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Abstract— International Standards define a Global Earthing 
System as an earthing net created interconnecting local Earthing 
Systems (generally through the shield of MV cables and/or bare 
buried conductors). In Italy the Regulatory Authority for 
Electricity and Gas requires Distributors to guarantee the 
electrical continuity of LV neutral conductor. This requirement 
has led to the standard practice of realizing “reinforcement 
groundings” along the LV neutral conductor path and at users’ 
delivery cabinet. Moreover, in urban high load scenarios (prime 
candidates to be part of a Global Earthing System), it is common 
that LV distribution scheme creates, through neutral conductors,
an effective connection between grounding systems of MV/LV 
substations, modifying Global Earthing System consistency. Aim 
of this paper is to evaluate the effect, in terms of electrical safety,
of the above mentioned LV neutral distribution scheme when an 
MV-side fault to ground occurs. At this purpose simulations are 
carried out on a realistic urban test case and suitable evaluation
indexes are proposed.

Keywords—Global Earthing System; GES; Global Grounding 
System; GGS; Ground potential; Maxwell Sub-areas Method; LV 
neutral conductor

I. INTRODUCTION

Grounding systems surely are a traditional topic in electrical 
engineering [1]-[7]. With reference to their quasi-stationary
behaviour, the research field could seem fully explored.
However, the need of electrical services widespread delivery, 
along with the significant increase of demand in concentrated 
areas (i.e. industrial/urban areas), makes it necessary to 
reconsider some aspects of groundings.

International Standards [8], [9], defining the Global Earthing 
System (GES), point out how GES advantages result primarily 
from two aspects:

� grounding systems Interconnection;

� Proximity of interconnected grounding systems.

GES, in fact, arises from the interconnection between 
distributors’ (as well as private users’) MV/LV substations 
Earthing Systems (ES). This interconnection, made (at least) 
with the metal shield of MV cables, allows the repartition of MV
single line to ground fault currents in more than one injection 
point in the soil [10], [11], thus producing a consistent reduction 
of Earth Potential Rise (EPR) of the faulted substation. 

Proximity effects should avoid the presence of dangerous 
touch voltages in the considered area (quasi-equipotentiality
condition).

A full discussion on the above mentioned concepts 
(Interconnection, Proximity and Quasi-equipotentiality) and 
their implications can be found in [12].

The Italian Authority prescribes a TT distribution system for
LV users [13] and, in its effort to guarantee the best service 
quality, imposes strict constraints to Distributor System 
Operators (DSOs) with regards to LV neutral continuity. 

As a consequence, LV neutral conductors are grounded 
(typically with a single grounding rod) at each user delivery 
cabinet and, sometimes, along their path (neutral reinforcement 
groundings).

In areas characterized by high load, DSOs often reach users 
delivery nodes with LV lines coming from two different 
substations (belonging to the same or different feeding stations).
This choice is meant to ensure the quickest post-contingency 
power restore to customers, providing them the opportunity to 
be fed from different sides. To make LV network radial, lines 
are disconnected in a distribution box, while neutral conductors 
are never interrupted, realizing an effective interconnection 
between substation grounding systems of the considered area.

What above said, along with neutral reinforcement 
groundings, produces a further increase in the density of the 
earthing network serving the area, possibly modifying GES 
consistency.

In this work, developed under the Meterglob Project [14], 
[15], effects on electrical safety, due to the sole LV neutral 
interconnections, have been analyzed for an urban area chosen 
as case study.

This paper was developed as part of the research “METERGLOB”, co-funded by 
the CCSE (today CSEA, Cassa per i Servizi Energetici Ambientali), with the 
participation of six partners: ENEL Distribuzione, Istituto Italiano del Marchio di 
Qualità IMQ, Politecnico di Bari, Politecnico di Torino, Università di Palermo and 
Sapienza Università di Roma.



Simulations have been carried out with a software, written in 
Matlab, which passed experimental testing [16].

The Meterglob Project, cofounded by the Italian CCSE 
(Cassa Conguaglio per il Settore Elettrico), is investigating on 
different aspects related to GES, in particular on the contribution 
of extraneous conductive parts [15] and on the problem of 
periodic testing of ESs reliability [17].

The Project main purpose is supporting Standardization 
Bodies in providing a more precise definition of GES as well as 
reliable procedures to assess and verify GES existence. In line 
with this target, suitable indexes for the evaluation of electrical 
safety degree of the area under investigation have been 
evaluated.

This work was presented at the 2015 IEEE 15th International 
Conference on Environment and Electrical Engineering, Rome, 
Italy, June 10-13 [18].

II. THE MODEL

The system under investigation, which is hereafter referred 
to as “Total System”, is depicted in Fig. 3. It is a simplified 
representation of a typical urban scenario, potentially candidate 
to be defined as a portion of a GES.  

In this section its mathematical model is reported, after a 
brief recall of the Maxwell Sub-Areas Method theoretical 
background.

A detailed description of all Total System components is 
presented in Section III.

A. Grounding Systems Quasi-stationary Model
The study of a grounding electrode leaking a known quasi-

stationary current (50-60 Hz) can be accomplished applying the 
Maxwell Subareas Method (MaSM) [1], [7], [19], [20].

The method is based on subdividing the leaking surface of 
the considered electrode in a suitable number of smaller 
portions (subareas) having the following characteristics:

1. to be small enough to consider their surface leakage 
current density uniform;

2. to have a shape that allows to find an analytical 
expression of their produced field and potential when 
considered alone in an uniform, isotropic and indefinite 
medium;

3. to be at the same potential under fault conditions.

Statement 3 means that the voltage drop across the metal 
parts of the electrode is negligible, which is an amply justified 
hypothesis considering that the conductivity of electrodes parts
is considerably greater than the soil one.

Fig. 1 shows an example of discretization of a simple 
cylindrical electrode embedded in a conductive homogeneous 
medium (the formulation extension to more complex 
geometries is immediate).

According to the MaSM, it has been subdivided in 
cylindrical segments that satisfy condition 1 but still have a 
length adequately greater than their diameter ( ), in 
order to assume the current field generated by each of them the 
same as that produced by uniform linear current sources laying 
on their longitudinal axes.

Fig. 1. Example of discretization of a simple cylindrical conductor

Every single subarea interferes with the others by means of 
voltage coefficients ( ) which represent the 
voltage produced by the generic inducing subarea in the 
barycentre of the induced subarea , when is leaking a unitary 
current. Being the resistivity of the considered uniform 
medium, the analytical expression of the generic voltage 
coefficient is:

(1)

where is the length of the inducing subarea and 
are the coordinates of on a local coordinate system 

centered on . When , expression (1) allows the 
evaluation of the self-induced voltage coefficient by the 
following substitutions: and , where is the 
radius of the considered conductor.

The application of the MaSM method leads, for a single 
grounding electrode leaking a known current , to the 
formulation of the following set of linear equations:

(2)
(3)

where is the potential assumed by each sub-area.
Equation set (2)-(3) solution gives the subcurrents 

leaked by each subarea and the Earth Potential Rise of the 
considered electrode. The knowledge of subcurrent allows 
the subsequent computation of the electric potential at any point 
of the soil surface.

The presence of air in half of the space domain, as well as 
the presence in the medium of layers with different resistivity 
(multi-layer soil model), is taken into account by means of the 
electrical images principle [1], [20].

Since each subarea is modelled as a uniform linear current 
source, it is obvious that a larger number of them results in a 
more adequate representation of the leakage current distribution 
along the electrode. Simulations reported in this paper have 
been repeated increasing until negligible variations on ground 
surface potential values ( have been observed.



B. Long Buried Conductors Quasi-stationary Model
As above said, MaSM operates under the assumption of 

equipotentiality for grounding electrodes in quasi-stationary
condition. This hypothesis leads to results whose accuracy 
degree decreases with increasing of electrodes dimension (e.g. 
long buried metal pipes, railways, etc.), being the voltage drop
along them no more negligible [3].

It is possible to extend the applicability of MaSM to the case 
of a long buried conductor [21]. With reference to Fig. 2, once 
subdivided the considered electrode in subareas (trunks), each 
of them have to be considered as a separate grounding 
electrode, connected to the trunks immediately before and after 
by means of an admittance.

It is well known that, at industrial frequency, the 
interference phenomenon between bare conductors in contact 
with the soil can be described with satisfactory accuracy trough 
purely resistive parameters [3]. Therefore, the admittance that 
connects consecutive trunk barycentres can be substituted by a 
conductance, whose value is given by the material and section 
of the conductor itself.

Fig. 2. Long bare buried electrode model

Currents flowing from a subarea to the neighbouring ones 
became new variables and can be determined, as well as the 
leakage current distribution along conductors.

C. Total System Model
With reference to Fig. 3, Total System is composed by 
MV/LV substation grounding electrodes connected each 

other and with grounding rods (neutral reinforcement 
groundings) through the LV distributed neutral conductor. In 
the area under investigation there are also LV users 
grounding electrodes (TT system) and distinct 
pipelines (extraneous conductive parts). Both and 
grounding electrode plan view geometries are square, as 
reported in Fig. 3.

Naming:
� ;
� , where is the subareas number of

the ith grounding system;
� , where is the subareas number of

the ith grounding rod;
� , where is the subareas number of

the ith pipeline;

� the number of grounding electrodes connection 
sections realized by LV neutral conductor (Fig. 3);

and being:
� the unknown vector of EPRs 

assumed by the Total System square grounding 
electrodes;

� the unknown vector of EPRs 
assumed by Total System grounding rods;

� ( ) the unknown 
vector of EPRs assumed by the  subareas of the ith

pipeline;

� the 
unknown vector of subcurrents leaked by the ith

grounding electrode subareas;

� the unknown 
vector of subcurrents leaked by the ith grounding rod
subareas;

� the 
unknown vector of subcurrents leaked by the ith pipeline
subareas;

� the unknown vector of currents flowing through the 
connection sections between grounding electrodes;

� the unknown 

vector of currents flowing along the trunks of the ith

pipeline (with reference to Fig. 2);

the Total System model, which describes both the effects of 
mutual interferences due to current fields established in the 
ground and the presence of LV neutral connections, can be 
expressed as follows:

(4)
(5)
(6)
(7)

where:
� ;
�

;
� .

� ,

with , and 
;

� is the ( matrix of voltage coefficients, 
with ;

� , where is equal to 
matrix curtailed of the lines corresponding 
to grounding electrodes not connected to the LV neutral 
network;



� , where is the node-lines 
matrix of LV neutral network in Fig. 6 (excluding the 
remote earth node and its afferent lines) and 

where is the node-
lines incidence matrix of the resistive network 
represented in Fig. 2, written, for each pipe, excluding 
the remote earth node and its afferent lines;

� is the known vector of injected currents in LV 
neutral network nodes (it has elements);

� , where is the 
known leaked current of ith grounding electrode not 
connected to Fig. 6 network (equal to zero for passive 
elements) and is the known vector of currents
injected in subareas barycentres of the ith pipeline (nodes
of resistive network in Fig. 2);

� is equal to matrix curtailed of lines corresponding 
to the grounding electrodes connected to the LV 
neutral network.

Matrix in (6), has the following structure:

(8)

where:
� is the vector of neutral connections admittances;

� , where is the vector of the 
conductances connecting the subareas barycentres of the 
ith pipe (with reference to Fig. 2);

� is the line-nodes matrix for the LV neutral network, 
written so that the size and the sort order of its columns 
are congruent with vector .

Since , and are, in general, complex quantities, 
and will be such also. 

By decomposing each of the (4)-(7) equations in their real 
and imaginary parts, all the relations needed for a unique direct 
solution are provided.

Due to the short connections, capacitive couplings between 
LV neutral conductor and remote earth, LV and MV lines are 
considered negligible and not taken into account. Inductive 
couplings between LV neutral conductor MV and LV lines are 
also neglected.

III. CASE STUDY

Fig. 3 reports a plan view of the implemented case study, 
which is a simplified schematization of a real urban district 
portion in Torino, composed by six city blocks [16].

According to the requirements for the automatic 
disconnection of supply given by the international Standard 
IEC 60364-4 [22] for TT systems (the unique possible for LV 
users in Italy), each building of each block has an ES disjointed 

from the MV/LV substations’ ones (squares in red dotted lines).
The ESs of LV users, as well as the ESs of the MV/LV 
substations, are modeled with a square electrode, buried at 0.5 
m under the soil level. The ES of the faulted MV/LV substation 
is the number 21. 
The total fault current is , typical for a single line 
to ground fault in an Italian urban scenario (isolated neutral MV 
distribution system).

Blue lines represent three distinct water pipes, buried at 1 m
(dashed line) and 1.3 m (dot-dash lines) depths.

The soil has been considered homogeneous, characterized by 
a resistivity of . As shown in Table I [9], this value can 
be considered representative of loam/clay/humus soil.

TABLE I
TYPICAL SOIL RESISTIVITY RANGES
PROVIDED BY EN 50522 (ANNEX J)

Type of soil Soil resistivity [
Marshy soil 5 to 40
Loam, clay, humus 20 to 200
Sand 200 to 2500
Gravel 2000 to 3000
Weathered rock mostly below 1000
Sandstone 2000 to 3000
Granite up to 50000
Moraine up to 30000

Other geometrical and electrical details are reported in Table 
II.

Simulations goal is to evaluate how the presence of 
distributed LV neutral conductor (green solid lines in Fig. 3)
and its “reinforcement grounding rods” (concentric circles in 
Fig. 3) modify both the electric potential profile (EPP) on the 
soil surface and the Transferred Potential (TP) on floating 
metallic parts.

One of the main concerns regarding electrical safety is the 
evaluation of the prospective touch voltage, which is defined as 
“the voltage between simultaneously accessible conductive 
parts when those conductive parts are not being touched” [9].
A typical case is related to the voltage between a metallic object 
and the soil surface. This is the case analyzed here: a human 
being that could touch the energized metallic object while 
standing in its vicinity (reasonably in a limited region close to 
the metallic object).

For this reason, limited soil surface areas called Inspection 
Areas (IAs) have been identified above each grounding 
electrode and all along pipelines. As an example, Fig. 3 reports 
the IA associated to grounding electrode 18 (which is similar 
for all square grounding electrodes) and the IA considered 
along one of the pipelines (areas below blue dashed line hatch). 
Within these IAs, the maximum prospective touch voltage can
be evaluated as the difference between the metallic object’s
potential and the minimum soil surface potential in the area.

Table II also reports IAs geometrical parameters.



Fig. 3. Total System plan view

TABLE II
GEOMETRICAL AND ELECTRICAL DETAILS OF THE CASE STUDY

Symbol Quantity Values

Square electrodes length 15 m
Grounding rod length 1.5 m

Length of square Inspection 
Area around the jth LV ES 22 m

Thickness of Inspection 
Area along pipes 7 m

Square electrode conductor 
radius 4 mm

Grounding rod radius 10 mm
Water pipes radius 50 mm

LV neutral conductor radius 3.99 mm
LV neutral conductor 

impedance 0.393+j0.101 Ω/km

Water pipes conductance 1.555 S·km

Two scenarios have been considered:

� Scenario 1: LV neutral connections and reinforcement 
grounding rods missing. Faulted MV/LV substation is 
called to disperse the entire fault current ;

� Scenario 2: Total system as represented in Fig. 3.

For each scenario the fault current is kept constant.
To carry out the comparison, together with contour plots of 

the ground potential, three shape coefficients have been 
evaluated on the same portion of soil surface: Uniformity (CU), 
Valley Effect (CVE), Gradient (CG):

(9)

(10)

(11)
where:

� = EPP Average Value;



� = EPP Maximum Value;
� = EPP Minimum Value;
� = EPP gradient.

These coefficients allow a global evaluation of EPP on the 
area under investigation.

In order to evaluate electrical safety degree for each scenario,
the Maximum Touch Voltage coefficient ( ) has been 
introduced:

(12)

where:
� = of MV/LV faulted substation ES;
� = TP on the jth Floating Part;
� = Minimum Voltage (with respect to remote 

earth) of the Soil in the Inspection Area around the jth 

LV ES and along pipes (with reference to Fig. 3).

Coefficients CU, CVE, and CMTV can be considered independent 
from the product of the soil resistivity to the fault current (as will 
be shown in Subsection III.A). They allow for considerations 
that are valid for different kind of soil and different fault current 
values. Coefficient CG instead depends on the product ;
however, by comparing the results for the two scenarios, that are 
simulated with the same values of soil resistivity and fault 
current, qualitative conclusions with general validity can be 
obtained.  

Finally, a computation of the maximum fault current, for 
which users’ safety requirement (13) is satisfied, has been 
performed for each scenario.

(13)

The utilized relation is the following:

(14)

where is defined as the ratio of to total fault current 
modulus.

A. Simulation results
Fig. 4 and Fig. 5 show the EPP contour plots for both the 

simulated scenarios. They allow to qualitatively evaluate the 
equipotentialization effect of the grounding network 
(interconnected MV/LV ESs and LV neutral reinforcement 
groundings). Table III reports, for each simulated scenario, the
MV/LV substations EPRs and all the quantities presented in the 
previous section.  EPRs’ phase angles are expressed in degree.
Scenario 2 reports a drastic reduction of faulted substation EPR 
(about 77%). This is due to the distribution of the fault current 
between all other grounding electrodes connected through LV 
neutral conductor. As reported in Fig. 6, faulted substation is in
fact called on to disperse less than 20% of the total fault current.

As explained in Section II, the implemented model takes into 
account both the real and the imaginary part of the LV neutral 

connection impedances. From Fig. 6, it can be observed that the
phase angle differences among the currents leaked by the 
earthing electrodes are negligible. This means that the model, in 
case of short connections, can be simplified not taking into 
account LV connection inductances.

The great increase of uniformity coefficient 
from scenario 1 to scenario 2 is obviously due to the above 

mentioned reduction of but also to the rise of EPP in 
areas far from the faulted substation (thanks to currents leaked 
by all auxiliary electrodes). 

Same considerations can be made about the smaller increase 
of .

Particularly significant is the reduction of the maximum 
EPP gradient modulus (about 80%), which is a relevant index 
of the equipotentiality degree reached by the area under 
investigation.

TABLE III
EPR AND SHAPE COEFFICIENTS FOR THE SIMULATED SCENARIOS

Quantity
Scenario N°

1 2
* [ ]
* [ ]
[ ]

0.091 0.347
0.330 0.481
70.327 13.184

*in scenario 1 it corresponds to a transferred potential

Table IV reports the shape coefficients recalculated for a 
single block of the urban area, the one containing the faulted 
substation.

TABLE IV
SHAPE COEFFICIENTS FOR A SINGLE BLOCK 

Quantity
Scenario N°

1 2

0.214 0.395

0.325 0.500

70.327 13.184

Uniformity coefficient , calculated for the reduced area,
is obviously different from that calculated before. The 
maximum voltage is in fact the same, while the average is 
greater (low far-away potential are not considered). As
expected, the increase is smaller for scenario 2.

Coefficient remains the same, being both average and 
minimum values increased. The unchanged value of states 
that, for each scenario, maximum step voltages are located in 
proximity of the faulted substation.

Table V reports quantities introduced to evaluate TPs on 
floating parts and touch voltages.

Quantity is the modulus, expressed in percentage of 
, of the maximum transferred potential to floating parts.

It is nearly doubled in scenario 2, as a consequence of the 
diffused presence of active electrodes around floating parts 
(higher couplings due to the current field in the soil).



Coefficient remains practically the same. This means 
that also the ratio of minimum soil potential (even if evaluated 
for different inspection areas) to the of faulted station has 
increased. With reference to absolute touch voltages, this means 
a general improvement of considered area electrical safety from 
a scenario to another.

TABLE V
EVALUATION OF TRANSFERRED POTENTIAL

Quantity
Scenario N°

1 2
18.70

(on ES 24)
35.01

(on ES 5)

0.0757
(IA above ES 20)

0.0790
(IA above ES 1)

173.6 733

Current modulus can be taken as an indicator of 
electrical safety degree, with reference to LV users. Results 
reported in Table V confirms that scenario 2 is four times safer 
than scenario 1.

Table VI reports the values of the coefficients , and 
evaluated, for both the considered scenarios, keeping the 

fault current constant and varying the soil resistivity. Table VII
shows the same quantities evaluated, for different values of the 
fault current, assuming two different soil resistivity values: 10
Ωm and 1000 Ωm.

The comparison with Table III shows, in both the scenarios,
differences in the first two shape coefficients that can be 
considered negligible.

and (as well as ) are defined as the ratios of
quantities having the same proportionality relation with the 
product . When galvanic interconnections among ground 

electrodes are absent, their independence from soil resistivity 
and fault current is rigorous [20]. 

The case study considered in this work presents, in both the 
simulated scenarios, galvanic interconnections among some of 
the ground electrodes considered. In Scenario 1, conductances 
between adjacent pipeline trunks have been introduced in order 
to properly represent long buried conductors; in Scenario 2, 
there is also the LV neutral network.

The differences in and values reported in Table III, 
VI and VII are due to the slight changes of the fault current 
distribution between the soil and the galvanic interconnections 
in the different considered conditions.

It can be concluded that the results of this study are generally 
valid also for different values of the product .

TABLE VI
SHAPE COEFFICIENTS FOR DIFFERENT SOIL RESISTIVITY

IF [A] Scenario ρ [

100
1 0.090 0.319 7.030

0.090 0.332 703.340

2 0.314 0.478 1.510
0.352 0.482 133.148

TABLE VII
SHAPE COEFFICIENTS FOR DIFFERENT FAULT CURRENTS

ρ [ Scenario IF [A]

10
1 0.090 0.319 0.703

0.090 0.319 70.305

2 0.314 0.478 0.151
0.314 0.478 15.099

1000
1 0.090 0.332 70.334

0.090 0.332

2 0.352 0.482 13.315
1000 0.352 0.482 1.331

Fig. 4.  EPP contour plot (in volt) for scenario 1



Fig. 5.  EPP contour plot (in volt) for scenario 2

Fig. 6. Scenario 2: LV neutral network current flows (modulus in ampere, phase angle in degree). Red resistances correspond to MV/LV substations ES.

IV. CONCLUSIONS

This work analyzes the role, in electrical safety, of the LV 
distributive scheme adopted in Italy for high load areas.

At this purpose the effect of the sole presence of LV neutral 
interconnections between substations ESs, along with LV

neutral reinforcement groundings, have been evaluated in case 
of a MV single line to ground fault.

With reference to the worst case scenario (faulted substation 
called on to disperse the entire fault current), simulation results 
show an EPR reduction of 77% in the faulted substation. The 



interconnection between grounding electrodes determines a 
modification in the soil surface voltage distribution. Even if a 
voltage increase can be observed in areas where scenario 1 
exhibited low potentials (far from MV/LV substations),
scenario 2 shows a significant decrease of the maximum touch 
voltage and EPP gradients detectable in the area under 
investigation.

This is because the described LV distributive scheme
realizes, although in a small area, all the concepts behind the 
Standards’ GES definition: Interconnection, Proximity and
Quasi-equipotentiality. For this reasoning it surely improves 
GES efficiency in that area and its realization should be 
recommended.
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