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A COTS-Based Microwave Imaging System for

Breast-Cancer Detection
Mario R. Casu, Member, IEEE, Marco Vacca, Jorge A. Tobon, Azzurra Pulimeno, Imran Sarwar,

Raffaele Solimene, and Francesca Vipiana, Senior Member, IEEE

Abstract—Microwave Imaging is an emerging breast cancer
diagnostic technique, which aims at complementing already
established methods like mammography, magnetic resonance
imaging, and ultrasound. It offers two striking advantages: no-
risk for the patient and potential low-cost for national health
systems. So far, however, the prototypes developed for valida-
tion in labs and clinics used costly lab instruments, such as
a Vector Network Analyzer (VNA). Moreover, the CPU time
required by complex image reconstruction algorithms may not
be compatible with the duration of a medical examination. In
this paper, both these issues are tackled. Indeed, we present a
prototype system based on low-cost and off-the-shelf microwave
components, custom-made antennas, and a small form-factor
processing system with an embedded Field-Programmable Gate
Array (FPGA) for accelerating the execution of the imaging
algorithm. We show that our low-cost system can compete with
an expensive VNA in terms of accuracy, and it is more than 20x
faster than a high-performance server at image reconstruction.

Index Terms—Breast cancer detection, microwave imaging,
components off-the-shelf.

I. INTRODUCTION

M ICROWAVE Imaging (MI) for breast cancer detection

[1] is being considered as a diagnostic tool that can

complement well-established methods like mammography [2]

and magnetic resonance imaging (MRI) [3][4][5]. This is

because MI offers a different perspective of the breast, being

sensitive to the dielectric contrast between the normal and

diseased tissues rather than the density [6]. Tumor tissues

are characterized by a higher dielectric constant than healthy

tissues [7]. Also, MI presents some advantages over mam-

mography: being free from ionizing radiations, MI is risk-

free for the patient and therefore can be repeated much more

frequently; the patient is more comfortable because MI does

not require any painful compression of the breast during the

examination; MI is recommended also for younger women

with dense breasts [8][9]. The main advantage of MI over the

very expensive MRI, which is sometimes proposed as a follow-

up procedure in tumor treatments, is instead its low cost. For
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these reasons, MI is an ideal candidate for large scale screening

campaigns and post-treatment cancer surveillance [10].

Two main approaches for MI have been proposed so far,

Ultra Wide-Band (UWB) Radar and Tomography.

The radar approach [11] belongs to the class of linear

scattering techniques and consists in acquiring and processing

UWB pulses scattered back by the patient’s breast tissues in

order to create a map of the reflected energy [12]. Due to the

dielectric contrast, a tumor will cause a highly energetic spot in

the image. Therefore, this is basically a detection method. To

use the UWB radar approach in the time-domain, ad-hoc new

integrated circuits (ICs) need to be developed [13][14][15][16].

It is possible to use this approach in the frequency-domain and

reconstruct the UWB pulses via FFT [17], an approach usually

referred in the literature as Stepped-Frequency Continuous

Wave (SFCW) [18]. In this second case, besides develop-

ing new ICs [18][19], one can use sophisticated laboratory

microwave tools [20], which have the necessary flexibility

to handle a large bandwidth with the required precision and

accuracy. In any case, none of these implementations of the

UWB radar approach can be classified as low-cost.

The tomographic approaches [21][22] aim to reconstruct the

dielectric breast profile by collecting the scattered field at a

single or few selected frequencies [6][23]. The main limitation

of this approach, however, is in the processing part as a non-

linear and ill-posed inverse problem has to be solved [24].

Apart from convergence and stability, the main issue is the

execution time, because non-linear inversions may take days

of CPU.

Our approach to MI is different than both a radar

and a tomographic approach. We adopted as imaging al-

gorithm Interferometric- MUltiple SIgnal Classification (I-

MUSIC) [25], which belongs, like radar methods, to the linear

scattering class of imaging techniques. Differently from radar

techniques, however, I-MUSIC does not require a large band-

width to detect the most scattering points inside the breast.

In fact, we developed a system that works in the frequency

domain and uses only eleven discreet frequencies chosen in a

200-MHz bandwidth between 1.4 and 1.6 GHz. Since low-

cost components off-the-shelf (COTS) are available in this

frequency range, there is no need for new ICs. In addition,

since it is not a tomographic approach, I-MUSIC allows us to

avoid the processing issues of non-linear inversions1. A chief

feature of I-MUSIC is that the imaging algorithm does not

1Note, however, that the RF COTS of our system could be used also for
tomographic approaches, which we did not experiment with.
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require a pre-characterized response of the antennas, which

has two important consequences. The first advantage is a

reduction of costs and time for testing and calibration. The

second advantage is that in practical cases the response of

the antennas is unknown, since they are deployed in close-

proximity of an unknown scatterer. This last issue, which

complicates further the reconstruction problem in standard

linear inversion methods, is avoided altogether in I-MUSIC.

The I-MUSIC algorithm, albeit faster than a non-linear

inversion, may still require a CPU time unacceptable for a

standard clinical scenario, especially if run on an embedded

processor. To speed-up the execution of the most computa-

tionally intensive kernel of I-MUSIC, we pair the embedded

processor with a hardware accelerator running in a field-

programmable gate array (FPGA).

To evaluate the performance of our system prototype we

carried out experiments on different kinds of 2D and 3D breast

and tumor phantoms placed in a tank with different coupling

liquids. We also designed and fabricated low-cost printed

antennas that are matched when immersed in these liquids.

We obtain results comparable in terms of accuracy to what a

sophisticated microwave equipment can achieve, but at a small

fraction of the cost. Moreover, our FPGA-enhanced embedded

platform accelerates the image reconstruction algorithm by

more than 20x compared to a powerful multicore CPU.

In summary, these are our main original contributions:

• We show that it is possible to build a low-cost MI system

for breast-cancer detection with accuracy comparable to

RF instruments using COTS and printed antennas.

• We show that I-MUSIC can run on an embedded plat-

form, enhanced with an FPGA, more than 20x faster than

on a server-grade CPU.

All the reported results have been obtained using an existing

MI algorithm, I-MUSIC, whose detection effectiveness has

been proven already [25][26].

This is the paper organization. After a brief description of

the algorithm and the related work in Sec. II, we describe our

prototype and the tumor phantoms in Sec. III, and report the

experimental results in Sec. IV. Our conclusions are in Sec. V.

II. BACKGROUND AND RELATED WORK

We briefly describe I-MUSIC, the algorithm that we use in

our system. The details can be found in [25]. I-MUSIC consists

of two steps: clutter removal and breast image generation.

The clutter is mainly due to a large scattering at the

coupling-medium/skin interface. To remove it, I-MUSIC uses

a subspace-projection method based on the singular value

decomposition (SVD) of the data matrix. Assume that the

scattered field is sensed at N different frequencies by A differ-

ent antenna pairs operating in bistatic mode (one transmitting

and one receiving). The matrix of the acquired complex data

(i.e. real and imaginary part of the field) is organized in N

rows and A columns. This matrix is transformed via SVD and

the projections relative to the two dominant singular values are

discarded to remove the clutter.

The so-obtained decluttered matrix Sd is the input to

the image generation algorithm. For each frequency f , the

eigenvectors and eigenvalues [V,D] of the correlation matrix

R = S
f
d · (Sf

d )
H are computed, where S

f
d is the f th row

of the N × A decluttered matrix Sd. For each pixel of the

output image, identified by the row and column indexes (u, v),
through a Hermitian inner product the dominant eigenvector

Vmax of R is multiplied with an array of Green functions, W .

These functions model the propagation between the A antenna

pairs and the point in the scanned region that corresponds to

the pixel in question. The Euclidian norm of this Hermitian

product is the function F (u, v, f), which is computed for all

N frequencies (i.e. on all rows of Sd).

All frequency components of F (u, v, f) are combined to-

gether as
∏

f (1−F (u, v, f)2) and the inverse of this product

P (u, v) is the matrix containing the output image. Note that

the product of single-frequency contributions produces a sort

of constructive interference, which strongly emphasizes the

actual tumor response and tends to reduce spurious artifacts.

I-MUSIC has been numerically and experimentally assessed

in [26] using a Vector Network Analyzer (VNA) for probing

a breast phantom and collecting the corresponding scattered

field. Also, a PC has been used for processing the acquired

data. In this paper, instead, we present the first attempt to

build an ad-hoc and low-cost system, for which we showed

preliminary promising results in [27][28][29].

There have been previous attempts to avoid VNAs, espe-

cially for UWB radar systems working directly in the time do-

main [30]. While the authors of [30] try to avoid custom com-

ponents, others propose the implementation of ad-hoc CMOS

ICs working in time domain, with the aim of improving the

performance over commercial components [14][31][15][16].

One of the issues with these UWB time-domain methods is

the need for complex calibration schemes to remove the clutter.

This problem has been recently addressed and a new signal

processing method has been proposed [32].

Working in the frequency domain, as VNAs do, has a

distinctive advantage over working in the time domain: for

each frequency, the signal-to-noise ratio is as high as that of

a narrow-band system. In order to work in frequency domain

while avoiding the use of VNAs, researchers propose dedicated

CMOS ICs [18]. If the goal is to reduce cost, however, we

believe that COTS working in frequency domain can be used,

as we show in this paper.

III. SYSTEM ARCHITECTURE AND DESIGN

Fig. 1 is a schematic representation of our prototype system,

which is also helpful to explain the principle upon which the

entire MI system is based.

A transmitter generates a radiofrequency (RF) signal, whose

frequency is programmed by the ARM embedded processor in

the Zynq System-on-Chip (SoC). A cable connects the trans-

mitter with an antenna that irradiates a tank with the signal

RF out amplified by a variable-gain amplifier (VGA). The tank

contains a coupling liquid and a breast phantom, which mimics

the various breast tissues (adipose, fibro-glandular, and tumor)

with liquids of different dielectric properties. The scattered

signal is received by another antenna, which conveys the signal

RF in to a direct conversion (DC) receiver. The in-phase (I)
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Fig. 1. Architecture of our prototype system for breast-cancer detection using Microwave Imaging.
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Fig. 2. (a) Relative permittivity and (b) conductivity of the coupling liquids:
80-20% glycerin-water mixture (solid lines) and Triton x-100 (dashed lines).

and quadrature (Q) outputs of the DC receiver are digitized

and sent to the SoC.

A brushless motor rotates around a circle the two antennas,

which keep a fixed angle between them (135◦ in Fig. 1). A set

of pre-determined positions is chosen, and for each position a

set of measurements at different frequencies are taken. Finally,

the received signals are elaborated inside the Zynq SoC via

the I-MUSIC algorithm, which produces an image highlighting

the position of the scatterers in the scene.

Notice that the RF parts colored in light-blue in Fig. 1 could

be replaced by a conventional and expensive VNA. Likewise,

the elaboration parts colored in yellow in Fig. 1 could be

replaced by a conventional PC. Our aim, though, is to prove

that an implementation using components off-the shelf (COTS)

is not only feasible and cheaper, but that it can achieve a

comparable detection performance.

In the following we discuss in detail the various parts of

the system in Fig. 1.

A. Measurement Tank with Coupling Liquids and Antennas

We experimented with two different coupling liquids pro-

posed in the literature that have different properties.

The first coupling liquid is obtained by mixing glycerin

(80%) and water (20%) and was proposed for the first time in

[33]. We report in Fig. 2 (solid lines) the dielectric properties

of the glycerin-water mixture measured in the frequency range

0.5-3 GHz; our measurements are in good agreement with the

dielectric properties reported in [33, Fig. 6]. We verified that

this coupling liquid is not only easy to reproduce, but most

of all stable over time, which simplifies the measurements

procedure and improves the repeatability of the experiments.

Compared to other coupling liquids proposed in literature,

this mixture presents a higher conductivity (Fig. 2.(b)), which

implies a higher signal attenuation. This attenuation can be

useful to eliminate the effect of multipaths and to provide an

appropriate impedance matching to minimize signal attenua-

tion from reflections at the breast/liquid surface [33]; however,

it also requires a measurement system with a high dynamic

range and low-noise, especially when the transmitted signal

level is low.

The second coupling liquid used in our experiments is

Triton x-100, a nonionic surfactant often used as a detergent in

laboratories. This liquid mimics the dielectric characteristics

of the 85-100% adipose tissue content of the normal breast

tissue [34] in the considered frequency range (0.5-3 GHz),

as reported in the literature [35][36]. Our measurements of

the dielectric properties, shown in Fig. 2 (dashed lines), are

very stable over time. Since this coupling liquid is not a

mixture, it is simpler to use than the glycerin-water blend.

In addition, its lower conductivity results in less attenuation

for a propagating signal, which increases the signal-to-noise

ratio in the measurements and may be exploited to relax the

specifications of the measurement system.

We designed the antennas under the constraints of low

cost, minimum size, and good matching when immersed

in the selected coupling liquids. The result is a wide-band

monopole antenna printed on standard FR4 dielectric substrate

and provided with an SMA connector, as shown in Fig. 3(a).

The printed technology minimizes fabrication costs, while the

flat shape with a minimized ground plane reduces the size. In

Fig. 3(b) the measured S11 scattering parameter (assuming a

50-Ω reference) is reported when the antenna is fully immersed

in the glycerin-water coupling liquid (solid line) and in the

Triton x-100 coupling liquid (dashed line). In both cases a

good matching is obtained in a wide bandwidth (0.5-3 GHz).
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(a) (b)

Fig. 3. (a) Antenna and (b) S11 measured in 80-20% glycerin-water mixture
(solid line) and in Triton x-100 (dashed line).

3D breast
phantomphantom

2D tumor

(b)(a)

Fig. 4. (a) First version of the tank filled with glycerin-water mixture and
a vertically aligned cylinder representing a 2D tumor phantom. (b) Second
version of the tank filled with Triton x-100 and a full 3D breast phantom.

We developed two versions of the tank where we mount

our antennas. In the first version, shown in Fig. 4(a), the two

antennas are mounted on a plexiglass support placed in the

tank filled with the glycerin-water mixture. The angle between

the antennas is kept fixed during the entire measurement, but it

can be any multiple of 45◦ (the angle is 45◦ in Fig. 4(a)). A 2D

tumor phantom is represented by either a red plastic cylinder

filled with a different liquid than the coupling one (the plastic

thickness is minimal and makes the cylinder transparent in

the microwave range) or a metallic cylinder (not shown in

figure). The cylinder can be placed in different positions. A

motor placed on top of the tank rotates the cylinder along a

circle in such a way to scan the entire scene. Rotating the

phantom is equivalent to rotating the antennas and is much

simpler in a laboratory experiment. Rotating the phantom at

almost arbitrary angles gives us more flexibility than having

multiple antennas in fixed positions, and can virtualize a

very large number of antennas. Moreover, by avoiding the

switch matrix needed to multiplex TX and RX among multiple

antennas [14][20][31], we eliminate a further source of cost

and inaccuracy. While a mechanical rotating prototype and a

system based on a matrix of switches are certainly different,

Fig. 5. GeePs-L2S phantom; (a) permittivity and (b) conductivity of the
liquids used to mimic the breast tissues; inset: parts of the phantom [37].

they permit to measure the scattered field in a multitude of

positions: fixed antenna positions for the matrix of switches,

mobile and reconfigurable positions for the rotating system.

In the second version of the tank, shown in Fig. 4(b), we

added two external wooden supports for the antennas, which

permit a movement in steps along the z-axis and make it easier

to change the angle between the antennas (135◦ in Fig. 4(b)).

In this second version of the tank we experimented with a full,

3D breast-phantom that is described later in Sec. III-B. In this

case the motor is placed below the tank and rotates the entire

tank and so also the breast phantom in it. Like in the first

version, keeping the antennas in their original position while

the scene rotates is equivalent to rotating the antennas and is

much simpler for a prototype.

The simple approach of rotating the phantom is appropriate

for our prototype, which is not meant to be used in a clinic

setting. Indeed it would be impossible to rotate the patient. In a

realistic setting the patient will lay still in prone position. The

tank will be placed under the patient. In this case, antennas

can be attached to the tank walls and a motor can rotate

together the tank and the antennas, while the patient stay still.

Two additional motors can be used to move the antennas up

and down for 3D measurements. Another possibility is using

multiple antennas in fixed positions and a matrix of electronic

switches to replace the mechanical rotation system.

B. Breast and Tumor Phantoms

In the first version of our prototype we experimented with

2D tumor phantoms represented by two different cylinders

immersed in the tank filled with the 80%-20% glycerin-water

mixture. The first of these two phantoms is a 12-mm diameter

metallic cylinder, which mimics a highly reflective tumor. The

second one is a 20-mm diameter plastic dielectric cylinder

filled with a mixture of glycerin and water in different propor-

tions than in the coupling liquid: a 40%-60% mixture, which

creates with the coupling liquid a much slighter dielectric

contrast (∼ 4:1) with respect to the metallic cylinder. The

length of the cylinders is equal to the length of the whole

tank. The phantom rotates while the antennas are fixed; 18

measurement positions are considered with steps of 20◦. The

TX and RX antennas are placed along a 20-cm diameter circle

at an angle of 45◦ or 135◦ between them.

In the second version of our prototype we could experiment

with the GeePs-L2S breast phantom [37], which was kindly
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(a)

(b)

Fig. 6. GeePs-L2S breast phantom: (a) horizontal cut in the antenna plane;
the outer circle represents the rotation path. (b) Cross section view showing
tumor size and position. The antennas can be placed at any vertical position.

made available to us in the framework of the BMBS COST

Action TD1301 “MiMed”, a project funded by the European

Union and dedicated to the application of microwave imag-

ing to medicine. The GeePs-L2S phantom represents a 3D

realistic breast, fabricated with the 3D printing technology.

Three different tissues, adipose, fibroglandular, and tumor, are

represented by different plastic parts, as shown in the inset in

Fig. 5. Each of these parts is filled with a liquid that mimics

the dielectric properties of the corresponding tissue [37]. These

liquids have been obtained with a proper mixture of water, salt,

and Triton x-100: the measured permittivity and conductivity

are reported in Fig. 5(a) and Fig. 5(b), respectively.

In the second version of the prototype, the antennas and the

phantom are inside a tank filled with Triton x-100 as coupling

liquid. The antennas are placed in fixed positions along a 15-

cm diameter circle, at an angle of 45◦, 90◦, or 135◦ degrees

between them. The phantom and the tank rotate in 24 positions

with a 15-degree step.

Fig. 6(a) shows a 2D horizontal cut of the GeePs-L2S

breast phantom, which corresponds to the plane where the

tumor detection is performed with the I-MUSIC algorithm

and where the TX and RX antennas are located (antenna

plane). The dashed circle around the breast is the path along

which the antennas rotate. The shape of the different tissues is

represented by different patterns. Notice that the fact that the

tumor is located inside the fibroglandular tissue represents an

adverse condition for detection: the dielectric contrast between

the two tissues is 1.2:1, much less than the contrast between

fat and tumor, which is around 11:1. Fig. 6(b) depicts a cross

section view of the GeePs-L2S breast phantom highlighting

the size and position of the tumor. The diameter of the tumor

is 16 mm. The antennas are located near the upper part of

the phantom at a 75-mm distance from the phantom center as

shown in Fig. 6(b).

The height at which the antennas are placed can be changed.

This is an important feature of our prototype because it will

allow us to perform 3D measurements as a future development.

C. RF Transceiver

In our prototype, the SoC configures the PLL-based trans-

mitter (TX) in Fig. 1 to synthesize a frequency in the band-

width of interest starting from a stable reference. For the TX

we use a Linear Technology LTC6946 chip, an ultra-low noise

and spurious PLL Integer-N synthesizer with integrated VCO

(0.5-dBm output power at 1.5 GHz). A standard 10-MHz oven-

controlled crystal oscillator by Golledge Electronics Ltd pro-

vides the reference frequency.

Since the LTC6946 chip does not permit to control the

output power, we add the voltage-controlled VGA in Fig. 1.

For this component we selected the ADL5330 by Analog

Devices, which has a gain ranging from -34 to +22 dB2.

Especially when using the glycerin-water mixture, the re-

ceived signal can be very low because of the large attenuation

of this coupling liquid. The addition on the receiver path

of band-pass filtering (Mini-Circuits component) and low-

noise amplification (LNA, gain between 15 and 10 dB in

the bandwidth, 1-dB max noise figure, also by Mini-Circuits)

helps increase the performance of the DC receiver. For the

receiver we selected the LTM9004 chip by Linear Technology,

a 14-bit DC receiver with SNR 80 dB/MHz, typical noise floor

-148.3 dBm/Hz, dynamic range 86 dB, minimum detectable

signal -90 dBm (-105 dBm with the LNA). The local oscillator

signal (LO in Fig. 1) is provided by the transmitter itself and

is attenuated (6 dB) to avoid saturation. The dynamic range of

the system is coincident with that of the RF transceiver.

Linear Technology produces two boards with the TX and

RX chips, respectively. Passive components mounted on these

boards guarantee a good 50-Ω matching in the 1.4-1.6 GHz

range both for the TX and RX. We thus selected this 200-

MHz bandwidth for our experiments. The chips themselves,

however, may cover a much larger bandwidth, 0.37-5.7 GHz

for the TX and 0.7-2.7 GHz for the RX. Working on a

wide bandwidth would require a very complicated matching

network in the board and, most of all, will not result in better

detection performance, as we shown later on by comparing

the results obtained by our prototype with those obtained by

a VNA working in the full 0.5-3 GHz bandwidth.

The digital values of the acquired signals, sampled with a

80-MHz clock, are sent via a USB-interface board to the Zynq.

2Note that even at the highest gain, according to [38] the power irradiated
in the breast at the frequencies at stake and with our antennas will be within
the absorption limits such as those recommended by the IEEE [39].
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Fig. 7. Low-cost, small-size components off-the-shelf used in our system.

All components of our prototype are off-the-shelf, with the

exception of the low-cost custom printed antennas. The picture

in Fig. 7 encloses all the boards with the previously described

RF components. Note that the cost of the COTS used in this

prototype is around 3k USD. We expect a lower cost after

a full engineering of an ad-hoc custom board with the same

chips used in the prototype.

D. FPGA-Based Digital Back-End

The Xilinx’s Zynq SoC is a decisive part toward achieving

the goals of cost and form-factor reduction. Its key character-

istic is the integration in the same chip of a dual-core ARM

processor, which includes a level-2 cache and various standard

peripherals and is denoted as processing system (PS) in Fig. 1,

with an Artix-7 FPGA denoted as programmable logic (PL).

For each frequency and antenna position, several I/Q sam-

ples are acquired by the DC receiver. As clear from Fig. 1,

these 14-bit I/Q samples are sent in source-synchronous mode

to the Zynq and are first buffered in a FIFO implemented in

the PL part. The buffered samples are then transferred to the

external DDR memory via DMA.

The processing phase starts with an average of the samples

aimed at reducing noise. Then, for each frequency, the declut-

tering phase and eigenvalue computation are performed.The

two loops where Green functions and Hermitian product are

evaluated, represent the computational bottleneck. Notice that

the kernel code of the loops is repeated for each pixel of the

image in a 2D slice. In addition, if multiple scans along the z-

axis are performed, the execution time would be multiplied by

the number of such scans. For these reasons, a pure software

execution of these loops may not be compatible with the

duration of a medical examination. Therefore, we decided to

design a hardware accelerator for these loops.

As shown in Fig. 1, the accelerator is implemented in the

PL part of the Zynq. The rest of I-MUSIC runs in software

in the ARM processor: the communication between the ARM

and the accelerator happens via DMA. We did not describe

the accelerator in RTL using a hardware description language

like Verilog or VHDL. Instead, we described the accelerator

in behavioral SystemC and used a commercial High-Level

Synthesis (HLS) tool to obtain the RTL description, which is

the entry point of the regular Xilinx FPGA design flow. With

this high-level approach, we could run an extensive exploration

to determine the Pareto-optimal micro-architectural solutions

in the design space of performance and FPGA resources.

Thanks to the HLS tool, we could validate in about four

months around 100 design alternatives obtained with the
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Fig. 8. I-MUSIC computing architecture on a Xilinx Zynq SoC.

application of parallelism, pipelining, loop unrolling, and other

design knobs, starting from a single high-level description.

Among these alternatives, we selected the accelerator out-

lined in Fig. 8, which consists of identical processing elements

(PE) operating in parallel each on a row of the image. The

row, as atomic processing unit, is a good balance between

internal memory size of the accelerator and communication

overhead. For each complex operation that a PE executes, such

as division, square root, trigonometric function evaluation, etc,

we obtained a high-performance, pipelined implementation

using HLS. Processor-Accelerator communication does not

stall the computation, because we pipelined computation and

communication in such a way not to waste a single clock cycle.

The accelerator has two a bus-slave interface for commands

and status information, and a bus-master interface for DMA

data transfers. Having performance as a goal, we synthesized

the maximum number of PEs that fit on the Zynq.

The execution of the algorithm on a server-class Intel

multicore (Xeon E5-2643 @3.30 GHz, 64 GB RAM) requires

around 20 s, while the accelerator completes the computation

in less than 1 s independently on the input data, obtaining more

than 20x speed-up with respect to a software execution. If we

project these results on a scenario where 3D measurements are

taken (i.e. several measurements repeated at different heights),

the overall measurement time is reduced from 20-30 minutes

to few minutes. This is particularly important given that the

patient must remain still during the measurement process.

E. System Calibration

A well-known issue of DC receivers is the offset created by

the LO leakage [40]. The various contributions to the output

offset, including the LO leakage, are fully compensated during

the calibration phase that precedes the measurement phase.

The calibration phase consists of three parts.

In the first part we do not apply the input signal nor the

LO input (we replace the antenna and the LO source with

two 50-Ω terminations). In this condition, the output offset

is independent of the LO leakage offset. This offset is fully

compensated by acting on two specific offset correction inputs

of the receiver chip in the receiver board.

In the second part, we still do not apply the input signal but

we consider the effect of the LO source. The offset in this case

is due to the self-mixing of the LO signal that couples with the

input path. Since the LO is derived from the transmitter and

since its amplitude varies with frequency, we observe a differ-

ent offset at each frequency. Due to this frequency dependence,

this offset contribution cannot be compensated by acting on the
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Fig. 9. Maps obtained with I-MUSIC, (a)-(c) 12-mm metallic target, (d)-(f) 20-mm cylinder filled with 40%-60% glycerin-water mixture. (a) and (d) obtained
with the VNA, full bandwidth; (b) and (e) obtained with the VNA, 1.4-1.6 GHz; (c) and (f) obtained with our system.

previously mentioned offset correction inputs. It can be easily

compensated, however, during the post-processing software

elaboration of the acquired data, by subtracting the offset

values to any measured sample, frequency by frequency.

In the third and last part of the calibration phase we apply,

other than the LO source, a test input signal obtained con-

necting together the TX and RX cables without the antennas.

The value of I/Q data acquired in this condition at different

frequencies are first offset-compensated by subtracting the

offset values obtained in the second part; then the so-obtained

data are recorded, frequency by frequency, to be used later on

as normalization values during the actual measurement. This

third calibration procedure is no different than the standard

calibration procedure of any VNA.

IV. EXPERIMENTAL RESULTS

The tank with the antennas and the phantoms can be con-

nected either to our COTS-based microwave imaging system

or to a broadband VNA. Therefore, we could easily compare

the results obtained by running the I-MUSIC algorithm on the

data acquired with our system and with the VNA.

With our system, we acquired data of the scattered field

between 1.4 GHz and 1.6 GHz, which is where the receiver

board is best matched, in 20-MHz steps. With the VNA, we

gathered data in the same bandwidth for a fair comparison,

but we could also scan the investigated scene between 0.5 and

3.0 GHz. In this way, with the first set of measurements we

evaluated the accuracy of our system compared to the VNA,

and with the second one we assessed if relevant information

is lost when considering only the 1.4-1.6 GHz range.

A. First Tank Version

Fig. 9 shows the images obtained after running I-MUSIC

on the data acquired with the first version of the measurement

tank. The figure is a visual representation of the reconstructed

image with the tumor position. The yellow circle identifies

the position and size of the tumor phantom, while the colored

shades highlight the scattering points detected by the algo-

rithm. When the scattered points detected and the yellow circle

overlap, or are at least in close proximity, it means that the

algorithm successfully detected the tumor.

Figs. 9(a)-(c) refer to the case of the metallic cylinder. In

this case the angle between the antennas was 135◦. Figs. 9(a)-

(b) are obtained with the VNA in the full range and in the

sub-range between 1.4 and 1.6 GHz, respectively: we do not

observe a significant loss of information. Fig. 9(c) shows that

our system correctly detects the target, only slightly shifted.

Figs. 9(d)-(f) are obtained with the dielectric cylinder. The

angle between the antennas was 45◦. In this case, additional

frequencies in the full range slightly improve the focus of the

detected point, as we can see by comparing Fig. 9(d), obtained

with the VNA in the full range, with Fig. 9(e), obtained in the
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Fig. 10. Maps obtained with I-MUSIC using the GeePs-L2S breast phantom; the angle between the TX and RX antennas is 45◦ in the first row (a-c), 90◦

in the second row (d-f), and 135◦ in third row (g-i); in the first column (a,d,g) the VNA is used in the 0.5-3 GHz range; in the second column (b,e,h) the
VNA is used in the 1.4-1.6 GHz range; in the third row (c,f,i) our system is used in the 1.4-1.6 GHz range.

1.4-1.6 GHz range. Fig. 9(f) shows that our system correctly

detects the target, with a focus similar and marginally better

than what the VNA obtains in the same frequency range.

B. Second Tank Version

Fig. 10 reports the results obtained on the data gathered with

the second version of our prototype and the GeePs-L2S breast

phantom. Each row corresponds to a different angle between

the TX and RX antennas (45◦, 90◦, and 135◦). The yellow

circle represents the actual position and size of the tumor.

The first two columns are obtained with the VNA in the

full bandwidth and in the 1.4-1.6 GHz range, respectively. The

third column is obtained instead with our COTS-based system.

We notice that in this more realistic scenario, the recon-

structions are characterized by some delocalization, which in

turn depends on the angle between the TX and RX antennas.

This is caused by the inevitable model mismatch between

the equivalent permittivity of the I-MUSIC algorithm and the

actual profile in the detection scene.

Nonetheless, the tumor is clearly detected. This is a remark-

able result in view of the low contrast between the tumor and

the surrounding fibroglandular tissue and because the tumor

is embedded within the fibroglandular structure. Also, the

experiments show that working in the full bandwidth leads

to worse results (first vs. second column): the tumor, albeit

detected, is not as focused as in the 1.4-1.6 GHz range. (In

Secs. IV-C and IV-D we discuss the effect of the fibroglandular
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tissue and the bandwidth more in depth.) By comparing the

results obtained in this range with the VNA and with our

system (second vs. third column), we conclude that the results

are similar, and a slightly better focus is actually obtained by

our system in the 135-degree case.

To further compare the results obtained by the VNA and

our system, we report in Tab. I the values of Signal-to-Mean

Ratio (SMR) and Signal-to-Clutter Ratio (SCR) [16] obtained

in each case of Fig. 10. The values of SMR and SCR are

generally higher for our system than for the VNA, with the

exception of the case when the angle between the antennas is

90◦ which is unexpectedly good for the VNA.

TABLE I
SMR AND SCR OBTAINED WITH THE GEEPS-L2S BREAST PHANTOM IN A

TRITON COUPLING MEDIUM, VARYING THE ANTENNA ANGLE.

VNA VNA Our system

full bandwidth 1.4-1.6 GHz 1.4-1.6 GHz

Angle SMR SCR SMR SCR SMR SCR

(deg) (dB) (dB) (dB) (dB) (dB) (dB)

45 47.8 30.4 52.0 29.4 53.8 32.7

90 30.7 28.4 56.3 92.9 55.6 68.0

135 36.8 41.1 34.9 38.9 42.4 57.1

C. Effect of Fibroglandular Tissue

By comparing Fig. 9 with Fig. 10, a loss of resolution can

be noticed in Fig. 10, especially for the measurements with the

VNA at full bandwidth and at an angle of 135◦. We conjecture

that this is mainly an effect of the fibroglandular tissue, for

which we offer in the following a possible explanation.

Since I-MUSIC is a subspace projection method, the scat-

terer’s location is identified where the modeled Green function

forms a zero angle with the dominant eigenvector of the cor-

relation matrix R. An error in the model makes it impossible

to meet the zero angle condition, which results in a loss of

resolution, as it happens in Fig. 10. Such error depends on

many parameters, including: how the actual permittivity of the

breast differs from the model, the aspect angle between the

transmitting and receiving antennas (which involves different

paths of propagation inside the breast and therefore a different

model error), and the adopted frequency band. As for the

latter point, we remark that increasing the frequency band

not necessarily improves the quality of the reconstruction.

This is due to the lossy characteristics of the involved tissues,

which get worse with frequency: since the model is lossless,

its error increases with frequency; moreover, the scattered

field is attenuated and so more corruptible by uncertainties.

This explains the unexpected behavior of the method as the

frequency band increases (less resolution in the first column

of Fig. 10). If losses were accounted for and assuming that

noise does not overwhelm data, performance would improve.

More details can be found in [41].

To provide an experimental evidence, we removed the

fibroglandular structure from the phantom. Figs. 11(a)-11(b)

report the reconstruction obtained with bands 0.3-5 GHz and

1.4-1.6 GHz, respectively, and at a 90-degree angle. Fig. 11(c)

reports the scattering measurements across the different sen-

sors positions (lines at different colors) as a function of the

(a)

(b)

(c)

Fig. 11. GeePs-L2S breast phantom without the fibroglandular structure:
Maps obtained with I-MUSIC in (a) full bandwidth and (b) 1.4-1.6 GHz;
(c) scattering measurements across the different sensors positions (lines with
different colors) as a function of the frequency.

frequency. The resolution improves when the full bandwidth

is used compared to the results in Fig. 10, because now the

error of the model is lower. However, Fig. 11(b) is still better

resolved. Fig. 11(c) clarifies that this happens because weaker

high-frequency data are more corrupted by uncertainties.

D. Discussion on Resolution

In standard microwave imaging algorithms (e.g. beamform-

ing, time-reversal, and the like) the achievable resolution,

i.e. the ability to resolve two distinct points in the image,

improves as the bandwidth increases. In non-standard imaging

methods, however, the role of bandwidth is weak. When full-

view measurements are available (i.e. sensors can run all

around the scattering scene) it is even possible to improve the

resolution with an increasingly smaller bandwidth. In these
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(a)

(b)

Fig. 12. Maps obtained with I-MUSIC over a simulation of two scatterers
located at a distance (a) equal to and (b) two times greater than the minimum
distance corresponding to the algorithm (distance) resolution. The two sources
are detected incorrectly in (a) and correctly in (b).

cases, frequency allocation plays a key role, not only the

bandwidth [42]. Note that I-MUSIC is a variant of Time-

Reversal MUSIC, which is known to obtain a much finer

resolution than standard methods do even if it works at a single

frequency (i.e. bandwidth is null) [43]. Using data obtained

at multiple frequencies, however, can be beneficial. This is

particularly true for I-MUSIC, in which multiple frequencies

help mitigate the rank deficiency of the correlation matrix R,

especially when more than one scatterer is in the scene [41].

In summary, with I-MUSIC there are no theoretical obstacles

to obtaining a high resolution even with the relatively small

200-MHz bandwidth that we used in our work.

Indeed, the presence of more than one strong scatterer in

the scene can be a source of resolution degradation. We do

not have measurements for such a case since the phantom

in the current form does not allow us to test this condition.

Therefore, we report in Fig. 12 simulation results obtained at

the highest frequency of our system (1.6 GHz) and using for

simplicity a homogeneous lossless background with relative

dielectric permittivity equal to 10. The theoretical analysis

proposed in [41] suggests that the achievable resolution is

2.4/k=2.2 cm where k is the background wave number. To

check this, we simulated two scatterers located at a 2.2-cm

distance and at a distance two times this value. The simulation

results confirm the theoretical prediction: both scatterers are

detected in the latter case, as shown in Fig. 12(b), whereas

Fig. 12(a) shows that in the former case only one scatterer is

found in the midpoint of the segment linking the two scatterers.

For what concerns the minimum detectable tumor size,

we remark that I-MUSIC inherits the properties of Time-

reversal MUSIC, which in ideal conditions is known to detect

point-like scatterers (i.e. dimensionless) working at a single

frequency, provided that the number of spatial measurement

exceeds the number of point-like scatterers. Therefore, unlike

standard methods, I-MUSIC can theoretically detect very

small scatterers without using a large bandwidth. Under non-

ideal conditions, however, the minimum detectable tumor size

depends on model and measurements uncertainties, noise, and

hardware limitations. A sufficiently large field scattered by the

tumor is needed under these conditions. Even though we leave

the quantification of how large the scattered field needs to be

to future developments, we remark that in the previous works

on I-MUSIC a 5-mm tumor was considered [25][26]. We also

remark that the size of the tumor phantom used in this work

is in line with the average size of a Ductal Carcinoma in-situ

(DCIS) lesion, which is the most commonly detected early-

stage breast cancer, 10-15 mm, according to the Surveillance,

Epidemiology and End Results Data (SEER) [44].

Finally, we comment on the unambiguous range. For a

standard radar system this would be related to the pulse

repetition frequency (in time domain) or to the frequency

step (using the SFCW approach). Since we do not use a

standard imaging method, what matters is the highest adopted

frequency and the number of spatial measurements (i.e. the

antennas in our case). Assume for simplicity a homogeneous

breast. This hypothesis simplifies the discussion but at the

same time represents a non-favorable situation for ambiguities

as a mismatch between the model used in the construction of

the steering vector and the real scenario is actually helpful

for mitigating uniqueness problems [45]. By adapting the

derivation presented in [41] to the scattering scenario at hand,

it can be shown that to avoid ambiguities in the reconstruction

the number of antennas must be greater than 4× kmax ×Rb,

Rb being the breast radius and kmax the wave number (in the

coupling medium) at the highest adopted frequency. At the

highest frequency that we use, this constraint is easily satisfied

because we use 16 antenna measurements, which is more than

the minimum (∼13 measurements).

V. CONCLUSIONS

We presented a low-cost, fast, and accurate system for

breast cancer detection using microwave imaging. The system

is low-cost because it uses components off-the-shelf and in-

house fabricated antennas. It is fast because it executes the

imaging algorithm more than 20x faster than a multicore CPU

thanks to the use of FPGA hardware acceleration. Finally,

our experimental results show that detection is possible with

accuracy similar to what can be achieved using standard costly

microwave equipment such as a vector network analyzer.

The theory behind I-MUSIC tells us that in ideal conditions

point-like scatterers can be detected; hence one next step
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in this research activity is to verify the minimum size of a

detectable scatterer in non-ideal conditions, preparing a proper

phantom that allows us to perform this investigation. We are

also planning to replace the mechanical rotating system with a

matrix of electronic switches as a further step toward clinical

experiments.
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