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Adaptive Schedulers for Deadline-Constrained
Content Upload from Mobile Multihomed Vehicles

Ali Safari Khatouni1, Marco Ajmone Marsan1,3, Marco Mellia1, Reza Rejaie2

Abstract— We consider the practical problem of video surveil-
lance in public transport systems, where security videos are stored
onboard, and a central operator occasionally needs to access
portions of the recordings. When this happens, the selected video
must be uploaded within a deadline, possibly using multiple
parallel wireless interfaces. Interfaces have different associated
costs, related to tariffs charged by Mobile Network Operators
(MNOs), energy consumption, data quotas, system load. Our
goal is to choose which interfaces to use, and when, so as to
minimize the cost of the upload while meeting the deadline,
despite the unknown short-term variations in throughput. To
achieve this goal, we first collect real traces of mobile uploads
from vehicles for different MNOs. Examination of these traces
confirms the unpredictability of the short-term throughput of
wireless connections, and motivates the adoption of adaptive
schedulers with limited a-priori knowledge of the system status.

To effectively solve our problem, we devised a family of
adaptive algorithms, that we thoroughly evaluated using a trace-
driven approach. Results show that our adaptive approach can
effectively leverage the fundamental tradeoff between the total
cost and the delivery time of content upload, despite unknown
short-term variations in throughput.

I. INTRODUCTION

Wireless technologies such as WiFi, 3G, 4G, and soon-
to-come 5G, provide access capacities up to hundreds of
Mb/s. Multihomed devices are commonly available, offering
the chance to transmit over different technologies and networks
at the same time. Yet, there are scenarios in which the
amount of data being produced and consumed challenges the
capacity offered by wireless links. Consider for instance public
transport vehicles (like buses or trains) equipped with multiple
Mobile BroadBand (MBB) high speed interfaces, where on-
board security cameras record videos that must be uploaded
to a security center where an operator occasionally watches
portions of them. In this scenario, continuous real-time video
uploading is too expensive. Even if MBB networks can offer
capacities up to 100 Mb/s, the number of videos, the limited
data quota, the performance variability along the path, and the
need to check only portions of the videos, call for ingenious
upload policies. Hence, videos are stored on board, and, only
when an alarm is triggered, the Security Operator (SO) on
duty requests a subset of content. A deadline (e. g., minutes)
is given to complete the upload.

We model this problem as the scheduling of content upload
from multihomed mobile nodes, where the content must be
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delivered within a given deadline, while the cost must be min-
imized. This differs from the classic problem of content upload
using multihomed nodes, where upload delay has typically to
be minimized. Similarly, no real time constraint is posed, thus
making the problem different from video streaming, and partly
similar to a delay tolerant scenario, albeit the hard deadline
must be met.

We assume that the mobile node is equipped with several
MBB interfaces, with different technologies, e.g., cheap but
occasionally available WiFi, more ubiquitous, but more ex-
pensive, 3G and 4G subscriptions, possibly offered by different
operators. The system has to decide i) which interface(s) to use,
ii) when to upload from such interface(s), and iii) at which
rate to upload (if there is available bandwidth). Our goal is
to minimize the total cost of the upload while meeting the
deadline. A greedy solution that immediately starts uploading
from all interfaces minimizes the upload time, at the expense
of ignoring opportunities for cheaper networks to become
available, thus increasing upload cost. There is a clear tradeoff
between minimizing the total transmission cost and upload
completion time.

In our previous work [1], we formulated the problem as
a centralized scheduling problem, where an oracle has the
perfect knowledge of the upload rate of each interface at each
time. The oracle can then schedule the upload in those time
slots when cheap connectivity is (expected to be) available,
thus minimizing total cost. In this paper, we instead assume
only a coarse knowledge of available capacity, and we design
online, adaptive schedulers to explore the tradeoff between
cost and delivery time. We use a trace driven approach to run
a thorough performance evaluation in realistic scenarios, and
gain insight about the tradeoff between cost and delivery time
over wireless channels with unpredictable short-term variations
in throughput. The actual difference with respect to the optimal
solution is likely to depend on the specific traces/setting/etc.
Therefore, the exploration of the tradeoff is important, and
shows the ability of the scheduler to operate in this challenging
environment, which is applicable beyond the test setting.

The rest of this paper is organized as follows. Section II
briefly overviews related work. Section III introduces the
problem formulation and the algorithm we propose. Section IV
describes the setup used for simulations, and section V dis-
cusses the numerical results obtained from the simulations.
Finally, Section VI concludes the paper.

II. RELATED WORK

Mobile devices allow users to connect to multiple wire-
less networks with possibly different technologies, obtaining
throughput values which depend on the node position, the



network coverage, the traffic load, the weather conditions,
etc. This makes the problem of scheduling transmissions over
multiple wireless interfaces both challenging and relevant.

The performance of wireless service under uncertain net-
work availability has been previously investigated by several
authors. Deng et al. [2] investigate the characterization of
multihomed systems considering WiFi vs. LTE in a controlled
experiment. They show that LTE can have a better performance
than WiFi, also demonstrating the variability of performance
on both short and long time scales. Rahmati et al. [3] present
a technique for estimating and learning the Wi-Fi network
conditions from a fixed node. Rathnayake et al. [4] demonstrate
how a prediction engine may be capable of forecasting future
network and bandwidth availability, and propose a utility-based
scheduling algorithm which uses the predicted throughput
to schedule the data transfer over multiple interfaces from
fixed nodes. These works heavily rely on channel performance
predictions, and consider scheduling at the packet-level, i.e.,
which packet to send through which interface, to maximize the
total throughput. Along this line, recent works focus on multi-
path TCP (MPTCP), where the design of packet schedulers
and congestion control algorithms are studied. The goal is to
maximize throughput, or equivalently to minimize upload time,
e.g., see the work [5]. Our work differs, since we are dealing
with moving vehicles that exacerbate the unpredictability of the
network performance. For instance, Riiser et al. [6] collected
3G mobile network traces from onboard public transport
vehicles around the city of Oslo (Norway). Similarly, Chen et
al. [7] measured the throughput of both single-path and multi-
path data transport in 3G, 4G, and Wi-Fi networks. In both
cases, variability is much higher than for fixed nodes. We too
collect traces to gauge unpredictability, and we use them to run
trace-driven evaluations in realistic scenarios. More important,
the presence of a deadline makes our work totally different,
i.e., the goal is not any more to maximize the instantaneous
upload rate, rather, to minimize the total cost of uploading the
content within the deadline. Delay tolerant networks [8] face
a similar problem, but the data delivery problem has typically
no deadline, and the main problem is the creation of the time
varying network topology to guarantee the data delivery. Here,
we relay on MBB to offer connectivity.

Previous works focused on deadline scheduling under the
assumption that network performance is perfectly known.
Zaharia et al. [9] present an optimal scheduler over multiple
network interfaces, and propose approximations which can
be implemented with limited resources in mobile phones, or
PDAs. They assume the cost and capacity of each interface to
be constant. In [1] we also assume perfect knowledge of ca-
pacity. Here, we relax this assumption, requiring the scheduler
to cope with unknown short-term variations in throughput of
individual interfaces.

III. PROBLEM FORMULATION AND ALGORITHMS

Our adaptive algorithm is inspired by an adaptive scheduler
for P2P video streaming proposed by Magharei et al. [10].
However, the dynamics of variations for individual connections
as well as the design goals in our problem are different. Our
only assumption is that the long-term average throughput on

each interface is known. This assumption only provides a
base line (or a reference) to assess the feasibility and pace
of progress for meeting the specified deadline.

We consider slotted time, with ∆T the slot duration. At the
beginning of each slot, the scheduler computes the amount of
data to transmit on each interface using the knowledge of what
happened during the past slots. It updates the expected rate at
which to upload through the different interfaces, and schedules
the transmission of a portion of the data, giving preference to
cheaper interfaces. During the slot, data is transmitted at the
chosen rate, according to network state. At the end of the slot,
the scheduler checks if the amount of data that was transmitted
is smaller than expected. If this happens, the missing rate,
denoted Le f tB, is greater than zero. In this case, the system
is behind schedule, and the scheduler needs to recover in the
future. We consider two policies for recovery: i) aggressively
recover immediately in the next slot; or ii) conservatively
recover in the slots available before the deadline.

Let i be the current time slot. Bi represents the expected
data rate at which the system should transmit during slot
i. This must be computed slot by slot. At the upload start,
we estimate B0 = V/S, being V the total data volume size,
and S the deadline. At the end of each time slot, the system
computes Le f tB, the total amount of scheduled data that was
not possible to transmit over all interfaces, e.g., due to a lack
of capacity in that slot. To help the scheduling, each interface j
maintains and updates the estimated expected rate R̂i j based on
the actual transmission rate Ri j . If the interface j was active in
period i (Ri j > 0) and congested (Le f tBj > 0), R̂i j is updated
using an Exponentially Weighted Moving Average (EWMA)
algorithm with α coefficient:

R̂i+1 j =




αR̂i j + (1 − α)Ri j if Ri j > 0 and Le f tBj > 0
Max(R̂i j ,Ri j ) if Ri j > 0 and Le f tBj = 0
R̂i j otherwise

(1)
The rationale of the expression above is to avoid the

estimated rate to converge to small values (practically zero)
when an interface is not being used, or used at a rate lower
than the maximum available rate, i.e., when the interface
bandwidth is not fully utilized. Indeed, if Le f tBj = 0, the
available capacity of the interfaces allowed to transmit all
data using at least the expected rate. However, the actual
available rate of the interface is unknown. Thus, we avoid
decreasing the estimated rate of these interfaces that are not
fully utilized. This could create problems if the algorithm
falls behind schedule, and needs to use this interface at the
highest possible bit rate, because R̂i j would provide a gross
underestimation. This happens because the algorithm is not
greedy, and more expensive interfaces are partially used in a
demand-driven fashion. Refer now to the algorithm description
in Alg. 1. After initialization, the algorithm loops for each time
slot until the deadline is reached, or all the data have been
uploaded. At the beginning of each time slot i, the system
has to schedule data for transmission (line 6), for an amount
equal to Vi = Bi∆T if it is considering the most expensive
interface, otherwise, Vi = (β + 1)Bi∆T . β ∈ R is a parameter
that controls the optimism of the scheduler. When β = 0,



Algorithm 1 Adaptive Scheduler

1: procedure ADAPTIVESCHEDULER(α, β,policy)
2: R̂0 j ← Interface average rates
3: B0 ← V/S
4: for (i = 0; i < S && V > 0; i + +) do
5: SortInterfaceByCost()
6: procedure PUSH DATA TO BUFFERS
7: for ( j = 1; j ≤ I && Vi > 0; j + +) do
8: if cost( j) < maxcost then
9: Vi = (β + 1)Bi∆T

10: else
11: Vi = Bi∆T
12: Vi j = min(Vi , R̂i j∆T )
13: Vi = max(Vi − Vi j ,0)
14: UploadAndWaitForSlotEnd()
15: procedure CHECK DATA IN BUFFERS
16: V = V −

∑
j Ri j∆T

17: for ( j = 1; j ≤ I; j + +) do
18: Le f tBj = Vi j − Ri j∆T
19: if Ri j > 0 && Le f tBj > 0 then
20: R̂i+1 j ← αR̂i j + (1 − α)Ri j

21: else if Ri j > 0 && Le f tBj = 0 then
22: R̂i+1 j ← Max(R̂i j ,Ri j )
23: else
24: R̂i+1, j ← R̂i j

25: Le f tB =
∑

j Le f tBj

26: if Le f tB > 0 then
27: if policy == Aggressive then
28: Bi+1 = B0 + Le f tB
29: else
30: Bi+1 = Bi + Le f tB/(S − i)

the scheduler tries to upload the content at the minimum rate
which guarantees to complete the upload within the deadline.
When β > 0, the system is more optimistic, trying to utilize
any excess bandwidth on the cheap interfaces to send more
data, and to complete the upload before the deadline S, so as
to avoid running out of time in case of future lack of capacity.
The parameter β allows pushing extra data into the interface
buffer to efficiently use the bandwidth of cheap interfaces. By
forcing β = 0 on the most expensive interface, we avoid to
extra load it, thus minimizing its usage (and cost) (line 8).

Since the algorithm aims to cost minimization, the scheduler
splits the data into portions, that are stored in buffers of each
interface, according to the expected available rate (line 12).
To minimize cost, interfaces have been previously sorted from
the cheapest to the most expensive (line 5), i.e., data is
preferentially transmitted by the cheapest interfaces.

Data is then transmitted over all interfaces whose buffer is
not empty. At the end of each slot, the algorithm updates the
amount of data still to transmit (line 16), possibly updating also
the missing rate (line 18), and the expected rate (line 19-24).
In case the rate of transmission was smaller than expected, i.e.,
data is removed from each interface buffer, and accumulated
in Le f tB > 0, the system has to recover by pushing more data

Fig. 1: Scheduling process over time and recovery strategies

over interfaces in the upcoming slots. If the aggressive policy
is selected, it tries to recover in the immediately following
slot (line 28). If instead the conservative policy is selected,
it spreads the left-over data through all the remaining slots
till the specified deadline, which leads to a higher average
transmission rate in remaining slots (line 30).

Fig. 1 illustrates the evolution of the uploading process over
time. At each ∆T , the algorithm schedules the amount of data
to be uploaded at the expected rate Bi . At the end of the third
time slot, the actual rate results smaller then the expected rate,
due to a smaller amount of data uploaded. The system reacts
by updating the expected rate for future slots, and trying to
either recover in the immediately upcoming slot (aggressive
policy, red curve), or in the long term (conservative policy,
blue curve).

As a reference, we consider the Greedy-in-Time (GT) [1]
heuristic, which simply starts uploading content through all
interfaces, using the maximum rate in those slots. This would
be the solution typically adopted on related works that aim
at maximizing the total throughput [3], [4], [5]. We use the
solution provided by the Greedy-in-Cost (GC) [1] heuristic as
cost lower bound to evaluate the performance of the adaptive
scheduler, while we evaluate the cost saving by comparison
against the GT heuristic.

IV. SIMULATION SETUP

We now describe the simulation setup we use to run perfor-
mance evaluation. We first present samples of actual mobile
traces that we collected from vehicles with the dual purpose to
show how unpredictable upload rate is, and to run experiments
in realistic setup.

A. Collection of mobile traces
A credible evaluation of the proposed algorithms calls for

realistic data about upload rate available from public transport
vehicles. In our search for usable traces comprising video
upload data, we found the traces in [7], [6] which however
refer to periods when lower bandwidth values than those we
see today were the norm. Lutu et al. [11] collected a large set of
recent traces for MBB on public transport vehicles. However,
their traces refer to download, and only consider the transfer
of 4MB of data, which is much less than what we need in
our video upload problem. We thus resolved to collect our
own traces by using mobile terminals on board of private and
public vehicles, or carried by users walking.
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Fig. 2: A sample of collected traces for each technology

1) Trace collection methodology: All traces were collected
in the city of Torino in Italy, and refer to three technologies
(WiFi, 3G, and 4G), and multiple MNOs. The networks were
in normal operating conditions (and unaware of our tests). Our
terminals (both Android and iOS smartphones) accessed the
mobile networks to upload data to a server on campus, using
both TCP and UDP at the transport layer.

We used a hybrid method in the trace collection process:
In each experiment, the mobile terminal runs iperf2 in the
upload direction for 600 seconds while tcpdump captures
packets at the server. Using the packet trace, we compute the
throughput in each second of the experiment. The number of
repetitions of active measurements is critical to make sure that
enough samples are collected for a sound estimation of the
distribution of throughput on each technology. Moreover, it is
important that repetitions cover different times of the day and
different days of the week. We repeated the experiment on the
same paths for at least 5 times, during different days.

We collected traces for different MNOs in Italy (Tim,
Wind, and Vodafone), with the objective of obtaining a wide
sample of the upload throughput in MBB networks. For WiFi,
we considered the open WiFi community "WoW-Fi" offered
automatically by Fastweb customers that share their DLS or
FTTH home network via the access gateway.1 We make the
collected traces available for researchers2.

2) Trace characterization: While a detailed characterization
of available capacity is out of the scope of this paper, we
present here some evidence of the variability of the available
throughput over time in a urban area. Fig. 2 shows a sample
of temporal evolution of (per second) upload rate across the
collected traces for each type of interface. Starting times of
traces have been re-aligned for ease of visualization.

To give more details, Table I shows, as a summary of statis-
tics for three technologies, the average, standard deviation, 80-
th percentile, maximum, and minimum of the observed upload
throughput. Table II reports the same statistics, but considering
the absolute change of throughput in two consecutive time
slots. In a nutshell, measurements indicate that predicting the
exact value of the future available bandwidth is not a trivial
task, as claimed by Nikravesh et al. [12]. This provides a clear
motivation for the use of adaptive schedulers.

1http://www.fastweb.it/adsl-fibra-ottica/dettagli/wow-fi/. Mobile phones au-
tomatically authenticate using IEEE 802.1x with no action from the user.

2http://tstat.polito.it/monroe/MBB_speedtest.zip

TABLE I: Throughput statistics
interface mean standard deviation 80-th percentile max min

WiFi 0.77 Mb/s 2.06 0.57 11.56 0
3G 2.23 Mb/s 1.29 3.44 5.23 0
4G 26.92 Mb/s 13.50 39.47 51.74 0

TABLE II: |T ht − T ht−1 | statistics
interface mean standard deviation 80-th percentile max min

WiFi 0.30 Mb/s 0.89 0.24 9.45 0
3G 0.39 Mb/s 0.44 0.63 3.84 0
4G 2.02 Mb/s 2.98 2.93 47.14 0

B. Experiments setup
We implemented a custom simulator using Python. It models

the upload of K = 2 videos from a mobile vehicle equipped
with a WiFi, a 3G, and a 4G interface. The cost associated
with each interface is arbitrary, assumed constant over time,
and taken to be 2, 4, and 8 (Mb)−1, respectively. videos have a
size equal to 62.5 MB (V = 125 MB in total), corresponding to
about 5 minutes of 1080p video. The simulator implements the
adaptive schedulers, and data is transmitted considering capac-
ity ri j from traces. The simulation time (which corresponds to
the upload deadline S) varies in the range of [100,600] seconds.

We investigate parameter setting to better understand their
effect on performance. α gets values in [0,1]. As described in
Sec. III, we push some extra data β into all interface buffers,
except the most expensive interface (4G in our case). β takes
values in [0,30]. The impact of these parameters is investigated
in Sec. V-A. We use the collected traces as a starting point
to perform a realistic evaluation, but, to make sure that our
results are not specific to a particular trace or to its short-
term dynamics, we select a random combination of traces
for each simulation run, and choose a random starting point
for the selected trace. Simulations are repeated 200 times, in
order to compute the average and standard deviation over all
repetitions.

For some combinations of parameters, the upload of the
video may not terminate within the deadline due to lack of ca-
pacity, or to bad scheduling choices. As performance indexes,
we thus compute the percentage of successfully completed
uploads, as well as the overall upload cost C (considering
only successfully completed uploads). After tuning parameters,
we compare results against the case of an oracle that knows
the upload throughput in future slots. To this end, we also
solve the video upload problem with the centralized Greedy-
in-Cost heuristic, which gives a total cost extremely close to
the theoretical optimal solution [1].

V. SIMULATION RESULTS

In this section, we describe the results of our simulations,
using different algorithmic variations. We first discuss the
tuning of the algorithm parameters. Then, we compare the
algorithm performance against the optimal solution in case of
known bandwidth availability.

A. Parameter setting
Our scheduler has three basic parameters as follows: ∆T ,

the duration of the time slot, α, the parameter of the EWMA
bandwidth estimator, and β, the optimism coefficient. The
time slot duration is the only parameter for which domain
knowledge can offer a compelling choice: ∆T must be coherent
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Fig. 3: Percentage of completed uploads and C versus β with
S = 300 s, α = 0.1. Trying to push a little more data than
expected has positive benefits on the aggressive algorithm, but
dramatic effects on the conservative algorithm

with the time scale of changes in bandwidth at the different
interfaces. Using long values for ∆T decreases the ability
of the scheduler to adapt to bandwidth changes in a timely
manner, whereas having very small values results in adapting
too frequently. The collected traces for WiFi, 3G, and 4G show
bandwidth changes on a scale of seconds. For this reason, we
chose for ∆T a value equal to 1 second. We next investigate
the impact of α, which determines the timescale of the rate
estimation for each interface. Results show that performance
is rather insensitive to the value of α. Recalling that α drives
the EWMA estimation of the R̂i j , we can conclude that this
is not a particularly critical aspect of the scheduling problem.
That is, even a very coarse estimation of the link throughput
is sufficient to our goals. For the derivation of results we fix
α = 0.1. 3

The choice of β is instead less intuitive. Choosing the value
for β is more tricky, as we can see from Fig. 3, which plots, as
before, the percentage of completed uploads and the total cost,
for variable values of β. We clearly see that the value of β has
a significant impact on the percentage of completed uploads
and on their cost. Fig. 3 indicates that the aggressive algorithm
(red curves) is not sensitive to β (line is flat), which means that
aggressively adapting is more important than optimistically
spreading the extra data across all the remaining intervals. It
also shows that the conservative approach does not work with
large values of β, since the required rate of delivery to catch
up may not become available. Indeed, increasing β suggests to
try optimistically to send more data through cheap interfaces,
aiming at reducing the overall cost. However, due to possible
lack of capacity on the (cheap) wireless interfaces, Le f tB
keeps accumulating data, which the conservative algorithm
tries to recover by the deadline. This causes the system to
accumulate more and more data that has still to be transmitted.
When the deadline approaches, the chance the system does not
offer enough capacity to complete the transfer becomes high,
causing a failure to complete the upload. Notice indeed how the
chance to meet the deadline suddenly decreases for increasing
β, with most uploads failing for β > 5.

To let the reader better appreciate the impact of β, Fig. 4

3We explored ∆T and α values in {1, 2, 5, 10} and
{0.1, 0.3, 0.5, 0.7, 0.8, 0.9}, respectively. Results are omitted due to
lack of space.
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(b) 3G with β = 5
Fig. 4: The aggressive scheduler operation with β = 0 (upper),
β = 5 (lower), and α = 0.1
shows the evolution of the 3G rate over time during an
experiment, with β = 0 and β = 5, respectively. The green
line is the available bandwidth, the red line is the EWMA of
available rate, and the blue line is the experienced rate. The
closer the blue curve is to the green curve, the more the system
is able to exploit the capacity of a cheap interface. We clearly
see that the choice β = 0 lets a large fractions of the actually
available capacity on 3G go unused. This forces the system to
use the expensive 4G interface. Setting β = 5 makes the system
more optimistic, and prone to send more data than the current
capacity estimation would allow. If successful, this increases
utilization on cheap interfaces, reducing the load on the most
expensive 4G one.

B. Impact of deadline
We look now at the influence of the deadline on perfor-

mance. Fig. 5 shows the percentage of completed uploads
and their total cost, for values of S ∈ [100,600] s, with
β = 0. As we can expect, longer deadlines imply higher
percentages of completed uploads, and lower costs. Consid-
ering the percentage of completed uploads, we see that the
aggressive version of the algorithm consistently outperforms
the conservative version. As previously observed, the latter
suffers in scenarios where there is a lack of available capacity
when approaching the deadline. To appreciate the benefit of
adaptive schedulers, we compare against the straightforward
GT heuristic that uploads all data as fast as possible. On
average, it would complete the upload in 33 s, with the cost of
7.5 k units. Adaptive schedulers reduce the cost up to 45%.

In general, the distance of the cost curves from the oracle
case is quite small for very short deadlines, and remains within
about 20-25% for longer deadlines. The fact that the difference
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Fig. 5: Percentage of completed uploads and C versus deadline
S, with β = 0 and α = 0.1

is small for short deadlines is due to the limited freedom in
scheduling. The fact that with longer deadlines the difference
remains within acceptable limits is a clear indicator of the good
performance of our algorithm. Interestingly, the conservative
algorithm provides smaller cost.

C. Hybrid algorithm
The fact that the conservative algorithm offers lower costs,

and the aggressive algorithm guarantees higher chances to meet
the upload deadline, suggests to combine the two approaches.
In particular, we use the conservative approach in the ini-
tial part of the scheduling, while moving to the aggressive
approach when getting closer to the end of the scheduling.
Intuitively, at the beginning of the scheduling the algorithm
tries to decrease the cost by using a conservative recovery.
0 < β < 5 guarantees to push extra data into the cheap
interfaces, avoiding the most expensive one. To then prevent
accumulating too much data and taking the risk of missing the
deadline, the aggressive recovery approach is later used.

We tested this hybrid approach, by using the conservative
recovery for the first 90% of S, and then switching to the
aggressive recovery algorithm in the last 10% of S. To better
appreciate the cost, we compute the fraction of the additional
cost consumed during scheduling with respect the cost of the
oracle. Fig. 6 shows that this hybrid recovery achieves very
high completion probability with very competitive cost (in the
order of 10% higher than the oracle).

VI. CONCLUSIONS AND OUTLOOK

In this paper we looked at the deadline-constrained upload of
video segments from vehicles equipped with a set of wireless
network interfaces, possibly provided by different network
operators, with multiple technologies, and different costs. The
objective of our work is to identify a good set of interfaces
to use, and of time slots when to transmit, so as to meet the
deadline with minimum cost.

However, since this is normally not true, due to the difficulty
in predicting available wireless bandwidth, we devised and
studied adaptive algorithms that only require the information
about the average available bandwidth.

Our adaptive algorithms, and in particular the hybrid al-
gorithm that combines the two approaches that we proposed
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Fig. 6: Percentage of completed uploads and C versus S with
α = 0.1 and β = 1 for hybrid recovery

to recover whenever an adaptive algorithm falls behind the
expected performance, are capable of coming very close to
the performance of the (unfeasible) optimum schedule, while
requiring only easily acquirable information about wireless
bandwidth availability.

REFERENCES

[1] Safari Khatouni, A.; Ajmone Marsan, M. and Mellia, M., “Delay toler-
ant video upload from public vehicles,” ser. SmartCity’16. INFOCOM
WKSHPS, 2016, pp. 213–218.

[2] Deng, S. and Netravali, R. and Sivaraman, A. and Balakrishnan, H.,
“Wifi, lte, or both?: Measuring multi-homed wireless internet perfor-
mance,” ser. IMC ’14. New York, NY, USA: ACM, 2014, pp. 181–
194.

[3] Rahmati, A. and Zhong, L., “Context-for-wireless: Context-sensitive
energy-efficient wireless data transfer,” ser. MobiSys ’07. New York,
NY, USA: ACM, 2007, pp. 165–178.

[4] Rathnayake, U.; Petander, H. and Ott, M., “Emune: Architecture for
mobile data transfer scheduling with network availability predictions,”
Springer US, 2012-04.

[5] Nikravesh, A. and Guo, Y. and Qian, F. and Mao, Z. M. and Sen,
S., “An in-depth understanding of multipath tcp on mobile devices:
Measurement and system design,” ser. MobiCom ’16. New York, NY,
USA: ACM, 2016, pp. 189–201.

[6] Riiser, H.; Vigmostad, P.; Griwodz, C. and Halvorsen, P., “Commute
path bandwidth traces from 3g networks: Analysis and applications,”
ser. MMSys ’13. New York, NY, USA: ACM, 2013, pp. 114–118.

[7] Chen, Y.; Nahum, E. M.; Gibbens, R. J.; Towsley, D. and Lim, Y.,
“Characterizing 4g and 3g networks: Supporting mobility with multi-
path tcp,” UMass Amherst Technical Report, Tech. Rep., 2012.

[8] K. Fall, “A delay-tolerant network architecture for challenged internets,”
ser. SIGCOMM ’03. New York, NY, USA: ACM, 2003, pp. 27–34.

[9] Zaharia, M. A. and Keshav, S., “Fast and optimal scheduling over
multiple network interfaces,” University of Waterloo, Tech. Rep., 2007.

[10] Magharei, N. and Rejaie, R., “Adaptive receiver-driven streaming from
multiple senders,” Multimedia Systems, vol. 11, no. 6, pp. 550–567,
2006.

[11] Lutu, A.; Raj Siwakoti, Y.; Alay, Ö; Baltrūnas, Džiugas and Elmokashfi,
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