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Comparison of conditional tests on Poisson data

Un confronto di test condizionati su dati di Poisson

Francesca Romana Crucinio and Roberto Fontana

Abstract We compare four conditional tests for Poisson data through a simulation

study: the exact binomial test, its asymptotic approximation, a Markov Chain Monte

Carlo test and the standard permutation test. Despite being non-parametric, we ob-

serve that permutation tests are as effective as the others. From a theoretical point of

view we justify this result by observing that the orbits of permutations form a good

partition of the conditional space.

Abstract Si confrontano quattro test condizionati per dati di Poisson: il test bino-

miale esatto, la sua approssimazione asintotica, un test Markov Chain Monte Carlo

e un test di permutazione standard. Si osserva che il test di permutazione, pur non

parametrico, ha un comportamento simile agli altri. Una giustificazione teorica di

questo risultato sta nell’osservare che le orbite di permutazione costituiscono una

buona partizione dello spazio condizionato.

Key words: Algebraic statistics, Conditional test, Permutation test, Poisson data

1 Introduction

We address the problem of comparing the means of two Poisson distributions with

unknown parameter λi, i = 1,2. We consider two independent samples, Y
(n1)
1 =

(Y1, . . . ,Yn1) of size n1 from Poisson(λ1) and Y
(n2)
2 = (Yn1+1, . . . ,Yn1+n2) of size n2
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from Poisson(λ2). Then we use the joint sample Y = (Y
(n1)
1 ,Y

(n2)
2 ) to perform the

test H0 : λ1 = λ2 against H1 : λ1  = λ2.

The problem has been extensively studied in the literature. Among the several

testing procedures available to researchers, we consider conditional tests, i.e. tests

that are performed considering only samples Y such that the sum Y+ of their ele-

ments is equal to the sum yobs,+ of the elements of the observed sample yobs

Y+ =
n1+n2

∑
i=1

Yi =
n1+n2

∑
i=1

yi,obs = yobs,+. (1)

A justification for this choice is that, if we assume that the model for the means

of the two distributions is the standard one-way ANOVA model, which according to

[6] is log(λi) = β0+β1xi with xi= 1 if 1≤ i≤ n1 and xi=−1 if n1+1≤ i≤ n1+n2,

the statistic T = Y+ = ∑
n1+n2
i=1 Yi is sufficient for the population constant β0, which

is the nuisance parameter of the test.

For the sake of simplicity we denote the sum of the observed sample yobs,+ by

t and the set of the samples Y which satisfy (1) by Ft . We refer to Ft as the fiber

corresponding to t. We focus on four conditional tests:

1. the exact binomial test by Przyborowski and Wilenski [8];

2. an asymptotic version of the exact binomial test [8], which is based on the normal

approximation of the binomial distribution [4];

3. a Markov Chain Monte Carlo testing procedure which exploits Markov basis [3]

and the Metropolis-Hastings algorithm [9];

4. a standard permutation test [7].

In Section 2 we briefly describe the structure of the tests under study. In Section 3

we compare the effectiveness of the tests through a simulation study and in Section 4

we analyse the link between fibers and permutations from a theoretical perspective.

Conclusions are in Section 5.

2 Conditional Tests

Exact and Asymptotic Conditional Binomial Test

It is well-known that the distribution of the sum of n independent Poisson vari-

ables of mean λ is a Poisson variable with mean nλ . Then it can be shown that

the distribution of the variable T1|T = t, i.e. of the variable T1 = ∑
n1
i=1Yi condi-

tioned to T = ∑
n1+n2
i=1 Yi = t, is a Binomial distribution with probability of suc-

cess θ = (n1λ1)/(n1λ1 + n2λ2) and t trials. It follows that under H0 : λ1 = λ2

the variable T1|T = t follows a binomial distribution with probability of success

θ0 = n1/(n1+ n2) and t trials. If t1 is the observed value of T1 the p-value is com-

puted as

min{2min{p(T1 ≤ t1), p(T1 ≥ t1)},1} (2)
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where p(T1 ≤ t1) =∑
t1
k=0

(

t
k

)

θ k0 (1−θ0)
t−k and p(T1 ≥ t1) =∑

t
k=t1

(

t
k

)

θ k0 (1−θ0)
t−k.

The asymptotic version of the conditional binomial test uses the asymptotic test

statistic

Z =
θ̂ −θ0

√

θ0(1−θ0)/n
∼ N(0,1) where θ̂ = T1/n1.

The p-value is computed as 2∗(1−Φ(|zobs|) whereΦ is the cumulative distribution

of the standard normal variable and zobs = (t1/n1−θ0)/
√

θ0(1−θ0)/n.

The Markov Chain Monte Carlo Test

As mentioned above we condition on the sum t of the elements of the observed

sample yobs and we explore the fiber

Ft = {(Y1, . . . ,Yn1+n2) ∈ N
n1+n2 :

n1+n2

∑
i=1

Yi = t}. (3)

To explore the fiber Ft as defined in (3) we set up a connected Markov chain by

means of a Markov basis, i.e. a set B of moves which have to be added/subtracted

to the vectors in Ft in order to move on the fiber (see [3] for a formal definition

of Markov Basis). This basis can be found using the 4ti2 software [10] or, in this

specific case, simply by induction on the sample size N = n1+n2. We get thatB is

made of N−1 movesmU = (1,δ1,U , . . . ,δN−1,U ),U = 1, . . . ,N−1 where δa,b =−1
if a = b and 0 otherwise. B allows us to build a graph over the fiber, where each

pair of vectors y,x ∈ Ft is linked by an edge if a move m ∈ B exists such that

y= x±m. An example when t = 6 and N = 3 is shown in Figure 1.

Under H0 : λ1 = λ2 = λ we exploit the Metropolis Hastings algorithm (an accel-

erated version as in [1], [2]) to modify the transition probabilities and grant conver-

gence to

p(y) = e−λ
λ y1

y1!
· . . . · e−λ

λ yN

yN!
= e−Nλ

λ t

∏
N
i=1 yi!

=C
N

∏
i=1

1

yi!
∝

N

∏
i=1

1

yi!
(4)

where C = e−Nλλ t . At each step if we are in state y we select a random move

mU ∈ B and we consider every possible transition y+ γ ·mU with γ ∈ Γ =
{γ ∈ Z : y+ γ ·mU ∈Ft} = [−y1,yU+1]∩Z. We move to y+ γ⋆ ·mU with γ⋆ ran-

domly drawn from the set above with probability

qγ⋆ =
p(y+ γ⋆ ·mU )

∑γ∈Γ p(y+ γ ·mU )
∝

1

(y1+ γ⋆)! · (yU+1− γ⋆)!
.

This walk on Ft allows us to build an approximation of the distribution, under H0,

of the test statisticW = Ȳ1−Ȳ2 = T1/n1−T2/n2. Finally the p-value is computed as

#(|W | ≥ |wobs|)

M
(5)
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Fig. 1: Graph on the fiberFt with t = 6 and N = 3

where M is the number of transitions and wobs is the observed value ofW .

Permutation Test

We perform a standard permutation test [7], randomly selecting M permutations of

yobs (M is at least 1,000), computing the corresponding values ofW and the p-value

as in (5).

3 Simulation Study

We consider 27 scenarios that have been built taking three different sample sizes

(n1,n2) (Table 1a) and, for each sample size, nine different population means

(λ1,λ2) (Table 1b).
For each scenario 1,000 samples have been randomly generated. For each sample

the corresponding p-values for the four testing procedures under study have been
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1 2 3

n1 3 8 35

n2 17 12 15

(a) Sample sizes

1 2 3 4 5 6 7 8 9

λ1 0.5 0.5 0.5 1 1 1 5 5 5

λ2 0.5 0.75 1 1 1.5 2 5 7.5 10

(b) Population means

computed. Specifically for the MCMC test 10,000 moves after the 1,000 used for

the burn-in step have been used. For the permutation test 2,000 permutations have

been used .

We summarise the most important results:

• the behaviour of the binomial tests (exact and asymptotic) looks different from

the behaviour of theMonte Carlo tests (MCMC and permutation). This difference

is due to the non-equivalent definitions of p-value ((2) and (5)) and, possibly, to

the sampling of the fiber;

• the significance values achieved by the permutation test are almost equivalent to

the ones achieved by the MCMC test although this test explores a much wider

sample space. We discuss this point in Section 4.

4 Fiber and Permutation Sample Space

The permutation operator does not alter the sum of entries. Hence the orbits of

permutations πy, where y is the generating vector, are subsets of the fiber. The orbits

do not intersect and then we can create a partition ofFt made up of part(t,N) orbits
πy, where part(t,N) is the partition function defined in [5].

In the same orbit, p(y) is constant and then the probability of taking y ∈ πy is

p(πy) =∑y∗∈πy p(y
∗) = #πy · p(y) = #πy ·C∏

N
i=1

1
yi!
, where #πy is the cardinality of

πy. It can be proved thatC, the normalizing constant defined in (4), can be computed

as C = (∑πy⊆Ft
#πy∏

N
i=1

1
yi!
)−1, an expression that does not contain the unknown

parameter λ = λ1 = λ2.
As an example let us consider the fiber in Figure 1. It can be partitioned into

part(6,3) = 7 orbits. We getC= 80/81 and we can compute the probability of each
orbit

y p(y) #πy p(πy)

(6,0,0) 80/(81 ·6!0!0!) 3 3/729

(5,1,0) 80/(81 ·5!1!0!) 6 36/729

(4,2,0) 80/(81 ·4!2!0!) 6 90/729

(3,3,0) 80/(81 ·3!3!0!) 3 60/729

(3,2,1) 80/(81 ·3!2!1!) 6 360/729

(4,1,1) 80/(81 ·4!1!1!) 3 90/729

(2,2,2) 80/(81 ·2!2!2!) 1 90/729
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The partition of Ft into permutation orbits looks somehow optimal, because we

can approximate well the fiber with one orbit if its probability p(πy) is large enough.
This result is confirmed in Figure 1. If we select n1 = 2 and n2 = 1 and we compute

the exact null cumulative distribution of W over F6 and its approximation using

the orbit π(1,2,3) (which has the highest probability), we obtain two distributions

which are considerably close, even if the cardinality of the selected orbit is low

(#π(1,2,3) = 6) compared to the the cardinality ofF6, which is 28.

Table 1: Cumulative distribution ofW onF6 and π(1,2,3)

w -6 -4.5 -3 -1.5 0 1.5 3

F6 0.001 0.018 0.100 0.320 0.649 0.912 1

π(1,2,3) 0 0 0 0.333 0.667 1 1

5 Conclusion

This study can easily be extended to the non-negative discrete distributions of the

exponential family. The convergence of the MCMC to the exact binomial and a

mathematical statement on the optimality of the partition of the fiber into orbits of

permutations are part of our ongoing research.
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