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Abstract 

The objective assessment of subject’s gait impairment is a 

complicated task. For this reason, several indices have been 

proposed in literature for achieving this purpose, taking into 

account different gait parameters. All of them were essentially 

based on the identification of “normality ranges” for the gait 

parameters of interest or of a “normal population”. However, it 

is not trivial to obtain a unique definition of “normal gait”. In 

this study we proposed the Gait Impairment Score (GIS) that is 

a novel index to evaluate the subject’s gait impairment level 

based on fuzzy logic. This index was obtained combining two 

Fuzzy Inference Systems (FISs), based on gait phases (GP) and 

knee joint kinematics (JK) parameters, respectively. Eight GP 

parameters and ten JK parameters were extracted from the 

basographic and knee kinematic signals, respectively. Those 

signals were acquired, for each subject’s lower limb, using a set 

of wearable sensors connected to a commercial system for gait 

analysis. Each parameter was used as input variable of the 

corresponding FIS. The output variable of the two FISs 

represented the impairment level from the GP and JK point of 

view. GP-FIS and JK-FIS were applied separately to both right 

and left leg parameters. Then, the fuzzy outputs of the two FISs 

were aggregated, independently for each side, to obtain the leg 

fuzzy output. The final subject’s GIS was obtained aggregating 

the fuzzy outputs of the two legs. 

The score was validated against two gait analysis experts on a 

population of 12 subjects both with and without walking 

pathologies. The Analytic Hierarchy Process (AHP) pairwise 

comparisons were used to obtain the subjects’ ranking from the 

two experts. The same population was scored using the GIS and 

ordered in ascending order. Comparing the three rankings 

(from our system and from the two human experts) it emerged 

that our system gives the same “judgment” of a human expert. 

Keywords: Analytic Hierarchy Process (AHP), foot-switch 

signal, Fuzzy Inference System (FIS), gait analysis, knee joint 

kinematics  

 

INTRODUCTION 

Gait analysis is used to quantitatively assess the normal and 

pathological function of human walking [1]. In clinics, it is 

employed in the care of many orthopedic and neurological 

disorders for surgery planning and outcome evaluation [2], to 

document functional changes in patient follow-up or to 

evaluate the effectiveness of rehabilitation protocols [3]. Two 

fundamental aspects of gait analysis are: 1) timing gait phases, 

2) studying joint kinematics of a subject’s walk.  

Many spatio-temporal and joint kinematics parameters are 

usually computed to quantitatively assess a patient’s gait. 

However, the presence of many parameters and the uncertainty 

associated to each parameter makes it difficult to objectively 

score a subject’s walking performance, to assess treatment 

effectiveness comparing the same subject at different times or 

for comparing different subjects. This data complexity was 

perceived as an obstacle for the clinical use of gait analysis in 

many practical situations. For this reason, in recent years, there 

has been a growing awareness of the need for a concise index, 

a single measure of the “quality” of a subject’s gait pattern [4].  

Therefore, great efforts were devoted to build indices that 

summarize and condense the information arising from many 

parameters into a single indicator or score. As an example, the 

Normalcy index (NI) or Gillette Gait Index (GGI) was 

proposed to quantify the extent by which a patient’s gait 

deviates from that of an impaired control group [5]. It uses 

principal component analysis on 16 gait parameters, and was 

validated on a population of children with cerebral palsy. The 

more recent Gait Deviation Index (GDI) is based on the 

extraction of 15 gait features using the singular value 

decomposition [6]. Similarly to the GDI, the gait profile score 

(GPS) [7] summarizes the overall quality of the patient’s 

kinematics.  

Moreover, almost all the methods that can be found in literature 

need - as a basic ingredient - the knowledge of clear normality 

ranges for the gait parameters of interest, to have a reference 

for pathological gait. Subjects with no pathologies related to 

gait are typically recruited and evaluated to form a control 

group and obtain normality ranges. However, obtaining clear, 

definite, crisp normality ranges is not a trivial aspect due to the 

wide range of gait patterns existing in healthy subjects [8, 9]. 

In general, it is not easy to define a single common gait pattern 

that can be defined as “normal”. 
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Fuzzy Inference System (FIS) is a method based on fuzzy logic 

suitable for constructing an index without the need to define 

crisp ranges for the involved parameters/variables [10]. It is a 

way of mapping several input variables into one or more output 

variables, managing the uncertainty related to variable ranges 

that do not present sharp borders [11]. This is possible by using 

Membership Functions (MFs). A MF returns a value in the 

range of [0,1], representing the membership degree of an 

element to a set (0 = it doesn’t belong to the set, 1 it completely 

belongs to the set). Moreover, a FIS tries to formalize the 

reasoning process of human language building fuzzy IF-THEN 

rules that connect input and output variables.  

In order to overcome problems related to the uncertainty 

inherent to the concept of “normal gait”, a previous work built 

a FIS to obtain a basographic gait impairment score [12]. That 

FIS was based only on parameters obtained from gait phases, 

thus neglecting the information arising from joint kinematics. 

In general, a fundamental problem encountered when 

presenting a new index or score is to validate it. Typically, the 

score is compared to the results obtained by scales and 

questionnaires already validated, considered as gold standard. 

However, if the comparison has to be performed against one or 

more experts, it is necessary to ask them to assign a value to 

each element or to sort elements in ascending or descending 

order according to some criteria.  

Analytic Hierarchy Process (AHP) [13] is a technique 

commonly employed for complex decision making that allows 

for automatically ranking several elements on the base of user 

judgments. It provides a complete framework for structuring 

problems in hierarchical manner, defining and weighting 

evaluation criteria, and comparing alternative solutions.   

AHP is based on three main steps. Firstly, the evaluation 

criteria have to be selected and hierarchically organized. In the 

second step the pairwise comparison of all elements is 

performed for each criterion.  Finally, all alternatives are 

automatically ranked based on the expressed judgments. The 

main advantage of this kind of approach lies in the pairwise 

comparison of alternatives. In fact, for an expert or a decision 

maker it is easier to compare two elements between them than 

to sort several items in ascending or descending order. 

The aim of this work is to present a novel index to evaluate the 

subject’s gait impairment level.  The index is the result of the 

aggregation of two FISs: one based on gait phases (GP) 

parameters and the second one based on knee joint kinematics 

(JK) parameters. The score was validated against two experts 

of gait analysis using AHP pairwise comparisons.  

 

MATERIALS AND METHODS 

Populations: 

Two populations of subjects were used in this study: one for the 

FIS construction (training set) and one for its validation (test 

set). 

For constructing the MFs and defining the fuzzy rules we used 

the gait signals recorded on a population of 30 subjects (age 34 

± 17 years) with no neurological or orthopedic pathologies that 

could influence their gait.  

For the FIS validation we used a different population made of 

12 subjects divided as follows: 5 healthy subjects (age 41 ± 26 

years), 5 subjects with hip prosthesis (age 71 ± 6 years) and 2 

subjects suffering of normal pressure hydrocephalus (79 and 80 

years old respectively). 

The experimental protocol conformed to the ethical principles 

of the Helsinki declaration. 

 

Signal acquisition and processing: 

The subject was asked to walk at self-selected speed for 2-3 

minutes, to collect at least 100 gait cycles. The multichannel 

system STEP32 (Medical Technology, Italy) was used to 

acquire gait signals, for each lower limb (sampling frequency: 

2 kHz) [14][15].  

Foot-switches (size: 10 mm × 10 mm × 0.5 mm; activation 

force: 3 N) were placed under the barefoot soles (beneath the 

heel, 1st and 5th metatarsal heads) to acquire the “basographic 

signal” or “gait phase’s signal” (see Fig.1, first row). This 

allows for timing gait events. The basographic signal was then 

debounced, converted to 4 levels (Heel contact (H), Flat foot 

contact (F), Push-off (P), Swing (S)), and processed to segment 

gait cycles [16]. 

Electrogoniometers were attached to the lateral side of each 

lower limb to record knee joint kinematics in the sagittal plane 

(see Fig.1, second row). The knee kinematic signal was low-

pass filtered (FIR filter, 100 taps, cut-off frequency of 15 Hz) 

and segmented into separate gait cycles. 
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Figure 1:  Foot-switches placed under the sole allow for timing gait events. Segmenting the gait phase’s signal, the average 

duration of the gait phases (H, F, P and S) is obtained. A knee goniometer (articulated parallelogram) allows for recording the 

knee joint kinematics during gait. From the average kinematic curve, typical parameters are extracted (K1, K2, etc…). 

 

Gait parameter extraction: 

In healthy subjects, the most common gait cycle consists of the 

sequence of H, F, P, S gait phases. In pathological subjects a 

higher percentage of “atypical cycles” may be observed, that 

do not follow this sequence [16]. Among atypical cycles there 

are cycles that initiate with a forefoot contact instead of a heel 

contact (forefoot cycles) [17]. Furthermore, in pathological 

subjects, even cycles presenting a normal sequence HFPS may 

show altered phase duration: H, F, P and S may be augmented 

or shortened with respect to the corresponding phases observed 

in “normal” gait.  

On the base of these considerations and of spatio-temporal 

parameters usually adopted in clinics, we extracted the 

following 8 GP parameters: duration of H, F, P, S gait phases, 

cadence [1], double support, atypical and forefoot cycles, as 

listed in Table I. “Double support” is the period during which 

both feet are in contact with the ground (expressed as a 

percentage of the gait cycle, GC). “Atypical cycles” is the 

percentage of cycles that do not follow the standard sequence 

of gait phases (HFPS). “Forefoot cycles” is the percentage of 

atypical cycles beginning with a forefoot strike. For each 

subject, all GP parameters, except atypical and forefoot cycles, 

were estimated as means across HFPS cycles.  

The knee flexo-extention angle during gait is by far the most 

studied kinematic curve in clinical gait analysis. It is customary 

to extract parameters from the knee joint curve to obtain 

relevant clinical information, such as the knee flexion at heel 

strike (K1), maximum flexion at loading response (K2), 

maximum extension in stance (K3), maximum flexion in swing 

(K5), and total sagittal range of motion (K6) [12]. 

A total of 10 JK parameters were extracted from the knee flexo-

extention curves corresponding to HFPS cycles, as listed in 

Table I. In particular, for each subject, 8 parameters were 

extracted from the mean kinematic curve: K1, K2, K3, K5, K6, 

the difference between K2 and K1, the difference between K2 

and K3 (all expressed in degrees), time of flexion peak (tK5 

expressed as % GC). Two additional parameters were 

calculated considering all the kinematic curves of a subject: the 

standard deviation in correspondence of K1 and K5 (in 

degrees).  

 

GP-FIS and JK-FIS description: 

The Gait Impairment Score is the result of a system that 

combines two FISs: GP-FIS, based on GP parameters 

(extracted from the basographic signal) and JK-FIS, based on 

JK parameters (extracted from the knee flexo-extention curve). 

Each FIS returns a score of the impairment related to the 

corresponding signal, separately for each leg. The two FIS 

outputs are then combined to obtain a leg-score and, finally, 

right- and left-leg outputs are combined to obtain the final Gait 

Impairment Score. 
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The Mamdani method was chosen as inference technique for 

both FISs. It consists of four steps: fuzzyfication for 

transforming crisp inputs into fuzzy representations, rule 
evaluation in which input and output variables are connected, 

aggregation of all rules to obtain the final fuzzy set, and finally 

defuzzification in which a crisp number is obtained as output. 

The Fuzzy Logic toolbox provided in Matlab environment 

was used for the FISs implementation. 

 

FIS Variables : 

We constructed an input variable for each extracted gait 

parameter, for a total of 8 variables for the GP-FIS and 10 

variables for the JK-FIS. The ranges for each variable were 

determined according to the parameter they represent, and they 

are listed in the third column of Table I.   

All input variables were modelled using trapezoidal MFs 

associated to different levels of alteration of the corresponding 

parameter. The list of the MFs associated to each input variable 

is reported in the last column of Table I, for GP-FIS and JK-

FIS. 

For the construction of the trapezoidal MFs related to the no 

altered condition, we analyzed the distribution of values 

calculated from the training set. More specifically, for each 

variable we used the maximum and minimum values obtained 

from the population as limits of the longer trapezoid base, and 

the 25th and 75th percentiles as range of the shorter trapezoid 

base. The values used for the construction of the MF associated 

to the no altered condition are shown in Table II for both GP 

and JK input variables.  

The MFs corresponding to altered conditions were defined as 

the fuzzy standard complement of the normal conditions. As an 

example, the 3 MFs constructed for the input variable “F-

phase” (“decreased”, “normal” and “increased”) are showed in 

Fig. 2.  

 

Figure 2:  GP-FIS: input variable “F-phase” (3 MFs). The “normal” 

MF is obtained from the values of the training set. The “decreased” 

and “increased” MFs are calculated as standard fuzzy complement of 

the “normal” MF. 

 

For both GP-FIS and JK-FIS, we defined a unique output 

variable, representing the impairment level and ranging from 0 

to 1. Four levels of gait impairment (“no impairment”, “mild 

impairment”, “moderate impairment”, “severe impairment”) 

were associated to the output, each modelled by a triangular 

MF. The output variable is showed in Fig. 3. 

A and D are the limits of the lower base of the trapezoidal no 

altered MFs (points with membership degree equal to 0) while 

B and C are the limits of the upper base of the trapezoidal no 

altered MFs (points for which MFs assume membership degree 

equal to one). 

 

Table I: List of Membership Functions (MFs) for each Input Variable 

FIS Input Variable 
Variable 

Range 
MFs 

G
ai

t 
P

h
as

e 
P

ar
am

et
er

s 

H-phase  

(% GC) 
0 ÷ 100 Decreased, Normal, Increased 

F-phase 

 (% GC) 
0 ÷ 100 Decreased, Normal, Increased 

P-phase  

(% GC) 
0 ÷ 100 

Decreased, Normal, Slightly Increased, 

Increased, Highly Increased 

S-phase 

 (% GC) 
0 ÷ 100 Decreased, Normal, Increased 

Cadence (cycles/min) 0 ÷ 100 Decreased, Normal, Increased 

Double Support (% GC) 0 ÷ 100 Normal, Increased 

Atypical Cycles (%) 0 ÷ 100 Few, Medium, Many 

Forefoot Cycles (% atypical) 0 ÷ 100 Few, Many 
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Jo
in

t 
K

in
em

at
ic

 P
ar

am
et

er
s 

 

K1 (°) 0 ÷ 90 
Decreased, Normal, Increased,  

Highly Increased 

K2 (°) 0 ÷ 90 Decreased, Normal, Increased 

K3 (°) 0 ÷ 90 Decreased, Normal, Increased 

K5 (°) 0 ÷ 90 
Highly Decreased, Decreased,  

Slightly Decreased, Normal 

K6 (°) 0 ÷ 90 
Highly Decreased, Decreased, 

Slightly Decreased, Normal 

K2-K1 (°) -100 ÷ 100 Negative, Positive 

K2-K3 (°) -100 ÷ 100 Negative, Positive 

tK5 (% GC) 0 ÷ 20 Decreased, Normal, Increased 

σK1 (°) 0 ÷ 20 Normal, Increased, Highly Increased 

σK5 (°) 0 ÷ 100 Normal, Increased, Highly Increased 

 

Table II: Points defining the Trapezoidal MF of the No Altered Conditions for each Input Variable 

Input Variable A B C D 

G
ai

t 
P

h
as

e 
P

ar
am

et
er

s H-phase (% GC) 3 4 7 12 

F-phase (% GC) 14 28 34 41 

P-phase (% GC) 13 19 24 33 

S-phase (% GC) 36 40 44 49 

Cadence (cycles/min) 43 50 59 63 

Double Support (% GC) 0 0 19 25 

Atypical Cycles (%) 6 13 18 39 

Forefoot Cycles (% atypical) 0 0 40 50 

Jo
in

t 
K

in
em

at
ic

 P
ar

am
et

er
s 

K1 (°) 0 5 15 25 

K2 (°) 4 12 20 32 

K3 (°) -7 0 7 16 

K5 (°) 39 51 90 90 

K6 (°) 40 50 90 90 

K2-K1 (°) 0 1 100 100 

K2-K3 (°) 0 5 100 100 

tK5 (% GC) 64 67 71 75 

σK1 (°) 0 0 1.7 2.8 

σK5 (°) 0 0 1.8 3.3 

 

FIS Rules: 

A set of fuzzy rules was defined to connect input and output 

variables, for each FIS. A fuzzy rule is a linguistic rule linking 

a set of antecedents with some consequents, in the general form 

of: if x is A (antecedent) then y is B (consequent), where x and 

y are variables and A and B are fuzzy sets represented by MFs. 

In fuzzy logic, if the antecedent is true with a certain degree of 

membership, then the consequent is also true with the same 

degree.  

Rules were based on the knowledge of a gait analysis expert 

and information retrieved from the training dataset. A total of 

72 and 36 fuzzy rules were defined for the GP-FIS and KJ-FIS, 

respectively.  

All rules employed the “AND” fuzzy operator to connect the 

input sets, implemented using the “MIN” function. Appling the 

AND operator to fuzzy rules means that the MF defined in the 

rule consequent is activated with a membership degree equal to 

the minimum membership degree among all MFs included in 

the antecedent. 

In order to aggregate the rules to obtain the final fuzzy set, the 

“OR” fuzzy operator was used, implemented using the “MAX” 

function.  
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Defuzzification method : 

The last step of the inference process was the defuzzification, 

applied to the output fuzzy set of both FISs in order to obtain a 

score.  

In particular, we implemented a custom defuzzification 

function defined by the equation (1): 

𝑠𝑐𝑜𝑟𝑒 =
∑ 𝑔𝑖(𝑥1𝑖+𝑥2𝑖)/2
4
𝑖=1

∑ 𝑔𝑖
4
𝑖=1

    (1)  

where 𝑔𝑖 is the degree of activation of the i-th MF of theoutput 

variable and 𝑥1𝑖 and 𝑥2𝑖 are the x-axis projections of the i-th 

MF at degree 𝑔𝑖. An example of defuzzification is shown in 

Fig. 3. 

 

Figure 3:  Example of defuzzification of the output MFs. Grey regions 

highlight MF degree of activation (gi) and the vertical marked line 

represents the defuzzified output. 

 

In the case that only one output MF is activated, this 

defuzzification function allows for obtaining, as crisp output, 

the position of the MF vertex. This is particularly important for 

the first or the last output triangle. As an example, if only the 

no impairment MF is activated (no matter the degree of 

activation g1) the crisp output is equal to 0. This condition is 

not achievable with the most commonly used defuzzification 

methods, such as centroid, or middle of maximum. In all the 

other cases in which more than one MF is activated, the 

defuzzified value is a mean of the x-axis projections of the 

fuzzy set, weighted for their activation degrees. 

In this way, the obtained score can range from 0 (no 

impairment) to 1 (maximum level of gait impairment). 

 

Gait Impairment Score calculation: 

GP-FIS and JK-FIS were applied twice in order to classify both 

right and left leg.  

The fuzzy outputs of the two FISs were then aggregated, 

independently for each side, to obtain the leg fuzzy output. 

Finally, the overall fuzzy output was obtained aggregating the 

fuzzy outputs of the two legs. All aggregations were performed 

by the OR operator (implemented as MAX function).  

However, defuzzification can be applied to each single step of 

the above described process. This allows for obtaining an 

impairment score related to the gait phases and another one for 

the kinematics aspects, for each leg. Then, the leg-score can be 

obtained for the right and left leg separately and, finally, the 

total Gait Impairment Score can be calculated to take into 

account both legs.  

The aggregation of the fuzzy outputs and the defuzzification 

process is depicted in Fig. 4. 

 

Figure 4:  Example of output aggregation using the OR operator (implemented as MAX function). First, the gait phases (GP) and 

joint kinematics (JK) outputs are aggregated, separately for each side, to obtain the fuzzy output of each leg. Then, the outputs of 

the two legs are aggregated to construct the overall gait impairment output. At each step, the vertical line represents the defuzzified 

output. 
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System validation by AHP pairwise comparisons : 

The proposed system for the objective assessment of gait 

impairment was validated against two gait analysis experts.  

The system validation was performed in two steps. Firstly, the 

validation population was ordered on the base of three 

rankings: the judgments expressed by the two experts and the 

Gait Impairment Score. Then, the three rankings were 

compared in order to quantify their similarity. 

For the first step, AHP was implemented using Priority 

Estimation Tool (PriEsT [18], http://sajidsiraj.com/priest/). The 

two experts were asked to independently evaluate the 12 

subjects included in the validation group, pairwise, using a 4-

point scale: equal, slightly better, better and strongly better. 

Expert judgments were based only on one criterion: the 

comparison of the global gait performance, assessed by means 

of the basographic and knee kinematics signals. AHP returns 

the subjects ranking for each expert. 

All subjects were also evaluated using the Gait Impairment 

Score and sorted according to the obtained values. 

For the comparison of the 3 rankings we used the Kendall’s Tau 
coefficient (τ). It measures the similarity between two orderings 

of n elements as: 

2)1( 




nn
nn dc  

where nc is the number of concordant (ordered in the same way) 

pairs and nd is the number of discordant (ordered differently) 

pairs. This coefficient can range from -1, if the two rankings 

are completely reverse, to 1 when the two orders are exactly the 

same. A coefficient close to 0 represents a situation in which 

the two rankings are independent. 

 

RESULTS OF THE SYSTEM VALIDATION 

The results of the model validation on the test set are showed 

in Table III. In the first column the 12 subjects were ordered 

considering the output of the GIS system (ascending values of 

score), the last two columns report the rankings obtained 

through the pairwise comparisons performed by the two experts 

independently.  

From Table III it emerged that the ordering of the human 

experts are slightly different from the GIS one, with 3 subjects 

and 5 subjects in the same position between the GIS and expert 

1 and 2 respectively. However, also comparing the ranking of 

the two experts between them, only 5 subjects can be found in 

the same position. 

 

 

 

Table III: Rankings obtained from GIS, Expert1 and Expert2 

GIS Expert1 Expert2 

S1 S2 S3 

S2 S3 S2 

S3 S1 S1 

S4 S6 S5 

S5 S4 S4 

S6 S5 S8 

S7 S8 S6 

S8 S9 S7 

S9 S7 S9 

S10 S10 S10 

S11 S11 S11 

S12 S12 S12 

 

The Kendall’s Tau coefficient was calculated among the three 

orderings and the values are reported in Table IV. 

 

Table IV: Kendall’s Tau Coefficient 

 Expert1 Expert2 

GIS 0.82 0.82 

Expert 1 - 0.82 

 

As it emerged from Table IV, the value of the Kendall’s Tau 

coefficient obtained comparing GIS vs. Expert1 rankings and 

GIS vs. Expert2 rankings is the same obtained comparing the 

two experts’ rankings between them. This means that the 

proposed GIS allows for ordering the subjects similarly to a 

human expert. 

 

DISCUSSION 

In this work we presented a novel index that allows for an 

objective evaluation of the subject’s gait impairment level.  The 

index is the output of a system made of the two FISs: one based 

on gait phases parameters and the other based on knee joint 

kinematics parameters.  

The results were validated against two experts of gait analysis 

using AHP pairwise comparisons. The validation results 

showed that the system behavior in terms of subjects’ ordering 

is equivalent to the ranking obtained by two experts. 
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Comparing our score with the majority of the other indices 

proposed in literature, such as the GGI [5],  the GDI [6] or the 

GPS [7], one main difference can be found: the other methods 

are essentially based on the calculation of a distance between 

the new subject to be scored and the average of a population of 

control subjects. This implies that, in those cases in which the 

reference population is not large enough, its mean values are 

strongly affected by the variation, addition or removal, of one 

or more subjects within it, above all in the presence of extreme 

elements (outliers) [19]. Consequently, also the resultant index 

may vary with the change of the control dataset, as it was 

demonstrated for the GGI [20].  

The proposed system is not based on the distance between a 

patient and a control group, but it applies an inference 

procedure. More specifically, in our system only the 

construction of the not altered input MFs was based on the 

percentiles calculated across the population, that are more 

stable if one or more subjects are changed in the dataset. Then, 

a set of rules was applied to obtain the score instead of using a 

simple distance. 

Moreover, the use of a combination of FISs for the index 

construction allows the users for an easier and prompter 

understanding of the most critical aspects for a specific subject. 

In fact, once a final GIS value was obtained, it is possible to 

proceed backward analyzing the single leg scores and the GP 

and JK scores for each side. Furthermore, each single FIS 

allows for a more detailed analysis of the rules activated for a 

specific input, giving evidence of the motivations of a specific 

score value. Using indices base on mathematical 

transformation of the original input variables, such as the 

principal component analysis for the GGI [5], and the singular 

value decomposition  for the  GDI [6] and GPS [7], this analysis 

is more complicated and less immediate. This means that, 

obtained a specific score for a subject, it is difficult for the user 

to understand which aspect or variable mostly contributed to 

the final result. 

Finally, our index takes into account both gait phases and joint 

kinematics parameters. In particular, although the importance 

of the basographic signal from the clinical point of view was 

extensively proved [15, 16, 21], no index proposed in literature 

considers the gait phases parameters for the score calculation.  

CONCLUSIONS 

In this work the Gait Impairment Score (GIS) was proposed for 

the objective assessment of the gait impairment level of a 

subject. This index was obtained combining gait phases 

parameters and joint kinematics aspects using two Fuzzy 

Inference Systems (FISs). 

The score was validated against two gait analysis experts on a 

population of subjects both with and without walking 

pathologies. The results showed that our system “judgment” 

(ranking) is comparable to that of a human expert. 

The use of the fuzzy logic for the system construction allows 

for overcoming problems related to the uncertainty inherent to 

the definition of a “normal gait” or a “normal population”. 

Moreover, from the user point of view, the combination of two 

FISs facilitates the identification of the most critical aspects or 

limb for each specific subject.  
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