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Abstract

In this work, we expand the hidden AdS-Lorentz superalgebra underlying D = 4 super-
gravity, reaching a (hidden) Maxwell superalgebra. The latter can be viewed as an extension
involving cosmological constant of the superalgebra underlying D = 4 supergravity in flat
space. We write the Maurer-Cartan equations in this context and we find some interesting
extensions of the parametrization of the 3-form A(3), which appears in the Free Differen-
tial Algebra in Minkowski space, in terms of 1-forms. We interestingly find out that the
structure of these extensions, and consequently the structure of the corresponding boundary
contribution dA(3), strongly depends on the form of the extra fermionic generator appearing
in the hidden Maxwell superalgebra.
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1 Introduction

Supergravity theories in various spacetime dimensions 4 ≤ D ≤ 11 have a field content
that generically includes the metric, the gravitino, a set of 1-form gauge potentials, and
(p+ 1)-form gauge potentials of various p ≤ 9, and they are discussed in the context of Free
Differential Algebras (FDAs) 1.

In particular, in the framework of FDAs, the structure of D = 11 supergravity, first
constructed in [1], was then reconsidered in [2], adopting the superspace geometric approach.
In the same paper, the supersymmetric FDA was also investigated in order to see whether
the FDA formulation could be interpreted in terms of an ordinary Lie superalgebra in its
dual Maurer-Cartan formulation 2. This was proven to be true, and the existence of a
hidden superalgebra underlying the theory was presented for the first time. In fact, in [2],
the authors proved that the FDA underlying D = 11 supergravity can be traded with a Lie
superalgebra which contains, besides the Poincaré superalgebra, also new bosonic 1-forms
and a nilpotent fermionic generator Q′, necessary for the closure of the superalgebra.

Later, in [3], the authors wonder whether eleven dimensional supergravity can be decon-
tracted into a non-abelian (gauged) model. This problem was reduced to that of finding an
algebra whose contraction yields the D = 11 algebra of [2]. In the same paper, they also
considered the D = 4 case, in order to explain their approach through a toy-model.

However, the four dimensional gauged case results of some interest, since its algebraic
form (presented in [3]) corresponds to a “hidden AdS-Lorentz-like superalgebra”, an exten-
sion with an extra nilpotent fermionic generator of the AdS-Lorentz superalgebra presented
and largely discussed in [4]. In particular, in [4] where the authors explored the supersymme-
try invariance of an extension of minimal D = 4 supergravity in the presence of a non-trivial
boundary, presenting the explicit construction of the N = 1, D = 4 AdS-Lorentz supergrav-
ity bulk Lagragian in the rheonomic framework. In particular, they developed a peculiar
way to introduce a generalized supersymmetric cosmological term to supergravity. Then, by
studying the supersymmetry invariance of the Lagrangian in the presence of a non-trivial
boundary, they interestingly found that the supersymmetric extension of a Gauss-Bonnet
like term is required in order to restore the supersymmetry invariance of the full Lagrangian.

Recently, in [5], the authors clarified the role of the nilpotent fermionic generator Q′ intro-
duced in [2] by looking at the gauge properties of the theory. They found that its presence is
necessary, in order that the extra 1-forms of the hidden superalgebra give rise to the correct
gauge transformations of the p-forms of the FDA. In particular, in its absence, the extra
bosonic 1-forms do not enjoy gauge freedom, but generate, together with the supervielbein,
new directions of an enlarged superspace, so that the FDA on ordinary superspace is no
more reproduced.

On the group theoretical side, in [6], the authors developed the so-called S-expansion
procedure, which is based on combining the inner multiplication law of a discrete set S with
the structure of a semigroup, with the structure constants of a Lie algebra g. The new, larger

1The FDAs framework is analogous to the Cartan Integrable Systems (CIS) one.
2The supergroup structure allows a deeper understanding of the symmetry and topological properties of

the theory.
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Lie algebra thus obtained is called S-expanded algebra, and it is written as gS = S × g.
There are two facets applicable in the S-expansion method, which offer great manipulation

on (super)algebras, i.e. resonance and reduction. The role of resonance is that of transferring
the structure of the semigroup to the target (super)algebra; Meanwhile, reduction plays a
peculiar role in cutting the (super)algebra properly, thanks to the existence of a zero element
in the set involved in the procedure.

From the physical point of view, several (super)gravity theories have been largely studied
using the S-expansion approach, enabling the achievement of several results over recent years
(see Ref.s [7–33]). Furthermore, in [34], an analytic method for S-expansion was developed.
This method is able to give the multiplication table(s) of the (abelian) set(s) involved in
an S-expansion process for reaching a target Lie (super)algebra from a starting one, after
having properly chosen the partitions over subspaces of the considered (super)algebras. A
complete review of S-expansion can be found in [6] and [34].

Recently, in [35], the authors proposed a new prescription for S-expansion, involving an

infinite abelian semigroup S
(∞)
E , with subsequent subtraction of a suitable infinite ideal.

Their approach is a generalization of the finite S-expansion procedure, and it allows to re-
produce a generalized Inönü-Wigner contraction (IW contraction) via infinite S-expansion
between two different algebras. Furthermore, the authors of [36] recently presented a gen-
eralization of the standard Inönü-Wigner contraction, by rescaling not only the generators
of a Lie superalgebra, but also the arbitrary constants appearing in the components of the
invariant tensor.

In this work, we obtain a particular hidden Maxwell superalgebra in four dimensions by
performing an infinite S-expansion with subsequent ideal subtraction of the hidden AdS-
Lorentz superalgebra underlying D = 4 supergravity. We then adopt the Maurer-Cartan
(and FDA) formalism and we consider the paremetrization of the 3-form A(3), whose field
strength is a 4-form F (4) = dA(3) + . . ., modulo fermionic bilinears, in terms of 1-forms, and
we show how the (trivial) boundary contribution in four dimensions, dA(3), can be naturally
extended by considering particular contributions to the structure of the extra fermionic
generator appearing in the hidden Maxwell superalgebra underlying supergravity in four
dimensions. This extension involves the cosmological constant. Interestingly, the presence
of these terms strictly depends on the form of the extra fermionic generator appearing in
the hidden superMaxwell-like extension of D = 4 supergravity.

This paper is organized as follows: In Section 2, we perform expansions and contractions of
different superalgebras describing and underlying D = 4 supergravity, and we also display a
map which links different superalgebras in four dimensions. In Section 3, we write some of the
superalgebras presented in Section 2 in the Maurer-Cartan formalism and, in particular, we
consider a hidden extension, involving cosmological constant, of D = 4 supergravity, which
corresponds to the (hidden) Maxwell superalgebra. We then write the parametrization of
the 3-form A(3) in this context and we show that the (trivial) boundary contribution dA(3)

can be naturally extended with the addition of terms involving the cosmological constant.
Section 4 contains our outlook and possible future developments. In the Appendix, we give
detailed calculations on the infinite S-expansion with ideal subtraction.
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2 Expansions and contractions of superalgebras in four

dimensions

It is well known that we can construct several theories in four dimensions by choosing
different amount of physical (and unphysical) fields, invariant under different superalgebras.
One of the simplest case is the Poincaré superalgebra osp(1|4), which is abelian in the
momenta. On the other side, the (Anti-)de Sitter ((A)dS) algebra is characterized by the
fact that the translations commute with Lorentz transformations. In Ref. [37], the authors
presented a geometric formulation involving the AdS structure group (the AdS one), known
as MacDowell-Mansouri action. The generalization of their work consists in considering the
supergroup Osp(N|4).

In Ref. [2], the authors presented a particular superalgebra, now known as hidden superal-
gebra, underlying D = 11 supergravity. This hidden superalgebra includes, as a subalgebra,
the super-Poincaré algebra, and also involves two extra bosonic generators Zab, commuting
with the generators Pa. Furthermore, an extra nilpotent fermionic generator Q′ must be
included (in order to satisfy the closure of the superalgebra). It is then possible to con-
sider a hidden AdS-Lorentz superalgebra, namely an extension of the AdS superalgebra in
which the commutators between the momenta is equal to a Lorentz-like generator, which
will be referred as to Zab. Finally, we should mentioned that the introduction of a second
fermionic generator has been considered in the literature; Following this idea, the authors
of [25] considered Maxwell superalgebras for constructing actions for supergravity theories.

We will now consider (hidden) superalgebras in four dimensions. Each of these superal-
gebras gives rise to the construction of an action for a supergravity theory. The existence
of connections between different physical theories motivates to look for connections between
the superalgebras underlying these theories. We first consider a “toy model” superalgebra
in four dimensions described in [3], namely an AdS-Lorentz-like superalgebra with an extra
fermionic generator, which is the hidden superalgebra underlying the AdS supergravity the-
ory in D = 4. This algebra will be named hidden AdS-Lorentz superalgebra. It is generated
by the set of generators {Jab, Pa, Zab, Qα, Q

′
α}, and can be written as

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (2.1)

[Qα, Zab] =− (γabQ)α − (γabQ
′)α, [Q′

α, Zab] = 0, [Jab, Pc] = ηbcPa − ηacPb,
[Qα, Pa] =− i(γaQ)α − i(γaQ′)α, [Q′

α, Pa] = 0, [Pa, Pb] =− Zab,
[Jab, Qα] =− (γabQ)α, [Jab, Q

′
α] = −(γabQ

′)α, [Zab, Pc] = ηbcPa − ηacPb,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab,

{
Qα, Q

′
β

}
=
{
Q′
α, Q

′
β

}
= 0,

where C stands for the charge conjugation matrix and γa and γab are Dirac matrices in
four dimensions. Let us notice that the Lorentz type algebra generated by {Jab, Zab} is
a subalgebra of the above superalgebra. In [4], the authors explored the supersymmetry
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invariance of an extension of minimal D = 4 supergravity in the presence of a non-trivial
boundary, and they presented the explicit construction of the N = 1, D = 4 AdS-Lorentz
supergravity bulk Lagragian in the rheonomic framework. In particular, they developed a
peculiar way to introduce a generalized supersymmetric cosmological term in supergravity.
The starting superalgebra they considered was a truncation of the hidden AdS-Lorentz one
(2.1). In fact, by performing a consistent truncation of the fermionic generator Q′

α in (2.1),
we get the AdS-Lorentz superalgebra considered in [4] 3. In other words, the hidden AdS-
Lorentz superalgebra can be consistently viewed as an extension of the AdS-Lorentz algebra
described in [4], with the inclusion of an extra fermionic generator Q′

α.
On the other hand, the technique proposed by the authors of [35], which consists in a new

prescription for S-expansion, involving an infinite abelian semigroup S
(∞)
E , with subsequent

subtraction of a suitable infinite ideal 4, allows to obtain a (hidden) Maxwell superalgebra
[38,39] in four dimensions, generated by the set of generators {Jab, Pa, Zab, Z̃ab, Qα,Σα} (here
and in the following, Σα denotes the extra nilpotent fermionic generator appearing in the
hidden Maxwell superalgebra), by starting from the hidden AdS-Lorentz superalgebra (2.1).
Thus, following the approach described in [35], we can perform a S-expansion with the

infinite abelian semigroup S
(∞)
E

5, involving a resonant structure.
For further details on this calculation, see Appendix A. The hidden Maxwell superalgebra

thus obtained reads

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc,

[Zab, Zcd] = ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (2.2)

[Qα, Zab] =− (γabΣ)α, [Σα, Zab] = 0, [Jab, Pc] = ηbcPa − ηacPb,
[Qα, Pa] =− i(γaΣ)α, [Σα, Pa] = 0, [Pa, Pb] =− Z̃ab,
[Jab, Qα] =− (γabQ)α, [Jab,Σα] = −(γabΣ)α, [Zab, Pc] =0,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab, {Σα,Σβ} = 0,

{Qα,Σβ} =− 2(γabC)αβZ̃ab,[
Z̃ab, Pc

]
=
[
Qα, Z̃ab

]
=
[
Σα, Z̃ab

]
=
[
Z̃ab, Z̃cd

]
= 0.

It is well known that the Poincaré and the AdS superalgebras are related by Inönü-
Wigner contraction, i.e. by rescaling and consequently considering a particular limit for the

3Let us observe that the authors of [4] adopted the Maurer-Cartan formalism in their work, where the
superalgebra generators are properly associated to 1-forms.

4Their approach is a generalization of the finite S-expansion procedure, and it allows to reproduce a
generalized Inönü-Wigner contraction (IW contraction) with an infinite S-expansion with subsequent ideal
subtraction.

5The semigroup S
(∞)
E is an extension and generalization of the semigroups of the type S

(N)
E = {λα}N+1

α=0 ,
endowed with the following multiplication rules: λαλβ = λα+β if α + β ≤ N + 1, and λαλβ = λN+1 if
α+ β > N + 1.
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Figure 1: Map between different superalgebras in four dimensions. Here, S
(∞)
E 	 I denotes

an infinite S-expansion with subsequent ideal subtraction.

generators. In the same way, by performing an Inönü-Wigner contraction on the hidden AdS-
Lorentz algebra (2.1), we obtain the hidden Poincaré superalgebra (introduced and studied
in [2, 3]). This superalgebra is generated by {Jab, Pa, Zab, Qα, Q

′
α}, and can be written as

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Jab, Pc] = ηbcPa − ηacPb, [Zab, Zcd] = 0, [Pa, Pb] =0,

[Qα, Pa] =− i(γaQ′)α, [Q′
α, Pa] = 0, [Jab, Qα] =− (γabQ)α, (2.3)

[Qα, Zab] =− (γabQ
′)α, [Q′

α, Zab] = 0, [Jab, Q
′
α] =− (γabQ

′)α,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab,

{
Qα, Q

′
β

}
=
{
Q′
α, Q

′
β

}
=0.

Let us observe that, analogously to the case of the hidden AdS-Lorentz and AdS-Lorentz
superalgebras in four dimensions, a consistent truncation of the nilpotent fermionic gener-
ator Q′

α allows to reproduce the Poincaré superalgebra starting from the hidden Poincaré
superalgebra (2.3). In other words, the hidden Poincaré superalgebra in four dimensions is
an extension with one extra fermionic generator of the Poincaré superalgebra.

In Figure 1, we have collected and summarized the relationships between the mentioned
superalgebras 6.

6Let us remind that both the standard and the generalized Inönü-Wigner contractions are reproducible
through S-expansion: The standard Inönü-Wigner contraction can be reproduced with a finite S-expansion,
while the generalized one can be reproduced through an infinite S-expansions with subsequent ideal sub-
traction (see Ref. [35] for further details on the latter mentioned procedure).
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3 Hidden Maxwell superalgebra in the Maurer-Cartan

formalism and parametrization of the 3-form A(3)

There are two dual ways of describing a (super)algebra: The first one is provided by the
commutation relations between the generators; The second one is instead provided by the
so-called Maurer-Cartan equations. These two descriptions are equivalent and dual each
other.

The generators TA’s, which form a basis of the tangent space T (M) of a manifold M,
satisfy the commutation relations of the (super)algebra and the (super) Jacobi identity. The
same information is enclosed in the Maurer-Cartan equations, which read

dσA = −1

2
CA

BCσ
B ∧ σC , (3.1)

where σA stands for the forms involved into the Maurer-Cartan equations, and where CA
BC

are the coupling constants. In the following, for simplicity, we will omit the symbol ∧
denoting the product between 1-forms.

As we can see, the Maurer-Cartan equations are written in terms of the dual forms σA’s
of the generators TA’s, which are related through the expression

σA(TB) = δAB, (3.2)

up to normalization factors 7.
We now consider the Maurer-Cartan equations associated with the superalgebras in D = 4

presented in [3]. In the case of osp(4|1) (Poincaré superalgebra), we have

Rab =0,

DV a =
i

2
Ψ̄γaΨ, (3.3)

DΨ =0,

where γa, as said before, are the four-dimensional gamma matrices, and where D = d+ω is
the Lorentz covariant exterior derivative. Here we have fixed the normalization of DV a to
i
2
, according to the usual convention. The closure (d2 = 0) of this superalgebra is trivially

satisfied.
In the AdS case, instead, we have that the anticommutator of the generators Q’s falls

into the Poincaré translations and the Lorentz rotations, generating non-vanishing value of
the Lorentz curvature, namely

7See the maps between the two formalism presented in [5] for further details.
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Rab =αe2V aV b + βeΨ̄γabΨ,

DV a =
i

2
Ψ̄γaΨ, (3.4)

DΨ =ieγaΨV
a,

where e = 1/2l corresponds to the inverse of the AdS radius. Here, α and β are parameters,
and we have fixed the normalization of DΨ to 1. From the closure requirement of the
superalgebra (d2 = 0), we get β = 1

2
α and, after having fixed the normalization α = −1, we

can write β = −1
2
.

We observe that in the limit e→ 0 we correctly get the Maurer-Cartan equations in the
flat (i.e. Minkowski) space, namely equations (3.3).

As shown in [2], with the introduction of a nilpotent fermionic generator Q′ we can write
the hidden Poincaré (2.3) and the hidden AdS-Lorentz (2.1) superalgebras in terms of the
corresponding respective Maurer-Cartan equations. For the hidden Poincaré case (2.3), we
have

Rab =0, (3.5)

DV a =
i

2
Ψ̄γaΨ, (3.6)

DΨ =0, (3.7)

DBab =
1

2
Ψ̄γabΨ, (3.8)

Dη =
i

2
δγaΨV

a +
1

2
εγabΨB

ab. (3.9)

Here, δ and ε are two arbitrary parameters. In fact, requiring the closure of the superalgebra,
and in particular of Dη, we simply get the identity 0 = 0, which leads the solution to be
given in terms of two free parameters, namely δ and ε. In particular, for reaching this result
we used the following Fierz identities in four dimensions:

ΨγaΨ̄γ
aΨ = 0, (3.10)

,
ΨγabΨ̄γ

abΨ = 0. (3.11)

As we can see, in this superalgebra the Lorentz curvature is zero: Rab = 0. However, we
have a non-trivial “AdS-like” contribution 8 given by DBab = 1

2
Ψ̄γabΨ.

Let us observe that in D = 4 we also have a particular subalgebra of the hidden Poincaré
one, which can be obtained through an Inöü-Wigner contraction of the hidden AdS-Lorentz
superalgebra (2.1). In fact, we do not even need the 1-form Bab to find an underlying group

8We call this contribution “AdS-like” since the AdS curvature R̂ab ≡ Rab + e2V aV b + 1
2eΨ̄γ

abΨ contains
a similar term, namely the term involving the gravitino.
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for the Cartan Integrable System (CIS) in the four dimensional Minkowski space. This
subalgebra reads

Rab =0, (3.12)

DV a =
i

2
Ψ̄γaΨ, (3.13)

DΨ =0, (3.14)

Dη =
i

2
γaΨV

a, (3.15)

which endows the CIS with a 3-form A(3) whose parametrization in terms of 1-forms can be
simply written as A(3) = −iΨ̄γaηV a (see Ref. [3]).

As shown in Section 2, we can write a (hidden) Maxwell superalgebra in four dimensions,
by starting from the hidden AdS-Lorentz one (2.1). For completeness, in the following we
report the Maurer-Cartan equations associated with the hidden AdS-Lorentz superalgebra
(2.1):

Rab =0, (3.16)

DV a =
i

2
Ψ̄γaΨ− eBabVb, (3.17)

DΨ =
i

2
eγaΨV

a +
e

4
γabΨB

ab, (3.18)

DBab =
1

2
Ψ̄γabΨ− eBacB b

c + eV aV b, (3.19)

Dη =
i

2
γaΨV

a +
1

4
γabΨB

ab, (3.20)

where the parameters have been fixed by requiring the closure of the superalgbera and
properly fixing the normalization of the 1-form η (see Ref. [3] for further details) 9.

We now write the Maurer-Cartan equations associated with the hidden Maxwell superal-
gebra in D = 4, namely

Rab =0, (3.21)

DV a =
i

2
Ψ̄γaΨ, (3.22)

DΨ =0, (3.23)

DBab =
1

2
Ψ̄γabΨ, (3.24)

DB̃ab =αeΨ̄γabΦ + βeBacB b
c + γeV aV b, (3.25)

DΦ =
i

2
δγaΨV

a +
1

2
εγabΨB

ab, (3.26)

9The authors of [3] observed that in the hidden AdS-Lorentz superalgebra we can write Dη = 1
eΛ and

DΨ = Λ, where Λ is the 2-form that reads Λ = i
2eγaΨV a + 1

4eγabΨB
ab.
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where Bab and B̃ab are the 1-forms dual to the generators Zab and Z̃ab, respectively, and
where Φ is the spinorial 1-form dual to the extra nilpotent fermionic generator Σα appearing
in the hidden Maxwell superalgebra.

Once again, we must require the closure d2 = 0 of the superalgebra. In this way, from
the first Maurer-Cartan equation we get δα = γ, and β = −2αε. We now choose the
normalization α = 1 and δ = 1. We can thus write γ = 1 and β = −2ε, being ε a free
parameter. We observe that the Lorentz curvature is again zero: Rab = 0. In this case,
we have two non-trivial “AdS-like” contributions, namely DBab = 1

2
Ψ̄γabΨ and the term

γeV aV b in DB̃ab = αeΨ̄γabΦ + βeBacB b
c + γeV aV b. Then, we can finally write

Rab =0,

DV a =
i

2
Ψ̄γaΨ,

DΨ =0,

DBab =
1

2
Ψ̄γabΨ,

DB̃ab =eΨ̄γabΦ + βeBacB b
c + eV aV b,

DΦ =
i

2
γaΨV

a +
1

2
εγabΨB

ab, (3.27)

where β = −2ε. This superalgebra is the hidden Maxwell superalgebra underlying super-
gravity in four dimensions.

We observe that setting β = ε = 0 we get the following subalgebra:

Rab =0,

DV a =
i

2
Ψ̄γaΨ,

DΨ =0,

DBab =
1

2
Ψ̄γabΨ,

DB̃ab =eΨ̄γabΦ + eV aV b,

DΦ =
i

2
γaΨV

a. (3.28)

In the following, we will write the parametrization of the 3-form A(3) appearing in the
CIS in four-dimensional supergravity in terms of 1-forms, both for the hidden Maxwell su-
peralgebra (3.27) and for its subalgebra (3.28). We will then study the particular extensions
of the (trivial) boundary contribution dA(3) in four dimensions 10.

10Let us observe that the trivial boundary contribution dA(3) can also be considered as a flux contribution
in the four dimensional theory.
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3.1 Extensions of dA(3) involving the cosmological constant

We start our analysis by considering the hidden Maxwell superalgebra in four dimensions
(3.27). Then, we write the parametrization of the 3-form A(3) in terms of 1-forms, both
for the hidden Maxwell superalgebra (3.27) and for its subalgebra (3.28), and we study the
different extensions of the (trivial) boundary contribution dA(3).

Let us now consider the hidden Maxwell superalgebra valued curvatures, which are defined
by

Rab ≡ dωab − ωacωcb , (3.29)

Ra ≡ DV a − i

2
Ψ̄γaΨ , (3.30)

F ab ≡ DBab − 1

2
Ψ̄γabΨ , (3.31)

F̃ ab ≡ DB̃ab − eΨ̄γabΦ− βeBacB b
c − eV aV b , (3.32)

ρ ≡ DΨ , (3.33)

ζ ≡ DΦ− i

2
γaΨV

a − 1

2
εγabΨB

ab, (3.34)

where D = d + ω is the Lorentz covariant exterior derivative. In the four-dimensional
Minkowski space, we can also write

F (4) ≡ dA(3) − 1

2
Ψ̄γabΨV

aV b , (3.35)

where the 4-form F (4) is trivially given in terms of a boundary contribution. Our aim is
that of writing the deformation to the 4-form F (4) induced by the presence the cosmological
constant in the hidden Maxwell superalgebra underlying D = 4 supergravity.

We can write the Maurer-Cartan equations in four dimensions for the hidden Maxwell
superalgebra, by simply setting the curvatures to zero in the vacuum, namely

Rab ≡ dωab − ωacωcb = 0 , (3.36)

Ra ≡ DV a − i

2
Ψ̄γaΨ = 0 , (3.37)

F ab ≡ DBab − 1

2
Ψ̄γabΨ = 0 , (3.38)

F̃ ab ≡ DB̃ab − eΨ̄γabΦ− βeBacB b
c − eV aV b = 0 , (3.39)

ρ ≡ DΨ = 0 , (3.40)

ζ ≡ DΦ− i

2
γaΨV

a − 1

2
εγabΨB

ab = 0 , (3.41)

which simply lead to the expression (3.27).
Now, as done in the D = 11 and D = 7 supergravity cases in [2] and [5], respectively, we

can write the parametrization of the 3-form A(3) in terms of 1-forms. We first of all observe
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that, since dA(3) is a boundary contribution in four dimensions, we expect a topological form
for the parametrization of A(3). We thus start by writing

A(3) =
1

2e
Ψ̄γabΨB

ab + Ψ̄γabΨB̃
ab +βB̃abB

acB b
c + B̃abV

aV b− iΨ̄γaΦV a− εΨ̄γabΦBab, (3.42)

where the topological structure is still not manifest. However, we can reorganize and rewrite
(3.42) as follows:

A(3) =
1

e
BabDBab +

1

e
B̃abDB̃ab − 2Φ̄DΦ, (3.43)

where the topological structure is evident: This particular parametrization will give rise to a
“topological” structure for the boundary contribution dA(3). Let us observe that by setting
β = ε = 0 in (3.42) we obtain

A(3) =
1

2e
Ψ̄γabΨB

ab + Ψ̄γabΨB̃
ab + B̃abV

aV b − iΨ̄γaΦV a. (3.44)

If we now consider the parametrization (3.43) and compute dA(3) , we get the following
topological expression:

dA(3) =
1

e
d(BabDBab) +

1

e
d(B̃abDB̃ab)− 2d(Φ̄DΦ) =

=
1

e
DBabDBab +

1

e
DB̃abDB̃ab − 2DΦ̄DΦ, (3.45)

which automatically satisfies the closure requirement d2 = 0. If we now substitute the
Maurer-Cartan equations (3.27) in the expression (3.45), we get

dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabΦΨ̄γabΦ + 2βeΨ̄γabΦB
acB b

c + 2eΨ̄γabΦV
aV b+

+ 2βeBacB b
c VaVb − 2iεΨ̄γaΨB

abVb + ε2Ψ̄γacΨB
abBc

b. (3.46)

In the limit e→ 0, the expression (3.46) reduces to

dA(3) =
1

2
Ψ̄γabΨV

aV b − 2iεΨ̄γaΨB
abVb + ε2Ψ̄γacΨB

abBc
b. (3.47)

We observe that, interestingly, this solution does not reduce to the four-dimensional
Minkowski flat space limit when e→ 0. However, if we now consider the particular solution
β = ε = 0, which conduces to the subalgebra (3.28) of the hidden Maxwell superalgebra in
four dimensions, we clearly see that, interestingly, this particular solution leads to

dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabΦΨ̄γabΦ + 2eΨ̄γabΦV
aV b, (3.48)

which exactly reproduces the Minkowski FDA with

dA(3) =
1

2
Ψ̄γabΨV

aV b (3.49)
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in the limit e→ 0. Thus, the particular subalgebra (3.28) of the Maxwell superalgebra (3.27)
underlying supergravity in four dimensions can be written as

Rab = 0 ,

DV a =
i

2
Ψ̄γaΨ ,

DBab =
1

2
Ψ̄γabΨ ,

DB̃ab = eΨ̄γabΦ + eV aV b ,

DΨ = 0 ,

DΦ =
i

2
γaΨV

a ,

dA(3) =
1

2
Ψ̄γabΨV

aV b + eΨ̄γabΦΨ̄γabΦ + 2eΨ̄γabΦV
aV b, (3.50)

where, having set β = ε = 0 in (3.27) and (3.47), we have erased the Bab-contributions in
DB̃ab and DΦ.

The hidden superalgebra (3.50) underlying D = 4 supergravity is an extension involving
cosmological constant of the hidden superalgebra underlying Poincaré supergravity in four
dimensions. In particular, the superalgebra (3.50) is a subalgebra of the hidden Maxwell
superalgebra obtained by performing an infinite S-expansion with subsequent ideal subtrac-
tion on the hidden AdS-Lorentz superalgebra underlying D = 4 supergravity. In the FDAs’
framework, the parametrization of the 3-form A(3) appearing in the four-dimensional FDA
presents a topological structure, which reflects on the (trivial) boundary contribution (or
flux contribution) dA(3), as we can see from (3.45) and (3.50). Furthermore, the last ex-
pression in (3.50) consistently reproduces the FDA in Minkowski space, and in particular
dA(3) = 1

2
Ψ̄γabΨV

aV b, when e → 0. This new model underlying D = 4 supergravity can
be considered for the construction of a Lagrangian and for the study of the dynamics of the
theory.

For the sake of completeness, we finally observe that the parametrization (3.42) can be
also rewritten in the following form:

A(3) = B̃abV
aV b + βB̃abB

acB b
c − iΨ̄γaΦV a + Ψ̄γab

[(
1

2e
Ψ− εΦ

)
Bab + ΦB̃ab

]
, (3.51)

where we remind that β = −2ε, which shows us that the parametrization we have considered
in the present work is given in terms of 1-forms structures that are pretty similar to the ones
appearing in the (“standard”) parametrization of A(3) adopted in the Minkowski D = 11
case in [2], and later in [3]. For β = ε = 0, the parametrization (3.51) becomes

A(3) = B̃abV
aV b − iΨ̄γaΦV a + Ψ̄γab

[
1

2e
ΨBab + ΦB̃ab

]
. (3.52)
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4 Comments and possible developments

In the present work, we have obtained a particular hidden Maxwell superalgebra underlying
supergravity in four dimensions, by performing an infinite S-expansion of the hidden AdS-
Lorentz superalgebra underlying the same theory, with subsequent ideal subtraction.

We have then written the hidden Maxwell superalgebra in the Maurer-Cartan formalism,
and we have subsequently considered the parametrization of the 3-form A(3) in terms of
1-forms, in order to show the way in which the (trivial) boundary contribution in four
dimensions, dA(3), can be naturally extended by considering particular contributions to the
structure of the extra fermionic generator appearing in the hidden Maxwell superalgebra.
These extensions involve the cosmological constant and, interestingly, their structure strictly
depends on the form of the extra fermionic generators appearing in this hidden extension of
D = 4 supergravity.

It would be interesting to write the Lagrangian in four dimensions considering non-trivial
boundary terms, by looking at the new structure of dA(3), and to study other possible exten-
sions of dA(3) depending on the cosmological constant, when considering different (hidden)
superalgebras. This study can also be extended to theories in higher dimensions.

Another interesting development of the present work would be the study of Chern-Simons
theories in even dimensions, such as the four dimensional case, and Born-Infeld theories,
since they are topological theories and they can be affected by the presence of a non-trivial
boundary.
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A Infinite S-expansion with ideal subtraction of the

hidden AdS-Lorentz superalgebra in four dimensions

In the following, we adopt the technique proposed in [35], namely an infinite S-expansion

involving an abelian semigroup S
(∞)
E , with subsequent subtraction of a suitable ideal, in order

to obtain the hidden Maxwell superalgebra in four dimensions (2.2), generated by the set of
generators {Jab, Pa, Zab, Z̃ab, Qα,Σα}, by starting from the hidden AdS-Lorentz superalgebra
(2.1), generated by {Jab, Pa, Zab, Qα, Q

′
α}.

Thus, we consider the commutation relations of the hidden AdS-Lorentz superalgebra in
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four dimensions (2.1). We report them here for completeness:

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (A.1)

[Qα, Zab] =− (γabQ)α − (γabQ
′)α, [Q′

α, Zab] = 0, [Jab, Pc] = ηbcPa − ηacPb,
[Qα, Pa] =− i(γaQ)α − i(γaQ′)α, [Q′

α, Pa] = 0, [Pa, Pb] =− Zab,
[Jab, Qα] =− (γabQ)α, [Jab, Q

′
α] = −(γabQ

′)α, [Zab, Pc] = ηbcPa − ηacPb,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab,

{
Qα, Q

′
β

}
=
{
Q′
α, Q

′
β

}
= 0.

We consider the subspace partition V0 = {Jab}, V1 = {Qα}, V2 = {Zab}, V3 = {Q′
α},

V4 = {Pa}, and we perform an infinite (resonant) S-expansion with the infinite semigroup

S
(∞)
E = {λ0, λ1, λ2, . . . ,∞}, namely

V̂0 = {λ0, λ1, λ2, λ3, λ4, . . . ,∞}× {Jab}, (A.2)

V̂1 = {λ0, λ1, λ2, λ3, λ4, . . . ,∞}× {Qα}, (A.3)

V̂2 = {λ0, λ1, λ2, λ3, λ4, . . . ,∞}× {Zab}, (A.4)

V̂3 = {λ0, λ1, λ2, λ3, λ4, . . . ,∞}× {Q′
α}, (A.5)

V̂4 = {λ0, λ1, λ2, λ3, λ4, . . . ,∞}× {Pa}, (A.6)

where V̂i, i = 0, 1, 2, 3, 4 are the subspaces of the target superalgebra (here and in the
following, we will refer to the quantities related to the target superalgebra as to quantities
with the upperˆsymbol).

Let us remind that the semigroup S
(∞)
E is an extension and generalization of the semi-

groups of the type S
(N)
E = {λα}N+1

α=0 , endowed with the multiplication rules λαλβ = λα+β if
α + β ≤ N + 1, and λαλβ = λN+1 if α + β > N + 1.

Then, we define

Ĵab ≡ λ0Jab, (A.7)

Ẑab ≡ λ2Zab, (A.8)

ˆ̃Zab ≡ λ4Zab, (A.9)

Q̂α ≡ λ1Qα, (A.10)

Σ̂α ≡ λ3Q
′
α, (A.11)

P̂a ≡ λ2Pa, (A.12)

(A.13)

and we perform, by following the procedure described in [35], the subtraction of the infinite
ideal given by

I = W0 ⊕W1 ⊕W2 ⊕W3 ⊕W4, (A.14)
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where

W0 ={λ1, λ2, λ3, . . . ,∞}, (A.15)

W1 ={λ0, λ2, λ3, λ4 . . . ,∞}, (A.16)

W2 ={λ0, λ1, λ3, λ5, λ6, . . . ,∞}, (A.17)

W3 ={λ0, λ1, λ2, λ4, λ5, . . . ,∞}, (A.18)

W4 ={λ0, λ1, λ3, λ4, λ5, λ6, . . . ,∞}. (A.19)

We also have to perform the change of basis

Q′
α → Q′

α +Qα, (A.20)

which implies
Σ̂α ≡ λ3Q

′
α → λ3Q

′
α + λ3Qα, (A.21)

where we remind that {λ3Qα} belongs to the ideal I.
If we now write the expansion of the commutation relations (A.1), and we rename the

target generators by simply removing the upperˆsymbol, namely

Ĵab → Jab, (A.22)

Ẑab → Zab, (A.23)

ˆ̃Zab → Z̃ab, (A.24)

P̂a → Pa, (A.25)

Q̂α → Qα, (A.26)

Σ̂α → Σα, (A.27)

we finally end up with the hidden Maxwell superalgebra in four dimensions (2.2), generated
by {Jab, Zab, Z̃ab, Pa, Qα,Σα}. For the sake of completeness, we also report its commutation
relations in the following:

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc,

[Zab, Zcd] = ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (A.28)

[Qα, Zab] =− (γabΣ)α, [Σα, Zab] = 0, [Jab, Pc] = ηbcPa − ηacPb,
[Qα, Pa] =− i(γaΣ)α, [Σα, Pa] = 0, [Pa, Pb] =− Z̃ab,
[Jab, Qα] =− (γabQ)α, [Jab,Σα] = −(γabΣ)α, [Zab, Pc] =0,

{Qα, Qβ} =− i(γaC)αβPa −
1

2
(γabC)αβZab, {Σα,Σβ} = 0,

{Qα,Σβ} =− 2(γabC)αβZ̃ab,[
Z̃ab, Pc

]
=
[
Qα, Z̃ab

]
=
[
Σα, Z̃ab

]
=
[
Z̃ab, Z̃cd

]
= 0.
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pects of the Lie Algebra S-expansion Procedure, J. Math. Phys. Vol. 57 Issue 2 (2016).
arXiv:1602.0452 [hep-th].
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Infinite Semigroup and Ideal Subtraction, Submitted. arXiv:1611.05812 [hep-th].
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