshin, E. Alshina, F. Bossen, W.J. Han, J.H. Park, and
J. Lainema. Motion Compensated Prediction and Interpolation Filter
Design in H.265/HEVC. IEEE Journal of Selected Topics in Signal
Processing, 7:6, December 2013.

[2] B. Girod. Motion-Compensating Prediction with Fractional-Pel Ac-
curacy. IEEE Transaction on Communications, 41:604–612, April
1993.

[3] T. Wedi. Motion Compensation in H.264/AVC. IEEE Transactions on
Circuits and Systems for Video Technology, 13:577–586, July 2003.

[4] W. Ahmad, M. Martina, and G. Masera. Complexity and Implementa-
tion Analysis of Synthesized View Distortion Estimation Architecture
in 3D High Efficiency Video Coding. In International Conference on
3D Imaging (IC3D). Liege, Belgium, 2015.

[5] Y. Chen, S. T. Gurumani, Y. Liang, G. Li, D. Guo, K. Rupnow, and
D. Chen. FCUDA-NoC: A Scalable and Efficient Network-on-Chip
Implementation for the CUDA-to-FPGA Flow. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 24, June 2016.

[6] B. C. Schafer. Enabling High-Level Synthesis Resource Sharing
Design Space Exploration in FPGAs through Automatic Internal
Bitwidth Adjustments. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 11, October 2015.

[7] F. A. Ghani, E. Kalili, and I. Hamzaoglu. FPGA Implementation
of HEVC Sub-Pixel Interpolation Using High Level Synthesis. In
International Conference on Design and Technology of Integrated
Systems in Nanoscale Era, volume April. Liege, Belgium, 2016.

[8] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview
of the H.264/AVC Video Coding Standard. IEEE Transactions on
Circuits and Systems for Video Technology, 13, July 2003.

[9] J. Liu, X. Chen, Y. Fan, and X. Zeng. A Full-mode FME VLSI Archi-
tecture Based on 8x8/4x4 Adaptive Hadamard Transform For QFHD
H.264/AVC Encoder. In IEEE/IFIP 19th International Conference on
VLSI and System-on-Chip, 2011.

[10] G. Pastuszak and M. Jakubowski. Optimization of the Adaptive
Computationally-Scalable Motion Estimation and Compensation for
the Hardware H.264/AVC Encoder. Journal of Signal Processing
Systems, 82:391–402, March 2016.

