
17 July 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

End-to-end service orchestration across SDN and cloud computing domains / Bonafiglia, Roberto; Castellano, Gabriele;
Cerrato, Ivano; Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2017), pp. 1-6. (Intervento presentato al convegno
3rd IEEE Conference on Network Softwarization (NetSoft 2017) - Second IEEE Workshop on Open-Source Software
Networking (OSSN 2017) tenutosi a Bologna, Italy nel July 2017) [10.1109/NETSOFT.2017.8004234].

Original

End-to-end service orchestration across SDN and cloud computing domains

Publisher:

Published
DOI:10.1109/NETSOFT.2017.8004234

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2677012 since: 2017-11-04T12:04:43Z

IEEE

End-to-End Service Orchestration across SDN and
Cloud Computing Domains

Roberto Bonafiglia, Gabriele Castellano, Ivano Cerrato, Fulvio Risso
Politecnico di Torino, Dept. of Computer and Control Engineering, Torino, Italy

Abstract—This paper presents an open-source orchestration
framework that deploys end-to-end services across OpenStack-
managed data centers and SDN networks controlled either by
ONOS or OpenDaylight. The proposed framework improves
existing software in two directions. First, it exploits SDN domains
not only to implement traffic steering, but also to execute selected
network functions (e.g., NAT). Second, it can deploy a service by
partitioning the original service graph into multiple subgraphs,
each one instantiated in a different domain, dynamically con-
nected by means of traffic steering rules and parameters (e.g.
VLAN IDs) negotiated at run-time.

I. INTRODUCTION

End-to-end service deployment of Network Functions Vir-
tualization (NFV) services usually involves two levels of
orchestrators [1], [2]. As shown in Figure 1, an overarching
orchestrator (OO) sits on top of many possible heterogeneous
technological domains and receives the end-to-end service
request as a service graph, which defines the involved VNFs
and their interconnections. This component is responsible of
(i) selecting the domain(s) involved in the service deploy-
ment (e.g., where NFs have to be executed), (ii) deciding
the network parameters to be used to create the proper
traffic steering links among the domains, and (iii) creating
the service subgraphs to be actually instantiated in above
domains. The bottom orchestration level includes a set of
Domain Orchestrators (DO), each one handling a specific
technological domain and interacting with the infrastructure
controller (e.g., the OpenStack [3] cloud toolkit in data centers,
the ONOS [4] or OpenDaylight (ODL) [5] controller in SDN
networks) to actually instantiate the service subgraph in the
underlying infrastructure. In addition, DOs export a summary
of the computing and networking characteristics of the domain,
used by the OO to execute its own tasks. Notably, DOs
simplify the integration of existing infrastructure controllers
in the orchestration framework, because any possible missing
feature is implemented in the DO itself while the infrastructure
controllers are kept unchanged.

Existing orchestration frameworks (e.g., [6]) present the
following limitations. First, they exploit SDN domains only to
create network paths, neglecting the fact that SDN controllers
can actually host many applications (e.g., firewall, NAT) that
program the underlying network devices according to their
own logic. Second, they do not take care of automatically
configuring the inter-domain traffic steering to interconnect
portions of the service graph deployed on different domains.
For instance, this would require to properly characterize sub-
graphs endpoints (called Service Access Point, or SAPs) with

SDN network

Telco
data center

SDN controller

Overarching
orchestrator

Domain orchestrator

Domain orchestrator

Firewall

Adv.
blocker

Private
cache

OpenStack controller

Internet

Technological domain

Service graph

Private
cache

Adv.
blocker

Firewall

Telco PoP
(edge data center)

Domain orchestrator

OpenStack controller

Inter-domain connection

Inter-domain
connection

Access
Network

?

??

??

Parameters needed to create
inter-domain traffic steering?

Fig. 1. Service graph deployment in a multi-domain environment.

the proper network parameters, thus replacing the question
marks in the subgraphs shown in Figure 1 with the proper
information such as VLAN IDs, GRE keys and more, based
on the capabilities of the underlying infrastructure.

This paper overcomes the above limitations by proposing
an orchestration framework that (i) can transparently instan-
tiate NFs wherever they are available (e.g., either on cloud
computing or SDN domains), and (ii) that enables the OO to
enrich the service subgraphs with information needed for DOs
to automatically set up the inter-domain traffic steering.

Particularly, the paper presents the OO, and details the
architecture and implementation of two open source DOs that
deploy service graphs in vanilla SDN-based and OpenStack-
based domains, namely in SDN networks and data centers.
Notably, other domains can be integrated in our orchestration
framework as well, provided that the proper DO is created and
executed on top of the companion infrastructure controller.

The remainder of this paper is the following. Section II
details the domain characteristics exported by DOs and shows
how this is used by the OO to execute its own tasks. The
OpenStack domain orchestrator is then presented in Sec-
tion III, while Section IV details the SDN domain orchestrator.
Evaluation results are provided in Section V, and finally
Section VI concludes the paper.

II. MULTI-DOMAIN ORCHESTRATION

In a multi-domain infrastructure, the OO receives from
each DO the characteristics of the domain under their re-
sponsibility, such as the capabilities and available resources
in terms of computing and networking. When a service is
requested through its northbound interface, the OO (i) selects
the best domain(s) that have to be involved in the service
deployment, (ii) creates the service subgraphs for each of
those domains based on information associated by domain
themselves, and (iii) pushes the resulting subgraphs to the
selected DOs (Figure 1). This section presents first what and
how is exported by DOs, and the operations carried out by the
OO to implement the service.

A. Exported domain information

Each DO exports a summary of the computing and net-
working characteristics of the controlled domain according to
a specific data model (available at [7]) that has been derived
from the YANG [8] templates defined by OpenConfig [9].

From the point of view of computing, we export for each
domain the list of NFs it is able to implement (e.g., firewall,
NAT). For example, a NF can be a software bundle available
in the ONOS controller in case of SDN domain, a specific VM
image present in the domain VM repository in case of data
center, and more. Notably, DOs advertise neither how NFs are
implemented, nor the resources required for their execution.
This enables the OO to schedule a given NF on any domain
advertising the capability to execute such a function, being it
a data center or an SDN network.

From the point of view of networking, DOs export a
description of the domain as a “big-switch” with a set of
boundary interfaces, whose attributes are used by the OO
to decide the parameters needed to set up the inter-domain
traffic steering, which need to be coordinated among the two
domains that terminate the connection. First, the DO advertises
whether the selected boundary interface is directly connected
with another domain (and, if so, who), with an access network,
or the Internet. Second, it advertises a set of inter-domain
traffic steering technologies, which indicate the ability of the
domain to classify incoming traffic based on specific patterns
(e.g., VLAN ID, GRE tunnel key), and modify outgoing
traffic in the same way (e.g., send packets as encapsulated
in a specific tunnel, or tagged with a given VLAN ID, and
more). Each inter-domain traffic steering technology is then
associated with a list of labels (e.g., VLAN ID, GRE key)
that are still available and can then be exploited to identify
new types of traffic. Finally, other parameters associated with
interfaces are inherited from the OpenConfig model, e.g., their
Ethernet/IP configuration.

B. Overarching orchestrator

The overarching orchestrator deploys service graphs that
consist of service access points (SAPs), NFs and (logical)
links, as shown at the top of Figure 2. A SAP represents an
entry/exit point of traffic into/from the service graph; it may
be associated with a specific traffic classifier (i.e., that selects

Overarching
Orchestrator

sap-0

web traffic

Firewall

domain-A
domain-B

sap-2

sap-3

sap-4 sap-6

sap-5 sap-7

HTTP
proxy

NAT sap-2

sap-8

sap-9

domain-A
subgraph

domain-B
subgraph

domain-C
subgraph

IPv4: 10.0.0.1
VLAN (25,28): pref. 5
GRE (0x03,0x04): pref. 4

IPv4: 10.0.1.1
GRE (0x01,0xA3): pref. 6

if-1

multi-domain
topology

Internet

domain-C

if-1

if-0

IPv4: 10.0.1.2
GRE (0x01,0xA3): pref. 6

if-1 if-0

interface: if-1
ts-tech: GRE
local IP: 10.0.1.1
remote IP: 10.0.1.2
key: 0x01

interface: if-0
ts-tech: GRE
local IP: 10.0.1.2
remote IP: 10.0.1.1
key: 0x01

interface: if-1
ts-tech: VLAN
vlan-id: 25

interface: if-0
ts-tech: VLAN
vlan-id: 25

interface: if-1
ts-tech: GRE
local IP 10.0.1.1
remote IP: 10.0.1.2
key: 0x03

interface: if-0
ts-tech: GRE
local IP: 10.0.1.2
remote IP: 10.0.1.1
key: 0x03

interface: if-1interface: if-0
Input-traffic:
-eth-src:

aa:bb:cc:dd:ee:ff

interface: if-1
ts-tech: VLAN
vlan-id: 28

interface: if-0
ts-tech: VLAN
vlan-id: 28

Access
network

if-0

IPv4: 10.0.0.2
VLAN (25,28): pref. 5
GRE (0x03,0x04): pref. 4

sap-0

web traffic

other traffic other traffic

web traffic

Firewall

HTTP
proxy

NAT sap-1

domain: domain-A
interface: if-0
Input-traffic:

eth-src: aa:bb:cc:dd:ee:ff

domain: domain-C
interface: if-1

other
traffic

web traffic

other
traffic

Fig. 2. Placement and splitting of a service graph: sub-graphs are intercon-
nected through traffic steering technologies exported by each domain.

packets that have to enter in the given service graph) and
with a specific domain boundary interface that corresponds,
e.g., to the entry point of those packets in the multi-domain
infrastructure. Links can be associated with constraints on the
traffic that has to transit on that specific connection.

In order to deploy service graphs1, the OO operates on
a virtual view of the underlying infrastructure, built using
information exported by DOs and consisting in a set of
interconnected domains, each one associated with the avail-
able NFs, and with the proper characterization of the inter-
domain connections (e.g., available VLAN IDs). With this
information, the OO selects the domain(s) that will actually
implement the required NFs, links and SAPs. To this purpose,
we exploit a greedy approach inspired by the hierarchical
routing, which minimizes the distance between two NFs/SAPs
directly connected in the service graph, in terms of domains
to be traversed. Notably, a NF can be executed in all domains
that advertise the possibility of implementing that specific
NF. Hence, when a given NF (e.g., a firewall) is needed,
the OO is enabled to select any domain in which that NF
is available, regardless of the fact that such a domain is a data
center implementing the NF as a VM, or an SDN network
implementing it with an SDN application executed in the
controller. Moreover, some SAPs are already associated with
specific domain interfaces, and then must be scheduled on that
specific domain.

1We implemented the steps described in this section in the FROG orches-
trator, whose source code is available at [10]. We also developed an open
source library to manage service graphs, which is available at [11].

sap-1

sap-3

interface: if-1
ts-tech: VLAN
vlan-id: 28

interface: if-1
ts-tech : VLAN
vlan-id: 25

if-1 if-0

sap-2

sap-4
inter-domain

link

domain-A
domain-B

interface: if-0
ts-tech : VLAN
vlan-id: 25

interface: if-0
ts-tech: VLAN
vlan-id: 28

pkt

pkt

pkt

pkt

vlan 28 pkt

vlan 25 pkt

Fig. 3. Inter-domain traffic steering based on endpoints parameters.

As shown in Figure 2, once domains involved in the
deployement of NFs have been selected, the OO creates one
subgraph per each domain, which includes the NFs and SAPs
assigned to that domain and, possibly, new SAPs not present in
the “original” service graph. These are originated by links that
have been split because connecting NFs (or SAPs) assigned to
different domains. Notably, some domains (e.g., domain-B
in Figure 2) are only used to create network paths between
NFs/SAPs that are actually instantiated in other domains; a
service subgraph is generated for these domains as well, which
just include links between (new) SAPs.

The two SAPs originated from the split of a link must be
associated with parameters to be used by DOs to create inter-
domain links between them, thus recreating the connection
described in the service graph. Then, as shown in Figure 2,
the OO associates new SAPs with specific domain boundary
interfaces, and with a specific inter-domain traffic steering
technology and label (e.g., GRE tunnel based on the key
0x01) that is available in both interfaces to be connected.

As shown in Figure 3, each DO can configure its own
domain (e.g., by instantiating specific flow rules) so that
packets sent through a specific SAP are properly manipulated
(e.g., encapsulated in a specific GRE tunnel) before being
sent towards the next domain through a specific interface.
Similarly, this information enables DOs to recognize the traffic
received from a specific interface and a specific encapsulation
as entering from a given SAP. Notably, packets should be
tagged/encapsulated just before being sent out of the domain,
while the tag/encapsulation should be removed just after the
packet is classified in the next domain.

III. OPENSTACK DOMAIN ORCHESTRATOR

This section presents our OpenStack Domain Orchestrator
(OS-DO) that enables the instantiation of service (sub)graphs
in cloud computing environments controlled by the vanilla
OpenStack controller. Source code is available at [10].

A. OpenStack overview

As shown in Figure 4, an OpenStack domain includes the
OpenStack infrastructure controller that manages: (i) high-
volume servers, called compute nodes, hosting VMs (or con-
tainers); (ii) a network node hosting the basic networking
services and representing the entry/exit point for traffic in/from
the data center network; (iii) an optional SDN controller,
which is mandatory in our scenario; (iv) other helper services

OpenStack
Controller

Nova server

Compute node(s)

OvS daemon

br-int

br-ext

Hypervisor

Service graph

OpenStack domain orchestrator

Domain information

Nova agent

Network node

Neutron agent

SDN controller
(ONOS/ODL)

Datacenter physical network

VM

OvS daemon

br-ext

OpenStack
images

repository Neutron server

Neutron agent

Datacenter exit interface

Fig. 4. Architecture of the OpenStack domain.

such as the VM images repository. Each compute node in-
cludes two OpenFlow-enabled virtual switch instances (Open
vSwitch [12] in our scenario): br-int, connected to all the
VM ports running in that specific compute node, and br-ex,
connected to the physical ports of the server. Servers are
connected through a physical network that it is not necessarily
under the control of the OpenStack controller.

This paper focuses on the two main components of the
OpenStack controller. Nova, the former, takes care of handling
the lifecycle of VMs (e.g., start/stop) in the compute nodes,
while Neutron, the latter, is responsible for managing the
vSwitches (e.g., create ports, instantiate flow rules), in our case
through the SDN controller. Particularly, Neutron programs the
forwarding tables of the vSwitches in order to create virtual
networks between VMs ports, which implement a broadcast
LAN and may include basic services (e.g., DHCP and routing)
deployed on the network node.

B. Discovering and exporting domain information

One of the tasks of the OS-DO is to advertise a summary of
the computing and networking characteristics of the underly-
ing domain, which includes the supported NFs (taken from
the OpenStack VMs repository) and information about the
boundary interfaces. Boundary interfaces are virtual/physical
interfaces of the network node, which are responsible for
connecting the OpenStack domain to the rest of the world
and hence handling incoming/outgoing traffic.

The list of boundary interfaces and the associated parame-
ters (e.g., next domain, available inter-domain traffic steering
technologies and labels, etc.) is loaded at bootstrap and ex-
ported both at the system bootstrapping and each time a change
is detected (e.g., an inter-domain traffic steering technology
cannot be used anymore, an interface has been shut down).

C. Deploying service graphs

When receiving a service (sub)graph to be deployed, the
OS-DO first checks that the service satisfies specific con-
straints (that depend on the limitations described in Sec-
tion III-D), and that the required NFs and inter-domain traffic
steering parameters are actually available.

If the graph is valid, the OS-DO interacts with Neutron to
define the NFs ports and create one virtual network for each
link of the service graph; each virtual network will then be
attached to the two NFs ports connected by the link itself. In
case of link between a NF port and a SAP, the virtual network
is connected only to the NF, because the vanilla OpenStack
is not able to attach domain boundary interfaces to such a
network. At this point, the OS-DO interacts with Nova in order
to start the required NFs; Neutron creates automatically the NF
ports defined before, connects them to the br-int switch
in the compute node(s) where NFs are deployed, and finally
instantiates the flow rules needed to implement the required
virtual networks.

The OS-DO has to create (i) all the links connecting a
NF with a SAP and (ii) the inter-domain traffic steering on
its own; this is done by interacting directly with the SDN
controller (ODL in our case) because the vanilla OpenStack
(i.e., Neutron) offers limited possibilities to control the in-
bound/outbound traffic of the data center (e.g., only through
IP addresses), which is not enough to set up the inter-domain
traffic steering. To create the link between a NF port and a
SAP (which is associated with a domain boundary interface
in the network node, and with inter-domain traffic steering
information), the OS-DO first interacts with ODL to get the
br-int switch connected to the NF. Then, through ODL, it
creates a GRE tunnel between such a vSwitch and the network
node, and sets up the flow rules in order to actually create the
connection. At this point, the OS-DO inserts in the network
node also the flow rules needed to properly tag/encapsulate
outgoing traffic and to classify incoming packets, as required
by the inter-domain traffic steering parameters associated with
the SAPs.

Finally, by default OpenStack checks that the traffic exiting
from a VM port has, as a source address, the MAC addressed
assigned to the port itself, in order to avoid address spoofing
in VMs. However, in case the VM implements a transparent
NF (e.g., network monitor), it sends out traffic generated by
other components, and therefore with a source MAC address
different from that of the VM port. Then, when creating NF
ports in Neutron, the OS-DO configures such a module in
order to disable the checks on the above ports.

D. Limitations

Vanilla OpenStack does not complex graphs that require to
split the traffic between different NFs (e.g., the web traffic
exiting from a firewall has to go to the HTTP proxy, while
the rest goes directly to the Internet, as shown in the graph of
Figure 2), and neither asymmetric graphs (e.g., traffic exiting
from the firewall goes to the HTTP proxy, but not vice versa).
In fact, since vanilla Neutron only connects VM ports to
virtual LANs, we are forced to use these virtual networks
to implement links, resulting in the impossibility to finely
split network traffic and to have asymmetric connections.
Overcoming this limitation requires a set of deep modifications
to OpenStack, as shown in [13], resulting in the impossibility
to rely on vanilla controllers.

SDN Domain Orchestrator

export

Domain Information

subgraph

NAT

s1/if-0
eth-src: aa:bb:cc:dd:ee:ff

s1/if-0

s3/if-2
VLAN 12

s4/if-1
VLAN 13

Controller

SDN Domain Infrastructure

s1

s2
If-0

s4
If-1

s3

If-2

- Flows
bidirectional between s1/if-0 and s4/if-1-VLAN 12

- Activate NAT
- Configure NAT

LAN: [s1/if-0] WAN: [VLAN 13 on s3/if-1]

Match: […]
Actions: push VLAN 12, out if-1
…

Match: if-2, VLAN 13
Actions: pop VLAN, […]
...

NAT

Match: if-0, eth-src=[…]
Actions: […], out if-1
Match: if-0
Actions: […], out if-2
…

If-1

If-2

Flows managed by the SDN-DO
Flows managed by the NAT application

Intra-domain interfaces
Boundary interfaces

ONOS Driver

sap-1

sap-3

sap-2

sap-4

Other Controller Driver(s)

Fig. 5. Service graph deployment in an SDN domain.

IV. SDN DOMAIN ORCHESTRATOR

This section details our SDN Domain Orchestrator (SDN-
DO) [10] that sits on top of a network domain consisting of
OpenFlow switches under the responsibility of a vanilla SDN
controller, allowing an OO to instantiate service graphs that
include both NFs and links.

As shown in Figure 5, the SDN-DO executes its own tasks
(e.g., retrieves the list of NFs to be exported, implements
the received service subgraph) by interacting with the SDN
controller through a specific driver, which exploits the vanilla
REST API exported by the controller itself. At the time of
writing, a complete driver for ONOS (Falcon, Goldeneye,
Hummingbird and Ibis releases) has been developed, while
a partial driver for OpenDaylight (Hydrogen, Helium and
Lithium releases) is available, which lacks of the possibility
of interacting with the controller to manage NFs; then, in this
case the domain can just be used to set up network paths.

A. Exploiting SDN applications as NFs in service graphs

The proposed SDN-DO exploits the possibility offered by
widespread SDN controllers to dynamically deploy and run
applications in the form of software bundles. In fact these
bundles, which implement the logic that decides which Open-
Flow rules to deploy in the switches, can implement network
applications such as NAT, L4 firewall and more, namely NFs
usually executed as VMs running in cloud computing domains.

However, the following main differences exist between NFs
implemented as SDN applications (hence software bundles),
and NFs implemented as VMs. First, SDN applications usually
just process the first packet(s) of a flow, then install specific
rules in the underlying switches so that the next packets are
directly processed by the switches themselves, while VMs

reside on the data path and hence receive (and process) all
packets explicitly. Second, while VMs have in fact virtual
ports that can be connected among each other through, e.g.,
a vSwitch, software bundles do not have ports, then it is not
trivial to guarantee that flow rules instantiated by a NF B only
operate on traffic already processed by flow rules installed by
a NF A, in case B follows A in the service graph. Then, the
current version of the SDN-DO prototype only supports graphs
with up to one chained NF; support for complex services is a
future work2.

Unfortunately, not all the bundles available in the SDN
controller may be used as NFs. For instance, some of them
may not actually implement any NF (e.g., the bundle that
discovers the network topology) while others, although im-
plementing NFs, may not accept the configuration of specific
parameters such as the subset of traffic on which they have to
operate, thus preventing the SDN-DO to properly setup graph
links. In other words, SDN applications must be extended to
be compatible with our architecture; the SDN-DO (details in
Section IV-B) looks at specific additional information in the
Project Object Model (POM) of each ONOS bundle to detect
suitable applications.

Finally, SDN controllers usually do not support multiple
instances of the same bundle running at the same time,
preventing the SDN-DO to deploy the same NFs as part
of different graphs; then multi-tenancy, if desired, has to be
managed by the application itself and written, with the proper
syntax, in the POM file as well.

B. Discovering and exporting domain information

One of the tasks of the SDN-DO is to export information
about the domain boundary interfaces and the list of NFs
available in the domain. The former information is managed
in the same way as the OS-DO. For the latter, we created
a new “app-monitor” ONOS bundle [14] that retrieves the
list of available NFs. In particular, app-monitor uses a spe-
cific ONOS API in order to intercept the following events:
(i) bundle installed - a new application is available, which
may be used to implement a NF; (ii) bundle removed - the
application is no longer available and cannot be used anymore
to implement NFs; (iii) bundle activated - the application is
running; however, given that ONOS does not support multiple
instances of the same application, that application is no longer
available for future services (hence, the SDN-DO must not
longer advertise that capability), unless it explicitly supports
multi-tenancy; (iv) bundle deactivated - the application is no
longer used, hence it is available again. Each time the status
of a NF bundle changes, the SDN-DO updates the exported
information and notifies the OO accordingly.

C. Deploying service graphs

When receiving a service (sub)graph, the SDN-DO first
validates the service request by checking the availability of

2A similar problem may exist between flow rules instantiated by NFs and
flow rules installed by the SDN-DO, e.g., in order to set up the inter-domain
traffic steering, as described later in this section.

the requested NFs in ONOS and the validity of the parameters
associated with the SAPs. Then, it interacts with the network
controller in order to start the proper NFs. Graphs links
and inter-domain traffic steering information are managed in
different ways depending on the fact that the link is between
two SAPs, or between a SAP and a NF port.

In the former case (e.g., the connection between SAP-3
and SAP-4 in Figure 5), the SDN-DO, through the SDN
controller, directly instantiates the flow rules to setup the
connection between the endpoints. In addition, it instantiates
the flow rules needed to implement the inter-domain traffic
steering, i.e., to properly tag/encapsulate the packets before
sending them out of the domain, and to classify incoming
packets and recognize the SAP they “belong” to.

Instead, if a link connects a SAP to a NF (e.g., the
connection between SAP-2 and the NAT in Figure 5), the
SDN-DO configures the application (using the ONOS Net-
work Configuration Service [15]) with information about the
traffic on which it has to operate, which is derived by the
parameters associated with the SAP itself. For instance, the
above NAT is configured to operate on specific traffic coming
from interfaces s1/if-0 and s3/if-2 (i.e., with a specific
source MAC address in the former case, with VLAN ID 12
in the latter), to tag traffic transmitted on s3/if-2 with the
VLAN ID 12, and to untag traffic tagged with VLAN 12
and received from such an interface. Hence, in this case the
inter-domain traffic steering is handled directly by the ONOS
application that has to be aware of these parameters, while
in case of the OS-DO, VMs ignore completely how they are
connected with the rest of the graph.

V. VALIDATION

We validated the proposed orchestration framework by
instantiating a service graph consisting of a NAT between an
host and a public server, both attached to an SDN network.

Tests have been repeated in two configurations. Initially,
(Figure 6(a)), the SDN domain has no available NFs, hence it
is exploited only for traffic steering and the NF is deployed as a
VM on OpenStack; inter-domain traffic is delivered by setting
up the proper GRE tunnels. Second (Figure 6(b)), the SDN-DO
exports the capability of running the NAT as a bundle on top of
the ONOS controller, hence the OO selects the SDN domain
also to execute the NF. In this way, the traffic exchanged
between Host and Server only traverses the SDN domain
and the OpenStack domain is not involved at all in the service
deployment.

In both cases, we measured the time needed by the orches-
tration framework to deploy and start the service; results are
shown in Figure 7, which breaks the total deployment time
in the several steps of the process. As expected, the major
contribution to the service deployment is given by the VM
startup, while the activation of the SDN bundle is almost
immediate. As shown in the picture, we also measured the
time between the end of the service deployment from the point
of view of the overarching orchestrator, and the time in which
Host and Server were able to communicate. In case of

Server

SDN Network
(Mininet)

NAT

SDN-DO

Compute &
Network Node

NAT

GRE 0x02

GRE 0x01

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz - 16GB RAM
Linux 4.6.1-1-amd64 - Debian Stretch x86_64

1 Gbps NIC

OS-DO

ServerHost

Host Server

(a) (b)

SDN Network
(Mininet)

SDN-DO

Compute &
Network Node

Host

NAT

FROGv4 Overarching
Orchestrator

OS-DO

Fig. 6. Validation scenario.

Total graph deployment time: 11,861 s Service startup
time: 22,586 s

Placement:
0,186 s

SDN domain deployment:
0,872 s

Other:
0,183 s

Other:
0,375 s

Traffic steering:
0,497 s

Other:
0,220 s

VM deployment:
5,841 s

Inter domain
traffic steering:

1,707 s

Total graph deployment time: 0,462 s Service startup
time: 0,053 s

Placement:
0,092 s

SDN domain deployment:
0,316 s

Other:
0,054 s

Other:
0,271 s

Bundle activation:
0,025 s

Bundle configuration:
0,20 s

(a) NAT as VM in datacenter (graph split across domains)

(b) NAT as ONOS bundle in SDN domain (graph deployed on a single domain)

OpenStack domain deployment:
11,492 s

Networks creation:
3,944 s

Operations
executed
in parallel

Fig. 7. Time required to deploy the requested service graph (horizontal axis
not in scale).

TABLE I
PERFORMANCE AT RUN-TIME OF THE DEPLOYED SERVICES.

Throughput [Mbit/s] Avg Latency [ms]

NAT in VM 838 1.041
NAT in ONOS 962 0.465

NAT implemented in a VM, this time is higher because the
application can start only after that the bootstrapping of the
guest operating system. Instead, in case of ONOS bundle, the
application starts immediately.

In both the considered scenarios, we measured the end-
to-end latency introduced by the service (using the ping
command) and the throughput (using the iperf3 tool to
generate TCP traffic). As expected, the throughput is higher
when the NAT is deployed in the SDN domain (Table I). In
fact, in this case the traffic is kept local to the SDN network,
and the NAT is actually implemented as a set of OpenFlow
rules installed in the switches (only the first packet of a flow
is processed by the application in the controller).

VI. CONCLUSION

This paper presents an open source orchestration framework
based on two layers of orchestrators, which is capable of
deploying end-to-end services across vanilla SDN and cloud
computing domains. The presented architecture includes a DO
sitting on top of each specific infrastructure domain, which
exports (i) the list of NFs (e.g., firewall, NAT) available in
the domain itself and (ii) the information associated with
the domain boundary interfaces. Our architecture exploits the
former information to allow the OO to transparently instantiate
NFs both on cloud computing domains and in SDN networks,
hence enabling SDN domains to provide richer services that
go beyond traditional traffic steering. Instead, the latter are
used to enrich the service (sub)graphs with the data required
to set up automatically the inter-domain traffic steering, hence
enabling to setup highly dynamic services.

The paper details also the implementation of two differ-
ent DOs: one instantiates services in OpenStack-based cloud
environments, the other interacts either with ONOS or Open-
Daylight to deploy traffic steering in the SDN network and
(in case of ONOS) to execute NFs in the form of software
bundles. Other infrastructure domains can be integrated in our
framework, provided that the proper DO is created.

REFERENCES

[1] I. Cerrato, A. Palesandro, F. Risso, M. Su, V. Vercellone, and H. Woes-
ner, “Toward dynamic virtualized network services in telecom operator
networks,” Computer Networks, vol. 92, Part 2, pp. 380 – 395, 2015,
software Defined Networks and Virtualization.

[2] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf,
W. Tavernier, and F. Risso, “Multi-domain service orchestration over
networks and clouds: a unified approach,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 377–378, 2015.

[3] OpenStack. https://wiki.openstack.org/.
[4] ONOS - Open Network Operating System. http://onosproject.org/.
[5] Open Daylight. https://wiki.opendaylight.org/.
[6] G. A. Carella and T. Magedanz, “Open baton: A framework for virtual

network function management and orchestration for emerging software-
based 5g networks,” Newsletter, vol. 2016, 2015.

[7] Netgroup @polito. Domain information library. https://github.com/
netgroup-polito/domain-information-library.

[8] YANG - a data modeling language for the network configuration
protocol (netconf). https://tools.ietf.org/html/rfc6020.

[9] Openconfig. http://www.openconfig.net.
[10] Netgroup @polito. The frog v.4. https://github.com/netgroup-polito/

frog4.
[11] ——. Network function - forwarding graph library. [Online]. Available:

https://github.com/netgroup-polito/nffg-library
[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,

“Extending networking into the virtualization layer,” in Proceedings
of the 8th ACM Workshop on Hot Topics in Networks (HotNets-VIII),
October 2009.

[13] F. Lucrezia, G. Marchetto, F. Risso, and V. Vercellone, “Introducing
network-aware scheduling capabilities in openstack,” in Network Soft-
warization (NetSoft), 2015 1st IEEE Conference on. IEEE, 2015, pp.
1–5.

[14] Netgroup @polito. ONOS applications. https://github.com/
netgroup-polito/onos-applications.

[15] The network configuration service. https://wiki.onosproject.org/display/
ONOS15/The+Network+Configuration+Service.

