
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PAIN: A Passive Web Speed Indicator for ISPs / Trevisan, Martino; Drago, Idilio; Mellia, Marco. - ELETTRONICO. -
(2017). (Intervento presentato al convegno ACM SIGCOMM Workshop on QoE-based Analysis and Management of
Data Communication Networks tenutosi a Los Angeles, California, USA nel August 21 - 25, 2017)
[10.1145/3098603.3098605].

Original

PAIN: A Passive Web Speed Indicator for ISPs

Publisher:

Published
DOI:10.1145/3098603.3098605

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2675141 since: 2017-06-26T17:27:40Z

ACM

PAIN: A Passive Web Speed Indicator for ISPs
Martino Trevisan
Politecnico di Torino

martino.trevisan@polito.it

Idilio Drago
Politecnico di Torino
idilio.drago@polito.it

Marco Mellia
Politecnico di Torino

marco.mellia@polito.it

ABSTRACT
Understanding the quality of web browsing enjoyed by users is
key to optimize services and keep users’ loyalty. This is crucial for
Internet Service Providers (ISPs) to anticipate problems. Quality
is subjective, and the complexity of today’s pages challenges its
measurement. OnLoad time and SpeedIndex are notable attempts
to quantify web performance. However, these metrics are computed
using browser instrumentation and, thus, are not available to ISPs.

PAIN (PAssive INdicator) is an automatic system to observe the
performance of web pages at ISPs. It leverages passive �ow-level
and DNS measurements which are still available in the network
despite the deployment of HTTPS. With unsupervised learning,
PAIN automatically creates a model from the timeline of requests
issued by browsers to render web pages, and uses it to analyze
the web performance in real-time. We compare PAIN to indicators
based on in-browser instrumentation and �nd strong correlations
between the approaches. It re�ects worsening network conditions
and provides visibility into web performance for ISPs.

CCS CONCEPTS
•Networks→Networkperformance analysis;Networkmea-
surement;

KEYWORDS
QoE Metrics; Passive Measurements; Machine Learning

1 INTRODUCTION
Metrics related to users’ Quality of Experience (QoE) are key to
understand how end-users enjoy the web. Such metrics are of prime
importance to all actors involved in the service delivery. From
Content Providers, which need to monitor users’ satisfaction to
maintain or increase their user base, to Internet Service Providers
(ISP), which need to be aware of web performance to actuate when
network factors a�ect web browsing experience [11].

In this paper we take the perspective of ISPs. Bad performance
in the network, and in particular in the last-mile, is historically the
�rst suspect in degradation events. This has motivated major Con-
tent Providers to publicize rankings of ISP performance.1 It is no
exaggeration to say that ISPs are evaluated based on the experience
of end-users while interacting with third-party services. Moreover,
ISPs need to understand the impacts of possible network con�g-
uration changes on web browsing performance – e.g., to decide
whether the deployment of web caches or new content delivery
nodes is advantageous, or to setup con�guration parameters of the
network. It is thus not a surprise that there exist in the market prod-
ucts for the measurement of QoE-related metrics targeting ISPs
(e.g., Sandvine [11]). ISPs have a vital need to be aware of users’

1For an example, see https://ispspeedindex.net�ix.com/

t0
Time

(20s)Group 1 Group 2 Group 3 Group 4

Support Domains

Figure 1: Flows in a nytimes .com visit. We use the time to con-
tact support domains to monitor performance.

experience while using their networks, to anticipate complaints,
take countermeasures, setup the network, and, ultimately, avoid
the churning of customers.

Users’ QoE is is intrinsically subjective, thus hard to be fully
assessed and quanti�ed. Previous works [2, 5, 7] have proposed
objective metrics that have been shown to be correlated with users’
Mean Opinion Score (MOS), even if a model to predict MOS is still
hard to get [4]. These metrics however either are computed at the
server-side (i.e., available only to Content Providers) or require
ground truth from in-browser instrumentation (i.e., not scalable for
the monitoring of a large number of sites at ISPs). Passive solutions
to provide visibility into web performance are rare, and generally
based on tra�c payload to reconstruct web pages [11].

We introduce PAIN (PAssive INdicator), a system to monitor web
page performance using passive tra�c logs, as typically available in
ISP networks. The deployment of encryption (e.g., HTTPS) makes
solutions that reconstruct web sessions from payload [2, 5, 11] no
longer e�ective. PAIN relies only on L4-level statistics (e.g., Net-
�ow), annotated with DNS information [3] to compute a synthetic
indicator of the web page rendering time.

The intuition behind PAIN is very simple. Once users reach a
website, their browsers open many �ows to di�erent servers to
fetch HTML objects, scripts and media content. We call the Fully
Quali�ed Domain Name (FQDN) associated with the �rst contacted
server the Core Domain and the remaining contacted FQDNs the
Support Domains. An example is provided in Fig. 1, which illus-
trates with colored arrows the moment in which �ows to support
domains appear after a visit to the core domain www .nytimes .com.
Given core domains of interest, PAIN automatically learns con-
tacted support domains, as well as the typical order in which such
�ows appear in the network, creating groups of support domains. In
the example, PAIN learns 4 groups from the observed network traf-
�c. PAIN then considers the delay to observe �ows of each group a
performance indicator. It uses visits to the website from all users to
(i) observe probable patterns; (ii) identify checkpoints that model
the download process; and (iii) measure the delay to pass check-
points, i.e., automatically building a benchmark.

https://ispspeedindex.netflix.com/

Internet QoE ’17, August 21, 2017, Los Angeles, CA, USA Martino Trevisan, Idilio Drago, and Marco Mellia

We validate PAIN in a controlled environment, in which a testbed
is instrumented to browse web pages and collect classic perfor-
mance metrics. We compare measurements collected by the two in-
dependent approaches. We show that PAIN is able to spot changes
in network conditions, reporting quality degradation when the
page load time increases. PAIN metrics are strongly correlated with
objective metrics computed based on client instrumentation.

2 THE PAIN SYSTEM
PAIN is an unsupervised system composed by two blocks (see Fig. 2).
The Model Learning module analyzes �ow records exported by mon-
itoring devices and creates a model for each core domain of interest,
i.e., it discovers and clusters support domains associated to speci�c
websites. It must be periodically updated (e.g., monthly), to cope
with changes in web-page structure. The Metric Extraction module
extracts the actual performance metrics using the previously built
models. All algorithms are O (n) with respect to the input size (i.e.,
number of �ow records) and are implemented in Apache Spark for
scalable processing.

2.1 Input data
PAIN expects two input:
(i) Core domains: It is a user-de�ned input containing core domains
the ISP is interested in monitoring, such as popular websites ac-
cessed by users of the network, or generic lists (e.g., Alexa). PAIN
operates with up to L4-level measurements (e.g., source and desti-
nation IP addresses as well as TCP port numbers), and thus ISPs
must specify only the domains to be monitored, and not full URLs.
This allows PAIN to work with encrypted tra�c, where domain
names are still visible;
(ii) Flow records annotated with DNS information: they are captured
in the network, by means of �ow exporters. PAIN expects ordinary
�ow records (i.e., the usual 5-tuple), enriched with the domain
names used by clients to contact servers. Di�erent methodologies
can be used to annotate �ow records with that information, such
as the methodology presented in [3], which leverages DNS tra�c.

2.2 Model learning
The Learning Module models the arrival of �ows opened by the
browser to render web pages. The �rst task is to learn the support
domains associated with each core domain. PAIN learns that by
focusing on the �ows commonly occurring after core domains. Then,
given that �ows to download objects while rendering a page vary
from visit to visit (e.g., because of caching, persistent connections,
modi�cation in the content, etc.), PAIN analyzes the order in which
groups of support domains typically appear.

2.2.1 Support domains learning: PAIN learns support domains
based on the methodology we introduced in [13]. It observes all
�ows generated by a (possibly large) population of clients that
visits the target core domain. We assume browsers access support
domains immediately after loading the main HTML object hosted
in the core domain. PAIN analyzes the training dataset on a per-
client basis, processing �ows in chronological order according to
starting time. Then, every time a �ow to a core domain is observed,
PAIN opens an observation window with duration ∆T .

For each visit to core domain C , PAIN registers all domains con-
tacted by the client during the observation window, forming a list
of candidate support domains (CANDC). If a support domain is
seen multiple times within a window, only the �rst occurrence is
registered.2 Note that background tra�c may be present in observa-
tion windows, whose �ows introduce noise in the learning process.
After the tra�c of a number of clients is processed, PAIN evaluates
the candidate domains to form the �nal set of support domains
SDC . It uses the frequency fd,C in which the domain d appears in
observation windows of C . The assumption is that actual SDC will
consistently appear in multiple observation windows, whereas do-
mains related to background tra�c, being present by chance, can
be �ltered out. Candidate domains appearing less frequently than
a threshold MinFreq are discarded. The �nal SDC is thus given by:

SDC = {(d, fd,C) |d ∈ CANDC ∧ fd,C > MinFreq} (1)

2.2.2 Support domain scores: Intuitively, the time support �ows
appear in the network impacts the speed in which a web page is
rendered. Page elements hosted in third-party sites (e.g., images
and advertisements) are usually requested after other components
of the page (e.g., scripts) are processed. As for onLoad time and
SpeedIndex (see Sec. 4), PAIN leverages this intuition to calculate
a score for di ∈ SDC . The score is higher for those domains di
appearing further away from the core domain C , in time. That is,
PAIN identi�es which support domains will serve as checkpoints
based on their delays relative to the core domain �ow.

However, SDC is constructed from many observation windows,
which are noise by de�nition. For instance, not all support domains
appear in every observation window due to caching, persistent
connections, etc. Equally, nothing prevents browsers or mobile
terminals from opening �ows to third-parties in a di�erent order
while rendering pages.

To determine the score for each di ∈ SDC , PAIN computes a
dependency matrixMC of order |SDC |. Each cellMC

i, j represents
the number of observations windowsOW in which di has appeared
after dj in time. Note thatMC

i,i = 0 andMC
i, j = |OW | only if di

appears always afterdj , and bothdi anddj appear in all observation
windows. The score of di ∈ SDC is calculated as SCdi =

∑
jM

C
i, j ,

i.e., di has high score if it appears often later than other domains.

2.2.3 Checkpoints: After ranking di ∈ SDC using SCdi
, PAIN

identi�es the checkpoints. We have tested several options, such as
considering speci�c support domains as “landmarks” to calculate
performance metrics. However, due to noise in observation win-
dows (e.g., missing support domains), this results in a complicated
choice. We propose a very simple rule that considers groups of sup-
port domains, which gives reliable outcomes based on our tests.
The intuition is that, by clustering the support domains in some few
groups, we �lter out the noise caused by missing support domains.

More precisely, we sort di ∈ SDC based on scores SCdi and split
the domains in n groups GC = {GC

1 , . . . ,G
C
n }, where groups have

at least |GC
k | =

⌊
|SDC |
n

⌋
support domains. GC

1 will contain the
support domains that often appear the closest to the core domain

2This step avoids in�ating the number of �ows due to browsers pre-provisioning
multiple TCP connections to the same server.

PAIN: A Passive Web Speed Indicator for ISPs Internet QoE ’17, August 21, 2017, Los Angeles, CA, USA

Model

Learning

Core Dom.: abc.com
 Group 1:

 - opq.rs.com

 - tuv.yz.net

 Group 2:

 - def.gh.org

 - lmn.op.com

 ...

Models

Metric

Extraction

Metrics

Time Core Domain Metrics (Tk)

142645

142648

143502

abc.com 1.45, 2.89 ...

zxy.net 1.92, 3.12 ...

ijk.com 0.62, 1.48 ...

...

Flow

Records

Core Domains New Traffic

Figure 2: Architecture of PAIN. It learns and clusters support domains using �ow records and a list of target core domains.
The resulting groups are used to extract indicators of the website performance.

�ow, wheres GC
n will have the support domains that often appear

the furthest to the core domain.
The set with all GC – i.e., groups of support domains for core

domains C – is the output of the Model Learning module.

2.3 Performance metric extraction
The metric extraction module analyzes new tra�c to provide the
performance metrics. Intuitively, we measure the time at which
�ows in each group are observed. Visits to a group are considered
completed when the last �ow in the group is observed. This last
visit is a checkpoint, and the relative visit time to checkpoints are
recorded as performance metrics.

Like in the training phase, PAIN analyzes the tra�c �ows on a
per-client basis, chronologically by starting time. When it encoun-
ters a �ow to a core domain C , it open an evaluation window (EW)
∆T long. PAIN considers then all �ows generated by the same client
within the EW.

PAIN processes EW and extracts the maximum arrival time of
support domains within each group GC

k . The k-th checkpoint time
Tk is computed as

Tk = max
s ∈GC

k

ts − tc (2)

where tx is the time of �ow to domain x , s and c being the support
and core domains, respectively.3

We tested di�erent criteria in place of maximum (e.g., average
and mean) and all lead to worse results; the intuition is that the web
page performance is mainly driven by the ability of the browser to
obtain all objects to render the page, which in turn depends on the
time the last �ow is observed on the network. The use of maximum
also highlights possible degradation or failures of speci�c servers
involved in serving the content.

The tuple TC = {T1, . . . ,Tn } represents then performance mea-
surements for a given visit to the core domain C . By considering
all visits from all clients to C , PAIN builds a statistics on the per-
formance faced by clients. Indeed, due to the intrinsic noisiness of
�ow level measurements, PAIN output assumes relevance when
multiple measures are aggregated to contrast di�erent users, time
periods or locations.

3Note that groups can be absent if none of its support domains is in EW .

2.4 Design decisions and caveats
The decision of making PAIN a completely unsupervised system
is motivated by our goal of monitoring a vast range of websites
seamlessly. The system is expected to receive only the list of core
domains to be monitored. It learns models directly from tra�c,
without requiring human intervention or any information collected
at the client-side.

Other designs would be possible too, such as by using supervised
algorithms. The system could learn the model from the network
tra�c guided by client-side metrics, e.g., by varying the number of
checkpoints and the size of observation windows so to approximate
client-side metrics in the best possible way. Such a supervised
design would result in a system that adapts to di�erent websites,
thus leading to �ne-grained groups of support domains for each
core domain. It however requires ground truth data captured at
client-side for each core domain of interest.

We have investigated the supervised design, and improvements
are indeed possible for particular websites. The deployment of
this alternative, however, requires a resource-consuming testbed
to be deployed with PAIN, in which training should be performed,
periodically, for each monitored websites, with the support of in-
browser instrumentation. We have eventually decided to follow the
unsupervised approach, since it broaden the PAIN deployability
and dramatically enhances training scalability.

3 TESTBED AND DATASETS
3.1 Testbed
We evaluate PAIN using synthetic traces produced in a testbed. Our
goal is to compare the output of PAIN to objective metrics collected
directly in the browser. For this, we instrument a desktop PC with
the WebPageTest,4 a tool set for web performance assessment. Given
a list of URLs, it automatically navigates through each page in
a controlled environment while saving detailed statistics. Many
options are available, choosing client browser (Chrome and Firefox),
device (PCs, tablets and smartphones) and network emulation (e.g.,
3G, DSL and Cable). It thus provides the means to (i) emulate users’

4 WebPageTest can be downloaded from https://www.webpagetest.org/. WebPageTest
emulates networks based on DummyNet, a live network emulation tool that can be
found in http://info.iet.unipi.it/~luigi/dummynet/.

https://www.webpagetest.org/
http://info.iet.unipi.it/~luigi/dummynet/

Internet QoE ’17, August 21, 2017, Los Angeles, CA, USA Martino Trevisan, Idilio Drago, and Marco Mellia

Table 1: Browsers and emulated devices in the testbed.

Browser Device Operating System
Mozilla Firefox PC Windows 10
Google Chrome PC Windows 10
Google Chrome Nexus 7 Android
Google Chrome iPad Mini iOS

browsing considering realistic clients and network conditions and
(ii) export metrics related to the page rendering process.

WebPageTest exports the HTTP Archive (HAR)5 �le for each vis-
ited page. It contains overall information about the visit as well as
statistics for the each object: from HTTP-headers, to network-level
statistics that describe the TCP connections opened to download
objects. In particular, it records the time in which the TCP connec-
tion starts, and server domain name associated with it, which we
use to train and test PAIN, i.e., the information that would come
from �ow exporters in real deployments.

Additionally, WebPageTest saves many objective metrics related
to QoE. Here, we consider two popular metrics:
(i) OnLoad time: The time browsers �re the onLoad event – i.e.,
when all elements of the page, including images, style sheets and
scripts have been downloaded and parsed;
(ii) SpeedIndex: Proposed by Google6, represents the time at which
visible portions of the page are displayed. It is computed by cap-
turing the video of the browser screen, and tracking the visual
progress of the page during rendering.

The testbed is connected via a 1 Gbps Ethernet cable to the
Politecnico di Torino campus network.

3.2 Datasets
We build two datasets to validate PAIN, with respectively typical
and arti�cial network conditions.

The typical dataset is built by letting WebPageTest visit 10 popu-
lar domains in Italy including, e.g., news, e-commerce and weather
services. For each domain, WebPageTest downloads the homepage
and 9 internal pages (e.g., arbitrary articles from the news websites),
for a total of 100 URLs.

Since PAIN must work seamlessly regardless of client con�gu-
rations, we consider 4 di�erent client browser and device combi-
nations, which we summarize in Tab. 1. We consider both Firefox
and Chrome running on PCs, and we leverage Chrome’s features
to emulate its use on a smartphone and on a tablet.

We further consider 8 network technologies, which are sum-
marized in Tab. 2. The con�gurations are created by WebPageTest
by imposing tra�c shaping policies that mimic actual parameters
of the technologies. For the Native case, WebPageTest imposes no
shaping – i.e., the 1 Gbps Ethernet network connecting the testbed
is used without changes. For other cases, it uses DummyNet as em-
ulation environment to enforce typical bandwidth and Round Trip
Time (RTT) faced by end-users contracting the technologies.

5http://www.softwareishard.com/blog/har-12-spec
6https://developers.google.com/speed/docs/insights/about

Table 2: Network settings in the typical dataset. Native cor-
responds to a scenario with no tra�c shaping (i.e., 1 Gbps
Ethernet).

Name Down Link Up Link RTT
Native - - -
FIOS 20 Mbit/s 5 Mbit/s 4 ms
Cable 5 Mbit/s 1 Mbit/s 28 ms
DSL 1.5 Mbit/s 1 Mbit/s 50 ms
LTE 12 Mbit/s 12 Mbit/s 70 ms

3G Fast 1.6 Mbit/s 768 Kbit/s 150 ms
3G 1.6 Mbit/s 768 Kbit/s 200 ms

3G Slow 780 Kbit/s 330 Kbit/s 200 ms

At last, we visit each page twice for each setup: (i) with empty
browser cache; and (ii) few seconds later for pro�ting from the
local cache. The resulting tra�c is expected to vary strongly, since
many objects are in the cache in the second case, complicating the
identi�cation of support domains. In total, WebPageTest recorded
6 400 visits while building this �rst dataset (all visits have been
completed in about 48 h).

The second dataset represents arti�cial network conditions, in
which theNative case is degraded controlling (separately) additional
link delay or bandwidth limit on the testbed. That is, we simulate
scenarios in which users see increases in page load time caused by
network worsening. We simulate 10 cases: (i) adding from 100 ms to
500 ms extra delay and (ii) imposing a limit from 5 Mbit/s down to
312.5 kbit/s on bandwidth. Again, we visited each page twice (with
and without caching) and with 4 client browsers. WebPageTest has
performed 8 000 extra visits for building this second dataset (taking
≈60 h).

Note that client capabilities could also impact performance of
websites – e.g., slow clients will take longer to parse and render
web pages. Testing PAIN in such scenarios is left for future work.

4 EXPERIMENTAL RESULTS
4.1 Parameter tuning and checkpoints
We evaluate PAIN checkpoint times, aiming at (i) getting an initial
feeling about checkpoints’ behaviors; and (ii) investigating PAIN
parameter settings. Remind that PAIN output is a set of checkpoint
times (Tk) for each website visit.

We �rst tune the observation window duration (∆T) and the
threshold to �lter out support domains (MinFreq) – see Sec. 2.2.1.
We note that PAIN is not very sensitive to the parameters. Given
that support domains are grouped, and each group is used to extract
a single checkpoint, PAIN output remains mostly una�ected if
some support domains are not associated to the respective core
domain. Following a validation methodology similar to our previous
work [13], i.e., measuring the number of support domains that is
correctly associated with each core domain for various parameter
settings, we conclude that the best settings for PAIN are ∆T = 30s
and MinFreq = 25%.

We next perform a sensitive analysis ofn, i.e., the number groups.
We vary n, recording the checkpoint times. Trivially, changing n
a�ects values for checkpoints. However, remind that we always

PAIN: A Passive Web Speed Indicator for ISPs Internet QoE ’17, August 21, 2017, Los Angeles, CA, USA

 0

 2

 4

 6

 8

 10

0 100 200 300 400 500

M
et

ri
c

V
al

ue

Artificial Delay [ms]

C.P. 1
C.P. 2

C.P. 3
C.P. 4

(a) www.repubblica.it

 0

 2

 4

 6

 8

0 100 200 300 400 500

M
et

ri
c

V
al

ue

Artificial Delay [ms]

C.P. 1
C.P. 2

C.P. 3
C.P. 4

(b) www.subito.it

Figure 3: Median time to pass checkpoints when arti�cially
increasing access link delay.

take the arrival time of the last �ow in each group as a checkpoint.
As such, the last checkpoint is always the same, regardless of n.
Moreover, considering checkpoints representing support domains
that are usually contacted long time after the core visit, we observe
only minor changes for di�erent n. We consider n = 4 for the
remaining experiments, with other values leading to very similar
results when using the last groups as performance metric.

Fig. 3 illustrates checkpoint values when n = 4 for two popular
websites and considering the arti�cial dataset for increasing arti�-
cial delay. We consider the median checkpoint time over all tests
with each delay value. As expected, checkpoints increase alongside
the delay, starting from around 0.5 s and up to almost 10 s when
RTT is 500 ms. That is, checkpoints re�ect the network conditions
and increase in case of degradation. Note that the not-deterministic
visiting order of support domains is re�ected in checkpoint times,
which may be inverted. For repubblica.it this does not happen, but
for subito.it sometimes checkpoint 4 completes before checkpoint
3, due some �ow in the latter group being delayed, or to objects in
checkpoint 4 being locally cached.

We take the 4th checkpoint as benchmark for comparisons with
other metrics in the remaining sections; very similar results are
obtained considering the 2nd or the 3rd checkpoints, although if
using the 1st checkpoint �gures would be considerably noisier –
i.e., it leads to higher variance in the metric.

4.2 Impact of network conditions
We now check whether PAIN is generally able to re�ect worsen-
ing network conditions. Fig. 4 compares PAIN 4th checkpoint to

SpeedIndex and onLoad time. A single website is reported (simi-
lar �gures are obtained for other cases). Each line represents the
median value for all website page visits with the given network
conditions. Since the metrics have di�erent absolute values, we use
the y-axis in the left-hand side to report SpeedIndex and onLoad
times, and the y-axis in the right-hand side to report values of
PAIN metrics. Thus, with these �gures we aim at understanding
whether the metrics present similar rate of variation given changes
in the network conditions – i.e., whether their values are similarly
a�ected by network impairments.

Focusing on Fig. 4a which compares metrics in the scenario dis-
cussed in Fig. 3, notice how the three metrics grow almost linearly
with the RTT. The rate of variation in PAIN, seen in the blue lines,
is in between the rate seen for SpeedIndex (green) and onLoad
(red) time. When arti�cially varying the bandwidth in the arti�cial
scenario (Fig. 4b), the values of the checkpoint change similarly
to the rate observed for onLoad time, but faster than SpeedIndex.
That is, PAIN is more sensitive to deterioration on the available
capacity. Yet, results show that the checkpoint is directly related
to page load time. Observe also that all three metrics are basically
constant when the bandwidth is larger than 2.5 Mbit/s (see points
in the left part of the �gure). That is, the web page performance
is not a�ected when a minimum bandwidth is available, and all
three metrics re�ect such behavior. Finally, Fig. 4c reports the val-
ues for typical network scenarios. Again, we see similar patterns
among the metrics, with the rate of variation of our checkpoints in
between the other metrics.

In summary, all three metrics increase when the network de-
grades, demonstrating PAIN can highlight deterioration in page
load time. Absolute ranges are di�erent, but all re�ects degradation
in quality.

4.3 Correlation with client-side metrics
We formally quantify the correlation of PAIN 4th checkpoint with
SpeedIndex and OnLoad time. Fig. 5 shows Spearman’s rank cor-
relation coe�cients for onLoad time (blue) and SpeedIndex (red).
Only results for the typical dataset are depicted, with the arti�-
cial one leading to similar conclusions. All 6 400 visits are used to
calculate the coe�cients, using separate bars for di�erent websites.

Correlation coe�cients are positive and very high (i.e., ≥
0.5), ranging from 0.54 for www.ebay.it (SpeedIndex) to 0.90 for
www.gazzetta.it (onLoad). Most values are close to 0.8 for both met-
rics. That is, PAIN checkpoints are strongly correlated with both
objective metrics for di�erent sites. For comparison, the correla-
tion between SpeedIndex and onLoad ranges in [0.71,0.91]. Results
reinforce that PAIN works well as a proxy to quality monitoring,
providing strong indications without client-side instrumentation.

5 RELATEDWORK
Previous works have focused on estimating QoE. Authors of [7]
show that indirect metrics serve as indicators of users’ MOS. Con-
sidering website performance, metrics such as the onLoad time or
SpeedIndex have been shown to be correlated with QoE metrics [5].
Authors of [5] also propose the ByteIndex – a metric based on the
bytes delivered to the client to render a page. All those metrics are
however computed at the client-side – e.g., the ByteIndex requires

repubblica.it
subito.it

Internet QoE ’17, August 21, 2017, Los Angeles, CA, USA Martino Trevisan, Idilio Drago, and Marco Mellia

 0

 20

 40

 60

 80

Native100 200 300 400 500
 0

 4

 8

 12

 16

T
im

e
[s

]

P
A

IN
 M

et
ri

c

Artificial Delay [ms]

onLoad
speedIndex
4th Group

(a) Delay

 0
 20
 40
 60
 80

 100

Native

5 2.5 1.25
0.625

0.3125

 0

 5

 10

 15

 20

T
im

e
[s

]

P
A

IN
 M

et
ri

c

Traffic Shaping Rate [Mbit/s]

onLoad
speedIndex
4th Group

(b) Bandwidth

 0

 10

 20

 30

 40

Native

FIOS
LTE

Cable
3GFast

DSL
3G 3GSlow

 0

 2

 4

 6

 8

T
im

e
[s

]

P
A

IN
 M

et
ri

c

Network Profile

onLoad
speedIndex
4th Group

(c) Pro�le

Figure 4: www.repubblica.it normalized onLoad, SpeedIndex and 4th checkpoint for various setups.

w
w
w
.c
or
rie

re
.it

w
w
w
.e
ba

y.
it

w
w
w
.g
az

ze
tt
a.
it

w
w
w
.il
m
et
eo

.it

w
w
w
.la

st
am

pa
.it

w
w
w
.m

et
eo

.it

w
w
w
.m

ym
ov

ie
s.i

t

w
w
w
.re

pu
bb

lic
a.
it

w
w
w
.su

bi
to
.it

w
w
w
.w

or
dr

ef
er
en

ce
.c
om

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

el
a
ti
o
n

onLoad SpeedIndex

Figure 5: Spearman’s correlation of 4th checkpoint with
onLoad and SpeedIndex for analyzed websites.

knowledge of page elements, which is not available with encrypted
tra�c. PAIN instead targets ISPs, thus observing information from
the network side, via passive measurements.

Past works targeting the ISP scenario either require DPI [2, 11,
12], or rely on ground truth from client browsers to train machine
learning classi�ers [1, 8]. Training is per-website, and becomes
cumbersome to keep pace with website evolution. In contrast, PAIN
uses a completely unsupervised approach. PAIN is a step further
towards QoE indicators [6, 10] able to operate in a world where
encryption is the norm [9]. PAIN automatically builds the models
directly from �ow-level traces, with no need to access to payload.

6 CONCLUSIONS
We presented PAIN, an automatic and unsupervised system to mon-
itor website performance using �ow-level measurements. It builds
a behavioral model for websites’ tra�c, leveraging �ows automati-
cally opened by browsers to retrieve images, scripts etc. The model
is used for assessing performance. We validated PAIN by show-
ing that it can highlight sudden performance deterioration due to
changes on network conditions. Finally, we showed that PAIN’s

metrics are strongly correlated with well-known objective metrics
used as indication of users’ QoE, such as the onLoad time and the
SpeedIndex. We are currently working on deploying PAIN in an
ISP network to collect real-world data.

ACKNOWLEDGEMENTS
The research leading to these results has been funded by the Vienna
Science and Technology Fund (WWTF) through project ICT15-129,
BigDAMA.

REFERENCES
[1] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan. Prometheus:

Toward Quality-of-experience Estimation for Mobile Apps from Passive Network
Measurements. In Proc. of the HotMobile, pages 18:1–18:6, 2014.

[2] A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan, S. Venkataraman,
and H. Yan. Modeling Web Quality-of-experience on Cellular Networks. In Proc.
of the MobiCom, pages 213–224, 2014.

[3] I. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura, and A. Nucci. DNS to the
Rescue: Discerning Content and Services in a Tangled Web. In Proc. of the IMC,
pages 413–426, 2012.

[4] E. Bocchi, L. D. Cicco, M. Mellia, and D. Rossi. The Web, the Users, and the MOS:
In�uence of HTTP/2 on User Experience. In Proc. of the PAM, pages 47–59, 2017.

[5] E. Bocchi, L. D. Cicco, and D. Rossi. Measuring the Quality of Experience of Web
Users. In Proc. of the Internet-QoE, pages 37–42, 2016.

[6] P. Casas, B. Gardlo, R. Schatz, and M. Mellia. An Educated Guess on QoE
in Operational Networks through Large-Scale Measurements. In Proc. of the
Internet-QoE, pages 1–6, 2016.

[7] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz. Next to You:
Monitoring Quality of Experience in Cellular Networks From the End-Devices.
IEEE Trans. Netw. Service Manag., 13(2):181–196, 2016.

[8] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki. Measuring
Video QoE from Encrypted Tra�c. In Proc. of the IMC, pages 513–526, 2016.

[9] R. Gonzalez, C. Soriente, and N. Laoutaris. User Pro�ling in the Time of HTTPS.
In Proc. of the IMC, pages 373–379, 2016.

[10] W. Pan, G. Cheng, H. Wu, and Y. Tang. Towards QoE Assessment of Encrypted
YouTube Adaptive Video Streaming in Mobile Networks. In Proc. of the IWQoS,
pages 1–6, 2016.

[11] Sandvine. Measuring Web Browsing Quality of Experience. 2017.
https://www.sandvine.com/technology/web-browsing-quality-of-
experience.html.

[12] M. Trevisan, I. Drago, and M. Mellia. Impact of Access Speed on Adaptive Video
Streaming Quality: A Passive Perspective. In Proc. of the Internet-QoE, pages
7–12, 2016.

[13] M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi. WHAT: A Big Data
Approach for Accounting of Modern Web Services. In Proc. of the BigData, pages
2740–2745, 2016.

	Abstract
	1 Introduction
	2 The PAIN system
	2.1 Input data
	2.2 Model learning
	2.3 Performance metric extraction
	2.4 Design decisions and caveats

	3 Testbed and Datasets
	3.1 Testbed
	3.2 Datasets

	4 Experimental results
	4.1 Parameter tuning and checkpoints
	4.2 Impact of network conditions
	4.3 Correlation with client-side metrics

	5 Related Work
	6 Conclusions
	References

