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Abstract

The optimization of airport operations has gained increasing interest by the aeronau-
tical community, due to the substantial growth in the number of airport movements
(landings and take-offs) experienced in the past decades all over the world. Forecasts
have confirmed this trend also for the next decades. The result of the expansion of
air traffic is an increasing congestion of airports, especially in taxiways and run-
ways, leading to additional amount of fuel burnt by airplanes during taxi operations,
causing additional pollution and costs for airlines. In order to reduce the impact
of taxi operations, different solutions have been proposed in literature; the solution
which this dissertation refers to uses autonomous electric vehicles to tow airplanes
between parking lots and runways. Although several analyses have been proposed in
literature, showing the feasibility and the effectiveness of this approach in reducing
the environmental impact, at the beginning of the doctoral activity no solutions were
proposed, on how to manage the fleet of unmanned vehicles inside the airport environ-
ment. Therefore, the research activity has focused on the development of algorithms
able to provide pushback tractor (also referred as tugs) autopilots with conflict-free
schedules. The main objective of the optimization algorithms is to minimize the tug
energy consumption, while performing just-in-time runway operations: departing
airplanes are delivered only when they can take-off and the taxi-in phase starts as
soon as the aircraft clears the runway and connects to the tractor. Two models, one
based on continuous time and one on discrete time evolution, were developed to
simulate the taxi phases within the optimization scheme. A piecewise-linear model
has also been proposed to evaluate the energy consumed by the tugs during the
assigned missions. Furthermore, three optimization algorithms were developed: two
hybrid versions of the particle swarm optimization and a tree search heuristic. The
following functional requirements for the management algorithm were defined: the
optimization model must be easily adapted to different airports with different layout
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(reconfigurability); the generated schedule must always be conflict-free; and the
computational time required to process a time horizon of 1h must be less than 15min.

In order to improve its performance, the particle swarm optimization was hy-
bridized with a hill-climb meta-heuristic; a second hybridization was performed
by means of the random variable search, an algorithm of the family of the variable
neighborhood search. The neighborhood size for the random variable search was
considered varying with inverse proportionality to the distance between the actual
considered solution and the optimal one found so far. Finally, a tree search heuristic
was developed to find the runway sequence, among all the possible sequences of
take-offs and landings for a given flight schedule, which can be realized with a
series of taxi trajectories that require minimum energy consumption. Given the taxi
schedule generated by the aforementioned optimization algorithms a tug dispatch
algorithm, assigns a vehicle to each mission. The three optimization schemes and
the two mathematical models were tested on several test cases among three air-
ports: the Turin-Caselle airport, the Milan-Malpensa airport, and the Amsterdam
airport Schiphol. The cost required to perform the generated schedules using the
autonomous tugs was compared to the cost required to perform the taxi using the
aircraft engines. The proposed approach resulted always more convenient than the
classical one.
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V Taxiing speed [m/s]

V Set of taxiing speeds [m/s]

Vf Taxi speed of the follower [m/s]

VEmin Speed that corresponds to the minimum energy consumption [m/s]

Vhigh Lowest taxi speed to reach an assigned runway slot [m/s]

vk, j Velocity of the j-th element of the k-th particle [−]

Vlow Lowest taxi speed to reach an assigned runway slot [m/s]

Vmax Maximum taxi speed [m/s]

Vmin Minimum taxi speed [m/s]

W Particle inertia parameter [−]

wairplane Airplane wingspan [m]
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wtractor Tractor width [m]

x Particle [−]

xnew Particle modified by the hybridization algorithm [−]

Z Set of integer numbers [−]

Z+ Set of positive integer numbers [−]

Z+
0 Set of positive integer numbers excluding the 0 [−]



Chapter 1

Introduction

1.1 Motivation

1.1.1 Air traffic overview

Civil aviation has grown significantly in terms of both passengers (Fig. 1.1) and
movements (Fig. 1.2) over the past decade [1]. Traffic forecasts suggest that this
trend will continue in the mid- to long-term, resulting in a doubling of the number
of passengers flying around the world to approximately 14 billion/year by 2029,
growth that will mainly originate from emerging markets, and an increase of 2.5%
in aircraft movements over the period 2015-2040 [1]. Data from the US Bureau
of Transportation Statistics (BTS) highlight an increasing trend for the number of
both domestic and international passengers (Fig. 1.3), whereas a contraction in the
number of flights has been registered (Fig. 1.4) [2]. Both the number of passengers
and the number of flights in the US has dropped between 2007 and 2009 by 8.1%
and 10.23% respectively, probably as a consequence of the financial crisis. After
this period, the number of passengers showed a positive trend, while the volume
of movements decreased, especially in the domestic market. In Europe, analogous
trends were recorded. Indeed, from 2008 to 2015, the number of passengers flying
within and to/from Europe has substantially increased (Fig. 1.5), even though the
total number of movements has remained almost constant (Fig. 1.6) [3]. As far as
the historical data are concerned, the major contribution to the growth in passengers
can be ascribed to passengers flying from/to outside the EU or flying internationally



2 | Introduction

intra-EU. Intra-EU flights represent the predominant market, with more than double
the number of flights registered for the other market segments; as far as passenger
numbers are concerned, the extra-EU and the intra-EU markets almost equal each
other.

Fig. 1.1 Airport passenger trend per geographical area. Data source: Airport Council
International.

Fig. 1.2 Airport movements trend per geographical area. Data source: Airport Council
International.
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Fig. 1.3 Airport passenger trend per market segment and total in the US from 2002 to 2015.
Data source: Bureau of Transportation Statistics T-100 Market data.

Fig. 1.4 Airport flights trend per market segment and total in the US from 2002 to 2015.
Data source: Bureau of Transportation Statistics T-100 Segment data.

Fig. 1.5 Airport passenger trend per market segment and total in Europe from 2008 to 2015.
Data source: Eurostat.
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Fig. 1.6 Airport movements trend per market segment and total in Europe from 2008 to 2015.
Data source: Eurostat.

Another metric that can be considered for the evaluation of air traffic is the fuel
consumed by airplanes. The BTS provides the fuel consumption history for domestic
and international flights (Fig. 1.7). As it can be noticed, despite the reduction in the
number of flights in the US from 2009 to 2015, the fuel burnt has an almost constant
trend with a 2% increase in 2015 with respect to 2009.

Fig. 1.7 Fuel consumption trend per market segment and total in the US from 2002 to 2015.
Data source: Bureau of Transportation Statistics.

If history is indeed prologue, the main consequences of the forecasted air traffic
increase will be increased airport congestion and longer queues at runways, leading to
longer taxi times. Taxi time is defined as the time that an aircraft spends on the ground
with engines on: either between pushback and take-off (taxi-out), or between touch-
down and arrival at the gate (taxi-in). The Aviation System Performance Metrics
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(ASPM) database, managed by the Federal Aviation Administration (FAA), provides
historical data, including taxi time [4] data, for the evaluation of the performance
of the US air transportation system. The average taxi-out and taxi-in time at the
top airports in the US are shown in Figure 1.8 for the period 2002 to 2015. As
may be seen, during the past decade the taxi time increased when the number of
flights increased and decreased otherwise. However, starting from 2012, despite the
negative trend in terms of the number of flights per year, the taxi time has increased,
suggesting that there has been increasing congestion on the airport surface. The
same trend has been registered for the taxi delay, namely the difference between the
actual taxi time and the unimpeded one, estimated for each airport and airline as a
weighted average for each year. The average delay among the airports is depicted in
Fig. 1.9, for both the taxi-out and taxi-in [4]. The increased time spent by airplanes
on the ground with the engines on causes additional fuel to be burnt, aggravating
the environmental impact of the taxi phase and increasing the cost for airlines. A
thorough investigation of the influence of congestion on the taxi-out time and, as a
consequence, on the fuel burn and engine emissions is presented in [5]; analogous
analyses could be made for the taxi-in time, as apron congestion also affects arrivals.

Fig. 1.8 Average taxi-out and taxi-in times for the ASPM airports from 2002 to 2015. Data
source: Aviation System Performance Metrics.

The growth in air traffic also has an impact on safety. In the US, between
2008 and the end of 2014, 275 accidents and 25 incidents occurred during ground
operations. The different types of accidents and their occurrence [6] are shown in Fig.
1.10a. Most of the accidents was caused by ground collisions (35.27%), followed by
loss of control on ground (22.55%) and collision with terrain or objects (10.91%).



6 | Introduction

Fig. 1.9 Average delay with respect to the unimpeded taxi-out and taxi-in times for the ASPM
airports from 2002 to 2013. Data source: Aviation System Performance Metrics.

(a) Taxi accidents types.
(b) Ground collision causes.

Fig. 1.10 Taxi accidents analysis in US airports from 2008 to 2014.

The sources of ground collisions are different: system failures could lead to
an incorrect behavior of the aircraft, which can strike objects or other airplanes
along the taxiway; the absence or malfunctioning of airport markings and visual
aids, compromising the effectiveness of ground operations. Fig. 1.10b illustrates the
distribution of the causes of ground collision accidents in the examined period; it
follows that the main cause of accidents due to ground collisions was pilot’s failures
due to misjudgment of clearances (approximately 81%), whereas system failures and
the absence of markings account for approximately 9% of the total ground collisions.

The failure of pilots to correctly assess the distance to other objects, static or
dynamic, stem from poor pilot situational awareness, which could be generated by
several causes: difficulties in maintaining an adequate visual lookout while taxiing;
conventional landing gear (also known as tail-wheel landing gear, which consists
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Fig. 1.11 Annual accidents occurred during ground operations in US airports from 2008 to
2014.

of two main wheels forward of the center of gravity and a small wheel or skid to
support the tail), which prevents the pilot having a good view of the terrain and
imposes "s" turns; procedures to be accomplished when taxiing; and instrumentation
to be operated. Considering the number of accidents from 2008 to 2015, it may be
seen that there was a substantial decrease during this period, as depicted in Fig. 1.11;
thus, it can be deduced that technologies developed during those years to increase
the safety during ground operations, together with enhanced pilot training, proved to
be effective, even though further improvements are still required.

It appears that existing technologies are not sufficient to meet the objective, fixed
by the main aeronautical authorities, of making airspace systems, including airports,
safer and greener, despite the growth of the number of aircraft, moving every day
all over the world. Thus, new procedures and equipments if ground operations
are to be performed in a safer manner, in all conditions, with lower environmental
impact. Optimization of ground operations is a cost effective way of achieving the
aforementioned goals.

1.1.2 Ground operation optimization

The optimization of airport ground operations has been a popular topic among the
researchers in the past decades. As described in [7], operations research techniques
can be successfully applied to different branches of the air transportation industry,
including airside operations. A tree search has been proposed in [8] to solve the run-
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way occupancy problem and define the optimal departure sequence that maximizes
runway throughput, reduce taxi time and delays, and manage controllers’ workload.
Simulation has also been used to study and characterize the dynamics of busy airport
surfaces. Besides, accurate simulators can be used to test and evaluate departure
control strategy to alleviate departure traffic congestion in busy airports [9]. Two
queuing models and an integer programming model have been proposed in [10] to
simulate respectively the taxi-in and taxi-out flows and the airline decision-making
for tournaround processes. The scope of this simulation was that of predict with good
accuracy airport congestion and test control strategies to increase airport efficiency.

Among the ground operations, the airplane taxi phase has received particular
attention, in order to reduce its environmental and economical impact. Previous
research in the area of ground operations mostly focused on the reduction of the
time spent with the engines on, without taking directly into consideration the fuel
consumption, as it had been assumed to be proportional to the taxi time. Gotteland
and Durand [11–13], applied a genetic algorithm and a branch & bound based
algorithm to the reduction of the total taxi time, increased by the time spent in
lengthened trajectories. Taxi time and delay reduction is the goal of the mixed
integer programming algorithm proposed by Guépet et al. [14] and of the genetic
algorithm presented in [15]. A linear programming model is established in [16],
which is used within a genetic algorithm to minimize the taxi time. The paper
by Jingnan and Qing [17] presents two particle swarm optimization algorithms to
minimize the total taxiing time of all the aircraft by ordering the arrival of the aircraft
at each taxiway segment. The vertex-based label-setting Quickest Path Problem with
Time Windows (QPPTW) algorithm, introduced in [18], aims to absorb as much
delay time as possible at the stand, decreasing the engine-on time and, indirectly, the
fuel consumption. A modified version of the QPPTW, presented by Stergianos et al.
[19], takes into account also the time required to perform the pushback, leading to
a more realistic model. The improved A* algorithm proposed in [20] implements
a conflict avoidance multi-objective optimization function to include the conflict
information inside the path optimization.

In recent years, the environmental impact of ground movements has gained more
attention, leading to the development of optimization models that explicitly consider
the fuel consumption during the optimization process, with the final goal of having
a better estimate of the fuel burn relative to the simply time proportionality model.
Weiszer et al. [21] proposed a heuristic approach aiming at the optimization of the
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speed profile for the family of k-best taxi routes, generated using the k-QPPTW
algorithm; this approach has been improved for real-time applications using a pre-
computed database of optimized speed profiles, for taxi route building blocks [22].
A multi-objective speed profile optimization algorithm for a trade-off between taxi
time and fuel consumption is presented in [23]; two different models are proposed
for the fuel consumption evaluation: one based on the international civil aviation
organization (ICAO) emission database, and one that exploits the Eurocontrol base
of aircraft data (BADA). A two-stage speed profile design that uses a particle swarm
optimization is presented in [24] and in [25]: the first stage of the algorithm allocates
speed values at defined control points along the path, in order to ensure a smooth
profile; in the second stage, the performed speed allocation is used as input for an
algorithm that optimizes the speed profile for each taxi segment. Kjenstad et al. [26]
have proposed and validated a heuristic approach to decompose the arrival, surface,
and departure management problems, in order to solve the routing, sequencing, and
deconfliction problems in subsequent phases.

Alternative solutions to perform the taxi phase, based on maintaining the air-
craft main engines off, were proposed in past years in both academia and industry.
Safran, in collaboration with Honeywell, and WheelTug separately developed similar
solutions that use electric motors mounted on the nose landing gear (NLG) of the
airplane to motion it on the airport surface [27, 28]; in both cases, the electric motors
are powered by the auxiliary power unit (APU). The main benefits of this solution
have been quantified in a lower amount of fuel burnt by the main engines, reduced
tug operations and decreased foreign object debris damage. Besides, the pushback
capability granted by the electric motors enables to save time, as no tractors are
required to move from the stand. On the other hand, these systems cause an increase
in the fuel that is burnt by the APU and additional fuel consumption during the flight,
due to the supplementary weight of the taxiing system. Furthermore, the taxi speed
granted by this devices is lower than the airplane taxi speed when powered by its
own engines, and the energy absorbed by the electric motor can prevent the engine
start-up from the APU until the runway is reached; these features can generate delays,
especially in airports where the taxiway width does not permit overtakes near the
holding positions [29]. When performing taxi operations by means of alternative
solutions, it must be taken into account the necessity for aircraft engines to warm up
prior departure for a period that ranges from 2 to 5 minutes, depending on the engine
model and the external temperature [30].
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The use of electric tugs to tow aircraft between stands and runways has been pro-
posed and analyzed in the literature for semi-autonomous [31] and fully autonomous
[32–35] tractors. The Taxibot system provides the pilot with steering and braking
capabilities through an innovative nose landing gear interface, thereby the pilot can
act as if he were taxiing in a conventional way. The system grants a taxi speed up
to 23 knots, same as actual airplane taxi speed. During each phase of the taxi, a
pilot in control (PIC) is ensured, meeting all the safety, accountability and regulatory
requirements [31].

A futuristic approach that uses fully autonomous taxi systems can overcome
some of the weaknesses of the semi-autonomous solution: the taxiing speed can
be better controlled by the onboard computer than by the pilot, leading to a better
accuracy in tractor positioning in time, a reduced workload required for pilots, with
the possibility of head-down operations during taxi. Furthermore, tractors can be
equipped with sensing systems able to enhance their situational awareness, thereby
automatically reacting if potential hazards are detected. This capability can reduce
the occurrence of incidents and accidents.

Although several papers analyzing the feasibility and effectiveness of fully
autonomous taxiing systems have been proposed in literature, little work has been
done in terms of articulating how the fleet management should best be performed in
an airport environment, thereby justifying the need to research systems that are able
to provide conflict-free schedules for the tractor autopilots, via the solution of the
associated planning and scheduling problems.

1.2 Overview of planning and scheduling algorithms

In automated planning, researchers study the process of choosing and organizing
actions by anticipating their outcomes, thereby achieving, with certain accuracy, a
predefined objective [36, 37]. Scheduling addresses the problem of how to perform
a set of actions given limited resources in a limited amount of time [38, 36, 39].
Resources are defined as entities that can be used in order to perform an action;
resources can be:

• reusable: resources that return available to other actions after their exploitation;
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• consumable: resources that deteriorate when used but can be restored by other
actions.

Addressing the two problems separately might not work when complex systems
are considered; therefore, an integrated approach that takes into account both plan-
ning and scheduling is required [36]. Polynomial algorithms have been implemented
to solve scheduling problems that have been proved to be polynomially solvable, such
as the single-machine, the flow-shop and the open-shop problems. Exact approaches
based on branch and bound have been widely used [40–44]. Linear programming
techniques [45, 46] have also been implemented to solve this family of problems.

Modern applications, in which the complexity of systems to be optimized is
ever increasing, led to the definition of problems for which exact algorithms are not
tractable, as they would require excessive time to reach solutions. Therefore, approx-
imation techniques, such as approximate dynamic programming (e.g. Q-learning)
[47–49] and greedy algorithms [50, 51] have been used to reach solution in a rea-
sonable time. Heuristic and meta-heuristic algorithms have also been successfully
applied to complex scheduling and combinatorial optimization problems. Heuristics
have been proposed in literature to solve scheduling and routing problems [52–54].

Meta-heuristics can be divided in local and global search algorithms. The
first ones, such as the tabu search [55–57] and the hill-climbing (HC) [58, 59],
iteratively move from a tentative solution to a neighbor solution in the search space;
however, local search can get stuck in local optima if no improving solutions are
present in the actual neighborhood. Global search algorithms were proposed to
overcome this problem; an important branch of global search meta-heuristics is
represented by population-based algorithms. In these approaches, the population
components collaborate by sharing information to reach the optimization goal;
several applications of population-based algorithms to scheduling and assignment
problems have been proposed in literature for the ant colony algorithm (AC) [60, 61],
the genetic algorithms (GA) [62–65] and for particle swarm optimization (PSO)
[66–70].

For the sake of enhancing the performance of meta-heuristics, hybridization
techniques can be effectively employed; hybrid algorithms combine the properties
of global and local search to balance exploration and exploitation and to achieve
better solutions [71]. Different algorithms have been used for the meta-heuristic
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hybridization: other (meta-)heuristics, constraint programming, tree search methods,
problem relaxation, and dynamic programming [72].

In the present work, hybrid versions of the particle swarm optimization and a
novel form of greedy technique, named Recoverable Greedy Technique (RGT), were
used to solve the autonomous taxi scheduling problem. In the following subsections,
a general overview of these optimization techniques is presented.

1.2.1 Particle swarm optimization

Particle swarm optimization is a population-based meta-heuristics that was first
proposed by Kennedy and Eberhart in 1995 [73]. They have been inspired by the
social behavior of some animals, like bird flocking, which collaborate to achieve
a common goal. In the same way, the particles composing the swarm cooperate
to find the best solution in the problem search space. Each particle benefits from
its experience (pbest) and from the swarm’s one (lbest or gbest); pbest represents
the best solution found by each particle so far. The swarm can be divided into
neighborhoods of defined size (usually 15% of the entire swarm); in this case, each
particle can move towards the best-neighbor previous position lbest or can be headed
for the actual best neighbor [74]. A different approach considers the best solution
gbest found so far by any particle in the whole swarm; the global solution can be
seen as a special case of the local one, where the neighborhood size equals the swarm
size. The PSO can be effectively applied to both continuous and discrete problems;
its stability and convergence properties were largely discussed in [75] and [76]. The
main strength of PSO-based algorithms is that, conversely to other meta-heuristics
(i.e. genetic algorithms), the PSO has fewer parameters to be tuned and can be
implemented in few lines of code using fundamental mathematical functions, thereby
requiring less computational effort, without affecting the quality of the solution [77].

An initial family of K particles, each composed by n elements and associated
velocities, are randomly generated in order to spread as much as possible the particles
among the search space and, thus, to increase the probability of reaching the optimal
solution. The pbest and gbest positions are determined by means of the fitness value
f of the particles. The velocity vk, j of each element j of the particle xk is randomly
generated considering the pbest and gbest solutions, as described in Eq. 1.1.
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vk, j =W · xk, j + c1 · rand1 · (pbestk, j − xk, j)+ c2 · rand2 · (gbest j − xk, j) (1.1)

The inertia parameter W is used to control the balance between exploration and
exploitation: a larger inertia value leads the particles to explore new areas of the
search space and prevents the particles being trapped in local optima; lower inertia
values push towards a refinement of the actual position. The c1 and c2 weights are
called acceleration coefficients and determine whether the particle is guided more
by a cognitive intelligence pbest or by a social one gbest. rand1 and rand2 are
random numbers between 0 and 1. The velocity is bounded by the value maxv in
order to prevent the particles from escaping from a possible optimal solution. Once
the velocity has been computed, the particle position in the search space is updated
following Eq. 1.2.

xk, j = xk, j + vk, j (1.2)

The process described above and the particle fitness evaluation are repeated until
a stopping condition is met; the algorithm pseudocode is reported in Algorithm 1.

Algorithm 1 Particle swarm optimization pseudocode.
1: Generate K random particles
2: Initialize velocities vk, j between 0 and 1
3: while (Stopping condition) = FALSE do
4: Evaluate the fitness for each particle
5: Determine the best solution pbest visited so far
6: Determine the global best solution gbest visited so far
7: Compute the particle velocities
8: Update the particle position

1.2.2 Greedy algorithms

Greedy algorithms are optimization schemes characterized by the fact that, at each
decision time, they make always the most convenient choice at that moment. Lo-
cally optimal choices not always lead to a globally optimal solution; however, for
optimization problems characterized by an optimal substructure, greedy algorithms
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have been proved to reach the global optimum [78]. Optimal substructure problems
are defined as problems where the optimal solution contains the optimal solutions
to its subproblems. Unlike dynamic programming algorithms, which work in a
bottom-up fashion, greedy techniques usually work top-down; this means that they
make choices only considering what is best at the actual decision point and then solve
the remaining subproblems. The nature of the choice can depend on the previous
ones, but never on the future choices or subproblems.

1.3 Contribution of the dissertation

The main focus of this dissertation is the development, implementation and verifica-
tion of a tool to provide conflict-free schedules to a fleet of autonomous vehicles,
for the airplane ground handling and the execution of just-in-time runway opera-
tions. Three algorithms for the solution of the trajectory assignment and tug dispatch
problems were developed:

• a hybrid version of the particle swarm optimization that uses a hill-climbing
metaheuristic as local search (HC-HPSO);

• a hybridization of the particle swarm optimization by means of an algorithm
of the family of the variable neighborhood search (RNS-HPSO);

• a tree-search (TS) heuristic algorithm that employs the Recovery Greedy
Technique to find the departure sequence that leads to taxi trajectories with
minimum cost.

Along with the three optimization schemes, two mathematical formulations of
the autonomous taxi problem, one based on discrete time and one on continuous
time, and a fast-computation energy consumption model, to be implemented within
the optimization algorithm, were developed. To the best of author’s knowledge, none
of the developed algorithms have ever been proposed, especially for the solution of
the autonomous taxi problem. In fact, despite the growing literature on the topic of
autonomous tugs, at the start of the author’s research work, no paper was discovered
that focused its attention on algorithms for the management of a fleet of autonomous
tractors, dedicated to the airplane ground handling. The profitable implementation
of this futuristic solution truly depends on the development of a tool that provides
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reliable schedules to the tractor autopilots. In this sense, the present work represents
a starting point for the development of more advanced algorithms to deal with this
extremely complex problem.

1.4 Dissertation organization

The mathematical models used to describe the problem are presented in Chapter 2,
along with a computational complexity analysis, and a thorough description of the
tractor energy consumption model. The three optimization algorithms are analyzed
in Chapter 3, where a parameter tuning analysis and a proof of convergence is also
provided. In Chapter 4, the results of seven test cases are presented for three airports
with different characteristics: the "Sandro Pertini" Turin-Caselle airport, the Milan-
Malpensa airport, and the Amsterdam airport Schiphol. For each test case, multiple
runs were performed using each algorithm with both mathematical models; results
are compared in terms of cost function and required computational effort. Finally,
the main remarks and final conclusions are provided in Chapter 5.



Chapter 2

Autonomous taxi system

The proposed autonomous fleet management system has been designed to solve three
main problems: the departure sequence scheduling, the pushback scheduling, and
the taxi route planning. Furthermore, the tug dispatch problem is solved, assigning
an autonomous vehicle to each mission (departures and arrivals). The output of the
algorithm is a schedule for each tug that enables just-in-time runway operations:
the taxi-in starts as soon as the aircraft clears the runway and connects to the tug,
whereas the airplane is delivered to the runway at the time when it should takeoff.
The structure of the fleet management system is shown in Fig. 2.1 [79].

Fig. 2.1 Fleet management system.
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The following functional specifications are defined for the routing and scheduling
algorithm:

• Reconfigurability: the algorithm has to be easily adapted to modifications in
the airport layout;

• Reliability: the schedule must always be free of conflicts among the agents;

• The computational time required to process a time horizon th = 1 h has to be
less than 15 min.

The last functional specification was defined to guarantee that the algorithm
always work with reliable arrival and departure times. In fact, in most of the cases,
the arrival or departure times can be estimated with good accuracy within one hour
horizon. Besides, the algorithm is created to be run 15 min before every hour to
compute the schedule for the subsequent hour.

In order to define the tug schedules, the algorithm assigns a trajectory to each trac-
tor mission based on the data provided by the runway and the pushback schedulers,
and evaluates the cost associated with it in terms of the electric energy consumed.
After the best set of non-conflicting trajectories has been found, the tasks are as-
signed to each tractor in the fleet, thereby maximizing the tug utilization. Finally, the
generated schedules are communicated to air traffic control (ATC) and to the tugs.

If the considered airport is characterized by the presence of more than one
runway, the airplanes might be required to cross one or more active runways to
reach their assigned runway or stand. To prevent excessive numbers of crossings and
consequently the risk of runway incursions, the proposed autonomous taxi system
is designed to tow the aircraft to the closest runway to the apron or vise versa.
Therefore, aircraft must use their own engines to go from the disconnection point
to the take-off runway or from the landing runway to the connection point. As far
as departing aircraft are concerned, the time spent traveling from the disconnection
point to the take-off runway with their own engines enables the engine to warm up
before departure. In order to define the time at which a landing airplane reaches the
connection point, a constant taxi speed of 10 m/s is considered; if the runway to be
crossed is busy, the airplane will stop at the holding point until the runway is clear.

A description of the data and the models used by the optimization algorithms
at lie at the heart of the autonomous taxi system is presented in this chapter. It is
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organized as follows: in Section 2.1, the tool that is introduced helps the user to
create the airport surface model, which represents the input of the path generation
algorithm described in Section 2.2. In order to evaluate the energy consumed to
perform the assigned missions, an energy consumption model that takes into account
the characteristics of the airplanes to be towed has been defined; this is outlined
in Section 2.3. Finally, the mathematical problem formulation is presented for the
trajectory assignment and the tractor dispatch problems in Section 2.4 and Section
2.5 respectively.

2.1 Airport model

The first operation to be performed is the definition of the spatial domain in terms
of geographical coordinate system; the aeronautical authority can provide those
information, as aircraft parking/docking, taxiways and runway locations, through the
Aeronautical Information Publication (AIP). However, in order to be properly used by
a path planning algorithm, these data must be discretized and collected in organized
form. Aircraft stands, runway entries and taxiway intersections can be modeled as
nodes of a directed weighted graph, where arcs represent taxiway segments and the
associated weights their length. This representation is really powerful and can be
used in conjunction with the most common path planning algorithms.

A graphical user interface (GUI) was developed in MATLAB® environment to
make the preprocessing more user-friendly and to easily access different airport
databases. The GUI, showing the discretization of the Sandro Pertini airport, is
reported in Appendix A, together with an explanation of the main functions behind
the GUI.

2.2 Path generation

From the tractor point of view, each taxi mission has three phases: a central towing
phase (Phase 2), in which the tractor tows the airplane and two repositioning phases
(Phase 1 and Phase 3), where it moves between the depot and the aircraft, as
showed in Fig. 2.2. The portion of mission labeled PBbuff represents a delay up to
MaxBuffer = 10 min on the pushback time, which is admitted in order to deliver the



2.2 Path generation | 19

aircraft at an available departure slot. At the end of the first and second phases of
each mission, the tractor must respectively connect to (Conntime) and disconnect
from (Disctime) the airplane; the connection period was considered with duration
2 min and the disconnection period was set to 1 min. The strategy of having the
tractors always traveling back to the depot might not always be efficient. In fact,
there might be some cases in which, after delivering an airplane to the runway or to
the stand, it would be more efficient for the tractor to directly start a new mission.
This is an important limitation of the proposed methodology.

Fig. 2.2 Mission representation.

For each phase, the first problem to be addressed is the path definition. The
shortest path between the origin and the destination would be the best solution, as
it requires the shortest time to be traveled for a given speed. However, the shortest
path might not always be feasible, because, for example, another agent might be
traveling on the same path, or the destination has not yet be cleared from other
airplanes. Therefore, an algorithm able to find more than one path between origin
and destination has been implemented.

Several algorithms have been proposed in literature to select the shortest path
between two nodes in a graph, such as the Dijkstra’s [80, 81], the A* [82, 83] and
the breadth-first search [84, 85] algorithms [86]. However, there is no widely used
algorithm for finding all the possible paths between two nodes. A modified version
of the breadth-first search (BFS) algorithm was implemented (Algorithm 2); the
proposed approach does not take into account the distance between the nodes during
the path construction and provides paths visiting each node no more than once. The
matrix graph is the connectivity matrix of the graph representing the domain. The
inputs x and d are respectively the indexes of the currently considered node and of
the destination. The output of the algorithm contains all the paths going from a to b.
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Algorithm 2 Modified breadth-first search algorithm.
Require: a,b

1: function BFS(graph,x,d, p)
2: Append node x at the temporary path p
3: Find all the neighbors of x
4: for i in neighbors do
5: if i = d then
6: Save the temporary path p
7: else if i /∈ p then
8: BFS(graph, i,d, p)

9: Delete the last element of p

The computational time required to find all the paths between two vertices
in a large graph can compromise the efficiency of the fleet management system.
Therefore, a database of the possible paths between all the main locations inside
the airport surface is created and the trajectory assignment algorithm can access it
during the optimization process.

However, as far as big airports are considered, the number of existing paths, given
an origin and a destination, can be considerable (over 100 in the Schiphol airport),
with most of them resulting too long to effectively improve the optimization solution.
Consequently, an algorithm able to find a limited number of paths is required. Several
algorithms for the solution of the k-shortest path problem have been proposed [87–
89]. For the present application, Yen’s algorithm has been implemented to find
the k = 5 shortest paths, thereby creating a database for each considered airport,
containing the 5 shortest paths for each starting/ending node pairs of the taxi grid
[87].

2.3 Energy consumption model

The energy consumption of the electric tugs is modeled using the approaches pro-
posed in [90–92]. The mechanical power P (Eq. 2.1), required to move the tractor at
the speed V , is computed considering the forces acting on it (Eq. 2.2-2.5): the aero-
dynamic drag Fa, the rolling friction Fr, the inertial force Fi and the slope resistance
Fs.
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P = (Fa +Fr +Fi +Fs) ·V (2.1)

Both the tractor itself and the towed airplane must be considered during the force
computation.

Fa =


1
2
·ρ ·V 2 · (A ·CX +S ·CD) i f towing

1
2
·ρ ·V 2 · (A ·CX) otherwise

(2.2)

The aerodynamic drag depends on the air density ρ , which is a function of the
airport altitude, the taxiing speed V , the drag area of the tractor A, the airplane wing
surface S and on the aerodynamic coefficients CX and CD of the tractor and airplane
respectively. At the state of the art of the proposed application, the wind speed is
not taken into account, but it will be taken into account in future developments. The
other forces acting on the tractor are functions of the mass of the tractor mt and of the
airplane mA/C, the gravity acceleration g = 9.81 m/s2, the acceleration/deceleration
a =±1.2 m/s2 during speed increase/decrease phases, set to keep a good level of
comfort for the passengers (0.12 g), the rolling resistance coefficient fr = 0.015,
and the taxiway slope αs.

Fr =


(
mt +mA/C

)
·g · fr · cosαs i f towing

mt ·g · fr · cosαs otherwise
(2.3)

Fi =


(
mt +mA/C

)
·a i f towing

mt ·a otherwise
(2.4)

Fs =


(
mt +mA/C

)
·g · sinαs i f towing

mt ·g · sinαs otherwise
(2.5)
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In the present study, the taxiway design standards are assumed to meet interna-
tional regulations that require the taxiway slope being αs ≤ 3% [93]. With these
assumptions, the equation for the required mechanical power becomes:

P = (Fa +Fr +Fi) ·V (2.6)

To evaluate the weight of each force in the required power, the above equations
are applied to the case of a route of length d = 1000 m. In Fig. 2.3, the weight of
each force is reported in terms of percentage of the total required power for different
speed values for both the constant speed (Fig. 2.3a) and the acceleration cases (Fig.
2.3b). As expected, the role of the aerodynamic drag grows with the speed, up to
reach about 40% of the total required power in the constant speed case. When the
acceleration is considered, the main component of the required power is the inertia,
which counts for about 90% of the required power.

(a) Constant speed case (b) Acceleration case

Fig. 2.3 Analysis of the weight of each force on the required power.

The energy variation at each time step is computed by means of Eq. 2.7, where
ηd/ηc is the energy storage discharging/recovery efficiency, ηout/ηin is the discharg-
ing/recovery efficiency of the power electronics, ηEM the electric motor efficiency
and Paux considers the power consumed by auxiliary systems (e.g. lights, computers,
etc.). The capability of braking energy recovery is defined by the percentage of
energy that can actually be recovered erec.
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∆Ebat =


∆t

ηd ·ηout ·3600
·
(

P
ηEM

+Paux

)
if P ≥ 0

∆t ·ηc ·ηin · erec

3600
· (P ·ηEM +Paux) if P < 0

(2.7)

The state of charge (SoC) of the battery pack can be updated considering also
the standby losses δsb (Eq. 2.8). In order to prevent a rapid battery wear, they are not
allowed to fully discharge; thus, the total battery capacity must be higher than the
usable (Ebat

nom).

SoCi = SoC(i−1)−δsb +∆SoC = SoC(i−1)−δsb −
∆Ebat

Ebat
nom

(2.8)

The proposed model is deeply influenced by the choice of the time step ∆t, as
described in Fig. 2.4 for a route of length d = 1000 m and the tractor characteristics
reported in Table 2.1; indeed, the accuracy of the solution increases as the time step
decreases.

Fig. 2.4 Analysis of the time step influence on the consumed energy for different values of
the taxiing speed. Constant speed was considered during the whole segment.

However, very small values of ∆t would require excessive computational re-
sources to manage the tractor schedule. Therefore, each phase of the missions is
divided into three segments (Fig. 2.5): acceleration, constant speed, and deceleration
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Table 2.1 Tractor mechanical and electrical specifications.

CX A
[
m2] m [kg] ηEM ηout ηd ηin ηc erec δsb Paux [kW] Ebat

nom [kWh]

0.6 6.90 10400 90% 98% 95% 95% 95% 90% 0 1.5 60

segments. A database of the energy consumption and the time and space required
to accelerate and decelerate is precomputed for the acceleration from standstill and
deceleration back to standstill, using the consumption model presented above and
∆t = 10−3 s. The database considers the tractor specifications, whether it is towing
an airplane or not and the characteristics of the towed aircraft, e.g. drag coefficient
and weight range (maximum take-off weight (MTOW) for departures and maximum
landing weight (MLW) for arrivals).

Fig. 2.5 Speed profile for each path segment.

As far as the constant speed segments are considered, a piecewise-linear model
for the energy consumption, as a function of the tractor speed, was developed.
Considering the dependency of the mechanical required power on the speed, the
following relation can be written:

P ∝ P1 ·V 3 +P2 ·V (2.9)

where P1 and P2 are defined in Eq. 2.10 and Eq. 2.11 respectively, for the case in
which the tractor is not towing any aircraft. Analogous equations can be derived for
the towing case.

P1 =
1
2
·ρ ·A ·CX (2.10)
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P2 = mt ·g · fr (2.11)

Considering a constant speed along the whole segment, it is possible to find
the total traveling time as ∆ttot ≃ d/V , where d is the total distance discounted by
the acceleration and deceleration segments. Thus, from Eq. 2.7, where ∆Eacc and
∆Edec represent the energy consumed to accelerate and decelerate obtained from the
aforementioned database, it is possible to compute the total consumed energy as:

∆Etot =
1

ηout ·ηd
·
(

P1 ·V 3 +P2 ·V
ηEM

+Paux

)
· d
V ·3600

+∆Eacc +∆Edec =

=
d

ηout ·ηd ·3600
·
(

P1 ·V 2 +P2

ηEM
+Paux ·V−1

)
+∆Eacc +∆Edec

(2.12)

This consumption model grants a fast computation of the energy consumed by
the tractor to travel along a taxiway segment and good accuracy, as shown by the
black line in Fig. 2.4; thus, it can be effectively implemented within an optimization
scheme, preserving its computational time performance.

It must be noticed that, in the proposed model, the static friction (from standstill
to moving) is neglected. In fact, even though the amount of torque required to
overcome the static friction is considerably higher than the one required to win
the rolling friction and must be taken into consideration when designing the tractor
engine, the static friction can be considered as a spike [94], thereby leading to ∆t → 0
and ∆E → 0.

2.4 Trajectory assignment problem formulation

The trajectory assignment problem (TAP) is defined as a combinatorial problem
and consists of finding the set of non conflicting taxiing trajectories for each tractor
mission characterized by the minimum cost. The taxi speed is modeled as a discrete
variable: V = {Vmin,Vmin +∆V, . . . ,Vmax}T , with minimum and maximum speed
Vmin = 4 m/s and Vmax = 16 m/s and speed step ∆V = 0.5. This speed range has
been chosen to meet the maximum taxi speed achievable using state of the art
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pushback tractors. The set of trajectories χ ∈ X, corresponding to a solution of the
problem, is defined as follows:

χ ={
(

p j,Vj,PBbuff
)

k | p j ∈ Pk,Vj ∈ V,

PBbuff ∈ buff, j = {1,2,3},k = 1, . . . ,NF}
(2.13)

where
(

p j,Vj,PBbuff
)

k represents the set of path, speed and pushback buffer
time assigned to the j-th phase of the k-th mission, p j ∈ Pk is the index of the path,
among the k-shortest computed paths, selected for the phase j of the considered
mission k (see Section 2.2) and NF is the total number of departures/arrivals. The
set of possible paths for all the phases of the missions is P =

⋃
Pk. The buffer time

is modeled as a discrete variable as well, with buff = {0,∆buff , . . . ,MaxBuffer}T

defined as the set of possible buffer time, with a time step of ∆buff = 1s. For landing
flights the variable PBbuff is constrained to 0.

In order to detect possible conflicts between the tractors moving on the airport
surface, the algorithm must keep track of the movements of the tractors. Two
models, one considering a continuous time evolution and one based on discrete time
formulation, were studied. After an analysis of the consumption model proposed
in Section 2.3, some considerations can be made on the path deconfliction strategy.
The energy spent in accelerating to a traveling speed V can not be fully recovered
while braking, due to the coefficient erec and to the lower recharge efficiency of the
electric system, with respect to the discharge case. This feature is depicted in Fig.
2.6 for three speed levels: V =Vmin, V = 10 m/s and V =Vmax. The figures show the
net energy consumption in the acceleration and deceleration segments, for different
combinations of the acceleration and deceleration values, which were varied from
0.01 g to 0.12 g.

Hence, in the proposed approach, operations are conceived as continuous, which
means that the tractors never stop during the motion between two points within
the airport. However, this strategy represents a highly restrictive constraint for the
trajectory assignment problem. Therefore, the tractor is allowed to spend a buffer
time at the end of the first phase (buff 1) and at the beginning of the third one (buff 2),
as sketched in Fig. 2.7. The buffer upper limit is set to MaxBuffer = 10 min. During
the buffer time, the tractor is assumed to be in idle, thereby reducing the electrical
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(a) V = 4 m/s (b) V = 10 m/s

(c) V = 16 m/s

Fig. 2.6 Net energy consumption between acceleration and deceleration phases Edischarge −
Erecovered .

power consumption to account only to the main onboard computer (Pauxidle = 0.2 kW ).
In this case, the maximum energy consumption is quantified in 0.072 kWh, which
is one order of magnitude lower than the smallest amount of energy lost with an
acceleration/deceleration cycle.

Fig. 2.7 Mission representation including buffer times.

Given the introduction of the buffer time variables buff 1 and buff 2, the generic
solution χ ∈ X of the trajectory assignment problem assumes the form reported in
Eq. 2.14.



28 | Autonomous taxi system

χ ={
(

p j,Vj,PBbuff ,buff 1,buff 2
)

k | p j ∈ Pk,Vj ∈ V,

PBbuff ∈ buff,buff 1 ∈ buff,buff 2 ∈ buff, j = {1,2,3},k = 1, . . . ,NF}
(2.14)

2.4.1 Continuous time based model

As far as the continuous time model is considered, for each taxiway section, the
algorithm computes the time at which the tractor enters the taxiway segment and the
time at which it leaves it, including acceleration/deceleration if part of the considered
segment; this data are collected in matrix form, as showed in Fig 2.8. Four types of
conflict can occur (Fig. 2.9): tail-head on the same segment, tail-head on consecutive
segments, head-head on the same segment and head-head on contiguous segments.

Fig. 2.8 Continuous time model scheduling matrix form.

A tail-head conflict (Fig. 2.9a - 2.9b) is detected if two tractors enter or leave a
segment with time separation lower than the safety_gap, which take on one of two
forms depending on the taxiing speed: the first term considers the dimensions of
tractor and towed airplane, the second one is the time required to stop (Eq. 2.15).

safety_gap =



(
lairplane

Vf
+

Vf

a

)
· sf if towing

(
ltractor

Vf
+

Vf

a

)
· sf otherwise

(2.15)

where Vf is the taxi speed of the follower, a is the deceleration, lairplane and ltractor

are the trailing airplane and tractor lengths respectively and sf = 1.1 is a safety factor.
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(a) Tail to head conflict
(b) Tail to head conflict in contiguous seg-
ments

(c) Head to head conflict
(d) Head to head conflict in contiguous seg-
ments

Fig. 2.9 Conflict types for the continuous time model.

This formulation takes into account also the dimensions of the moving object and
avoids any part of the vehicles getting in contact.

In order to evaluate if a head-head conflict on two contiguous segments (Fig.
2.9d) can occur, the separation at the end node of the respective segments is compared
to the threshold described in Eq. 2.16, with V1 and V2 representing the taxi speed of
the two tractors.

safety_gap =


max

((
lairplane

V1
+

V1

a

)
,

(
lairplane

V2
+

V2

a

))
· sf if towing

max
((

ltractor

V1
+

V1

a

)
,

(
ltractor

V2
+

V2

a

))
· sf otherwise

(2.16)

Finally, if at any time two tractors are traveling at the same time on the same
taxiway segment in opposite direction, a head-head conflict (Fig. 2.9c) is raised.

2.4.2 Discrete time model

The discrete time model uses a built-in simulator to evaluate the position of each
tractor at a generic time t. Following the approach proposed in [95], the planning
horizon has been discretized with a time step of ∆t = 5s. The size of the time step
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was chosen based on the trade-off between the computational resources required to
simulate the entire horizon and the effectiveness in finding possible conflicts. The
time spent by a tractor on a specific taxiway segment is expressed in periods, as
reported in Eq. 2.17.

periods =
d

V ·∆t
(2.17)

The resulting value is rounded to the upper integer, thereby adding a buffer
on the time spent on a segment; however, in certain cases, the traveling time on
a segment can be excessively overestimated, resulting in a potentially erroneous
conflict detection.

In order to detect possible conflicts between the tractors moving on the airport
surface, a rectangular Threat Detection Area (TDA) is defined around each tractor,
with the long edge aligned to the taxi speed (Fig. 2.10). If round TDAs were to be
considered around each tractor, the case of two tractors traveling on parallel taxiways
might be erroneously identified as a conflict. The choice of a rectangular shape
avoids this behavior.

Fig. 2.10 Threat detection area scheme.

The TDA equation must take into consideration the actual tractor position in
longitude and latitude (λo,ϕo) and the heading angle ψ assumed by the tractor, while
traveling along the different taxiways; the mathematical definition of the TDA is
reported in Eq. 2.18, where θ = π/2−ψ .
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T DA ={{λ
′,ϕ ′} | λ

′ = λo +(λ −λo) · cosθ − (ϕ −ϕo) · sinθ

ϕ
′ = ϕo +(ϕ −ϕo) · cosθ +(λ −λo) · sinθ ,−c

2
≤ λ ≤ c

2
,−b

2
≤ ϕ ≤ b

2
}

(2.18)

The short edge b of the TDA, perpendicular to the taxiway centerline, has constant
length defined in Eq. 2.19.

b =


(
wairplane + ε

)
· sf

RE
if towing

wtractor ·
sf
RE

otherwise

(2.19)

The parameters wtractor and wairplane are respectively the tractor width and the
airplane wingspan; ε = 7.5m was taken as the maximum clearance between a parked
aircraft and any other object in the airport, as defined by the ICAO [93]. RE =

6371km is the Earth radius, used to convert the TDA size in latitude and longitude
variations. A safety factor sf = 1.1 was also introduced.

The long edge c was conceived to allow two tractors, with potential conflicting
paths, to stop without getting in contact. The expression for c has two components: a
constant term depending on the tractor/airplane length, and a variable term depending
on the tractor speed (Eq. 2.20).

c =



(
lairplane +

V 2

2 ·a

)
· s f

RE
if towing

(
ltractor +

V 2

2 ·a

)
· s f

RE
otherwise

(2.20)

To detect whether, at a certain time t ∈ T, the TDAs of two tractors overlap, a
test based on the separating axis theorem was implemented [96–98]. Given the axes
perpendicular to the edges of one of the TDAs, consider the projection of the vertices
of the polygons on the axes (Fig. 2.11); if there is no overlap between the projections
on at least one of the axes, the two TDAs are separated.
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Fig. 2.11 Separating axis theorem scheme.

2.4.3 Mathematical problem formulation

The objective of the trajectory assignment algorithm is to minimize the total cost
of taxi operations (Eq. 2.21). The expression for the cost has two terms: the
total energy consumption, defined by the variable CE [kWh] which ignores the own
powered segment consumption, and the total buffer time CT [s]. The weighting
coefficient kt = 0.01 is used to balance the order of magnitude of the two terms.
The mathematical formulation of the trajectory assignment problem is reported
hereinafter:

Minimize
NF

∑
i=1

(CE,i + kt ·CT,i) (2.21)

Subject to the static constraints
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
separation > safety_gap continuous time

T DAt,i ∩T DAt, j = /0 ∀t ∈ T, i, j = 1, . . . ,NF, i ̸= j discrete time
(2.22)

tPB,i − tA,i ≥ TATi i = 1, . . . ,NF (2.23)

ta
A,k − t p

PB,k ≥ MSG ∀k ∈ G (2.24)

ta
PB,k − ta

A,k ≤ MGO ∀k ∈ G (2.25)

ta
RWY,i − t p

RWY, j ≥ sepmin i, j = 1, . . . ,NF (2.26)

Vi, j ∈ V i = 1, . . . ,NF, j = {1,2,3} (2.27)

pi, j ∈ P i = 1, . . . ,NF, j = {1,2,3} (2.28)

0 ≤ PBBuff ,i ≤ MaxBuffer i ∈ TO (2.29)

0 ≤ buff i, j ≤ MaxBuffer i = {1,2}, j = 1, . . . ,NF (2.30)

The path deconfliction is ensured by Eq. 2.22 for both continuous and discrete
time models. Equations 2.23-2.25 represent the stand occupation constraints, with
G being the set of the aircraft stands. Before an aircraft can leave its parking spot,
several operations must be performed; the minimum time required to complete
these operations is called minimum turnaround time (TAT ) and it is specific of each
aircraft type and depends also on the flight length (i.e. domestic, international).
Moreover, airports define a minimum separation between two aircraft at the stand
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Table 2.2 Aircraft wake turbulence classification.

Class MTOW range [t]

Small ≤ 18

Large 18 < MTOW < 136

Heavy ≥ 136

Table 2.3 Wake turbulence separation minima.

Following aircraft Leading aircraft separation [min]

Heavy Heavy 2

Large Heavy 2

Small Heavy 3

Small Large 3

MSG = 10 min (Eq. 2.24) to allow the operators get ready for the following flight
and a maximum presence for each airplane MGO = 2 h (Eq. 2.25). The variables
tPB and tA are respectively the pushback time and the arrival time at the parking
lot. The superscript p represents the previous airplane that was parked at the lot,
whereas a indicates the actual airplane. The aircraft sequencing at the runway is
constrained by the minimum separation requirements set by the ICAO and FAA [99].
The main factor affecting the runway separation is the wake turbulence generated by
an aircraft during landing or takeoff: the wake generated at the wing tip can interfere
with the aerodynamics of the following aircraft, thereby causing potential hazards.
This phenomenon is emphasized when the leading aircraft is bigger than the follower.
Three main categories of airplanes are defined, depending on the maximum takeoff
weight: small, large and heavy (Table 2.2) [99]. In the proposed mathematical model,
a correct runway separation is enforced by Eq. 2.26, where ta

RWY is the time at which
the actual considered aircraft starts the takeoff roll or lands and t p

RWY is the analogous
time referred to the preceding aircraft. The values of the separation minima sepmin

are summarized in Table 2.3, in the case of same runway operations [99].
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The variable bounds are defined by Eq. 2.27-2.30 for V , p, PBBuff and buff
respectively. The set TO is the subset of the flight schedule that contains the sole
departures, where NTO is number of departures.

2.4.4 Computational complexity

The computational complexity analysis of the trajectory assignment problem is
based on two main concepts: NP-hard problem and self-reducibility. The informal
definitions of these two concepts can be stated as follows [100]:

Definition 2.1 (Deterministic Turing machine). A deterministic Turing machine is
a mathematical model that defines an abstract machine, designed to manipulate
symbols on a strip of tape, according to a table of rules.

Definition 2.2 (Non-deterministic Turing machine). A non-deterministic Turing
machine is a Turing machine, which set of rules prescribes more than one action for
a given situation.

Definition 2.3 (P complexity class). A decision problem is part of the P class if it
can be solved by a deterministic Turin machine in a polynomial time

Definition 2.4 (NP complexity class). A decision problem is said to be NP if it can
be solved by a non-deterministic Turin machine in a polynomial time

Definition 2.5 (NP-hard problem). A search problem Π is said to be NP-hard if it
some NP-complete decision problem Π′ exists, such that it Turing-reduces to Π. It is
indicated with Π′ ∝T Π.

Definition 2.6 (Self-reducibility). A search problem Π is self-reducible if the corre-
sponding decision problem Π′ ∈ NP Turing-reduces to Π. That is, Π is self-reducible
if there is a polynomial-time Turing machine to solve Π that calls an oracle subrou-
tine S that solves Π′.

The trajectory assignment problem can be proved to be NP-hard, thereby in-
tractable, which mathematically means that it cannot be solved in polynomial time
unless P = NP. The self-reducibility technique is used to prove the NP hardness of
the optimization problem (search problem) [100, 101]. The corresponding decision
problem will be proved to be NP-complete; subsequently, a polynomial-time Turing
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reduction (Cook reduction) will be outlined to prove that TAP is self-reducible. The
notation used in [100] will be adopted in the following discussion. The trajectory
assignment decision problem can be stated as follows:

Instance: The inputs of the trajectory assignment decision problem are:

• a flight schedule and a set of taxiway segments E;
• for each arrival and departure 1 ≤ j ≤ NF :

– a set of three paths Ps = {p1 ( j) , p2 ( j) , p3 ( j)} ⊂ E;
– the corresponding set of taxiing speeds V s = {V1 ( j) ,V2 ( j) ,V3 ( j)} ∈ V;
– a set of three buffer times Buffers = {buff 1 ( j) ,buff 2 ( j) , PBbuff ( j)} ∈

buff;

• for each path k:

– a path length dk ( j) ∈ R+
0 ;

– a corresponding time period lk ( j,Vk ( j)) ∈ R+;
– an earliest starting time etk ( j) ∈ R+;
– a deadline time dtk ( j) ∈ R+; a cost ck ( j,Vk (i)) ∈ R;

• a constant K ∈ R+.

Question: Is there a set of paths, speeds and buffer time that generates schedules for
the taxi operations without conflicts between the trajectories, respecting the runway
separation minima, and with total cost ∑

NF
j=1
(
∑

3
k=1 ck ( j)+ kt · (buff 1 ( j)+buff 2 ( j)+

PBbuff ( j)
))

≤ K? �

Before showing the proof of the NP-completeness of the trajectory assignment
decision problem, we need to recall a problem that is known to be NP-complete: the
no-wait job-shop scheduling, to which the trajectory assignment decision problem
will be restricted.

Instance: The inputs of the trajectory assignment decision problem are:

• the number m ∈ Z+ of processors;
• a set of jobs J, each j ∈ J consisting of an ordered collection of tasks tk ∈ j

1 ≤ k ≤ n j;
• for each task t ∈ j:

– a length lt ∈ Z+
0 ;
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– a processor pt ∈ {1,2, . . . ,m}, where ptk ̸= ptk+1 , with tk and tk+1 ∈ j, for
all j ∈ J and 1 ≤ k ≤ n j

– a deadline D ∈ Z+.

Question: Is there a job-shop schedule for J that meets the overall deadline, namely
a collection of one-processor schedules σi with 1 ≤ i ≤ m, such that:

• for two tasks of different jobs t and t ′, σi,t > σi,t ′ implies σi,t ≥ σi,t ′ + lt ′;
• for two tasks of the same job tk+1 and tk, σtk+1 = σtk + ltk , with tk and tk+1 ∈ j;
• σtn j

+ ltn j
≤ D;

for all j ∈ J and 1 ≤ k ≤ n j? �

The no-wait job-shop scheduling can be easily proved to be NP-complete, show-
ing that for m = 1 it restricts to the traveling salesman problem, also known to be
NP-complete [100]. It is possible now to state Theorem 2.1.

Theorem 2.1 (TAP decision NP-completeness). The trajectory assignment decision
problem is NP-complete.

Proof. The decision problem can be restricted to no-wait job-shop scheduling, with
the paths representing the jobs j ∈ J, the path segments as the tasks tk ∈ j and
the taxiways E being the processors. It is done by allowing only instances with
Ps containing one path for each phase of each mission, buffer time equal to zero,
constant taxiing speeds V ′, thereby implying a fixed task length l′k ∈ R+, earliest
starting times etk = 0, deadlines dtk = D, cost ck = lk and having K = 3 ·NF ·D. �

The second step of the proposed proof of intractability for the trajectory assign-
ment problem consists in proving the self-reducibility of the problem, to demonstrate
Theorem 2.2.

Theorem 2.2 (TAP NP-hardness). The trajectory assignment problem is NP-hard.

Proof. Suppose that S [x,K] is a subroutine to solve the TAP decision problem for
a generic instance x, and that the optimal cost is denoted by K∗. Each instance x
has n = 9 ·NF variables that can be ordered in a solution vector φ = (φ1, . . .φn) that
contains, for all 1 ≤ j ≤ NF , respectively the paths pk, the speeds Vk, with 1 ≤ k ≤ 3,
and the buffer times buff 1, buff 2 and PBbuff .
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We know that the optimal cost lies between the values Kmin =

K (Psmin,V smin,Buffersmin) and Kmax = K (Psmax,V smax,Buffersmax), with the pa-
rameters standing for Psmin = {p1,shortest , p2,shortest , p3,shortest} j, V smin = {Vmin}NF ,
Buffersmin = {0}NF , Psmax = {p1,longest , p2,longest , p3,longest} j, V smax = {Vmax}NF ,
Buffersmax = {MaxBuffer}NF , for 1 ≤ j ≤ NF . Therefore, it is possible to deter-
mine the value K∗ using a binary search procedure that calls the subroutine S [x,K]

with different values of K. It can be considered, without loss of generality, that
the number of paths available for each phase of each mission is equal and defined
as N p. Therefore, the binary search runs at most in ⌈log2

(
NF9 ·N p3 ·NV 3 ·Nb3)⌉

iterations.

Once the optimal cost K∗ has been computed, the following procedure can be
applied to find the solution vector φ∗ that gives a conflict-free schedule with total
cost K∗. It must be noticed that, if more than one set of variable values solve the
optimization problem, they are considered equivalent; therefore, it is sufficient that
the algorithm outputs any of these sets.

• For j = 1 to n do:

– Substitute φ j with one of its possible values φ ′
j and run the subroutine

S [x′,K∗].

– If the modified φ is not satisfiable, substitute φ j with its subsequent
possible value.

– Repeat the two steps above until a satisfiable φ is found, thereby fixing
φ j = φ∗

j .

• Output φ∗
1 , . . . ,φ

∗
n .

The above algorithm, when used to solve the search problem, given a sub-
routine S for the correspondent decision problem, runs in maximum 3 · NF ·
(NP+NV +Nb) = n/3 · (NP+NV +Nb) iterations, beyond the iterations required
to find K∗. Therefore, the algorithm runs in polynomial time, thereby constituting a
polynomial-time Turing reduction and proving that TAP is self-reducible. As the TAP
decision problem is NP-complete, it descends that the corresponding optimization
problem is NP-hard. �
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2.5 Tractor dispatch problem formulation

The tractor dispatcher aims to find the optimal assignment of tasks (departures/arrivals)
to resources (tractors), with the final objective of maximizing the resources utiliza-
tion. In this application, the number of tractors NT can be lower than the tasks to be
accomplished; moreover, the tractor battery has a limited capacity. Therefore, not all
the tractors might always be available.

The state of charge of a tractor at the time t is computed using Eq. 2.8. The
maximum value of the depth of discharge (DoD), with DoD = 1− SoC, is set to
maxDoD = 0.7, as a trade-off between the tractor availability and the battery cycle
life. When the battery level goes below the maxDoD, the tractor recharges it in
the charging stations placed at the depot. Actual trends in the performance of the
charging stations set the charging time of a 90 kWh battery to 40 min to reach 80%
of the charge and to 75 min for the full charge starting from complete discharge
condition [102]. Hence, in the present application, the time to charge (TtC) for
tractors with characteristics presented in Table 2.1 was set to TtC = 30 min.

2.5.1 Mathematical problem formulation

The tractor utilization U is defined as the ratio between the tractor operating time
toper, namely the sum of traveling, buffer, and charging times, and the computational
horizon time (Eq. 2.31).

U =
toper

th
(2.31)

In order to maximize the utilization of each tractor, the standard deviation σU

among the whole fleet is minimized, as described in Eq. 2.32, with Ū being the
average utilization. This criterion was selected as optimization driver in order
to minimize vehicle downtime, which represents a cost for the ground handling
company.

Minimize σU =
NT

∑
i=1

1
NT

· (Ui −Ū)
2 (2.32)

Subject to
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NF

∑
m=1

jobt,i,m ≤ 1 ∀t ∈ T, i = 1, . . . ,NT (2.33)

SoCt,i > 0 ∀t ∈ T, i = 1, . . . ,NT (2.34)

Each tractor can be assigned to only one flight at a time; therefore, the binary
variable job ∈ {0,1} has been introduced in Eq. 2.33. The tractor schedule is
ensured to be congruent with the battery capacity by Eq. 2.34, which bounds the
depth of discharge of the battery.

2.5.2 Computational complexity

The tug dispatch problem can be thought as an asymmetric multi-trip multi-vehicle
routing problem with time windows (AMVRPTW). In the proposed application,
vehicles do not have a load constraint, but an energy consumption constraint is
instead defined. The concepts of trip and journey and the formulation of the multi-
trip multi-vehicle routing problem with time windows are defined hereinafter [103].

Definition 2.7 (Trip). A trip is a sequence of served customers that starts and ends
at the depot.

Definition 2.8 (Journey). A journey is a set of one or more trips.

Instance: A directed graph G = (V,A), where V = {V0,V1, . . . ,VNF} is the set of
vertices and A = {

(
Vi,V j

)
| Vi,V j ∈ V, Vi ̸= V j} the set of arcs. Arcs

(
Vi,V j

)
are

characterized by their travel time TVi,V j . The first node V0 represents the depot where
the fleet of identical vehicles ν with maximum energy capacity Q is available at time
0 and has to return at time TH . Each vertex corresponds to a customer to be visited by
a vehicle, requiring a certain quantity of product Qi ∈ R+. A time window [EVi,LVi]

is defined for each customer; the vehicle is allowed to arrive at the customers node
before the time window starts, thereby defining a waiting time. However, if the
tractor reaches the customer after the conclusion of the corresponding time window,
the trip is considered infeasible.

Question: Is there a journey assigned to each vehicle that respects the following
characteristics:
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• each trip start and ends at V0;
• ∑i Qi ≤ Q for each customer 1 ≤ i ≤ nc in a single trip;
• customer time windows are respected;
• each customer is visited exactly once;
• trips assigned to the same vehicle do not overlap;
• the duration of the journey of each vehicle is less than TH ;

and that minimizes the traveled time? �

The formulation of the tug dispatch problem as an AMVRPTW is reported
hereinafter.

Fig. 2.12 Scheme of the vehicle routing problem model modeling.

Let G = (V,A) be a directed digraph with different weights for the two arcs
connecting two nodes (Fig. 2.12), where the vertices V represent the tractor missions.
Each arc

(
Vi,V j

)
is characterized by time travel and a cost TVi,V j =

[
tV j ,cV j

]
, which

are defined respectively as the time required to perform the mission j and the
associated cost. The first node V0 represents the charging station for the fleet of
identical tugs ν = {ν1, . . . ,νNT} with maximum energy capacity Q = 1, where the
tractors are available at time 0 and have to return when no more missions have to be
performed. When a vehicle completes a mission and its total cost is above maxDoD,
it has to return to the charging station, where the cost level will be set back to 0.
The time travel and costs associated to the arcs arriving at the charging station are
TVi,V0 = [TtC,0]. Each vehicle is allowed to perform more than one trip. For the tug
dispatch problem, the bounds of the time windows coincide and are equal to the end
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of the mission EVi = LVi = endVi for 1 ≤ i ≤ NF . A vehicle is allowed to arrive at
the nodes before the assigned time windows; however, a waiting time is added until
the time window opens. This waiting time is considered as the time that the tugs
spend at the depot between missions. Given the previous definition of time window,
the completion time TH loses its meaning, as it would be constrained by the end
of the last mission to be accomplished. The objective is to maximize the operative
time for each tractor, that means to minimize the standard deviation of the utilization
among the fleet, while ensuring that the total cost of a trip is always lower than the
capacity Q.

Theorem 2.3 (Tug dispatch NP-hardness). The tug dispatch problem is NP-hard.

Proof. The tug dispatch problem formulation reported above is analogous to the
multi-trip multi-vehicle routing problem with time windows, which has been proved
to be NP-hard [103]. In fact, the dispatch problem can be restricted to the vehicle
routing problem, which is NP-hard. The definition of time windows complicates
the research of a solution, as a modification of one trip affects the vehicle journey
[103]. This feature is stressed when the constraint imposed by the time windows is
reinforced by equating the two extremes of the time window. �



Chapter 3

Conflict-free ground routing and tug
dispatch algorithms

In the last decade, the airside ground routing problem has gained more attention
among researchers, due to increasing airside traffic of airports, i.e. the parts of the
airport with aircraft access to the runways. Moreover, the objective of reducing
the environmental impact and the costs of airport operations has led many in the
aeronautical community to study and develop new solutions to established airport
procedures. The enhanced capabilities of self-driving vehicles have supported the
development of solutions that use autonomous or semi-autonomous tugs to perform
the pushback or to tow the aircraft between stands and runways; the work presented
in [31, 33, 32, 35] are examples of these solutions. Although several studies about
the feasibility and the advantages brought by these solutions have been proposed, the
literature lacks studies about the operative management of the fleet of autonomous
tugs.

The derivation and implementation of three optimization algorithms is presented
in this chapter for the conflict-free ground routing problem (Section 3.1): two
hybridization of the particle swarm optimization (PSO) and a tree-search heuristic
are proposed to solve the trajectory assignment and departure sequencing problems
studied in Section 2.4. The implementation of the hybrid particle swarm optimization
(HPSO) algorithms for the tug dispatch problem is introduced in Section 3.2.
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3.1 Trajectory assignment and departure sequencing
algorithm

The mathematical formulation of the trajectory assignment problem presented in
Section 2.4 uses discrete variables to represent the speed and possible paths for each
mission and the time buffers. Thus, the optimal set of non-conflicting trajectories
can be found by solving a combinatorial optimization problem. The number of
possible combinations of paths, speeds and buffer time for all the tractor missions
is computed by means of Eq. 3.1, where N pi, j is the number of possible paths for
phase j of mission i, NV represents the number of possible speed values and Nb is
the size of the set of buffer times.

combinations =
NF

∏
i=1

(phases

∏
j=1

(
N pi, j ·NV

))
·


(
Nb3) if i ∈ TOs

(
Nb2) otherwise

 (3.1)

After the analysis of several test cases, the search domain of the present problem
has shown to be most likely non-convex, as illustrated in Fig. 3.1, where the feasible
domain is depicted for two test cases composed of three flights each and with the only
towing phase considered. Therefore, linear programming techniques (e.g. Simplex)
cannot be used. Moreover, the high complexity of the problem highlighted in the
previous chapter led to the choice of using approximate methods, to find an optimal
or near-optimal solution in a limited computational time.

3.1.1 Hybrid particle swarm optimization algorithm

Two hybrid versions of the PSO were proposed, based on a hill-climbing algorithm
and on an algorithm derived from variable neighborhood search techniques. At
the end of each iteration of the PSO, the local search algorithm runs to improve
the position of each particle (Algorithm 3 line 9). An algorithm to predict the
best value for each element of the particle was also developed. It runs after the
hybridization algorithm to determine which value of each particle element has the
highest probability of being part of the optimal solution (Algorithm 3 line 10).
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Fig. 3.1 Feasible search domain for two test cases with three flights each and only the towing
phase considered.

Algorithm 3 Hybrid particle swarm optimization with variable fixing pseudocode.
1: Generate K random particles
2: Initialize velocities vk, j between 0 and 1
3: while (Stopping condition) = FALSE do
4: Evaluate the fitness for each particle
5: Determine the best solution pbest visited so far
6: Determine the global best solution gbest visited so far
7: Compute the particle velocities
8: Update the particle position
9: Improve particle positions with hybridization

10: Run variable fixing algorithm

3.1.1.1 HC-HPSO algorithm

Hill-climbing is a local search meta-heuristic that is used to exploit the particle
position and, thus, to improve the PSO solution at each iteration. For every particle,
m integer numbers are randomly extracted from the {1, . . . ,n} set; these integers
represent the indexes of the elements of the particles to be analyzed by the hill-
climbing. The value of each examined element is made vary within the defined range
for that element, while the remaining n− 1 elements are fixed. The fitness value
is evaluated for each modified particle and the one characterized by the maximum
fitness value replaces the original particle (Algorithm 4). Therefore, with respect to
the classical hill-climbing heuristic, two elements of stochasticity were introduced:
the particle element selection process and the order in which they are analyzed; this
grants a broader search of the space around the actual particle position, without a
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predefined search direction. The number of elements to be modified by the hill-
climbing heuristic was set after a parameter tuning, which will be presented in
Section 3.1.1.7.

Algorithm 4 Hill-climbing local search pseudocode.
1: for k = 1 : K do
2: Generate m random integer numbers idx j ∈ {1, . . . ,n}
3: for j = 1 : m do
4: Replace xk,idx j with all its possible values
5: Evaluate the fitness function for the modified xk

6: Select the best modified particle

3.1.1.2 RNS-HPSO algorithm

Variable neighborhood search (VNS) algorithms, first introduced in [104], are meta-
heuristics that do not follow a trajectory, but explore increasingly distant neighbor-
hoods of the current incumbent solution and jump from this solution to a new one if,
and only if, an improvement has been observed [105]. In the basic scheme, given a
set of neighborhood structures, the VNS randomly generates a point xnew within the
j-th neighborhood of the actual point x; afterwards, a local search modifies xnew and,
only if xnew is better than x, it replaces the original point.

Standard and modified versions of the variable neighborhood search algorithms
have been applied to solve different problems. In [106], a parallelized version of
the VNS is proposed to enhance the speed of a meta-heuristic to solve the flexible
job-shop scheduling problem. A VNS-based approach that can accept, with certain
probability, deteriorating solutions is used in [107] to solve the dial-a-ride problem
in a big city. VNS-based techniques have been applied also to the routing problem
[108–110].

The random neighborhood search (RNS), derived from the reduced variable
neighborhood search (RVNS) [111], was developed to solve the autonomous tug
trajectory assignment problem. The structure of the j-th neighborhood of the particle
x is defined as follows:

N j = {xnew |
(
x j −∆

)
≤ x j new ≤

(
x j +∆

)
} (3.2)
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where x j is the j-th element of the particle and ∆ is the maximum allowed displace-
ment from the actual value of x j. In order to avoid the particles getting trapped
in local optima, the value ∆ is increased with a trend characterized by inverse
proportionality with respect to the distance between x and gbest, as stated in Eq. 3.3:

∆ = max
(

∆min, ∆max ·
eqel

n

)
(3.3)

with eqel being the number of the elements of x that are equal to the corresponding
elements of gbest; ∆min and ∆max are the minimum and maximum displacements that
are peculiar to each element. The pseudocode of the RNS is described in Algorithm
5. In the proposed approach, the neighborhoods are analyzed in random order.

Algorithm 5 Random neighborhood search pseudocode.
1: for k = 1 : K do
2: Generate m random integer numbers idx j ∈ {1, . . . ,n}
3: Compute the allowed displacement ∆ for all the elements of xk

4: for j = 1 : m do
5: Replace xk,idx j with a random value within the neighborhood Nidx j

6: Evaluate the fitness function for the modified xk

7: If the modified xk has higher fitness, replace the original particle

3.1.1.3 Variable fixing algorithm

The particle swarm optimization uses the particle history to define the value of pbest
(and accordingly of gbest); however, also the particle trajectory along the iterations
could be exploited. In this work, a new solution to improve the rate of convergence
and to reduce the number of fitness evaluations of the HPSO, by exploiting the
particle trajectory, is proposed: the variable fixing algorithm (VarFix). This goal
is achieved by setting the particle elements to the value characterized by higher
probability of being part of the optimal solution. This feature leads the HPSO
to focus on smaller parts of each particle, finding the optimal solution in fewer
iterations. The VarFix can be applied to all the implementations of the particle
swarm optimization, and potentially it can be adapted to other swarm algorithms and
to the evolutionary algorithms. The number of elements m f ix to be modified by the
hybridizing local search algorithm, after the VarFix activation, is given by Eq. 3.4
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m f ix = min(m, n−# f ixed) (3.4)

where the value m is chosen after a parameter tuning and # f ixed is the number
of elements that have been fixed for each specific particle.

In order to define if an element should be fixed, the evolution of different agents
can be considered: the particle, the pbest or the gbest histories. If the particle
history were considered, the variability of the position and fitness might prevent
the algorithm to define with good accuracy the most promising value for a specific
particle element. If the elements were fixed based on the gbest history, the algorithm
could lead the particles to assume the same position in the search space; this is an
undesired behavior, as the ability of the algorithm to escape local optima would be
affected, due to the concentration of the particles in one specific area of the search
space. Thus, the best approach is the one that uses the pbest as a discriminant for
the fixing algorithm (Algorithm 6); indeed, the probability of defining with better
accuracy the value to be set for each element is higher than the other approaches, as
the gbest is always part of the pbest set.

Algorithm 6 Variable fixing algorithm pseudocode.
1: for k = 1 : K do
2: if Iter ≥ T hreshold then
3: Evaluate pbestk history
4: for j = 1 : n do
5: If pbestk, j has been constant in the last α · Iter iterations,

fix pbestk, j
6: If pbestk, j is fixed and Count ≥ relthold , release pbestk, j

In order to be more accurate, the VarFix needs to collect information on the
particle history. Therefore, the T hreshold constant in Algorithm 6 was defined as a
minimum number of iterations up to which the VarFix only collects data. After the
activation, the algorithm verifies, for each element in each particle, whether the value
contained in the actual pbest has remained constant for a certain number of iterations,
defined as a percentage of the actual iteration number α · Iter. If this condition is
satisfied, the algorithm fixes the particle element. To avert the possibility of being
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trapped in local minima, the VarFix releases the fixed elements after a certain number
of iterations characterized by no improvements in the gbest solution (relthold).

A proper tuning of the algorithm parameters is required to ensure a trade-off
between the necessity of improving the rate of convergence and the one of avoiding
local optima, which would require to postpone the fixing. A parameter tuning
analysis will be presented later in this section.

3.1.1.4 Convergence proof

The convergence of intelligent optimization algorithms is a crucial problem. Dif-
ferent approaches have been proposed in the literature to prove the convergence of
meta-heuristics and their extension to stochastic combinatorial optimization, where
convergence is a relevant issue [112–116].

An approach based on the theory of Markov chains is used to prove the con-
vergence of the proposed hybrid particle swarm optimization [117, 118]. First,
the convergence of the hybrid particle swarm optimization will be proved; then, a
theorem for the convergence of the HPSO, with variable fixing, will be proposed.

Definition 3.1 (Markovian property). A stochastic process Xt is said to have Marko-
vian property if the transition from one state to another depends only on the actual
state of the process:

P (Xt+1 = j | X0 = i0,X1 = i1, . . . ,Xt = i) = P (Xt+1 = j | Xt = i) (3.5)

for t = 0,1,2, . . .

Definition 3.2 (Homogeneous Markov chain). A stochastic process Xt is a Markov
chain if it has the Markovian property. The conditional probability

pi j (t) = P (Xt+1 = j | Xt = i) (3.6)

is called transition probability. A Markov chain is homogeneous if the conditional
probability law pi j (t) does not depend on t.
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Definition 3.3 (Communicating states). Given two states i and j, these states com-
municate if the following holds:

P (Xt1+k1 = j | Xt1 = i)> 0 ∧ P (Xt2+k2 = i | Xt2 = j)> 0, k1,k2 ≥ 0 (3.7)

Definition 3.4 (Class). A class is a collection of states that communicate with each
other. A Markov chain is irreducible if there is only one class, thereby all the states
communicate.

Definition 3.5 (Absorbing state). A state i is said to be an absorbing state if, once
entered in this state, the process will never leave it:

P (Xt+1 = i | Xt = i) = 1 (3.8)

Theorem 3.1. The proposed hybrid particle swarm optimization applied to the set
of finite states S is a homogeneous Markov chain.

Proof. At each iteration t of the PSO, the probability Pi, j of moving from one state
i to a state j depends only on the previous iteration t − 1 and it is defined by an
evolution law that does not change with time (Eq. 1.1). The final position of the
particle, after the hybridizing algorithm, depends only on the position the particle had
before the algorithm is applied. Thus, it follows that the HPSO algorithm with the set
of finite states S belongs to the class of homogeneous Markov chain processes. �

Theorem 3.2. The HPSO is not an irreducible Markov chain.

Proof. The implementation of the two proposed hybridizing heuristics prevents
the HPSO from moving from a state (i) with a fitness value f (i) to a state j with
fitness f ( j)< f (i). If imin is the state with global minimum fitness, we can write the
following relation:

P (Xt+1 = imin | Xt = i) = 0 ∀i ∈ S , ∀t (3.9)

This implies that there exists at least one class composed of the sole element imin,
which is in contrast to the definition of an irreducible Markov chain. �

Theorem 3.2 is fundamental as it implies that not all the states communicate;
thus, the convergence cannot be directly proved. Before verifying the convergence
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of the HPSO algorithm, two elements must be defined: the state neighborhood for
the hybridizations, and the attraction state.

Definition 3.6 (Neighborhood). The state neighborhood of the state i is the set Ni of
states visited by the hybridization algorithm while mutating the m randomly chosen
elements of the particle in state i at iteration t.

Definition 3.7 (Attraction state). Given a generic neighborhood Ni, the state j ∈Ni

is an attraction state in Ni for the hybridizations if:

f ( j)≥ f (l) ∀l ∈ Ni \{ j} (3.10)

Thus, the HPSO moves from an attraction state to another. From Definition 3.7,
it is possible to infer the following Theorem.

Theorem 3.3. The global optimum state i∗ is an attraction state for the neighborhood
N if i∗ ∈ N .

Proof. Theorem 3.3 can be proved by assuming that there exists a neighborhood N

such that i∗ ∈ N , with an attraction state i ̸= i∗; this would imply that f (i)≥ f (i∗).
By definition, i∗ is the global optimum state, thereby it follows that i ≡ i∗, which
contrasts with the initial assumption. �

To prove the convergence of the algorithm, its ability of escaping local optima
must be assessed; this is equivalent to proving that none of the attraction states is an
absorbing state and thereby that there is no absorbing states in S \{i∗}.

Theorem 3.4. All the attraction states i ̸= i∗ are not absorbing states:

P (Xt+1 = i | Xt = i)< 1 ∀i ∈ S \{i∗}, ∀t (3.11)

Proof. Consider a particle in state i at the beginning of iteration t, which was an
attraction state at the iteration t −1. Since the inertia term of the particle velocity
never goes to 0, the particle will move to a state j ̸= i even if i corresponds to
gbest (that is also pbest for that particle). The search direction of the hybridizing
algorithms and the neighborhood N j are random; thereby it is possible to state the
following:
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P
(
i ∈ N j

)
< 1 =⇒ P(Xt+1 = i | Xt = i)< 1 (3.12)

Therefore, i is not an absorbing state.

Furthermore, even if i ∈ N j and i ̸= i∗, the stochastic evolution of the algorithm
could lead with non-zero probability to a neighborhood N j such that ∃l ∈ N j |
f (l)≥ f (i); thus, l would be the attraction state at iteration t. �

It is therefore possible to prove the following Corollary.

Corollary 3.4.1. Given Theorem 3.4 and the transition law of the HPSO, the follow-
ing holds:

P (Xt+k ∈ N | Xt ∈ M )> 0 ∀N ,M ⊂ NS , k ≥ 1 (3.13)

where NS is the collection of neighborhoods identified in the set of states S .

Proof. Since all the attraction states are not absorbing points, the algorithm transits
from an attraction state to another without restrictions and, thus, from a given
neighborhood to another. �

Based on Corollary 3.4.1, it is possible to think of all neighborhoods as being
connected in a Markov chain sense; this implies that the HPSO algorithm can be
seen as irreducible from a neighborhood point of view.

This characteristic is important as it forms the basis for the proof that the algo-
rithm converges with probability 1.

Theorem 3.5. The proposed hybrid particle swarm optimization algorithm asymp-
totically converges to the global optimum when time is endless.

P (Xt+k = i∗ | Xt = i) = 1 ∀i ∈ S , k ≥ 1 (3.14)

Proof. Consider the time as endless; from Corollary 3.4.1 it directly descends that
starting from a random state i at the initial iteration t0, it exists a value k ≥ 1 such
that at iteration t0+k the particle can move to a neighbor N such that i∗ ∈N . Thus,
for Theorem 3.3 the particle will converge to the global optimum defined by the state
i∗. �
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Now it is possible to demonstrate that the global asymptotic convergence holds
also when the variable fixing algorithm is added to the HPSO.

Theorem 3.6. The HPSO with variable fixing asymptotically converges to the global
optimum if relthold is finite.

relthold ∈ Z+ =⇒ P (Xt+k = i∗ | Xt = i) = 1 ∀i ∈ S , k ≥ 1 (3.15)

Proof. The variable fixing algorithm reduces the search space of the HPSO to the set
R ⊂ S with P (i∗ ∈ R)< 1. If i∗ /∈ R and relthold = ∞, the HPSO is not able to
reach the global optimum. If relthold is finite, when the number of iterations in which
the global best solution so far does not improves is equal to relthold , all the fixed
elements are released and all the considerations done for the HPSO hold. Thus, the
asymptotic convergence for the presented HPSO with variable fixing is proven. �

3.1.1.5 Hybrid PSO for the trajectory assignment and departure sequencing
problems

For the trajectory assignment application, the particle structure was defined as in Fig.
3.2. For each mission:

• 3×NF elements (in blue) represent the path index assigned with each flight,
which is chosen among all the possible paths for that mission;

• 3×NF elements (in red) contain the speeds associated with each path;

• NF elements (in green) represent the PBbuff values (PBbuff = 0 for arrivals);

• 2×NF elements (in black) contain the buff variables.

j = {1,2,3} is the index associated to each trajectory phase described in Sec.
2.2, for a total particle size of 9×NF .

Fig. 3.2 Particle scheme for the trajectory assignment problem.
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The fitness value of each particle is composed of two terms: the first one considers
the total energy consumed by the tractors to perform the schedule represented by the
particle (Eq. 2.21); the second term is a penalty function defined as the number of
constraint violations (Eq. 2.22-2.26). Given that the PSO maximizes the fitness f ,
the latter is computed as the reciprocal of the linear combination of the two terms
(Eq. 3.16).

fk =
1

k1 · costk + k2 · penaltyk
(3.16)

The weights k1 and k2 were chosen to give more importance to the penalty term
of the fitness, thereby ensuring that the produced schedule is conflict-free; in the
present work, the assigned values are: k1 = 1 and k2 = 100, in order to set the
penalty term of the fitness at least one order of magnitude bigger than the energy
consumption one. The value of k2 can be tuned for different airports by considering
the worst case cost for an average flight schedule in the specific airport, namely the
cost resulting by the assignment of Vmax to each phase of each tractor mission.

The trajectory assignment problem formulation presented in the previous chapter
considers discrete and bounded variables; thus, some modifications are required to
the HPSO to be suitable for this kind of problems. The maximum particle velocity
value max_v j was defined, for each element j, as reported in Eq. 3.17, where lb and
ub represent the lower and upper bounds of each particle element.

max_v j =
lb j +ub j

2
− lb j (3.17)

If the velocity vk, j (Eq. 1.1) leads the element j of the particle k outside the
bounds, the element position xk, j (Eq. 1.2) is set to the correspondent bound value
(Eq. 3.18).

xk, j =



ub j if (xk, j + vk, j)> ub j

lb j if (xk, j + vk, j)< lb j

xk, j + vk, j otherwise

(3.18)
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3.1.1.6 Stopping condition

The stopping criteria for both The HC-HPSO and the RNS-HPSO is composed of
three terms: the maximum number of iterations is set to maxIter = 300; a condition
is added that stops the algorithm if the gbest solution does not improve for a prede-
fined number of iterations, set to the value maxCount = 30, in order to balance the
performance and the computational time required to produce an optimal solution.
The third term of the stopping condition is derived from the functional specifications,
which state that the maximum allowed computational time is 15min. If one of this
stopping condition is met, the algorithm stops. If the algorithm meets the second
criteria (gbest not improving), while the penalty value is not zero and the other two
criteria are not met, the algorithm is allowed to continue running. This exception is
granted to avoid solutions that generate conflicts among the tugs.

3.1.1.7 Parameter tuning

The algorithm parameters play a fundamental role in defining the performance
of the algorithm; therefore, a proper tuning of all the parameters is required. In
literature, several studies have been proposed on the parameter selection of the
particle swarm optimization [119–122]. However, the presence of the hybridization
adds the parameter m; therefore, a parameter tuning for the HC-HPSO and the
RNS-HPSO was carried out on five benchmark problems. For each benchmark
function, with problem dimension n = 20, Nr = 50 runs were performed for all the
combinations of the set of parameters reported in Table 3.1. The coefficients of the
particle velocity were set, following the studies reported in literature, to the values
c1 = 2, c2 = 2 and W linearly decreasing with the iterations from 0.9 to 0.4.

Table 3.1 Hybrid particle swarm optimization algorithm parameter sets. Benchmark prob-
lems.

Parameter Values

K n/4 n/2 3 ·n/4 n

m n/4 n/2 3 ·n/4 n

The selected benchmark problems to tune the parameters are reported in Table
3.2 [123]; the variable ranges and the optimum solution are also reported. In this
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work, the two hybrid particle swarm optimization algorithms were developed to
solve discrete variable problems; therefore, the benchmark function variables were
considered as discrete, with step ∆x = 0.01.

Table 3.2 Benchmark problems.

Function f (x̄) Variable domain Optimum

Ackley’s
f1 (x̄) = 20 + e − 20 · exp

(
−0.2 ·

√
1
n ·

n
∑

i=1
x2

i

)
−

exp
(

1
n ·

n
∑

i=1
cos(2 ·π ·n)

) [−30,30]D f1(0̄) = 0

Rastrigin’s f2 (x̄) =
n
∑

i=1

(
x2

i −10 · cos(2 ·π · xi)+10
)

[−5.12,5.12]D f2(0̄) = 0

Schwefel 1.2 f3 (x̄) =
n
∑

i=1

(
i

∑
j=1

xi

)2

[−65.53,65.53]D f3(0̄) = 0

Sphere f4 (x̄) =
n
∑

i=1
x2

i [−5.12,5.12]D f4(0̄) = 0

Rosenbrock’s f5 (x̄) =
n−1
∑

i=1

(
100 ·

(
xi+1 − x2

i
)2

+(xi −1)2
)

[−30,30]D f5(1̄) = 0

The mean value µerr and standard deviation σerr of the error on the fitness
function value, showed in Table 3.3, were used as first comparison metric. Figures
3.3-3.7 illustrate the mean computational time and the number of function evaluations
required to accomplish the optimization for each test case. The algorithm was
implemented in C language, parallelized by means of the OpenMP®[124] library
and executed on a Ubuntu 16.04 Pro platform supported by an Intel Core i7-4810MQ
CPU and 8 GB RAM.

As reported in Table 3.3, the HC-HPSO always reaches the global optimum when
applied to the first four benchmark problems; conversely, when the Rosenbrock’s
function is solved, the HC-HPSO always reaches a local optimum with mean error
µerr = 19.00. The RNS-HPSO never finds the optimum for the proposed benchmark
problems; however, conversely to what happens for the HC-HPSO, for the RNS-
HPSO an improvement can be noticed in the results as the two parameters assume
higher values. According to Figs.3.3-3.7, as expected, both the computational time
and the fitness function evaluations are proportional to the number of particles in the
swarm and increase with m.

To thoroughly analyze the dependence of the effectiveness and efficiency of the
two algorithms on the two parameters K and m, two test cases for the trajectory
assignment problems were implemented within the Turin airport. The first test
case consists of NF = 8 flights, whereas the second one is characterized by a
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(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.3 Ackley’s function. Mean computational time and number of function evaluations as
a function of K and m

(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.4 Rastrigin’s function. Mean computational time and number of function evaluations
as a function of K and m



58 | Conflict-free ground routing and tug dispatch algorithms

Table 3.3 Benchmark problems. Error mean and standard deviation. The sign − indicates
errors > 105

Algorithm
Parameter set

f1 f2 f3 f4 f5K m

HC-HPSO

n/4

3/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00+0.00
n/2 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00+0.00

3 ·n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00+0.00
n 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00+0.00

n/2

n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n/2 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

3 ·n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

3 ·n/4

n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n/2 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

3 ·n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

n

n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n/2 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

3 ·n/4 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00
n 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 19.00±0.00

RNS-HPSO

n/4

n/4 19.63±0.45 257.98±25.33 9426.43±1697.80 0.13±0.09 −
n/2 19.24±0.45 233.56±19.50 9224.67±2156.35 0.05±0.05 −

3 ·n/4 18.93±0.70 249.18±19.71 8519.80±1988.07 0.10±0.54 −
n 18.74±0.51 259.28±22.89 9360.50±2310.07 0.17±0.83 −

n/2

n/4 19.46±0.51 245.19±13.85 7107.23±1654.94 0.12±0.08 −
n/2 19.21±0.37 240.78±12.68 7090.52±1628.88 0.09±0.43 −

3 ·n/4 18.79±0.45 225.40±9.87 6773.46±1641.09 0.05±0.19 −
n 18.16±0.83 243.02±17.93 7078.93±1911.32 0.57±1.98 −

3 ·n/4

n/4 19.01±0.42 233.61±18.59 6918.56±1312.91 0.14±0.12 −
n/2 18.64±0.65 226.91±20.16 6040.91±989.84 0.08±0.15 −

3 ·n/4 18.30±0.95 232.06±17.26 5444.42±1081.55 0.10±0.37 −
n 17.50±0.91 238.34±17.33 5022.30±896.64 0.09±0.57 −

n

n/4 18.80±0.59 227.20±18.21 5192.31±1261.80 0.13±0.13 −
n/2 18.31±0.60 230.72±22.58 5742.44±1303.71 0.24±0.82 −

3 ·n/4 18.16±0.62 222.11±26.55 6007.59±1235.82 0.05±0.23 −
n 17.83±0.74 211.71±13.92 6212.91±1236.86 0.38±0.99 −

flight schedule containing NF = 12 flights. For each test case, Nr = 50 runs were
performed for each combination of the parameter values reported in Table 3.4, with
n = 72 and n = 108 for the first and second test cases respectively.

The results of the analysis are summarized in Table 3.5 in terms of mean and
standard deviation of the energy consumed µcost and σcost and of the success rate %S,
namely the percentage of runs that led to conflict-free schedules for the tractors. It
can be noticed that the improvement in the cost function, given by the incrementation
of the two parameters, is almost negligible; in fact, it can be evaluated in 10−1 kWh
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(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.5 Schwefel 1.2 function. Mean computational time and number of function evaluations
as a function of K and m

(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.6 Sphere function. Mean computational time and number of function evaluations as a
function of K and m
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(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.7 Rosenbrock’s function. Mean computational time and number of function evaluations
as a function of K and m

Table 3.4 Hybrid particle swarm optimization algorithm parameter sets. Trajectory assign-
ment problem.

Parameter Values

K 2 8 16

m n/4 n/2 3 ·n/4 n

for both the hybridizations of the particle swarm optimization. Differently from
what was seen for the benchmark problems, when solving the trajectory assignment
problem test cases, the performance of the RNS-HPSO are close to the one of the
HC-HPSO. As far as the efficiency of the algorithms is concerned, Figs. 3.8-3.9 show
the mean computational time and the mean number of fitness function evaluations
for both algorithms. Also in this case, it is possible to identify a proportional trend
of the computational time and function evaluation number with the two parameters.

Given the previous considerations, the selected values for the two parameters are
K = 8 and m = 3 ·n/4, which grant good effectiveness, while requiring a reasonable
computational time to solve the problem.
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Table 3.5 Trajectory assignment problems. The results are presented in the form: µcost ±
σcost (%S).

Algorithm
Parameter set

Test case 1 Test case 2K m

HC-HPSO

2

n/4 42.96±1.49 (100) 59.92±2.63 (58)
n/2 42.93±0.68 (100) 60.23±3.02 (98)

3 ·n/4 42.39±1.23 (100) 59.41±1.88 (100)
n 42.30±0.96 (100) 59.53±1.44 (100)

8

n/4 42.95±0.73 (100) 62.24±3.39 (88)
n/2 42.58±0.35 (100) 60.13±1.86 (100)

3 ·n/4 42.30±1.16 (100) 59.64±1.18 (100)
n 42.39±0.25 (100) 59.29±1.67 (100)

16

n/4 42.75±0.50 (100) 62.16±2.74 (100)
n/2 42.19±1.52 (100) 60.09±1.97 (100)

3 ·n/4 42.41±0.84 (100) 59.62±1.26 (100)
n 42.28±1.14 (100) 59.71±1.36 (100)

RNS-HPSO

2

n/4 43.97±1.50 (98) 62.09±2.58 (42)
n/2 43.60±1.23 (100) 61.24±2.37 (68)

3 ·n/4 43.42±0.72 (100) 62.07±2.65 (96)
n 43.32±0.85 (100) 61.43±2.25 (96)

8

n/4 43.38±0.81 (100) 63.07±3.05 (74)
n/2 43.39±0.61 (100) 63.21±3.35 (96)

3 ·n/4 43.40±0.52 (100) 62.78±2.44 (100)
n 43.15±0.52 (100) 62.39±2.58 (100)

16

n/4 43.27±0.73 (100) 63.53±2.99 (90)
n/2 43.24±0.53 (100) 63.20±2.41 (100)

3 ·n/4 43.09±0.40 (100) 62.37±2.64 (100)
n 43.14±0.34 (100) 61.97±2.48 (100)

In order to tune the parameters of the variable fixing algorithm, the same bench-
mark problems were used for the combinations of the parameter values reported in
Table 3.6. The HPSO parameters were set to the values resulting from the previous
analysis.

Table 3.6 Variable fixing algorithm parameter sets.

Parameter Values

T hreshold 10 20 30
α 0.1 0.2 0.3

relthold 5 10 20

Table 3.7 shows the mean ad the standard deviation of the fitness error for both
the HPSO with and without the variable fixing and for all the parameter sets. As it
can be noticed, the introduction of the VarFix does not affect the error in the solution
cost for the proposed problems; indeed, the best solution has always appeared before
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(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.8 LIMF test case 1. Mean computational time and number of function evaluations as a
function of K and m

Table 3.7 Benchmark problems. Error mean and standard deviation.

Algorithm Parameter set f1 − f4 f5

HPSO - 00.00E +00 19.00E +00
HPSO w/ variable fixing all 00.00E +00 19.00E +00

the variable fixing algorithm had started to actively operate. The results presented
in Table 3.7 show also that the HPSO algorithm was not able to find the optimal
solution for the Rosenbrock’s function, but it always got stuck in the local minimum
corresponding to the solution f5

(
0̄
)
. Figs. 3.10-3.14 demonstrate that, for the

proposed problems, the variable fixing algorithm was always capable of reducing
the computational time. However, the algorithm parameters have different effects on
the required computational time: as both the parameters α and T hreshold increase,
the computational time increases, whereas the relthold does not significantly affect
the performance of the algorithm for T hreshold > 10.
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(a) HC-HPSO

(b) RNS-HPSO

Fig. 3.9 LIMF test case 2. Mean computational time and number of function evaluations as a
function of K and m

Fig. 3.10 Ackley’s function computational time.

Fig. 3.11 Rastrigin’s function computational time.
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Fig. 3.12 Schwefel’s function computational time.

Fig. 3.13 Sphere’s function computational time.

Fig. 3.14 Rosenbrock’s function computational time.

The results of the benchmark problems do not provide any information on the
effects of the variable fixing algorithm parameters on the best solution; however,
they show that, as a general rule, the lower the value of the parameters, the lower
the computational time required to find the solution. Further information can be
gathered from the application of the variable fixing algorithm to the two test cases
for the trajectory assignment problem previously proposed.

Figures 3.15-3.18 show the mean computational time and the mean cost for each
combination of the parameters T hreshold, relthold and α . As it can be noticed, the
variable fixing algorithm was effective in decreasing the computational time required
for almost all the parameter combinations. Besides, when α ≤ 20% and relthold ≤ 10
were considered, the VarFix was capable also to lead the hybrid particle swarm
optimization to solutions characterized by lower cost function values.
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Considering the results of the parameter tuning analysis for the variable fixing
algorithm, the set of values selected for the three parameters are: T hreshold = 20,
relthold = 10 and α = 10%.

(a) α = 10% (b) α = 20% (c) α = 30%

Fig. 3.15 LIMF test case 1. Mean computational time as a function of T hreshold, relthold
and α

(a) α = 10% (b) α = 20% (c) α = 30%

Fig. 3.16 LIMF test case 1. Mean cost function value as a function of T hreshold, relthold
and α

(a) α = 10% (b) α = 20% (c) α = 30%

Fig. 3.17 LIMF test case 2. Mean computational time as a function of T hreshold, relthold
and α
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(a) α = 10% (b) α = 20% (c) α = 30%

Fig. 3.18 LIMF test case 2. Mean cost function value as a function of T hreshold, relthold
and α

3.1.2 Tree search heuristic

The runway utilization can be modeled as a switch that is closed (value 1) when an
airplane is landing or taking off and is open (value 0) when the runway is free. Given
a flight schedule, the scheme of the runway occupation as a function of time, caused
by the landing flights, can be depicted as in Fig. 3.19, where A j represents the j-th
arrival and Si the i-th departure slot. Hence, the starting and ending time of the slots
that can be used by departing airplanes can be computed.

Fig. 3.19 Runway occupation scheme.

The earliest (ERT) and latest (LRT) time at runway for a departing aircraft can
be computed by means of Eq. 3.19 and Eq. 3.20, where tPB is the earliest pushback
time and ds−r is the distance between the aircraft stand and the runway entry. In
the computation of ERT and LRT no speed ramp-up and ramp-down phases are
considered.

ERT = tPB +
ds−r

Vmax
(3.19)

LRT = tPB +
ds−r

Vmin
+MaxBuffer (3.20)
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Therefore, given the ERT and LRT of each departure, it is possible to enumerate
all the departure sequences and collect them in a tree representation that contains
in each branch a possible assignment of departures to slots (Fig. 3.20). However,
the assignment of one aircraft to a specific slot can prevent the assignment of other
airplanes to it, due to the runway separation requirements and the finite amplitude
of the slots. This behavior can lead to the creation of branches that do not assign
all the departing airplanes to a slot, thereby creating unfeasible solutions that were
immediately pruned, as highlighted in red in Fig. 3.20, which represent a hypothetical
case where the aircraft can depart only in the slots defined in Table 3.8. In this case,
departure D3 cannot be assigned in the sequences circled in red, which must be
pruned.

Table 3.8 Hypothetical departure sequencing problem.

Departure Possible slots

D1 [S1]

D2 [S1, S2]

D3 [S2, S3]

D4 [S3]

Fig. 3.20 Runway sequencing tree representation with unfeasible sequences highlighted.

The proposed tree search heuristic is based on a greedy algorithm with recovery
feature that aims to find the best branch in the departure sequencing tree: the electric
vehicle optimal scheduling (EVOS) heuristic. A cost value is computed for each
branch and the one with the lowest cost is chosen as solution. The cost is estimated
by running the optimization algorithm to define a (near-)optimal tractor schedule
satisfying the slot assignment. Therefore, the constraints defined in Eq. 3.21 and Eq.
3.22 are added to both the discrete and the continuous time models presented in the
previous chapter:
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startslotasgd (i)≤ tRWY (i) i ∈ TOs (3.21)

tRWY (i)+ tTO (i)≤ endslotasgd (i) i ∈ TOs (3.22)

where the start and the end of the assigned slot for the i-th departure are re-
spectively startslotasgd (i) and endslotasgd (i). The arrival time at the runway is tRWY (i),
whereas tTO (i) is the duration of the take-off.

The additional constraints define a strict boundary in the range of taxiing speeds
that can be allocated to each departure; in fact, the lowest and the highest speeds that
can be used by the tractor to satisfy the slot assignment can be computed by means
of Eq. 3.23 and Eq. 3.24 respectively.

Vlow =
ds−r

endslotasgd −Disctime − tPB −PBbuff
(3.23)

Vhigh =
ds−r

startslotasgd −Disctime − tPB −PBbuff
(3.24)

The EVOS algorithm aims to find the optimal or near-optimal conflict-free
schedule, minimizing the deviations from the lower bound schedule for the uncon-
strained problem (no conflict considered). In order to find the lower bound for the
unconstrained problem, the consumption model presented in Section 2.3 must be
considered. The energy consumption is proportional to the traveling speed V and the
traveled distance d. Hence, the lower bound schedule is the one that assigns to each
vehicle the shortest path and the speed that implies minimum energy consumption
VEmin . To a first approximation, considering only the constant speed segment of each
mission phase, the minimum energy consumption speed can be computed starting
from Eq. 2.12, which for simplicity is reported below:

∆Etot =
d

ηout ·ηd ·3600
·
(

P1 ·V 2 +P2

ηEM
+Paux ·V−1

)
As mentioned above, the minimum energy consumption is obtained by traveling

on the shortest path with length dmin; thereby it is possible to define a coefficient for
the minimum energy qmin = dmin/(ηout ·ηd ·3600). The speed that corresponds to
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the minimum can be then computed posing the derivative of the energy consumption
equal to zero, as reported in Eq. 3.25. As it can be noticed, the minimum energy
consumption speed depends only on the aerodynamic features of the tractor (or
tractor and airplane), with constant of proportionality 8.7721, which comes from the
data in Table 2.1.

d
dV

∆Etot = 0 =⇒ qmin ·
(

2 · P1

ηEM ·VEmin

−Paux ·V−1
Emin

)
= 0 =⇒

=⇒ VEmin =
3

√
Paux ·ηEM

2 ·P1
=

3

√
Paux ·ηEM

2
· 3
√

P−1
1 = 8.7721 · 3

√
P−1

1

(3.25)

The proposed greedy algorithm analyzes one mission at a time, following the
flight schedule order; the shortest path and VEmin are assigned to the three phases of
the considered mission. Conversely to the classical greedy algorithms, the proposed
one has a recovery feature that allows it, if needed, to change choices that have been
previously made. This feature is exploited in the situation where conflicts arise with
the previous assigned trajectories; therefore, the speed of the involved vehicles and
the buffer time are modified via a reduced variable neighborhood search (RVNS),
to find a conflict-free solution that minimizes the total cost at this decision point. A
graphical representation of how the algorithm works is reported in Fig. 3.21, where
Vopt1 and Vopt2 are the optimal speed values, found for each flight after the first
or second step of the algorithm respectively. The pseudocode of the optimization
heuristic is presented in Algorithm 7.

Fig. 3.21 Reasoning representation of the greedy EVOS algorithm.

The proposed RVNS analyzes the incumbent solution neighborhoods in random
order (Algorithm 8): m random integers are generated in the set {1, . . . ,Ns}, with
Ns length of the solution array s, which contains the three speeds and three buffer
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Algorithm 7 Electric vehicle optimal scheduling tree search heuristic pseudocode.
1: Enumerate all the possible combinations of runway slot assignment
2: Build the feasible slot assignment tree
3: while (Stopping condition) = FALSE do
4: for all branches do
5: Set V=VEmin for each phase of the first mission
6: for all i ∈ {2, . . . ,NF} do
7: Set V=VEmin for the phases of the i-th mission
8: Compute the fitness after the addition of the i-th mission
9: If any conflict or any constraint violation are detected, run the RVNS

time of the actual considered mission and of the Nc conflicting ones. Thereby, the
array size is Ns = 6 · (Nc+ 1). For the j-th generated index, the solution array is
randomly changed within the j-th neighborhood (Eq. 3.26) until the associated
fitness function stops growing. The RVNS is then repeated maxIterRVNS times, using
the final solution found in the previous iteration as a tentative solution for the new
iteration.

N j = {s′ | lbs j ≤ x′j ≤ ubs j} (3.26)

Algorithm 8 Reduced variable neighborhood search pseudocode.
1: for i = 1 : MaxIterRVNS do
2: Generate m random integer numbers idx j ∈ {1, . . . ,Ns}
3: for j = 1 : m do
4: while f itness > f itnessold do
5: Replace sidx j with a random value within the neighborhood Nidx j

6: Evaluate the fitness function for the modified s
7: If the new s has higher fitness, replace the original solution vector

3.1.2.1 Stopping condition

At the end of each iteration, the algorithm checks if a feasible solution has been
found, at least in one of the branches; if this condition is met, the algorithm stops.
In the case that the previous condition is violated, the algorithm runs again for a
maximum number of iterations maxIter = 5. Similarly to what has been done for
the hybrid particle swarm optimization, a third constraint is defined to prevent the
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algorithm overrunning the functional requirement of maximum computational time
equal to 15 min.

3.1.2.2 Parameter tuning

The solution found by the tree search algorithm is influenced by the number of
times the reduced variable neighborhood search algorithm is run for each conflict
resolution MaxIterRVNS and by the number of elements m of the solution array, which
are changed within the reduced variable neighborhood search. A parameter tuning
was carried out on the same test cases within the "Sandro Pertini" Turin airport used
for the parameter tuning of the HPSO. The set of parameters used for the tuning is
presented in Table 3.9.

Table 3.9 Tree search algorithm parameter sets.

Parameter Values

MaxIterRVNS 5 10 20 30 50

m Ns/2 Ns

For each parameter value combination, Nr = 50 runs per test case were executed;
the mean µcost and standard deviation σcost of the cost function expressed in 2.21 and
the success rate %S were used as comparison metric. Table 3.10 illustrates the results
for each test case; Fig. 3.22 and Fig. 3.23 show the mean and standard deviation of
the computational time and of the fitness evaluations.

Fig. 3.22 LIMF test case 1. Mean computational time and number of function evaluations as
a function of MaxIterRVNS and m
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Fig. 3.23 LIMF test case 2. Mean computational time and number of function evaluations as
a function of MaxIterRVNS and m

Table 3.10 Trajectory assignment problems. The results are presented in the form: µcost ±
σcost (%S).

Algorithm
Parameter set

Test case 1 Test case 2
MaxIterRVNS m

TS

5
Ns/2 60.16±3.98 (100) 95.05±6.86 (100)

Ns 55.54±5.31 (100) 88.99±6.82 (100)

10
Ns/2 57.33±4.49 (100) 91.64±8.78 (100)

Ns 55.09±2.91 (100) 85.47±8.02 (100)

20
Ns/2 54.25±4.11 (100) 84.32±6.88 (100)

Ns 54.92±3.11 (100) 80.10±6.99 (100)

30
Ns/2 55.71±2.69 (100) 81.02±5.91 (100)

Ns 55.00±2.62 (100) 81.04±6.93 (100)

50
Ns/2 54.26±3.60 (100) 80.06±5.32 (100)

Ns 53.51±3.89 (100) 78.23±6.14 (100)

Based on the results of the simulations, the parameters were set to the values
MaxIterRV NS = 30 and m = NS/2.

3.2 Tractor dispatch algorithm

The tractor dispatch problem is a scheduling problem with consumable resources
(tractors) that are used to perform actions (departures/arrivals); the resources can
be restored (battery charging) during the process. The scheduling problem was
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proved to be NP-hard, justifying the choice of approximate methods to solve it in
a limited computational time. The hybrid particle swarm optimization algorithms
presented to solve the trajectory assignment problem were used also to find the
optimal assignment of the tractors to the missions. The particles for the considered
problem assume the structure depicted in Fig. 3.24. The size of each particle is
n = NF , with lower bound lbk = 1 and upper bound ubk = NT for each element xk,
where NT is the fleet size.

Fig. 3.24 Particle structure for the tractor dispatch algorithms.

In medium and big airports, more than one tractor depot can be defined, thereby
establishing multiple fleets with size NTi, with i ∈ {1, . . . ,Nd} and Nd number of
tractor fleets in a specific airport. In this work, disjoint depots were considered: a
tractor that is initialized in a specific depot, can not move to another depot. The
minimum number of tractors required in each fleet to perform the missions can be
established running the aforementioned algorithms with increasingly lower fleet
sizes.



Chapter 4

Simulation Results

To test the performance of the developed optimization algorithms and their recon-
figurability, they were applied to a set of test case scenarios in different airports;
both the optimization models presented in Chapter 2 were used. Three airports with
different characteristics were considered: a single-runway low-traffic airport (i.e.
the "Sandro Pertini" Turin airport), a two-runways medium-traffic airport with two
separate terminals (i.e. the Milan Malpensa airport) and a large hub high-traffic
airport (i.e. the Amsterdam Schiphol airport). For each airport, the model was
developed using the GUI presented in Section 2.1.

4.1 Test case scenarios

This section gives an overview on how the three considered airports were modeled
and introduces the flight schedules of the test case scenario and explains how they
have been built.

4.1.1 Turin airport

The layout of the Turin airport consists of a main two-way taxiway and a one-way
taxiway traveling along the main apron, as depicted in Fig. 4.1. Only one tractor
depot area was defined for this airport; it has been located on the side of the terminal
building (black rectangle area).
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Fig. 4.1 Turin airport layout with indication of the taxiway direction and of the depot. Credits:
Pictures 2015 DigitalGlobe, Map data ©2015 Google

Table 4.1 Airplane mechanical and aerodynamic characteristics. MTOW: maximum take off
weight, MLW: maximum landing weight.

MTOW [kg] MLW [kg] Length [m] Wingspan [m] CL S
[
m2] Landing speed [m/s]

78000 66000 37.57 34.10 1.96 122.60 72.01

No data on aircraft stands and runway entries assignment for real flight schedules
were available. Therefore, a flight schedule generator was designed taking into
consideration the actual flight schedules of the Turin airport in different periods
of the year, retrieved from the airport website. The average traffic during the peak
hours (from 9.00 to 13.00) is 7 departures/arrivals per hour; the interval between two
arrivals was randomly generated with uniform distribution between the values 40s
and 900s. The turnaround time for each flight was generated in the range 20−50min;
gates were randomly assigned, whereas the runway entries/exits were allocated to
comply with the actual usage of the runway, which is mostly in configuration 36.
The aircraft stand codes and locations and the runway entry codes were extracted
from the airport information publication (AIP), reported in the ENAV website [125].
All the flights were considered to be operated by aircraft with the characteristics
reported in Table 4.1.

The touch down (TD) time and pushback (PB) time were then defined as follows:

tT D,i = tT D,i−1 +U (40,900) ∀i = 1, . . . ,NF (4.1)

tPB,i = tT D,i +U (1200,3000) ∀i = 1, . . . ,NF (4.2)
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Fig. 4.2 Turin airport layout with indication of the runway entry labels [125].
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Fig. 4.3 Turin airport layout with indication of the aircraft stands [125].

Three scenarios were analyzed for this airport: the first test case (TC1), presented
in Table 4.2, is a simple test case with only one possible runway sequence (refer to
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Section 3.1.2 for the definition of runway sequence). The second (TC2) and the third
(TC3) test cases have respectively three and seven possible runway sequences (Table
4.3 and 4.4).

Table 4.2 Test Case 1. Flight schedule.

TO/LND PB/TD time Stand RWY entry

LND 14:00:00 113 B

LND 14:11:40 105 A

LND 14:25:40 116 C

TO 14:31:20 113 F

LND 14:36:20 500 B

LND 14:39:40 100 C

TO 14:41:20 105 E

LND 14:49:30 503 A

TO 14:52:40 116 F

LND 14:53:10 506 C

Table 4.3 Test Case 2. Flight schedule.

TO/LND PB/TD time Stand RWY entry

LND 10:00:00 109 C

LND 10:06:50 505 A

LND 10:19:30 112 B

LND 10:30:20 100 C

LND 10:43:10 114 B

TO 10:46:00 109 F

TO 10:52:00 505 E

LND 10:58:00 204 A

TO 11:05:40 114 G

TO 11:09:00 112 F
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Table 4.4 Test Case 3. Flight schedule.

TO/LND PB/TD time Stand RWY entry

LND 12:00:00 507 C

LND 12:11:10 203 A

LND 12:25:00 115 B

LND 12:36:30 116 C

LND 12:41:50 117 A

TO 12:43:20 507 F

TO 12:48:10 115 G

TO 12:49:50 203 E

LND 12:56:40 115 C

TO 13:04:00 117 F

4.1.2 Milan Malpensa airport

The Milan Malpensa airport is composed of two separate terminals (T1 and T2). In
this work, the runways are considered to be operated in the configuration 35L−35R
for both departures and arrivals. This airport is used to test the capabilities of the
autonomous taxi system of managing more than a fleet of tractors; indeed, two depot
areas were defined, one for T1 and one serving T2, as showed in Fig. 4.4. Also for
this airport, the airplane stands and the runway entries were extracted from the AIP
downloaded from the ENAV website [125].

The flight schedules for the test case scenarios TC4 and TC5 were retrieved from
the Milan airport website for what concerns touchdown time, earliest pushback time,
and aircraft type assigned to the flights. The corresponding airplane stands and the
runway entries were assigned randomly from the airport model. The layout of the
airport leads the aircraft landing to or taking off from the runway 35R to cross the
runway 35L to reach the terminal T1 or the assigned runway. This feature leads to the
definition of a runway exit and a separate connection point in the test case schedule.
The first test case (TC4) (Table 4.5) considers that all the airplanes operating in the
terminal T1 use runway 35L, whereas the aircraft assigned to the terminal T2 were
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Fig. 4.4 Milan Malpensa airport layout with indication of the depot locations [125].

conceived operating on both runways. Conversely, in the second test case designed
for this airport (TC5), presented in Table 4.6, the aircraft assigned to each terminal
could operate on every runway.

4.1.3 Amsterdam Schiphol airport

The Amsterdam Schiphol airport is one of the busiest airports in Europe for both
passengers and movements. The layout of the airport is really different with respect
to the previously considered ones; in fact, the terminals are surrounded by a couple of
parallel one-way taxiways: A with clockwise direction and B with counterclockwise
direction. The south-west part of the airport is crossed by the two-way taxiway Q.
The aeronautical information publication of the Schiphol airport can be accessed at
the AIS Netherlands website [126] to have a complete overview of the aerodrome
parking locations for each apron and of the ground movement recommendations.
Two tractor depot/charging areas were designated for this airport, as described in Fig.
4.5, each one serving a portion of the central apron: the tractors based in the Depot 1
will serve the aircraft that are assigned to the stands inside the red area, whereas the
tractors belonging to the Depot 2 will deliver those assigned to the docks within the
green area. Runway operations were supposed being in South-North configuration:
runways 36L, 06, and 36R are operated by the inbound traffic, whereas runways 36L
36C and 06 are used for the outbound traffic, as reported in [127].
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Table 4.5 Test Case 4. Flight schedule.

TO/LND PB/TD Stand A/C code RWY entry Conn/Dis RWY Terminal

LND 09:00:00 103 319 E - 35R 2

TO 09:00:00 602 E70 WB - 35L 1

TO 09:00:00 107 320 CA - 35R 2

LND 09:05:00 510 321 DB - 35L 1

LND 09:15:00 601 733 DA - 35L 1

LND 09:16:10 507 763 EW - 35L 1

TO 09:20:00 655 319 GW - 35L 1

TO 09:20:00 609 319 F - 35L 1

TO 09:25:00 706 733 WB - 35L 1

TO 09:30:00 105 319 CA - 35L 2

TO 09:35:00 512 320 GW - 35L 1

TO 09:40:00 606 736 WB - 35L 1

TO 09:40:50 604 321 F - 35L 1

TO 09:41:30 610 320 GW - 35L 1

LND 09:45:00 662 738 BW - 35L 1

LND 09:50:00 110 319 E - 35R 2

LND 09:51:10 651 E90 DA - 35L 1

TO 09:55:00 552 F70 F - 35L 1
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Table 4.6 Test Case 5. Flight schedule.

TO/LND PB/TD Stand A/C code RWY entry Conn/Dis RWY Terminal

TO 11:00:00 103 319 CA - 35R 2

TO 11:00:00 115 319 FE - 35L 2

TO 11:00:00 707 763 WB - 35L 1

LND 11:05:00 510 320 E EW 35R 1

TO 11:05:00 554 738 GW - 35L 1

LND 11:10:00 601 320 DB - 35L 1

LND 11:11:00 510 738 EW - 35L 1

TO 11:10:00 105 320 CA - 35R 2

TO 11:10:00 113 319 FE - 35L 2

LND 11:15:00 555 320 DA - 35L 1

TO 11:20:00 609 320 WB - 35L 1

TO 11:25:00 501 772 F - 35L 1

TO 11:30:00 612 320 WB - 35L 1

TO 11:30:50 552 319 GW - 35L 1

LND 11:35:00 507 763 E EW 35R 1

TO 11:35:00 510 320 F - 35L 1

TO 11:40:00 223 319 GW - 35L 2

LND 11:45:00 604 320 L - 35L 1

TO 11:45:00 110 319 CA - 35R 2

LND 11:50:00 101 319 D - 35R 2

LND 11:56:30 102 319 E - 35R 2
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Two test cases (TC6 and TC7) were set up for this airport, aimed to test the
influence of the depot position on the final solution. Both scenarios are based on the
flight schedule presented in Table 4.7. The first test case considers only the presence
of Depot 1, thereby concentrating all the traffic flow on it; conversely, the second
test case considers both depots, leading to a more distributed traffic. Touchdown
time, earliest pushback time, and aircraft type assigned to the flights for the test case
scenarios were retrieved from the airport website. The designated airplane stands
and the runway entries were randomly defined from the airport model.

Fig. 4.5 Amsterdam Schiphol airport layout with indication of the the depot locations [126].
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Table 4.7 Test Case 6. Flight schedule.

TO/LND PB/TD Stand A/C code RWY entry Conn/Dis RWY Terminal

LND 07:00:00 G5L 772 E4 - 36R 2
LND 07:00:00 F5L 77W S5 - 06 2
TO 07:00:00 G7L 319 W5 - 36R 2
TO 07:00:00 D52R 320 S2 - 06 2
TO 07:00:00 E77L 733 S1 - 06 2
TO 07:00:00 H3L E95 W8 - 36C 2
TO 07:00:00 B93T 320 S1 - 06 1
TO 07:00:00 E9R E90 V3 Z1 06 1
TO 07:00:00 D93L E95 S2 - 06 2
TO 07:00:30 F7L 733 W10 - 36C 2
TO 07:00:40 C18L 738 W9 - 36C 1

LND 07:01:20 B36R 332 E2 - 36R 1
LND 07:05:00 E18R 744 S4 - 06 2
TO 07:05:00 E2L AR8 W10 - 36C 2
TO 07:05:00 D23L 738 S2 - 06 1
TO 07:05:00 B66T 320 W8 - 36C 1
TO 07:05:00 G73R E75 W9 - 36C 2
TO 07:05:30 C7R 733 S3 - 06 1
TO 07:05:30 J83L 733 S1 - 06 2

LND 07:06:10 H6L F70 E6 - 36R 2
LND 07:10:00 D49R F70 E3 - 36R 2
LND 07:10:00 D4L 73H S3 - 06 1
TO 07:15:00 F3R E90 V3 W5 36L 2

LND 07:35:40 D18L 333 E2 - 36R 1
LND 07:35:50 J85L 73C S5 - 06 2
LND 07:40:00 D23L E90 E6 - 36R 1
LND 07:45:00 A35L 76W S3 - 06 1
LND 07:50:00 F6L E95 E4 - 36R 2
LND 07:50:50 C8R 73H S4 - 06 1
TO 07:51:10 G7L 319 W9 - 36C 2

LND 07:51:10 D52R E90 E1 - 36R 1
LND 07:51:50 D27L E75 S4 - 06 1
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4.2 Numerical results

Each algorithm developed to solve the trajectory assignment problem was run for
each test case and each optimization model Nr = 100 times. Afterwards, for the
best solution found in the previous step, the tractor dispatch problem was solved
running the two proposed algorithms. Models and algorithms are compared in terms
of success rate %S, mean and standard deviation of the cost function µcost ±σcost ,
and mean and standard deviation of the computational time µtime ±σtime, for both
the trajectory assignment optimizer and the tractor dispatcher. Only the successful
runs were considered for the computation of the cost related results.

4.2.1 Trajectory assignment problem

The results for the three test cases in the Turin airport are summarized in Table
4.8 and in Table 4.10 for the continuous and discrete time models respectively and
in Fig. 4.6. As it can be noticed, all the algorithms always generate conflict free
schedules for the three test cases, when the continuous time model is implemented.
The big difference in the cost function between the Tree search algorithm and the
two HPSO is given by the different produced scheduling, as described in Table
4.9, which reports the best solution found by each algorithm for TC3 in terms of
particle elements divided by flight. The discrete model decreased the reliability of
the algorithms leading to lower success rates; Table 4.11 reports the optimal schedule
found by each algorithm for TC3, using the discrete time model. The tree search
heuristic provides better solutions both from a cost function and a computational
time point of view. The solutions obtained with the continuous model resulted in a
lower cost function and lower computational time required, with respect to the cases
in which the discrete time model was used.

Table 4.12 and Table 4.13 present the results for test cases TC4 and TC5. The
trends highlighted for the Turin airport test cases are confirmed both in TC4 and
TC5. The RNS-HPSO and the tree search heuristic have generated similar solutions
for TC5; however, the TS algorithm ran in less than half time. When the discrete
time model is considered, the reliability of the algorithm drastically decreases and
the generation of conflict-free schedules can no longer be granted. This behavior
can be explained considering that the discrete time model leads the algorithms to
overrun the maximum computational time specification, before the algorithms are
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Table 4.8 Results for TC1, TC2 and TC3 considering the continuous time model. The
results are presented in terms of success rate %S and mean and standard deviation of the cost
function µcost ±σcost and of the computational time required µtime ±σtime.

Algorithm Value

Test cases
NF = 10 NF = 10 NF = 10

TOs = 3 TOs = 4 TOs = 4

Branches = 1 Branches = 3 Branches = 7

Tree search

%S 100 100 100

µcost ±σcost [kWh] 12.41±0.00 13.30±0.05 13.00±0.00

µtime ±σtime [s] 1.54±0.03 2.81±0.04 9.69±0.19

HC-HPSO

%S 100 100 100

µcost ±σcost [kWh] 51.05±3.88 55.12±5.22 64.63±11.73

µtime ±σtime [s] 76.95±31.72 102.08±38.92 79.76±41.94

RNS-HPSO

%S 100 100 100

µcost ±σcost [kWh] 48.36±1.77 51.15±1.38 58.91±9.80

µtime ±σtime [s] 41.61±13.47 47.60±15.67 50.53±19.26

Table 4.9 Results for TC3 considering the continuous time model. The best found solutions
by each algorithm are compared.

Flight Tree search HC-HPSO RNS-HPSO

1 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0]

2 [1, 1, 1, 7, 4, 4, 0, 0, 0] [1, 1, 1, 5, 6.5, 4, 0, 0, 0] [1, 1, 1, 5, 5, 4, 0, 0, 0]

3 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 6.5, 7, 4, 0, 0, 0] [1, 1, 1, 12, 7, 4, 0, 0, 0]

4 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 10, 7, 0, 0, 0] [1, 1, 1, 4, 8, 12, 0, 0, 0]

5 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 8.5, 4, 0, 0, 0] [1, 1, 1, 4, 9, 4, 0, 0, 0]

6 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 8, 4, 4, 0, 0, 0] [1, 1, 1, 12, 4, 4, 0, 0, 0]

7 [1, 1, 1, 4, 4, 4, 514, 0, 0] [1, 1, 1, 4, 7, 4, 0, 0, 0] [1, 1, 1, 4, 7, 4, 0, 0, 0]

8 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0]

9 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0]

10 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 4, 0, 0, 0]

capable of reaching a feasible solution. Indeed, the only algorithm capable of finding
conflict-free schedules for test case 4 (HC-HPSO) presented a mean computational
time higher that 15 min.
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Table 4.10 Results for TC1, TC2 and TC3 considering the discrete time model. The results
are presented in terms of success rate %S, mean and standard deviation of the cost function
µcost ±σcost and of the computational time required µtime ±σtime.

Algorithm Value

Test cases
NF = 10 NF = 10 NF = 10

TOs = 3 TOs = 4 TOs = 4

Branches = 1 Branches = 3 Branches = 7

Tree search

%S 100 74 97

µcost ±σcost [kWh] 46.47±0.08 51.32±1.03 51.01±0.58

µtime ±σtime [s] 7.01±0.48 49.37±24.35 106.65±109.82

HC-HPSO

%S 100 100 100

µcost ±σcost [kWh] 49.69±3.28 55.88±3.75 65.01±8.33

µtime ±σtime [s] 531.51±232.41 427.78±197.41 395.14±178.32

RNS-HPSO

%S 96 92 46

µcost ±σcost [kWh] 76.41±14.15 87.34±15.37 101.75±12.17

µtime ±σtime [s] 148.38±63.03 143.39±73.55 413.55±198.99

Table 4.11 Results for TC3 considering the discrete time model. The best found solutions by
each algorithm are compared.

Flight Tree search HC-HPSO RNS-HPSO

1 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 4, 15, 0, 0, 24] [1, 1, 1, 4, 4, 4, 0, 3, 0]

2 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 4, 9, 4, 9, 21, 38] [1, 1, 1, 6, 4, 12, 0, 0, 5]

3 [1, 1, 1, 4, 4, 4, 0, 600, 0] [1, 1, 1, 6.5, 4, 9.5, 1, 0, 15] [1, 1, 1, 4, 5, 4, 50, 0, 20]

4 [1, 1, 1, 4, 4, 4, 0, 230, 0] [1, 1, 1, 10, 4, 13, 0, 2, 80] [1, 1, 1, 4, 6, 8, 90, 12, 30]

5 [1, 1, 1, 4, 4, 4, 0, 0, 0] [1, 1, 1, 8.5, 4, 5.5, 0, 0, 19] [1, 1, 1, 13, 4, 8, 0, 0, 90]

6 [1, 1, 1, 4, 4, 4, 0, 0, 210] [1, 1, 1, 12, 4, 4, 3, 48, 47] [1, 1, 1, 4, 6, 4, 0, 0, 0]

7 [1, 1, 1, 4, 6, 4, 0, 0, 90] [1, 1, 1, 4, 10, 4, 0, 0, 84] [1, 1, 1, 4, 4, 4, 43, 90, 42]

8 [1, 1, 1, 4, 4, 4, 0, 530, 0] [1, 1, 1, 4, 4, 4, 1, 43, 52] [1, 1, 1, 7, 4, 8, 1, 45, 0]

9 [1, 1, 1, 4, 4, 4, 350, 0, 0] [1, 1, 1, 4, 4, 4.5, 24, 0, 0] [1, 1, 1, 4, 4, 4, 43, 0, 62]

10 [1, 1, 1, 4, 4, 4, 0, 0, 170] [1, 1, 1, 4, 4, 4, 49, 0, 0] [1, 1, 1, 5, 4, 4, 8, 19, 0]

The results concerning TC6 and TC7 are reported in Table 4.14. For these
test cases, only the runs using the continuous model are proposed, as none of the
algorithms was able to converge to feasible solutions when using the discrete time
model. Also considering the test cases related to the Amsterdam Schiphol airport,
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(a) Continuous time model

(b) Discrete time model

Fig. 4.6 LIMF test cases TC1, TC2 and TC3. Mean cost function and mean computational
time for the TS, HC-HPSO and RNS-HPSO algorithms

the tree search heuristic resulted the most effective and efficient algorithm, leading
to less expensive solutions in a dramatically lower time, with respect to the two
hybridizations of the particle swarm optimization. It is possible to notice that the
solution found for TC7 are really close to the ones found for TC6; therefore, the
position of the depot has not deeply influenced the overall consumption. For these test
cases, both the HC-HPSO and the RNS-HPSO violate the maximum computational
time constraint.
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Table 4.12 Results for TC4 and TC5 considering the continuous time model. The results are
presented in terms of success rate %S and mean and standard deviation of the cost function
µcost ±σcost and of the computational time required µtime ±σtime.

Algorithm Value

Test cases
NF = 18 NF = 20
TOs = 11 TOs = 13

Branches = 146 Branches = 56

Tree search

%S 100 100
µcost ±σcost 112.26±0.24 172.78±0.00
µtime ±σtime 264.76±8.10 196.82±14.37

HC-HPSO

%S 100 100
µcost ±σcost 179.24±23.89 252.60±25.29
µtime ±σtime 424.66±207.56 755.80±223.77

RNS-HPSO

%S 100 100
µcost ±σcost 189.48±21.11 172.51±5.15
µtime ±σtime 396.64±169.36 503.62±227.85

Table 4.13 Results for TC4 and TC5 considering the discrete time model. The results are
presented in terms of success rate %S and mean and standard deviation of the cost function
µcost ±σcost and of the computational time required µtime ±σtime. The text highlighted in red
indicates that the computational time is higher than the maximum time allowed.

Algorithm Value

Test cases

NF = 18 NF = 20

TOs = 11 TOs = 13

Branches = 146 Branches = 56

Tree search

%S 0 0

µcost ±σcost − −

µtime ±σtime − −

HC-HPSO

%S 64 0

µcost ±σcost 246.33±14.20 −

µtime ±σtime 1210.49±57.50 −

RNS-HPSO

%S 0 0

µcost ±σcost − −

µtime ±σtime − −
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Table 4.14 Results for TC6 and TC7 considering the continuous time model. The results are
presented in terms of success rate %S and mean and standard deviation of the cost function
µcost ±σcost and of the computational time required µtime ±σtime. The text highlighted in red
indicates that the computational time is higher than the maximum time allowed.

Algorithm Value

Test cases

NF = 32 NF = 32

TOs = 17 TOs = 17

Branches = 30 Branches = 30

Tree search

%S 100 100

µcost ±σcost 311.90±0.72 294.89±2.74

µtime ±σtime 277.74±4.81 360.62±288.89

HC-HPSO

%S 7 24

µcost ±σcost 404.53±16.90 373.52±43.50

µtime ±σtime 925.34±9.30 922.08±12.13

RNS-HPSO

%S 1 27

µcost ±σcost 322.75±12.78 306.12±10.32

µtime ±σtime 911.79±14.56 919.17±11.23

4.2.2 Tractor dispatch

For each of the test cases presented above, given the best solution found by the
algorithms, the minimum number of tugs needed to perform the schedule was
computed by means of the tractor dispatch algorithm. Starting from a fleet size
equal to the number of flights in the flight schedule, the value NT was progressively
decreased until no feasible assignments were generated. The results are reported in
Table 4.15. It descends that in the Turin airport at least 5 tractors are required; as far
as the Milan airport is considered, a minimum of 8 tugs have to be allocated to the
Terminal 1, whereas at least 4 to the Terminal 2. The minimum number of tractors
required to perform the proposed test cases in the Amsterdam airport decreases if
two depots are considered. This can be explained by the fact that in case two depots
are available, the travel time required to reach the airplanes or to go back to the
depot is lower. This feature allows to increase the number of missions that a tug can
perform during the same time period.
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Table 4.15 Minimum number of tractors to be allocated to each depot, in order to perform
the schedules generated by the trajectory assignment algorithm

Airport TC
NT

Depot 1 Depot 2

LIMF

TC1 5 −

TC2 3 −

TC3 5 −

LIMC
TC4 8 4

TC5 7 4

EHAM
TC6 26 −

TC7 10 14

4.3 Comparison with classical taxi

This section presents a comparison between the total estimated operative costs of
performing the optimized tug schedule (engine-off) and an estimation of the total
cost for the classical taxi (engine-on), aimed at the evaluation of the potential savings
deriving from the adoption of the autonomous taxi system. The approach proposed
in [29] and [128] is used. When the taxi phase is performed with the main engines
off, the airplane systems need to be powered by the auxiliary power unit (APU),
thereby implying a cost that has to be added to the energy consumed by the tugs for
a more realistic cost estimation. The considered average APU fuel flow is 0.03 kg/s
[129], with a fuel cost of 0.5254 USD/kg = 0.4938 EUR/kg (1USD = 0.94EUR)
[130]. The average energy cost in Europe for industrial applications during the first
semester of the 2016 was 0.117 EUR/kWh [3].

For each departure/arrival, the fuel consumed using the classical taxi approach is
computed using the following equation [128]:

fcons√
Tamb

= a f +b f · t + c f ·nacc (4.3)
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where fcons is the total fuel consumed, Tamb = 15 ◦C = 288.15 K is the external
temperature, t is the traveling time and na is the number of acceleration events. The
values of the coefficients a f , b f , c f for each airplane were retrieved from [128].
Given the limited amount of airplane coefficient available, the same data were used
also for airplanes not analyzed in [128] but having similar characteristics to the ones
for which the data are available. In this work, the number of acceleration events
was set to nacc = 1 (only the first acceleration considered), thereby assuming that
the aircraft would be able to perform the taxi trajectory continuously at constant
speed. Furthermore, the aircraft are considered taking off as soon as they reach the
runway, without any queue delay. This assumptions leads to underestimated taxi
consumptions for the engine-on approach, thereby to a more conservative saving
evaluation.

For each test case, the classical taxi cost is evaluated for two different taxiing
speed levels: V = 10 m/s and V = 16 m/s. In this way, it is possible to define a
range of savings and to detect if any situation occurs in which the classical taxi is
more convenient than the autonomous one. The results of the analysis are reported
in Table 4.16. As far as the towing phase is considered, only the portion of trajectory
from the stand to the disconnection point or from the connection point to the stand is
accounted, thereby neglecting the portions of trajectory traveled by airplanes with
own propulsion; same approach was used for the engines-on taxi. It can be noticed
that the adoption of an autonomous taxi system always results more convenient, with
respect to the engine-on taxi. The estimated savings are in the range 40%−80%,
with a significant increase according to the airport size; this tendency leads to infer
that the bigger the airport, the higher the potential savings.
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Table 4.16 Costs related to the autonomous or classical taxi solution, expressed in EUR. The
savings are indicated as percentage of the engine-on taxi cost.

TC Autonomous taxi
Classical taxi

V=10 m/s Savings % V=16 m/s Savings %

TC1 54.83 152.35 64.01 96.57 43.22
TC2 46.59 162.14 71.27 102.62 54.60
TC3 58.18 161.34 63.94 102.12 43.02
TC4 114.87 396.09 71.00 260.53 55.91
TC5 144.57 600.51 75.92 386.08 62.55
TC6 249.95 1321.40 81.08 849.45 70.57
TC7 298.35 1321.40 77.42 849.45 64.88



Chapter 5

Conclusions

This dissertation presents the activities performed during the research project. Through
the chapters, it is possible to find a combination of computational efficiency topics
and physical modeling. The first part of the work focused on the development of mod-
els and tools to provide a physical representation of the autonomous taxi problem;
furthermore, the mathematical formulation of the two main problems, the trajectory
assignment and departure sequencing problem and the tug dispatch problem, have
been proposed, together with the NP-hardness proof.

The formulation of combinatorial optimization schemes dominated the second
part of the work. Some aspects of the hybrid particle swarm optimization algorithms
can be improved. In fact, only some portions of the code are parallelized, while
a more extensive parallelization could lead to lower computational time, thereby
improving the algorithm efficiency and also its reliability. As far as the tree search
algorithm is concerned, the number of feasible runway sequences can become very
large, slowing down the algorithm. A function capable of determining if a runway
sequence is promising, compared to the optimal solution found so far, should be
implemented to avoid unnecessary computations.

Simulation results showed that the discrete time based model negatively alters the
optimization algorithms performance, both in terms of effectiveness and efficiency.
Therefore, the continuous time model will be preferred in future developments.
Moreover, the tree search heuristic has proven to be more effective than the two
hybrid versions of the particle swarm optimization, generating, for all the test cases,
conflict-free schedules with lower cost function value in a lower computational time.
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Finally, the cost comparison between the classical engine-on taxi and the au-
tonomous version showed that the proposed solution is always more convenient;
furthermore, the difference between the two approaches increases as the airport size
increases.

The developed models consider a deterministic framework, in which the pushback
time and touch down time, defined in the flight schedule, are constant. However,
delays both during take-off and landing might occur; therefore, future work should
focus on the implementation of stochastic models and on adapting the proposed
optimization schemes to solve stochastic taxi problems.



Appendix A

Airport discretization GUI

The graphical user interface showed below uses the pre-compiled function plot_google_map
[131] to show the map of the chosen airport. If a discretization grid is present in
the airport file, it can be displayed on the map by clicking the Plot Grid button;
nodes will be plotted in cyan, while connections are represented by arrow showing
the possible directions. New nodes can be created using the central panel of the
GUI, called Nodes Definition; the New Nodes button calls the getpts function, which
allows to catch some points coordinates on the map using the mouse. Some tips
on the getpts usage are displayed on the right top of the GUI when the function is
activated. The same function is used to delete nodes: the user clicks the mouse left
button over/near the desired node, and an algorithm recognizes the right node and
delete it. Any connection starting from or arriving to that node will be deleted. The
user has also the possibility to delete all nodes with the last button of this panel,
called Delete all Nodes.

The right panel, called Connectivity Definition, can be used to add or delete
connections between nodes. The first button is a toggle button which enables to
define one-way connections, or to delete them only in one direction. As default the
two-way connections are considered. When the New Connections button is pressed,
the getline function is called, which allows to draw a line between to points and
catches the starting and the final point locations. A series of connections can also be
defined by clicking on a series of consecutive nodes. The Delete Connections button
works in the same manner of the previous one, whereas the button called Delete all
Connections deletes all the connections at the same time.
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The bottom right buttons can be used to assign to each node a feature (i.e. stand
ID, runway entry ID) and to create the runway objects. Finally, the Save and the Write
C buttons are used to create the output in MATLAB or .txt file format respectively.

Fig. A.1 Airport discretization graphical user interface (GUI). Credits: Pictures 2015 Digital-
Globe, Map data ©2015 Google.
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