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Abstract	

Quality Function Deployment (QFD) is a consolidated management tool for supporting the design of new 

products/services and the relevant production/supply processes, starting from the so-called voice of the 

customer (VoC). QFD includes several operative phases, ranging from the VoC collection to the definition of 

the technical features of production/supply processes. The first phase entails the construction of the so-

called House of Quality (HoQ), i.e., a planning matrix, which translates the Customer Requirements (CRs) 

into measurable Engineering Characteristics (ECs) of the product/service. One of the main goals of this 

phase is the definition of relationships between CRs and ECs, and the prioritization of these ECs, taking 

account of (i) their relationships with CRs and (ii) the importance of the related CRs. Given that data are 

collected from customers through questionnaires or interviews, both of these inputs are based on 

linguistic/ordinal scales. In the traditional approach, represented by the Independent Scoring Method (ISM), 

ordinal data are arbitrarily enriched with cardinal properties. The current scientific literature encompasses a 

number of alternative approaches but, even for most of them, cardinal properties are mistakenly attributed to 

data collected on ordinal scales. 

This paper proposes a method based on a consolidated ME-MCDM (Multi Expert / Multiple Criteria Decision 

Making) technique, which is able to perform the EC prioritization without incurring in the aforementioned 

issue. This method is able to aggregate data evaluated on ordinal scales, overcoming controversial 

assumptions of data cardinality and avoiding any arbitrary and/or artificial “scalarization” of the data. On the 

other hand, its application is relatively simple and intuitional, compared to other proposed approaches 

alternative to the ISM, which often are conceptually complicated and difficult to implement. Furthermore, the 

proposed method can be effectively used when both CR importances and relationship matrix coefficients are 

rated on different ordinal scales and, being easily automatable, it can be effortlessly integrated into existing 

QFD software applications. In the paper, after a general description of the theoretical principle of the method, 

several application examples are presented and discussed. 

Keywords: Quality Function Deployment, House of Quality, Customer Requirements, Engineering 

Characteristics, Independent Scoring Method, Ordinal scale, MCDM. 

1	Introduction	

Quality Function Deployment (QFD) is a practical and effective tool for structuring the design activities for a 

new product/service and the related production/supply process, according to the real exigencies of 

customers [Akao, 1988; Franceschini, 2001; Zheng, Chin, 2005; Sousa-Zomer, Miguel, 2016]. Due to its 

practicality and effectiveness, QFD is universally recognized as a strategic approach to pursue customer 
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satisfaction. The large diffusion of this tool is also proved by the large amount of scientific literature produced 

over the years [Carnevalli and Cauchick Miguel, 2008; Cordeiro, Barbosa, Trabasso, 2016]. 

Many empirical studies demonstrated that the correct implementation of QFD may bring significant 

improvements in the development of products/services, including earlier and fewer design modifications, 

fewer start-up issues, improved cross-functional communications, improved product/service quality, reduced 

time and cost for product/service development, etc. [Biren, 1998; Chan, Wu, 2002.a; Chan, Wu, 2002.b; 

Lager, 2005;  Zheng, Chin, 2005; Carnevalli and Cauchick Miguel, 2008]. 

From a procedural point of view, QFD is based on four phases, which deploy Customer Requirements (CRs) 

throughout a structured planning process [Akao, 1988]. Each phase is supported by a specific matrix, which 

establishes a relationship between variables of different nature. A schematic structure of these four phases 

and the relevant matrices are reported in Fig. 1 [Akao, 1988; Franceschini, 2001]. 

 

Figure 1. Scheme of the four phases of QFD. Adapted from [Lager, 2005]. 

Special attention is given to Phase I, characterized by the construction of the so-called Product Planning 

Matrix, or House of Quality (hereafter abbreviated as HoQ). The goal of this phase is turning the CRs into a 

set of Engineering Characteristics (ECs) and prioritizing these ECs, taking account of (i) their relationships 

with CRs and (ii) the importance of the related CRs. In this process, ordinal data, collected from customer 

questionnaires and/or interviews, are usually “promoted” to cardinal data, relying on two controversial 

assumptions [Roberts, 1979; Van de Poel, 2007]: 

 The importance of each CR, generally expressed on an ordinal scale, is artificially encoded in the form 

of a number, expressed on a cardinal scale (i.e., interval or ratio scale) [Wasserman, 1993; 

Franceschini and Rupil, 1999; Franceschini, 2001]. 

 The prioritization of ECs is traditionally carried out by the Independent Scoring Method (ISM) [Akao, 

1988; Franceschini, 2001], which requires the numerical conversion of the (qualitative) ordinal 

relationships between CRs and ECs into numbers. 

In order to overcome these two assumptions, several alternative techniques have been proposed in the 

scientific literature; e.g., Multi Criteria Decision Making (MCDM) techniques,  Borda’s method, techniques 

based on pairwise comparisons, techniques based on fuzzy logic, hybrid methods, etc. [Franceschini and 

Rossetto, 1995; Dym and Wood, 2002; Han et al., 2004; Wu, 2006 ; Wu, Shieh, 2006 ; Yan et al., 2013; 

Nahm et al. 2013; Franceschini et al., 2015; Chen and Chen, 2014; Jin et al., 2014 ; Chun-Chieh et al., 

2014 ; Iqbal et al., 2015; Jianga et al., 2015, Hosseini Motlagh, Behzadian, Ignatius et al., 2015]. 
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Even if these methods often represent effective solutions to overcome the limitations due to the poor 

properties of linguistic scales, in most cases, they could not help but use arbitrary conversion of data to 

cardinal scales or introduce weighting functions and/or criteria which subjectively depend on the Decision 

Maker that is performing the analysis. This is the case, for example, of all those method based on fuzzy 

logic, in which a membership function should be defined [Yan et al., 2013 ; Hosseini Motlagh, Behzadian, 

Ignatius et al., 2015]. 

Other methods, such as for example Borda-like ones, requires a scalarization of the rank positions, while 

pairwise comparisons are all based on a kind of comparison metric, which is arbitrarily defined as much 

[Dym and Wood, 2002;]. Other more recent methods tried to establish the CRs’ importances and the 

relationship between CRs and ECs through quantitative analysis based on statistical approaches (Markov 

chain, power law models, etc.), but, even in those cases, the controversy scalarization of the collected 

information is disguised in the mathematical formalisms [Wu, 2006 ; Wu, Shieh, 2006]. 

This paper proposes an alternative method to prioritize ECs, which overcomes the aforementioned 

assumptions. The method is able to deal with data expressed on ordinal scales, with no need to “promote” 

them to data expressed on interval or ratio scales [Roberts, 1979]. Being inspired by a technique proposed 

by Yager and Filev (1994) for multi-criteria decision-making problems, the new method can be classified as a 

ME-MCDM (Multi Expert / Multiple Criteria Decision Making) technique. 

From a technical point of view, the method (i) extends the logic of the Boolean operators Min and Max to 

multilevel ordinal scales and (ii) uses the importances of CRs as linguistic quantifiers for weighting the impact 

of the relationship coefficients [Yager and Filev, 1994]. The final result is a prioritization of the ECs, in the 

form of a rank-ordering. 

The remainder of this paper is organized into four sections. Sect. 2 briefly recalls the basic concepts on the 

first phase of QFD. Sect. 3 presents a conceptual and formal description of the new method, focusing on its 

advantages and limitations. Some practical examples are reported and discussed in Sect. 4. Sect. 5 

discusses the new method, focusing the attention on its implications, limitations and possible future 

developments. 

2	Basic	concepts	on	QFD	

The QFD approach consists of four phases which deploy the CRs throughout the design and development 

process of the product/service of interest (see Fig.  1). In the first phase, CRs are related to a set of ECs of 

the product/service. In the second phase, ECs are associated with a set of critical part characteristics, 

through the so-called Part Deployment Matrix. Then, the Process Planning Matrix relates the critical part 

characteristics to the relevant production processes. Finally, the Process and Quality Control Matrix defines 

suitable quality control parameters and methods to monitor the production process. These phases should be 

carried out by the members of a cross-functional team of experts (i.e., the so-called QFD team). 

The first phase is fundamental for the success of QFD implementation [Franceschini 2001; Tontini 2007; Li, 

Tang et al. 2009; Li, Tang et al. 2010], as errors at this stage can propagate throughout the subsequent 

phases. 

With reference to Fig.  2, the construction of the HoQ can be broadly structured into ten steps; for details, 

see Franceschini et al. (2015). 
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Figure 2. Main steps of House of Quality [Franceschini et al., 2015]. 

The focus of the present paper is on Step 8, which is aimed at prioritizing the ECs. To this purpose, several 

approaches are possible. The traditional method is the ISM [Akao 1988], which combines the importances of 

CRs and the data contained in the relationship matrix. The ISM can be subdivided in two operative steps. In 

the first step, the relationship matrix is turned into a cardinal matrix, according to an arbitrary convention: a 

typical approach is to define the ordinal relationships between CRs and ECs on four levels – i.e., absent, 

weak, medium and strong relationship – and encode them into four numerical coefficients, respectively 0, 1, 

3 and 9. In the second step, the relative importance (or the relative weight) of each EC is evaluated through 

a weighted sum of the relative importances of CRs and the encoded relationship matrix coefficients, 

according to the following model [Akao 1988]: 

 
1

n

j i ij
i

w d r


    (1) 

where: 

jw  is the importance of the j -th EC ( 1...j m ), 

id  is the importance of the i -th CR ( 1...i n ), 

ijr  is the coefficient (0, 1, 3 or 9) corresponding to the relationship between the i -th CR and the j -th EC. 

The cardinalization of ordinal data is not a trivial problem and it has been demonstrated that it can produce 

controversial results and drive to wrong decision [Franceschini and Rossetto, 1995; Franceschini and Rupil, 

1999]. In fact, different numerical codifications of the ordered scale levels may lead to different rankings of 

ECs [Franceschini et al., 2015]. This can have a very negative impact on the use of QFD and deleterious 

consequences on the development of a new product both from the economical and the strategical point of 

view. 
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3	The	proposed	method	

EC prioritization is aimed at selecting the ECs with a stronger impact on the most important CRs [Akao, 

1988; Franceschini, 2001]. However, this prioritization should not alter the properties of the original data (i.e., 

CR importances and relationship matrix coefficients, both defined on ordinal scales) [Franceschini et al., 

2015].  

The proposed method is able to deal with ordinal data, with no need to introduce an artificial numerical 

conversion. As anticipated, it can be classified as a ME-MCDM (Multi Expert / Multiple Criteria Decision 

Making) technique [Yager, 1993]. 

The use of ordinal scales raises an important issue: while the distance between two elements is defined on 

cardinal scales (hence, sum and product operators may be applied), this is no longer true for ordinal scales 

[Roberts, 1979]. For this reason, the ISM and other prioritization techniques are rather questionable. 

The proposed method is inspired by the work of Bellman and Zadeh (1970), lately “enriched” by Yager and 

Filev (1994) for the solution of MCDM problems. In the specific case of the QFD, the EC prioritization can be 

considered as a special decision-making problem: precisely, the CRs represent the decision criteria and the 

ECs represent the alternatives [Yager and Filev, 1994]; finally, the Relationship Matrix coefficients can be 

interpreted as assessments of each j -th EC (ECj), according to each i -th CR (CRi). The proposed method 

carries out an overall synthesis of these “assessments”, considering the CR importances as weights of the 

criteria. 

Many examples of application of the method are  presented and discussed in the scientific literature. The 

reported case studies demonstrated that it is particularly effective when the goal is to define a ranking or a 

prioritization of a set of elements/items by aggregating external information expressed on linguistic scales. 

This is the typical case of group decision problems, risk analysis or defects’ causes investigation [Park, 

Gwak, Kwun, 2011; Rodger, Pankaj, Gonzalez, 2014]. 

The approach can be organized in four steps:  

i) Definition of the scale levels for the importances associated with each i-th CRi, ( 1...i n ) and for the 

relationship matrix coefficients ( ijr ) between CRi and ECj ( 1...j m ). 

For simplicity, it is assumed that the importance associated with each CR is defined on an ordinal scale, 

with the same number of levels of the scale used for representing the relationship matrix coefficients. It 

will be shown later on that the method may be extended to scales with different number of levels. 

Table 1 is a correspondence map between CR importances and relationship matrix coefficients, 

expressed on a 3-level ordinal scale ( 3s ). 

 

Scale 
level 

CR importance 
( id ) 

Importance 
value 

Relationship matrix 
coefficient 

( ijr ) 
Symbol 

1L  not (or weakly)  
important 

1 no (or weak) relationship (empty cell) 

2L  important 2 medium relationship  

3L  very important 3 strong relationship  

Table 1. Correspondence map between CR importances and relationship matrix coefficients, expressed on a 

3-levels ordinal scale ( 3s ). 
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ii) Data collection and construction of the relationship matrix. 

iii) Implementation of the ECj  prioritization model: 

   
1...

,


   j i ij
i n

w Min Max Neg d r   (2) 

where: 

jw  is the calculated importance of the j -th EC ( 1...j m ), 

id  is the importance of the i -th CR ( 1...i n ), 

ijr  is the relationship matrix coefficient between CRi  and ECj, 

Min  is the Minimum operator, 

Max  is the Maximum operator, 

 iNeg d  is the negation operator, defined as [Yager, 1993]: 

   1k s kNeg L L     (3) 

where kL  is the k -th level of the evaluation scale ( 1...k s ). 

It is worth noting that the resulting jw  values are defined on the same (s-level) ordinal scale, utilized for 

rating the CR importances and the ijr  coefficients. 

iv) Determination of the EC prioritization, based on the weights calculated using Eq. (2). If two or more ECs 

have the same jw , a more refined selection can be obtained through a further indicator: 

 ( ) A( )j jT Dim    EC EC  (4) 

where the operator A( )jDim   EC  gives the number of elements contained in the set A( )jEC , with 

 A( ) |j i ij jr w EC CR . 

This represents a refined investigation for estimating the dispersion in the resulting EC importance. 

Basically, ( )jT EC  is the count of the CRs with relatively high rij coefficient (with respect to the EC 

importance value), related to the j-th EC. The meaning of ( )jT EC  will be clarified in Sect. 4 by several 

practical examples. 

Considering ECs with the same jw , those with higher values of ( )jT EC  can therefore be considered as 

the most important and the EC ordering can be refined. 

In other terms, the rationale of the procedure is to consider those ECs with strong relationships with the most 

important CRs, as the most important ones. When two or more ECs have the same weight, a refined 

selection is performed using the ( )jT EC  indicator. 

From Eq.(2), it is possible to observe that low-importance CRs have little effect on the importance (wj) of a 

generic j -th EC. In fact, a CR with little importance entails a low importance rating kL  and therefore a high 

value of the negation of this value. Then, applying the Max  operator, the highest value between the negation 

of the importance and the relationship coefficient is selected. For a given EC, all the values related to the 
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whole set of CRs are computed. Then, the Min  operator extracts the smallest of these values. In this way, 

all the contributions from CRs with little importance are automatically cut off. 

The result of the application of Eq. (2) is a balanced tradeoff between high-value relationship coefficients, 

related to the CRs with low importance, and low-value relationship coefficients, related to CRs with high 

importance. 

It can be demonstrated that the model in Eq.(2) satisfies the properties of Pareto optimality, independence to 

irrelevant alternatives, positive association of individual scores with overall score and symmetry [Arrow and 

Rayanaud, 1986; Yager, 1993]. 

An essential feature of this approach is that there is no need for numeric values and it does not force undue 

precision on the experts of the QFD team. 

4	Application	examples	

For the purpose of example, let us consider the design of a new model of a climbing safety harness. This 

example is already present in the scientific literature and may therefore represent an helpful benchmark for 

the application of the proposed method [Hunt, 2013; Franceschini et al., 2015]. 

The CRs and ECs, identified by customer interviews and a technical analysis by the QFD team, are reported 

in Tabs. 2 and 3 respectively. 

 

Customer Requirements (CRs) 

U
sa

bi
lit

y 

Easy to put on CR1 

Confortable when hanging CR2 

Fits over different clothes CR3 

Accessible gear loops CR4 

P
er

fo
rm

an
ce

 

Does not restrict movement CR5 

Lightweight CR6 

Safe CR7 

Attractive CR8 

Table 2. CRs for the design of a new model of a climbing safety harness [Hunt, 2013]. 

Engineering Characteristics (ECs) 
Meets safety standards EC1 

Harness weight EC2 
Webbing strength EC3 

No. of clours EC4 
No. of sizes EC5 

Padding thickness EC6 
No. of gear loops EC7 

Table 3. ECs for the design of a new model of a climbing safety harness [Hunt, 2013]. 

Since the choice of s  (i.e. the number of levels of the ordinal scale, in which CR importances id  and rij 

values are defined) may impact on the results of the HoQ analysis, four distinct situations will be analyzed 

and discussed in the following sub-sections. 
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For each of these situations, the CR importances ( id ) and the (rij) coefficients of the relationship matrix are 

defined by the QFD team. 

4.1	Case	of	3‐level	scale	

Assuming 3s  and using the correspondence map in Tab.1, we obtain the relationship matrices reported in 

Figs. 3 and 4. 

 

    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 CR1 3       
CR2 3      
CR3 1       
CR4 2         
CR5 3    
CR6 2       
CR7 3       
CR8 1        

Figure 3. Relationship matrix for the design of a new model of a climbing safety harness. For details on 

symbols/abbreviations, see Tables 1, 2 and 3. 

    Engineering Characteristics
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 

CR1 3L   
1L  2L  1L  1L  3L  1L  1L  

CR2 3L   
1L  2L  1L  1L  3L  3L  1L  

CR3 1L   
1L  1L  1L  2L  3L  1L  1L  

CR4 2L   
1L  1L  1L  1L  1L  1L  3L  

CR5 3L   
2L  2L  3L  1L  3L  2L  1L  

CR6 2L   
1L  3L  1L  1L  1L  2L  2L  

CR7 3L   
3L  1L  2L  1L  1L  1L  1L  

CR8 1L   
1L  1L  1L  3L  1L  1L  2L  

Figure 4. “Transformed” relationship matrix, obtained from that in Figure 3, when using a 3-level ordinal scale 

for both CR importances and relationship coefficients. For details on symbols/abbreviations, see Tables 1, 2 

and 3. 

According to Eq. (3), the negations for the levels of a 3-point ordinal scale are: 

     1 3 2 2 3 1, , .Neg L L Neg L L Neg L L    

Hence, the importance of EC1 may be calculated using Eq. (2), as follows: 
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  
       
       

   

1 1
1...8

3 1 3 1 1 1 2 1

3 2 2 1 3 3 1 1

1 1 1 1 3

,

, , , , , , , ,

, , , , , , ,

, , , , ,


   

                   
                



i i
i

w Min Max Neg d r

Max Neg L L Max Neg L L Max Neg L L Max Neg L L
Min

Max Neg L L Max Neg L L Max Neg L L Max Neg L L

Max L L Max L L Max L
Min

   
       

 

1 2 1

1 2 2 1 1 3 3 1

1 1 3 2 2 2 3 3 1

, , ,

, , , , , , ,

, , , , , , ,

    
  

 

L Max L L

Max L L Max L L Max L L Max L L

Min L L L L L L L L L

 

The importances for the other ECs may be computed in the same way, obtaining the following results: 

  
  
  
  
  
  

2 2 1
1...8

3 3 1
1...8

4 4 1
1...8

5 5 1
1...8

6 6 1
1...8

7 7 1
1...8

,

,

,

,

,

,

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L













   

   

   

   

   

   

 

In this specific case, all the ECs obtain the same importance, hence the resulting ranking is: 

1 2 3 4 5 6 7     EC EC EC EC EC EC EC  

where symbol “  ” denotes the indifference relationship.  

This “flattening effect” is mainly due to the low discriminating power of the method, when using scales with a 

small number of levels. A better discrimination of the ECs can be obtained, refining the analysis by means of 

the ( )jT EC  indicators: 

     
     
     
   

1 1 1 1 5 7

2 2 2 2 1 2 5 6

3 3 3 3 5 7

4 4 4 4

( ) A( ) | , 2

( ) A( ) | , , , 4

( ) A( ) | , 2

( ) A( ) |

i i

i i

i i

i i

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim

          
          
          
     

EC EC CR CR CR

EC EC CR CR CR CR CR

EC EC CR CR CR

EC EC CR C 
     
     
     

3 8

5 5 5 5 1 2 3 5

6 6 6 6 2 5 6

7 7 7 7 4 6 8

, 2

( ) A( ) | , , , 4

( ) A( ) | , , 3

( ) A( ) | , , 3

i i

i i

i i

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim

  
          
          
          

R CR

EC EC CR CR CR CR CR

EC EC CR CR CR CR

EC EC CR CR CR CR

 

The refined ranking of the ECs is: 

2 5 6 7 1 3 4   EC EC EC EC EC EC EC , 

where symbols “ ” and “  ” denote the strict preference and indifference relationship respectively. 

4.2	Case	of	10‐level	scale	

Assuming that 10s   and using the correspondence map in Table 4, we obtain the relationship matrices in 

Figures 5 and 6. 

 



10 
 

Scale 
level 

CR importance 
( id ) 

Importance 
value 

Relationship coefficient 
( ijr ) Symbol 

1L  not important 1 no relationship 
(empty 

cell) 

2L  … 2 …  

3L  … 3 …  

4L  moderately important 4 medium relationship  

5L  … 5 …  

6L  … 6 …  

7L  important 7 strong relationship  

8L  … 8 …  

9L  … 9 …  

10L  very important 10 very strong relationship  

Table 4. Correspondence map between CR importances and relationship coefficients, expressed on a 10-

level ordinal scale ( 10s  ). 

    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 CR1 9    
CR2 8    
CR3 2      
CR4 5        
CR5 9    
CR6 7     
CR7 10     
CR8 3       

Figure 5. Relationship matrix for the design of a new model of a climbing safety harness. For details on 

symbols/abbreviations, see Tables 1, 2 and 3.. 

    Engineering Characteristics
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 

CR1 9L   
3L  3L  2L  1L  9L  3L  2L  

CR2 8L   
2L  5L  2L  1L  9L  9L  1L  

CR3 2L   
1L  1L  1L  4L  8L  2L  1L  

CR4 5L   
2L  1L  1L  1L  1L  1L  10L  

CR5 9L   
7L  4L  10L  1L  10L  7L  1L  

CR6 7L   
3L  10L  1L  1L  2L  7L  7L  

CR7 10L   
10L  3L  6L  1L  2L  1L  2L  

CR8 3L   
1L  1L  1L  10L  1L  2L  7L  

Figure 6. “Transformed” relationship matrix, obtained from that in Figure 5, when using a 10-level ordinal 

scale for both CR importances and relationship coefficients. For details on symbols/abbreviations, see 

Tables 1, 2 and 3. 

According to Eq. (3), the negations for the levels of a 10-point ordinal scale are: 

         
         

1 10 2 9 3 8 4 7 5 6

6 5 7 4 8 3 9 2 10 1

, , , , ,

, , , , .

Neg L L Neg L L Neg L L Neg L L Neg L L

Neg L L Neg L L Neg L L Neg L L Neg L L

    

    
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According to Eq. (2), the importances related to each of the 7 ECs are: 

  
  
  
  
  
  

1 1 3
1...8

2 2 3
1...8

3 3 2
1...8

4 4 1
1...8

5 5 2
1...8

6 6 1
1...8

7

,

,

,

,

,

,

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min















   

   

   

   

   

   

   7 2
1...8

,i iMax Neg d r L  

 

The resulting ranking is: 

1 2 3 5 7 4 6   EC EC EC EC EC EC EC  

Comparing these results with those in the case s = 3, we note that when increasing s , the “flattening effect” 

tends to disappear and the discrimination power of the resulting ranking tends to increase. On the other 

hand, scales with too many levels may be difficult to interpret for respondents and QFD team members. For 

this reason, the scientific literature often suggests not to exceed 5 levels [Franceschini and Rupil, 1999; 

Franceschini, 2001]. 

Again, the ( )jT EC  indicator may be calculated in order to refine the EC ordering: 

     
     
     
   

1 1 1 1 9 10

2 2 2 2 2 7 9

3 3 3 3 5 7

4 4 4 4 3

( ) A( ) | , 2

( ) A( ) | , , 3

( ) A( ) | , 2

( ) A( ) | ,

i i

i i

i i

i i

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim

          
          
          
     

EC EC CR CR CR

EC EC CR CR CR CR

EC EC CR CR CR

EC EC CR CR 
     
     
     

8

5 5 5 5 1 2 3 5

6 6 6 6 1 2 3 5 6 8

7 7 7 7 4 7 8

2

( ) A( ) | , , , 4

( ) A( ) | , , , , , 6

( ) A( ) | , , 3
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          
          
          

CR

EC EC CR CR CR CR CR

EC EC CR CR CR CR CR CR CR

EC EC CR CR CR CR

The resulting refined 

ranking is: 

     2 1 5 7 3 6 4EC EC EC EC EC EC EC  

Even if the relationship matrix in Figure 5 is consistent with that in Figure 3 (coefficients and CR importances 

in Figure 5 are obtained by splitting those in Figure 3 in a further detail), some significant rank reversals of 

the ECs are observed. See, for example, EC1 and EC6. 

This rank reversal is intrinsically due to the increase of the number of scale levels. It is not a peculiarity of 

this method, it may happen also using more “traditional” approaches, such as, for example, ISM. In fact, 

applying ISM to data in Figures 4 and 6 and interpreting scale levels as numbers (i.e. 1 101,..., 10 L L ), the 

respective results are: 

5 2 6 1 3 7 4EC EC EC EC EC EC EC   

and 

5 1 6 2 3 7 4EC EC EC EC EC EC EC , 
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which show rank reversal for EC1 and EC2. 

4.3	Case	of	5‐level	scale	

This case considers the situation in which both the CR importances id  and rij coefficients are expressed on a 

5-level ordinal scale ( 5s  ) (see Table 5). 

This number of scale levels seems to represent a good compromise between the previous two cases. The 

related relationship matrices are reported in Figures 7 and 8. 

 

Scale 
level 

CR importance 
( id ) 

Importance 
value 

Relationship coefficient 
( ijr ) Symbol 

1L  not important 1 no relationship (empty cell) 

2L  weakly important 2 weak relationship  

3L  moderately important 3 medium relationship  

4L  important 4 strong relationship  

5L  very important 5 very strong relationship  

Table 5. Correspondence map between CR importances and relationship coefficients, expressed on a 5-

level ordinal scale ( 5s  ). 

    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 CR1 5     
CR2 4      
CR3 1       
CR4 3         
CR5 5    
CR6 4      
CR7 5      
CR8 2        

Figure 7. Relationship matrix for the design of a new model of a climbing safety harness. For details on 

symbols/abbreviations, see Tables 1, 2 and 3. 

    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 

CR1 5L   
2L  2L  1L  1L  5L  2L  1L  

CR2 4L   
1L  3L  1L  1L  5L  5L  1L  

CR3 1L   
1L  1L  1L  2L  4L  1L  1L  

CR4 3L   
1L  1L  1L  1L  1L  1L  5L  

CR5 5L   
4L  2L  5L  1L  5L  4L  1L  

CR6 4L   
2L  5L  1L  1L  1L  4L  4L  

CR7 5L   
5L  2L  3L  1L  1L  1L  1L  

CR8 2L   
1L  1L  1L  5L  1L  1L  4L  

Figure 8. “Transformed” relationship matrix, obtained from that in Figure 7, when using a 5-level ordinal scale 

for both CR importances and relationship coefficients. For details on symbols/abbreviations, see Tables 1, 2 

and 3 
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According to Eq. (3), the negations of a 5-point ordinal scale are: 

         1 5 2 4 3 3 4 2 5 1, , , , .Neg L L Neg L L Neg L L Neg L L Neg L L      

Hence, according to Eq. (2), we obtain the following EC importances: 

  
  
  
  
  
  

1 1 2
1...8

2 2 2
1...8

3 3 1
1...8

4 4 1
1...8

5 5 1
1...8

6 6 1
1...8

7

,
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,

,

,

,

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min Max Neg d r L

w Min
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











   

   

   

   

   

   

   7 1
1...8

,i iMax Neg d r L  

 

The resulting ranking is therefore: 

1 2 3 4 5 6 7    EC EC EC EC EC EC EC  

Applying Eq. (4), the resulting ( )jT EC  values are: 

     
     
     
     

1 1 1 1 5 7

2 2 2 2 2 6

3 3 3 3 5 7

4 4 4 4 3 8

( ) A( ) | , 2

( ) A( ) | , 2

( ) A( ) | , 2

( ) A( ) | ,

i i

i i

i i

i i

T Dim Dim r w Dim
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T Dim Dim r w Dim

          
          
          
       

EC EC CR CR CR

EC EC CR CR CR

EC EC CR CR CR

EC EC CR CR CR

     
     
     

5 5 5 5 1 2 3 5

6 6 6 6 1 2 5 6

7 7 7 7 4 6 8

2

( ) A( ) | , , , 4

( ) A( ) | , , , 4

( ) A( ) | , , 3

i i

i i

i i

T Dim Dim r w Dim

T Dim Dim r w Dim

T Dim Dim r w Dim


          
          
          

EC EC CR CR CR CR CR

EC EC CR CR CR CR CR

EC EC CR CR CR CR

 

The refined ranking is: 

   1 2 5 6 7 3 4  EC EC EC EC EC EC EC  

Even if the relationship matrix is consistent with those in Figures 3 and 5, a few significant rank reversals can 

be observed. 

4.4	Case	of	scales	with	a	different	number	of	levels	

In typical QFD applications, CR importances and relationship coefficients may be defined on not-necessarily-

identical ordinal scales. Precisely, CR importances are usually evaluated on a 5-level scale (see the first 

three columns of Table 5), while rij coefficients on a 4-level scale (see Table 6) [Akao, 1988; Franceschini, 

2001]. 
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Relationship coefficient 
( ijr ) Symbol 

no relationship (empty cell) 
weak relationship 

medium relationship 
strong relationship 

Table 6. Example of relationship coefficients evaluated on a symbolic 4-level ordinal scale ( 4s  ). 

In this case, the aggregation method proposed in Eq. (2) cannot be applied [Yager and Filev, 1994]. 

However, a practical approximated solution may be obtained by merging two or more contiguous levels of 

the ordinal scale with the largest number of levels into one, or introducing one or more “dull” levels in the 

ordinal scale with the lowest number of levels; this second option is implemented in the example in Tab. 7. 

We remark that this approach leaves a certain discretionary power to the QFD team, in choosing the scale 

levels to be adjusted; however, the suggested “adjustment” does not alter the ordinal relationships between 

the objects represented on the initial ordinal scale(s) [Roberts, 1979].  

 

Scale level 
Relationship coefficient 

( ijr ) Symbol 

1L  no relationship (empty cell) 

2L  (dull) N/A N/A 

3L  weak relationship  

4L  medium relationship 

5L  strong relationship 

Table 7. Example of a possible correspondence map of the relationship coefficients evaluated on a symbolic 

4-level ordinal scale ( 4s  ). 

According to the mappings in the first three columns of Table 5 and that in Table 7, we obtain the relationship 

matrices reported in Figures 9 and 10. 

 

    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 

CR1 4        
CR2 4       
CR3 2        
CR4 3         
CR5 4     
CR6 3       
CR7 5        
CR8 2        

Figure 9. Relationship matrix for the design of a new model of a climbing safety harness. For details on 

symbols/abbreviations, see Tables 1, 2 and 3. 
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    Engineering Characteristics 
  

id   EC1 EC2 EC3 EC4 EC5 EC6 EC7 
   

C
u

st
o

m
er

 
R

eq
u

ir
em

en
ts

 

CR1 4L   
1L  1L  1L  1L  4L  1L  1L  

CR2 4L   
1L  3L  1L  1L  4L  4L  1L  

CR3 2L   
1L  1L  1L  3L  4L  1L  1L  

CR4 3L   
1L  1L  1L  1L  1L  1L  5L  

CR5 4L   
4L  3L  5L  1L  5L  4L  1L  

CR6 3L   
1L  5L  1L  1L  1L  4L  4L  

CR7 5L   
5L  1L  3L  1L  1L  1L  1L  

CR8 2L   
1L  1L  1L  5L  1L  1L  4L  

Figure 10. “Transformed” relationship matrix, obtained from that in Figure 9, when using a 5-level ordinal 

scale for CR importances and a 4-level one for relationship coefficients. For details on 

symbols/abbreviations, see Tables 1, 2 and 3. 

The negations of a 5-point ordinal scale are reported in the example in Sect. 4.3. 

By applying Eq. (2), we obtain the following EC importances: 
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The resulting ranking is: 

1 3 2 4 5 6 7    EC EC EC EC EC EC EC  

Using Eq. (4), the ( )jT EC  indicators may be calculated as: 
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The refined ranking is: 

   1 3 5 2 6 7 4  EC EC EC EC EC EC EC  
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This result is not so different from that obtained in Sect. 4.3, although there are some variations, e.g., the 

significant increase in EC3. 

5	Conclusions	

This paper introduced and discussed a new method to compute the EC prioritization in QFD. Data 

processing is performed consistently with the ordinal features of the scales for representing the CR 

importances and relationship matrix coefficients. The simplicity of this method is comparable to that of the 

traditional approach, i.e., the ISM. 

The main novelties of the method are that: 

 it is able to aggregate data evaluated on ordinal scales, overcoming controversial assumptions of data 

cardinality; 

 it does not require any arbitrary and artificial “scalarization” of the data; 

 it is also able to deal with situations in which both CR importances and relationship matrix coefficients are 

rated on different ordinal scales; 

 it is automatable and easy integrated into QFD existing software applications. 

Moreover, the proposed aggregation logic is relatively flexible since, as each case requires, it may be 

replaced by other aggregation logics; for example, high positions in the final ranking can be assigned only to 

those ECs, which are related to those CRs with maximum importance or others. 

In the scientific literature, many other different methods have been proposed in order to overcome the 

problems related to the poor properties of the scales on which data are collected. Most of these do not 

completely solve this problem, including some subjective scale scalarization, or entail complex procedures, 

with mathematical models scarcely intuitional, which are difficult to be implemented and which can hardly be 

automated. 

On the contrary, the rigorous respect of the scale properties, the intuitional logic and the simplicity of 

implementation make this approach more suitable for the practical applications. 

On the other hand, the proposed method has some limitations, summarized in the following three points: 

 The method may generate a “flattening effect” when applying Eq. (2) to scales with a small number of 

levels. This may apparently encourage the use of scales with a large number of levels (e.g., 10 or 

more). However, scales with too many levels may be difficult to interpret for respondents and QFD team 

members. The scientific literature and the examples presented in Sect. 4 suggest that using a 5-level 

scale can be an acceptable compromise [Franceschini and Rupil, 1999; Franceschini, 2001]. We also 

remark that the aforementioned “flattening effect” can also occur when the number of CRs is large. 

 The importance associated with each EC is defined on a s -point ordinal scale, with the same number of 

levels of those used for the CR importance and the rij coefficients. As a consequence, the final ordering 

of the ECs cannot be expressed on more than s  ordered categories. 

 When both CR importances and rij coefficients have high values, the method tends to flatten the 

importance values ( jw ) upwards, for all the ECs. This is coherent with the aim of the method, since it 

indicates that several ECs are important and should not be neglected by designers. Similarly, when both 
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CR importances and rij coefficients have low values, the method tends to flatten all the computed EC 

importances downwards. 

The implementation of the proposed method in modern manufacturing practices will help the design working 

team in defining more correct and reliable strategies for the development and the introduction onto the 

market of new products or services, specially focusing on the poor, but basilar information, which can be 

deduced from the analysis and interpretation of  CRs. 

Future research will be addressed to the construction of a tool able to support a Decision Maker in the 

selection of the most appropriate prioritization procedure basing on the properties of the data available 

during the design process. 
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