
06 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mimicking a compute domain orchestrator with the ONOS SDN Controller / Castellano, Gabriele; Cerrato, Ivano; Risso,
FULVIO GIOVANNI OTTAVIO; Pezzolla, Davide; Manzalini, Antonio. - STAMPA. - (2017), pp. 1-3. (Intervento
presentato al convegno 3rd IEEE Conference on Network Softwarization (NetSoft 2017) tenutosi a Bologna, Italy nel
July 2017) [10.1109/NETSOFT.2017.8004253].

Original

Mimicking a compute domain orchestrator with the ONOS SDN Controller

Publisher:

Published
DOI:10.1109/NETSOFT.2017.8004253

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2677011 since: 2017-11-04T12:08:25Z

IEEE

Mimicking a Compute Domain Orchestrator with
the ONOS SDN Controller

Gabriele Castellano∗, Ivano Cerrato∗, Fulvio Risso∗, Davide Pezzolla∗, Antonio Manzalini†
∗Politecnico di Torino, Dept. of Computer and Control Engineering, Torino, Italy

† TIM, Torino, Italy

Abstract—With the NFV paradigm, network services are
usually instantiated in datacenters (e.g., as VMs), while software-
defined networks provide just plain connectivity. However, com-
mon SDN controllers can do much more than just traffic steering;
particularly they can execute network applications such as NAT,
DHCP, and more. This paper presents a software architecture
that can advertise an SDN domain as having compute capabilities,
hence enabling an overarching multi-domain orchestrator to
instantiate a network function either in a cloud or in an SDN
domain. This allows an overarching orchestrator to fully exploit
the processing capability of an SDN infrastructure and potentially
enabling more aggressive optimization strategies across domains.

I. INTRODUCTION

Current Network Functions Virtualization (NFV) services
are mostly deployed as virtual machines (VMs) or lightweight
containers in cloud computing domains (e.g., data centers),
while the Software-Defined Network (SDN) infrastructure in
between is only used to provide connectivity.

However, common SDN controllers such as ONOS and
OpenDayLight can do much more than just traffic steering.
In fact, acting as a middle-layer between the control and
the data plane, they interact with the underlying switches
(i.e., data plane) through a southbound interface (e.g., to
program their forwarding tables), and expose a northbound
interface that allows specific software bundles (a.k.a. SDN
applications) to be dynamically deployed and executed on
top of the controllers themselves (i.e., control plane). These
applications, which contain the high level logic that decides
which rules (e.g., OpenFlow) to deploy in the switches, can
implement a set of the network functions (NFs) that are instead
usually instantiated as VMs (e.g., NAT, stateless firewall) in
data centers.

To the best of our knowledge, only the XoS orchestrator [1]
exploits SDN controllers to execute NFs. However, XoS has
well-defined requirements, such as it can control only an
OpenStack datacenter in which the network infrastructure is
managed by an ONOS controller. Moreover, XoS is not able to
dynamically discover which NFs the domain is able to execute.
For instance, this is a necessity arisen in a geographical SDN
testbed we have access to, where ONOS is being populated
by additional software (i.e., SDN applications), which happens
outside our control. In this case, an overarching multi-domain
orchestrator (MDO) (Figure 1) cannot take advantage from
those new bundles, because it even does not know they are
available.

Domain orchestrator

Central Office
Data Center

Domain orchestrator

SDN
network

Domain orchestrator

Cloud
Data Center

Multi-Domain OrchestratorDomain description

Service graph

Controller-specific interfaces

Fig. 1. Overall view of the multi-domain orchestration architecture.

Based on these considerations, this paper presents a software
architecture that enables an MDO to retrieve the features of
each domain, as well as to understand when a domain gets
new features (e.g., a new bundle available/installed in an SDN
domain). Moreover, based on such information, the MDO is
able to transparently instantiate NFs in the most appropriate
domain, regardless of whether it is a data center or an SDN
network, thus allowing better optimization strategies when
selecting the best location on which a network service must be
executed. Particularly, we extend the ONOS controller with a
software component, called domain orchestrator (DO), which:
(i) enables the SDN domain to be exploited for the deployment
of NFs (and not only for the creation of network paths); (ii)
exports (to the MDO) a set of information (e.g., applications
installed in the SDN controller) that may change from one
SDN domain to another, and which may be updated over time.

This paper is structured as follows: Section II presents an
overview of the orchestration framework, while Section III
details the SDN domain orchestrator that we built on top
of the ONOS controller. Finally, Section IV provides some
preliminary evaluation results.

II. MULTI-DOMAIN ORCHESTRATION OVERVIEW

Figure 1 provides an overview of our architecture, where the
MDO1 deploys network services on heterogeneous domains,
which include both data centers (e.g., under the control of
the OpenStack cloud toolkit), and SDN networks (under the
control of ONOS). The integration of heterogeneous domains
requires a DO per domain, which (i) exports a domain descrip-
tion that can be exploited by the MDO, e.g., to select the best
domain to execute a service, and (ii) is able to instantiate the
required NFs on the resources available in the domain itself.

Domain description. DOs export the domain description
according to a specific YANG data model, which includes

1We use the FROG orchestrator: https://github.com/netgroup-polito/frog4.

both networking and computing aspects. Particularly, from the
point of view of networking, each domain is described as
a “big switch” with a set of boundary interfaces, each one
characterized by a set of information that allows the MDO
to properly reconstruct the whole multi-domain topology.
Instead, from the point of view of computing, the domain is
associated with a set of capabilities, each one representing a
specific NF (e.g., firewall, NAT) that the domain is able to
implement, e.g., because it is available as software/hardware
component within the domain itself (such as a specific bundle
in case of ONOS, or a VM image in case of OpenStack).

Service deployment. The MDO receives service requests
on its northbound interface, which come as graphs made with
(i) NFs, (ii) service access points (SAPs), and (iii) logical
links that connect the above entities. A SAP represents an
entry/exit point of traffic into/from the service graph. It may be
associated with a traffic classifier, which indicates that packets
leaving the graph from such a SAP must be encapsulated, e.g.,
in a specific GRE tunnel, as well as it indicates which traffic
can enter in the service graph through the SAP itself. Based
on the description of each domain, the MDO selects the best
target for each NF and generates a new sub-graph per domain.
The full detail of the graph splitting process, as well as the
inter-domain traffic steering set up algorithm, are presented
in [2].

III. SDN DOMAIN ORCHESTRATOR PROTOTYPE

The SDN Domain Orchestrator (SDN-DO) orchestrates a
network infrastructure in which a set of devices are managed
by a vanilla SDN controller, thus enabling the MDO to deploy
NFs in existing SDN networks.

A. Exploiting SDN applications in NFs graphs: considerations

Although a NF (e.g., firewall) implemented as an SDN ap-
plication and the same NF deployed as a VM-based middlebox
look the same from an high-level perspective, there are several
differences that have an important impact on how (and which)
service graphs are supported in the different domains.

A first difference is that, while VMs reside on the data
plane, SDN applications are executed in the control plane.
Therefore, unlike the former, SDN applications: (i) do not
explicitly process all packets, but usually only the first ones
of a flow, and then install rules in the underlying (e.g.,
OpenFlow) switches so that the next packets are processed
in their hardware pipeline; (ii) do not have network interfaces
that can be connected to each other, in order to implement
the chain described in the service graph. As a consequence,
SDN applications cannot be easily chained, as it is not trivial
to guarantee that the rules instantiated by a NF B operate
only on traffic already processed by rules installed by another
NF A, with B following A in the service chain. Hence, our
current SDN-DO supports only graphs with up to one chained
NF, while support for complex graphs is left as a future work2.

2However, a similar problem has been solved in current implementation
between flow rules instantiated by NFs and those directly installed by the
SDN-DO itself.

SDN Domain Orchestrator

export

Domain Information

subgraph

NAT

if-0
eth-src: […]

if-0

if-3
VLAN 12

if-4
VLAN 13

SDN Controller

SDN Domain

s1

s2

If-0

s4
If-4

s3

If-3

- Flows
if-0 <-> if-4-VLAN 12

- Activate NAT
- Configure NAT

LAN: [if-0] WAN: [VLAN 13 on if-3]

Match: […]
Actions: push VLAN 12, out if-4

Match: if-3, VLAN 13
Actions: pop VLAN,

set-dst TCP/IP

Match: if-0
Actions: set-src TCP/IP,

out if-1
Match: if-0, eth-src=[…]
Actions: […], out if-2

If-1

If-2

Flows managed by the SDN-DO
Flows managed by the NAT application

Intra-domain interfaces
Boundary interfaces

sap-1

sap-3

sap-2

sap-4

NAT
Nf-monitor

Fig. 2. Service graph deployment in an SDN domain.

A second important consideration is that, unlike VMs listed
by a VNFs image service in a datacenter domain (e.g., Glance
in OpenStack), not all the bundles available in an SDN
controller may be exploited to implement NFs. For example,
some of them may not actually implement any NF (e.g., the
utility ONOS bundle that provides the API to configure other
applications), while others, although implementing NFs, may
not allow to setup specific parameters (e.g., the subset of traffic
on which they have to operate), thus limiting the number of
sub-graphs in which they can be deployed. Therefore, the
SDN-DO (details in III-B) checks, for any bundle available in
ONOS, whether the above requirements are satisfied or not.

Finally, the ONOS controller does not support the activation
of multiple instances of the same bundle, preventing the SDN-
DO to deploy the same NF in multiple graphs; then, if desired,
this feature has to be implemented by the bundles themselves.

B. Discovering and exporting domain information

The SDN-DO exports information about virtual/physical
interfaces of the switches that are responsible for connecting
the domain to the rest of the world, hence that handle incom-
ing/outgoing traffic. The list of the domain boundary interfaces
and the associated parameters is exported at bootstrap and then
again each time a change is detected.

Furthermore, the SDN-DO has to dynamically discover the
NFs that are available (as software bundles) in the ONOS
controller; to do this, we designed a particular ONOS bundle
called “nf-monitor” (Figure 2), which identifies those appli-
cations that can be exploited to implement NFs and uses
a specific ONOS northbound API in order to intercept the
following events: (i) bundle installed - a new application
is available, which may be now used to implement a NF;
(ii) bundle removed - the application is no longer available
and cannot be used anymore to implement NFs; (iii) bundle

activated - the application is running, then, given that ONOS
does not support multiple instances of the same application,
that bundle is (temporarily) no longer available for future
services (hence, the SDN-DO will no longer advertise that
capability), unless it explicitly supports multi-tenancy; (iv)
bundle deactivated - the application is no longer used, hence it
is available again for a new service graph. Each time the status
of a NF bundle changes, the SDN-DO gets notified by the
nf-monitor bundle, then updates the exported information
and notifies the MDO accordingly.

C. Deploying service graphs

Given the considerations discussed in III-A, when the SDN-
DO receives a service (sub-)graph it immediately checks the
availability of the required NFs in the ONOS controller and
the validity of the parameters associated with each SAP (e.g.,
VLAN IDs, GRE keys). If the service graph is valid, the SDN-
DO interacts with ONOS in order to activate the proper NFs.

Links of the graph are handled in different ways depending
on the elements they connect to. If the link connects two SAPs
(e.g., the connection between SAP-3 and SAP-4 in Figure 2),
the SDN-DO, through the SDN controller, directly instantiates
the flow rules to setup the connection between the SAPs. In
addition, based on information associated with each SAP, it
instantiates the flow rules needed to properly tag/encapsulate
the packets before sending them outside the domain, and to
classify incoming packets and recognize the SAP they refer to.
Instead, if a link connects a SAP to a NF (e.g., the connection
between SAP-2 and the NAT in Figure 2), the SDN-DO
configures the NF software bundle with information about the
traffic on which it has to operate, which is derived from the
parameters associated with the SAP. For instance, the NAT of
Figure 2 is configured to operate on specific traffic coming
from interfaces if-0 and if-3 (i.e., with a specific source
MAC address in the former case, with VLAN ID 12 in the
latter), to tag traffic transmitted on if-3 with the VLAN ID
12, and to untag traffic tagged with VLAN 12 and received
from such an interface. Hence, in this case incoming/outgoing
traffic is handled directly by the NF, which has then to be
aware of these parameters.

IV. VALIDATION

To validate our proposal we deployed some graphs on the
scenario depicted in Figure 3. During each deployment the
MDO dynamically decides whether to instantiate NFs in the
SDN domain or not, based on the information exported by
the domain itself, which can change over the time3. Then we
evaluated the advantages, in terms of performance, brought by
exploiting the SDN domain for the execution of NFs.

Particularly, we instantiated the service graph shown in
Figure 3 in which SAPs are connected to an host and a server
directly attached to the SDN domain. In a first phase, the
SDN domain is configured without the possibility of running
NFs, therefore the requested NFs are instantiated through VMs

3A video is available at: https://www.youtube.com/watch?v=N6SBo2f6Lyc

SDN
Network
(Mininet)

Overarching
Orchestrator

NAT

NAT

Neutron

Nova

SDN Domain Orchestrator

Compute & Network Node

NAT

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz - Ram 16 GB
Linux 4.6.1-1-amd64 - Debian Stretch x86_64 1 Gbps NIC

Traffic path with NAT deployed in OpenStack domain

Traffic path with NAT implemented as ONOS bundle

Openstack Domain Orchestrator

ServerHost

Host Server

case a)

case b)

Case a): TCP throughput: 838 Mbit/s | latency: 1.041 ms
Case b): TCP throughput: 962 Mbit/s | latency: 0.465 ms

Open vSwitch

Fig. 3. Validation scenario.

TABLE I
END-TO-END PERFORMANCE WITH DIFFERENT SERVICE

IMPLEMENTATIONS.

Avg Latency [ms] Throughput [Mbit/s]

vm-nat 1.041 838
sdn-nat 0.465 962

on the cloud computing domain, while the SDN domain is
exploited by the MDO just for traffic steering purposes (traffic
follows the solid line in figure). In a second phase, the SDN
domain is configured with the possibility of executing some
NFs (e.g., NAT, DHCP) by installing the proper ONOS ap-
plications; thus, once a new deployment request is performed
to the MDO, these NFs are instantiated in the SDN domain
as ONOS bundles. This way, traffic exchanged by the host
and the server only traverses the SDN network (dashed line
in Figure 3), and the data center is not involved at all in the
service deployment.

In both cases, we measured the end-to-end latency intro-
duced by the service and the throughput between the host and
the server; the obtained the results are shown in Table I4. As
expected, performance are better in case the NAT is executed
as a bundle running in the ONOS controller, since in this case
(i) traffic is kept local to the SDN domain, and (ii) the NAT
is actually implemented as a set of OpenFlow rules installed
by the NAT bundle in the switches (only the first packet of
a flow is then processed by the bundle, while the following
packets are directly processed within the underlying devices).

REFERENCES

[1] L. Peterson, S. Baker, M. De Leenheer, A. Bavier, S. Bhatia, M. Wawr-
zoniak, J. Nelson, and J. Hartman, “Xos: An extensible cloud operating
system,” in Proceedings of the 2Nd International Workshop on Software-
Defined Ecosystems, ser. BigSystem ’15. New York, NY, USA: ACM,
2015, pp. 23–30.

[2] R. Bonafiglia, G. Castellano, I. Cerrato, and F. Risso, “End-to-end
service orchestration across sdn and cloud computing domains,” in IEEE
Conference and Workshops on Network Softwarization (NetSoft 2017),
Bologna, Italy, 2017.

4For the latency we used the ping tool, while iperf3 generating TCP
traffic has been used for the throughput measurements.

