
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analysis of HEVC transform throughput requirements for hardware implementations / Masera, Maurizio; RE FIORENTIN,
Lorenzo; Masala, Enrico; Masera, Guido; Martina, Maurizio. - In: SIGNAL PROCESSING-IMAGE COMMUNICATION. -
ISSN 0923-5965. - STAMPA. - 57:(2017), pp. 173-182. [10.1016/j.image.2017.06.001]

Original

Analysis of HEVC transform throughput requirements for hardware implementations

Publisher:

Published
DOI:10.1016/j.image.2017.06.001

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2674996 since: 2017-10-27T09:47:35Z

Elsevier

Analysis of HEVC Transform Throughput

Requirements for Hardware Implementations

Maurizio Maseraa, Lorenzo Re Fiorentina, Enrico Masalab,∗, Guido Maseraa,
Maurizio Martinaa

aElectronics and Telecommunications Department
Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino - Italy

bControl and Computer Engineering Department
Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino - Italy

Abstract

Hardware implementations can provide significant speedup and saving for
video compression applications. In this work we focus on the transform cod-
ing sub-module analyzing the performance required by actual encoder imple-
mentations. We show that the throughput assumption about the transform
sub-module in most research works is overly optimistic since it does not
consider the complexity of a rate-distortion optimized video coding process.
Many HEVC coding options are compared in terms of impact on quality
and throughput, so to recommend the most efficient settings without ex-
cessively penalizing quality. Moreover, comparisons with the AVC standard
show that, in general, HEVC presents much higher complexity to deliver its
claimed compression advantages. Finally, a practical case study is shown to
highlight how the proposed transform throughput analysis could be used to
determine the throughput for a transform sub-module hardware design.

Keywords: HEVC, Video coding, Transform throughput requirements

∗Corresponding author
Email addresses: maurizio.masera@polito.it (Maurizio Masera),

lorenzo.refiorentin@polito.it (Lorenzo Re Fiorentin), enrico.masala@polito.it
(Enrico Masala), guido.masera@polito.it (Guido Masera),
maurizio.martina@polito.it (Maurizio Martina)

Preprint submitted to Signal Processing: Image Communications May 11, 2017

1. Introduction

The High Efficiency Video Coding (HEVC) [1] is the latest video compres-
sion standard developed by the ITU-T Video Coding Experts Group (VCEG)
and by the ISO/IEC Moving Picture Experts Group (MPEG). The aim of
this new block-based hybrid video coding standard is to double the coding
efficiency with respect to the previous Advanced Video Coding (AVC) stan-
dard [2]. It achieves substantially better coding efficiency compared to its
predecessors by means of a larger number of coding tools, such as new pre-
diction modes, larger transform sizes and new picture partitioning, which
require a much higher computational effort with respect to the previous
standards [3–6]. As with previous standards, custom hardware implemen-
tations can accelerate some operations [7–10]. Such hardware is typically
integrated in many devices, including cameras and mobile phones. Moreover,
for real-time encoding on such types of devices, hardware implementations
are strongly required [11]. Examples of hardware architectures for real-time
HEVC encoding can be found in [12, 13].

Many encoding operations can benefit from hardware assistance. Among
them, in this paper we focus on the transform operation which is a fundamen-
tal one for HEVC. Indeed, many custom architectures have been proposed
during last years for this purpose [14–19]. Almost all the works in literature
assume that each input pixel of each frame is transformed only once dur-
ing the whole video coding process, as in [15–18], where the throughput is
calculated resorting to the transform size and to the system clock frequency
only. In particular, the folded DCT architecture in [15] achieves a constant
throughput of 2.992 Gsamples/s (16 samples × 187 MHz) independently of
the transform size, while the architectures in [16, 18] achieve on average 4.69
and 8.8 Gsamples/s respectively. Thus the authors claim to support 8K UHD
@60 fps video encoding. In practice, however, this is not true because real
encoder implementations require to compute the transform operation more
than once per each pixel. This increased throughput stems from the fact
that recent video coding standards, such as HEVC, exploit a large number
of coding tools, thus optimal settings in rate-distortion sense can be selected
only through extensive coding mode analysis.

Nevertheless, quantifying the amount of transform operations actually
performed by the encoder in a realistic application is often difficult, despite
being extremely important [20]. Note also that the transform operation has
greater importance in HEVC than in AVC, since the Discrete Cosine Trans-

2

form (DCT) block sizes have been extended from 4×4 and 8×8 to 16×16
and 32×32. Additionally, a 4×4 Discrete Sine Transform (DST) operation
has been included. The actual number of transform operations performed
during the encoding process is primarily influenced by the coding decision
tree, which typically relies on the rate-distortion (RD) optimization [21].
RD-optimized schemes can achieve good performance but might require a
large number of tests to determine the combination of the parameters for the
coding tools that yield the lowest Lagrangian cost function.

The issue of evaluating the complexity of an HEVC encoder can be an-
alyzed for both software and hardware design methodologies [22]. On the
software side, it has already been addressed by some works available in the
literature [4–6]. All these works performed encoder profiling by measuring
the overall encoding time and the processing time spent during the compu-
tation of the different operations. This analysis allows to identify the tools
that most affect the coding efficiency and the computational complexity of
the whole HEVC encoder. However, the encoding time can only partially
catch the required information about the transform coding complexity, be-
cause it strongly depends on the most time-consuming operations of the
encoder, such as the intra prediction and the motion estimation. Indeed, the
transform stage takes 8.7% and 4.0% for all-intra and random-access con-
figuration respectively, when performing software encoding of 1080p video
sequence in a fully sequential way and, most notably, not in real-time, as ob-
served in [4]. Therefore, software profiling provides only information about
the computational burden of each processing stage, while it can not be used
to derive actual throughput requirements for the transform submodule of
hardware encoders targeting real-time processing. Indeed, when designing a
completely hardware system for real-time encoding, all the processing stages
are required to satisfy strict throughput constraints. This raises the issue
to have a specific metric to measure the transform complexity, hence to de-
termine the actual throughput, which is independent of the platform and of
the other encoder operations. To this purpose, we use the complexity index
that we initially defined in [20], which relies on counting the transform oper-
ations performed during the encoding process. Differently from the encoding
time, which provides only information about the profiling and the overall en-
coding process, the complexity index can precisely quantify the throughput
requirement needed to design a transform sub-module for real-time applica-
tions, thus also serving as an index to measure the complexity of the HEVC
encoding process.

3

The adopted methodology is depicted in the diagram in Fig. 1. First of
all, the quality-complexity analysis of the HEVC encoder has been assessed
by performing coding simulations on a large dataset of video sequences. The
results of this analysis are the transform complexity index (CI) and the
Bjøntegaard-Delta Bit-Rate (BDBR). These metrics are then used in the
hardware implementation stage to derive the transform throughput require-
ment of a real-time HEVC encoder with given specifications for the hardware
transform design.

Stemming from these observations, this work extends and completes our
previous one [20] by providing the following major contributions. I) An in-
depth investigation which assesses the impact of each coding tool on video
quality and transform complexity, so that combinations of HEVC coding
tools are identified to achieve the best tradeoff between quality and transform
complexity. II) The application of the presented results to a practical case
study in order to show how they can guide the design of a real-time hardware
transform module for a typical coding configuration. Moreover, two minor
contributions are also provided. I) A detailed comparison between AVC and
HEVC standards focusing specifically on the comparison of the transform
complexity and the corresponding rate-distortion performance in order to
determine a term of comparison for complexity-constrained applications. II)
A significantly larger set of video sequences used in the experiments with
respect to [20], including UltraHD (UHD) content.

The paper is organized as follows. Section 2 briefly overviews the main
characteristics of the AVC and HEVC standards and the optimization al-
gorithm employed by both the AVC and HEVC encoding software used in
the experiments. Section 3 addresses the issues of transform coding in ac-
tual encoder implementations and defines the complexity index. Then, the
simulation setup is presented in Section 4, followed by results in Section 5:
they show both the HEVC transform complexity, also comparing them to
the AVC case, and an analysis of the dependency of the complexity index
on the different coding tools. A practical method to easily determine the
requirements for the hardware implementation of the transform sub-module
is then presented in Section 6. Finally, Section 7 draws conclusions.

2. HEVC and AVC Overview

This Section briefly summarizes the main features and characteristics
of the two considered standards, as well as the Lagrangian rate-distortion

4

HEVC

Encoding

Encoder

Config.

CI

BDBR

Video

Sequences

Throughput

Requirements

Definition

Encoder

Specs.

Hardware

Transform

Design

Quality-Complexity

Analysis

Hardware

Implementation

Figure 1: Diagram of the methodology.

optimization method, which is employed by the encoders to choose the most
efficient set of coding modes.

2.1. Codecs

Recent video coding standards are based on block-based hybrid video
coding [1, 2], i.e., they adopt motion estimation and intra prediction to ex-
ploit the video temporal and spatial correlation. Both AVC and HEVC split
the image into blocks, named macroblocks and coding tree units (CTU) in
the two standards, respectively. Such basic blocks can be recursively divided
into smaller sub-blocks. The decision about how to split a block into sub-
blocks, their coding mode (i.e., Intra or Inter), and which transform size to
use is up to the encoder. In this context, the difference between AVC [2] and
HEVC [1] relies on the different maximum sizes allowed for the sub-blocks,
being 8×8 for AVC and 32×32 for HEVC. The minimum is 4×4 for both.
Moreover, HEVC introduces the Asymmetric Motion Partitioning (AMP),
which enables support for non-squared prediction units. AVC standardizes a
4×4 DCT as well as an 8×8 DCT for some profiles. HEVC is more flexible,
providing DCTs from 4×4 to 32×32, as well as a 4×4 DST and a Trans-
form Skip (TS) mode in which the transform is not applied (mostly useful
for synthetic content). It is worth noting that, in HEVC block partitioning
into prediction units (PU) for motion estimation and transform application
are independent coding parameters. Such flexibility provides higher cod-
ing gains but also much higher complexity in coding decisions. In HEVC,
transform coding is performed by the encoder on the basis of the so-called
residual quad-tree (RQT) structure, which is composed of transform units
(TUs) organized as a tree with the root at the coding unit (CU) level.

5

2.2. Rate-Distortion Optimization
In order to fully exploit AVC and HEVC capabilities, Lagrangian rate-

distortion optimization [21] is necessary. Such an approach tries to choose
the most efficient coding modes (in particular for prediction and partitioning)
adapting to scene content. In short, the Lagrangian optimization algorithm
aims to solve the following unconstrained minimization problem: min{D +
λ · R}, where D is the distortion introduced by the coding process, λ is the
Lagrange multiplier and R represents the number of bits associated to the
chosen coding mode. Specifically, D can be calculated as: I) the sum of
squared differences (SSD); II) the sum of absolute differences (SAD) or III)
the sum of absolute Hadamard transformed differences (SATD) between the
reference and the test blocks of pixels. Since the SSD cost function calculates
the difference between the original and the reconstructed block, it is worth
noting that it implies the computation of DCT and DST. On the other hand,
the SAD and SATD cost are calculated by means of simple accumulation and
Hadamard transform respectively, which acts as a rough approximation of
the DCT.

To reduce the computational complexity, separate Lagrangian optimiza-
tions are performed for motion estimation and coding mode decision [3]. The
main challenge for the encoding process is to decide how to perform the par-
titioning of the frame and which is the best coding mode of each CU. To
accomplish this task, the reference HEVC encoder adopts the mode decision
process, illustrated in Fig. 2. For every possible CU the SSD cost is initialized
to the one obtained by performing inter prediction on a block of size 2N×2N
(Inter 2N×2N). Then, Early Skip Detection (ESD) and Coding Flag Mode
(CFM) are tested. If the motion vector difference is null or all the transform
coefficients are zeros, the decision process skips all the other modes. Other-
wise, it computes all the other prediction modes from Skip to PCM, while
also checking the Asymmetric Motion Partitioning (AMP) modes. Finally,
it tests the Early Coding Unit (ECU) condition to detect whether the Skip
mode has been chosen as the best coding mode. If the condition is true, the
process stops. Otherwise, the current CU is further divided into four CUs
of half size and four new mode decision processes are created and executed.
This recursion ends when the smallest CU size is found.

Each prediction mode is characterized by the proper rate-distortion opti-
mization algorithm. In particular, each Intra mode selects a pre-determined
number of intermediate candidates using the SATD cost. Then, it uses the
SSD cost only to refine the selection of the best mode. Other methods to

6

lower the computational complexity of the Intra mode selection process are
available in the literature [23]. On the other hand, each Inter mode exploits
the SAD and SATD cost functions, for integer-pixel and sub-pixel refine-
ments, respectively, to identify (for each PU) the best prediction candidate
among available blocks (in the previously coded frames). When the mode is
Skip, the SSD cost function is minimized to select the best motion parameters
among all merge candidates.

As far as the transform coding structure is concerned, the reference en-
coder performs a recursive exhaustive exploration of the TU partitioning for
both Inter mode luma/chroma components and Intra mode luma component.
On the other hand, for Intra mode chroma, TU partitioning is kept equal to
the one derived for the luma component. This recursive partitioning process
has the root at the CU level and is executed recursively up to the RQT depth,
which is specified as one of the encoder parameters. An example of transform
coding structure, including different TU partitioning, is reported in Fig. 3.
Moreover, Rate-Distortion Optimized Quantization (RDOQ) is employed to
perform soft decision quantization for each transform coefficient. The process
minimizes the Lagrangian cost function employing SSD by trying to quantize
each coefficient c with values in the set {0, c, c+ 1}.

As shown, to determine D and R of the Lagrangian cost function sev-
eral coding attempts need to be carried out, including repeated transform
operations on the same original pixels when different modes are tested. In
particular, the transform throughput requirement addressed in this work
is directly related to the SSD cost calculation, which is employed both in
the mode decision process and in the rate-distortion algorithms of the most
complexity demanding tasks, shaded in gray in Fig. 2. Indeed, SSD cost
calculation requires to compute the difference between the original and the
reconstructed blocks by applying repeatedly the complete coding chain com-
posed of residual calculation, transform computation, quantization and their
inverse functions. To the best of our knowledge this aspect has been par-
tially considered only in two recent works [20, 24], despite its relevance for
the design requirements of any hardware implementation of the transform
sub-module, especially when oriented to real-time applications.

3. Transform Coding Complexity

To evaluate the real requirements needed by the transform sub-module in
an actual encoder implementation, we rely on the definition of the complexity

7

START

CU

Inter_2Nx2N

ESD

CFM

No

Skip

No

Inter_NxN

Inter_Nx2NInter_2NxN

AMP Inter_AMP_Hor
Yes

Inter_AMP_Ver

Intra_2Nx2N Intra_NxN

PCM

No

ECU

Yes

Yes

END

Yes

START

CU_1

START

CU_2

START

CU_3

START

CU_4

No

Figure 2: Flowchart of the mode decision process.

index (CI) of a given encoding process, that we initially proposed in [20].
The approach of counting the number of transform operations performed by
an HEVC encoder is similar to the one exploited in [25, 26] to measure the
computational complexity of the motion compensation and deblocking stages
in an HEVC decoder, which supports the scalable extension. Specifically, the
CI expresses how many times a pixel is considered for a transform operation,
and it is defined as

CI =
TA
TH

=
PT

W ·H · Sc ·Nf

, (1)

where TH = W ·H · Fs · Sc is the hypothetical reference throughput, which
is the one calculated assuming that the transform operation is performed
only once for each input pixel, W and H are the width and the height of
the frame respectively, Fs is the frame rate and Sc is the chrominance sub-
sampling factor which can be 3, 2, 1.5, 1.5 depending on the adopted scheme
(4:4:4, 4:2:2, 4:2:0, 4:1:1, respectively). The term TA in Eq. (1) is the actual

8

5

0 1

32

6 7

98

11 12

10

4

Figure 3: Example of transform structure RQT partitioning.

throughput:

TA =
PT · Fs

Nf

, (2)

where Nf is the number of frames in the video sequence and PT is the total
number of transformed samples. For HEVC, the value of PT is obtained
by counting, for each size of the transform, the actual number of transform
operations performed by the encoder and adding them together weighting
them with the corresponding block size:

PT =

 5∑
i=2

αi ·NDCT2i

 + β ·NDST4, (3)

where αi = 22i and β = 16 express the number of pixels covered by a 2i × 2i

DCT. NDCT4, NDCT8, NDCT16, NDCT32 and NDST4 are the transform counts.
It is worth noting that this formula does not capture the hardware demands
of different transform sizes, since it is focused on the throughput.

It is important to observe that the CI definition can be easily extended
to other video compression standards such as AVC. In this case, the only
relevant DCT transform sizes are 4×4 and 8×8, therefore only the terms
NDCT4 and NDCT8 exist.

4. Simulation Setup

To compare the coding efficiency and the complexity of the transform
sub-module of HEVC and AVC, we run coding experiments referring to a
generic entertainment scenario. The experiments will also attempt to assess
the influence of each single coding tool on the global performance. The latest

9

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 0 5000 10000 15000 20000 25000 30000

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

AVC

HEVC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 5000 10000 15000 20000 25000 30000

C
I

Bit-rate (kbit/s)

AVC

HEVC

(a)

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 2000 4000 6000 8000 10000 12000 14000

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

AVC

HEVC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000

C
I

Bit-rate (kbit/s)

AVC

HEVC

(b)

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 0 1000 2000 3000 4000 5000 6000

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

AVC

HEVC

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000

C
I

Bit-rate (kbit/s)

AVC

HEVC

(c)

 38

 40

 42

 44

 46

 48

 50

 52

 200 300 400 500 600 700 800 900 1000 1100

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

AVC

HEVC

 0

 10

 20

 30

 40

 50

 60

 200 300 400 500 600 700 800 900 1000 1100

C
I

Bit-rate (kbit/s)

AVC

HEVC

(d)

Figure 4: Rate-distortion and rate-complexity-index curves for the selected classes. (a)
Wood, 3840×2160, 30 fps (b) Traffic, 2560×1600, 30 fps (c) Kimono 1920×1080, 24 fps
(d) SlideShow, 1280×720, 20 fps. 10

Table 1: Selected Settings for the Reference Software Models.

Codec AVC HEVC
Software Version JM 18.6 HM 16.3
Profile High Main
Level 5.1 6.2
Reference Frames 4 4
Group of Pictures 8 8
Hierarchical Encoding On On
Temporal Levels 4 4
Intra Period 1s 1s
Search Range 128 64
Coding Unit size / depth N/A 64 / 4
Transform Unit size min / max N/A 4 / 32
8x8 Transform On N/A
EarlySkipEnable On N/A
SelectiveIntraEnable On N/A
Rate Control Off Off

versions of the reference AVC and HEVC encoder software models (JM 18.6
and HM 16.3) have been used, both configured according to the so-called
random-access main configuration parameters, summarized in Table 1.

High resolution sequences used in the official HEVC common test con-
ditions (CTC) [27] have been employed for these experiments. The CTC
classify sequences according to (decreasing) resolution into different classes
named from A to E, plus class F which contains synthetically generated con-
tent, with mixed resolutions. Our tests include the highest resolution classes
A and B, and class F. Moreover, to address the recent trend in resolution
increase [28], four UHD video sequences from the SJTU dataset [29] have
been added, despite they have not been originally included in the official
HEVC CTC. The complete list of tested video sequence is reported in Table
2. Each video sequence has been coded using four different fixed quantization
parameters (QP) for I pictures, namely 22, 27, 32 and 37, as suggested in
the CTC.

To compare different measures across several bit-rates, the Bjøntegaard-
Delta Bit-Rate (BDBR) measurement method [30] has been used. Therefore,
the BDBR expresses the average rate variation when considering the same
combined PSNR [3] (i.e., PSNRY UV), which can be easily calculated by

11

Table 2: Test Sequences Used for Simulations.

Class Resolution Length Sequence Frame Rate
Tree Shade 30 Hz

UHD 3840×2160 10 s
Wood 30 Hz

Campfire Party 30 Hz
Construction Field 30 Hz

Traffic 30 Hz

A 2560×1600 5 s
People On Street 30 Hz
Nebuta Festival 60 Hz

Steam Locomotive 60 Hz
Kimono 24 Hz

Park Scene 24 Hz
B 1920×1080 10 s Cactus 50 Hz

BQ Terrace 60 Hz
Basketball Drive 50 Hz

832×480 10 s Basketball Drill Text 50 Hz

F
1024×768 16 s China Speed 30 Hz
1280×720 10 s Slide Editing 30 Hz
1280×720 25 s Slide Show 20 Hz

means of a weighted sum of the PSNR of each component as:

PSNRY UV =
6 · PSNRY + PSNRU + PSNRV

8
. (4)

The transform complexity has been quantified through our proposed index
CI . Results show the percentage of variation with respect to a reference case
(CI [%]) averaged over all the selected QP values. In addition, the difference
between the maximum and minimum value taken by CI [%], indicated by
∆CI [%], is shown as well. Therefore, the latter value represents how much
CI [%] depends on the bit-rate. All the indicators are averaged over all the
considered test sequences.

5. Results

The aim of this Section is to analyze the transform complexity in HEVC
by first investigating the quality-complexity difference between HEVC and

12

AVC and then analyzing the transform complexity contributions of each cod-
ing tool. Finally, the complexity analysis of a real-life HEVC encoder is
reported as well.

5.1. HEVC Complexity vs AVC

First, quality and complexity curves are shown in Fig. 4, for both HEVC
and AVC, as a function of the bit-rate, for a representative sequence belonging
to each of the considered video classes. As expected, HEVC significantly
outperforms AVC in terms of coding efficiency, with higher gains for the low
bit-rate case (graphs in the left part). However, such performance increase
is tied to higher coding complexity, which is reflected by the higher CI value
(graphs in the right part). Moreover, the much higher CI values for the
HEVC case underlines the need for an accurate estimation of the actual
computational burden of the transform sub-module, that would be largely
underestimated using the hypothetical reference throughput TH defined in
Section 3.

The value of the metrics introduced in Section 4 are reported in Table 3
for each class of tested video sequences. Comparisons express the AVC value
using HEVC as the reference. While AVC requires about double bit-rate
for equal quality with respect to HEVC for classes of natural content, the
difference is lower when the synthetic content is considered. As expected,
significant reductions of the transform complexity of AVC with respect to
HEVC are observed, due to the lower number of coding tools. Moreover,
the ∆CI [%] value shows that the higher is the resolution, the larger is the
percentage of variation of the CI index with respect to the HEVC case.

It is worth noting that the results of the comparison between AVC and
HEVC serve as reference for the HEVC complexity analysis of the next ses-
sion. Indeed, they define a term of comparison from both the rate-distortion
performance and complexity point of view. In complexity-constrained real-
time HEVC applications, the complexity can be reduced by limiting the
usage of coding tools at the encoder side, still producing HEVC compliant
bitstreams but lowering the rate-distortion performance as well. Therefore,
when searching for an efficient encoding configuration for HEVC, it is im-
portant to check that the new configuration still outperforms AVC, thus
guaranteeing that the use of HEVC worths the way.

13

Table 3: BDBR and CI variation: AVC vs HEVC.

Class BDBR[%] CI [%] ∆CI [%]
UHD 79.3 -65.2 18.7

A 106.7 -72.0 10.6
B 91.9 -71.6 8.5
F 54.9 -82.3 4.4

Table 4: HEVC Coding Tools Considered for Testing.

Coding tool Tested CTC [31]
Largest Coding Unit (LCU) sizes 32×32, 16×16 64×64 64×64
Residual Quad-Tree (RQT) depth 2 and 1 3 1
Max Transform Unit (TU) sizes 16×16, 8×8 32×32 32×32
Transform Skip (TS) Disabled Enabled Disabled
Sign Data Hiding (SDH) Disabled Enabled Enabled
RDOQ Disabled Enabled Enabled
Quarter-pel motion vector Off On On
Half-pel motion vector Off On On
Asymmetric Motion Partit. (AMP) Disabled Enabled Disabled
Merge mode candidates (Nmc) 3 and 2 5 5
Number of reference frame (Nrf) 1 4 4
ECU, ESD and CFM Enabled Disabled Enabled

5.2. HEVC Analysis

In order to analyze the dependency of transform complexity on HEVC
coding tools, we adopted the same setup used in [31]. The full list of the
considered coding tools is reported in Table 4, where both tested and common
test conditions (CTC) are shown, as well as the conditions used in [31] for
UHD content, as it will be discussed in Section 6.

Table 5 reports extensive results about the rate-distortion performance
and CI variations due to each individual coding tool with respect to the
HEVC encoder configured according to the CTC. Each encoder configuration
is defined by enabling only one among the tested coding options of Table 1
at a time and leaving the other parameters as specified in the CTC. Results
can be interpreted as for Table 3. Therefore, a low value of ∆CI [%] indicates
that, for a given coding tool, CI [%] has no strong dependency on the bit-rate.
While the rate-distortion results on coding tools are validated by the analysis

14

Table 5: BDBR and CI variation: HEVC Coding Tools.
Coding Tool Class BDBR[%] CI [%] ∆CI [%] Coding Tool Class BDBR[%] CI [%] ∆CI [%]

LCU size

UHD 4.4 -23.5 3.5 UHD 5.9 -1.7 1.5

32 × 32

A 6.1 -24.2 3.1 A 5.3 -1.8 2.2
B 3.7 -23.8 1.3 RDOQ off B 5.8 -1.5 1.5
F 2.4 -23.4 1.4 F 2.9 -1.1 0.7

AVG 4.1 -23.8 2.3 AVG 5.0 -1.5 1.5

LCU size

UHD 20.9 -53.7 9.2 UHD 1.9 0.3 0.9

16 × 16

A 32.2 -55.6 4.6 A 2.2 0.3 0.8
B 19.2 -54.9 2.0 Quarter-pel off B 2.9 0.4 0.7
F 10.9 -54.3 1.6 F 1.4 0.2 0.4

AVG 20.8 -54.6 4.3 AVG 2.1 0.3 0.7
UHD 0.2 -27.1 6.0 UHD 7.9 1.6 3.4

A 0.3 -29.7 2.1 A 7.4 1.3 2.1
RQT depth 2 B 0.4 -29.8 1.0 Half pel off B 10.2 1.4 2.2

F 0.4 -29.7 0.9 F 4.3 0.5 0.8
AVG 0.3 -29.0 2.5 AVG 7.4 1.2 2.1
UHD 0.5 -55.0 5.3 UHD 0.3 -8.3 14.6

A 0.8 -55.2 4.3 A 0.6 -14.6 7.6
RQT depth 1 B 1.1 -56.3 2.9 AMP off B 0.7 -12.2 8.6

F 1.3 -56.2 1.8 F 0.6 -9.9 3.0
AVG 0.9 -55.7 3.6 AVG 0.6 -11.2 8.5

TU size

UHD 2.6 -21.4 1.9 UHD 0.3 -3.7 11.9

16 × 16

A 3.6 -21.3 2.8 A 0.4 -8.5 6.6
B 2.4 -20.8 1.2 Nmc = 3 B 0.4 -6.5 6.1
F 1.2 -20.9 1.8 F 0.2 -5.8 3.2

AVG 2.5 -21.1 1.9 AVG 0.3 -6.1 6.9

TU size

UHD 10.0 -47.1 20.1 UHD 0.5 -4.8 11.8

8 × 8

A 11.4 -44.5 8.1 A 1.0 -12.5 10.2
B 9.0 -40.5 2.2 Nmc = 2 B 0.9 -9.6 9.3
F 4.2 -40.9 2.7 F 0.5 -8.6 4.8

AVG 8.7 -43.2 8.3 AVG 0.7 -8.9 9.0
UHD -0.2 -0.1 0.2 UHD 3.0 0.7 1.0

A 0.0 0.0 0.1 A 3.6 0.4 0.5
TS off B -0.1 0.0 0.1 Nrf = 1 B 3.5 0.1 0.3

F 8.2 0.0 0.4 F 2.5 0.2 0.2
AVG 2.0 0.0 0.2 AVG 3.1 0.4 0.5
UHD 0.7 -0.1 0.1

ECU, ESD

UHD 0.3 -51.9 34.4
A 1.0 -0.1 0.2

and CFM on

A 1.4 -36.7 38.0
SDH off B 0.8 -0.1 0.1 B 1.5 -47.0 36.2

F 0.1 0.0 0.1 F 1.2 -53.3 18.0
AVG 0.6 -0.1 0.1 AVG 1.1 -47.2 31.7

in [3, 31], it is worth noting that the focus of this work is on the transform
throughput requirements. Therefore, this Section mainly explains how the
different coding tools and parameters of the rate-distortion process affect the
complexity index.

First, Table 5 shows that the main CI variations are due to parameters
related to CU and TU partitioning (i.e., first six coding tools). This observa-
tion is in agreement with [20]. Indeed, both the BDBR and CI [%] are affected
by LCU size reduction, especially when high resolution video sequences are
considered. This is due to the fact that 32×32 and 64×64 coding blocks can
better compress large uniform regions of the frame [3, 20, 31]. The impact of
the LCU size on CI is twofold. It acts directly on the number of executions
of the mode prediction decision algorithm in Fig. 2, which is called for each
CU level, and also indirectly since the CU is the root of the RQT partition-
ing. Concerning the TU partitioning, this is regulated by the RQT depth,
which defines the maximum recursion in the quad-tree partitioning and the

15

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000

C
I

Bit-rate (kbit/s)

CTC
RQT depth 2
RQT depth 1

(a)

-70

-60

-50

-40

-30

-20

-10

 0 1000 2000 3000 4000 5000 6000

C
I

[%
]

Bit-rate (kbit/s)

RQT depth 2
RQT depth 1

(b)

Figure 5: Curves of absolute and relative CI variations over RQT depth for Kimono
1920×1080, 24 fps.

maximum allowed TU size. Results show that a reduction of the RQT depth
produces a rate increase of about 1% while it achieves a complexity reduction
up to about 56%. The absolute value and the relative variation of the CI

over the bit-rate for different RQT depths are shown in Fig. 5. As it can be
observed from Fig. 5b, the variation of the CI proves to be almost constant
across different rate points, as also shown by the ∆CI [%] metric in Table 5.
Unlike the RQT depth, the maximum TU size, which sets the largest usable
transform in the TU partitioning, causes non negligible losses. Therefore,
similarly to the CU partitioning, it can be noticed that, in case high reso-
lution video sequences have to be encoded, large TUs effectively compress
the residual redundancy. Since the first parameters affects the coding deci-
sion tree of the encoder and the transform partitioning (which are explored
exhaustively), it is worth noting that they feature a complexity reduction
which is independent of the considered class.

As far as the Transform Skip (TS) option is concerned, it can be observed
that it does not lead to either significant complexity or rate increase for all
the tested classes, except for synthetic content of Class F. Indeed, the usage
of TS is recommended when encoding such content, for which turning off the
tool causes a BDBR increase of about 8%. Moreover, also the Sign Data
Hiding (SDH) and Rate Distortion Optimized Quantization (RDOQ) coding
tools produce negligible variations in terms of transform coding complexity.

Concerning motion estimation, results show that several parameters have
a significant role. First, sub-pixel refinements are needed in order to avoid sig-

16

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000

C
I

Bit-rate (kbit/s)

CTC
ECU, ESD, CFM on

(a)

-70

-60

-50

-40

-30

-20

-10

 0 1000 2000 3000 4000 5000 6000

C
I

[%
]

Bit-rate (kbit/s)

ECU, ESD, CFM on

(b)

Figure 6: Curves of absolute and relative CI variations over the enabling of ECU, ESD
and CFM fast-encoding conditions for Kimono 1920×1080, 24 fps.

nificant rate increases, in particular the half-pixel motion estimation. More-
over, an average CI reduction of about 11% can be achieved at the cost
of a rate increase of only 0.6% when the Asymmetric Motion Partitioning
(AMP), which allows non-square prediction units during motion estimation
(see Fig. 2), is turned off. As for the AMP tool, the effect of the number
of merge candidates (Nmc) on CI variations depends on the content and the
bit-rate, especially in the case of high resolution video sequences. By reduc-
ing Nmc from 5 to 3 (or to 2) it is possible to obtain a transform complexity
reduction of about 6% (or 9%) with small rate increases. On the contrary, a
higher rate increase is observed when limiting the number of reference frames
to 1 (Nrf = 1), which affects only the rate without any effect on CI .

Finally, the Early Coding Unit (ECU) termination, Early Skip Detection
(ESD) and Coding Flag Mode (CFM) of the HM encoder have been analyzed.
According to [32], ECU termination stops the CU partitioning in the intra-
inter decision tree when the best coding mode for that CU is determined
to be the Skip mode. ESD checks if the motion vector and the transform
coefficients calculated for the Inter 2N×2N mode are all zeros, while CFM
checks only if there are non-zero transform coefficients. As shown in Fig. 2, an
activation of one of the two conditions forces the encoder to skip the testing
of all the other coding modes for the current CU, thus greatly reducing
the overall complexity. Since the number of non-zero coefficients strongly
depends on the quantization step size defined by the QP value, the impact
of these coding tools on the transform complexity is also dependent on the

17

bit-rate (see ∆CI [%]). As shown in Fig. 6, the activation of these conditions
is more likely to happen at low bit-rates, leading to larger CI reductions with
respect to high bit-rates. As summarized in the right part of the last row of
Table 5, the activation of these tools provides a CI reduction of about 47%
while incurring in a 1% BDBR increase only, thus representing one of the
most effective ways to reduce transform complexity.

In summary, the previous results showed that the following coding tools
considerably affect the complexity index: LCU size, RQT depth, TU size,
AMP and the ECU, ESD and CFM fast-encoding conditions.

5.3. x265 Analysis

In order to assess the complexity index in a real-life encoder, we employed
the open-source x265 encoder [33], which has been developed by Multicore-
Ware by reusing most of the x264 AVC coding optimizations and adding new
HEVC features. The x265 encoder provides ten predefined set of coding op-
tions (also known as presets), from Placebo to Ultrafast, which offer different
trade-offs between encoding complexity and compression efficiency.

To perform the analysis, four different presets have been chosen, namely
Placebo, Veryslow, Medium and Ultrafast, while the default group-of-pictures
adopted by x265 has been kept unchanged. The simulations have been per-
formed by encoding all the video sequences belonging to the four classes
reported in Table 2. Two modes of encoding have been addressed. The first
one is based on fixed quantization, which means that the QP has been kept
constant throughout the encoding process, as specified in the CTC [27]. On
the other hand, the second one adopts adaptive quantization, which is an
x265 coding tool that adjusts the per-block QP depending on the complexity
of the content. Specifically it lowers the number of bits used to code more
complex areas, trying to neutralize the bias of the encoder, which typically
uses too many bits to represent complex areas and not enough for flat areas.
Since the adaptive quantization is an optimization tool which trades-off the
PSNR score for perceived visual quality, it is worth noting that the related
objective BDBR results are affected by the adoption of this tool.

Fig. 7 shows an example of the x265 rate-distortion and rate-complexity-
index curves. As it can be observed, the Placebo and the Ultrafast curves
identify a region which contains all the other preset curves. Tables 6 and
7 report the BDBR and the CI of each tested preset with respect to the
Placebo configuration, which is used as the anchor, respectively for the two
encoding modes. As expected, higher performance degradation is achieved

18

Table 6: BDBR and CI variation: Constant Quantization.

Preset Class BDBR[%] CI [%] ∆CI [%]

Veryslow

UHD 0.4 -21.3 1.5
A 0.4 -21.2 1.2
B 0.2 -22.0 1.5
F 7.6 -22.6 0.9

AVG 2.2 -21.8 1.3

Medium

UHD 24.4 -91.4 3.1
A 21.5 -92.9 1.9
B 24.3 -92.4 3.0
F 58.2 -91.1 0.9

AVG 32.1 -92.0 2.2

Ultrafast

UHD 85.6 -96.8 1.0
A 50.8 -96.9 0.6
B 58.2 -97.1 0.7
F 106.0 -96.2 0.2

AVG 75.1 -96.8 0.7

for larger complexity reduction. Considering natural content (see classes
UHD, A and B), the Veryslow preset is the best trade-off from the coding
efficiency point of view, because it allows to reach almost no rate-distortion
loss with transform complexity reduction of about 21%. On the other hand,
the Medium preset shows very low transform complexity (CI < 10) at the
cost of significant quality loss. The Ultrafast preset represents the worst-
case encoding mode with very poor performance. Moreover, performance
loss are larger also for synthetic content (see class F), especially when the
Ultrafast preset is chosen. This is due to the fact that the x265 encoder
enables the Transform Skip tool only in those presets which guarantee high
compression efficiency. From Table 7 it can be observed that the adaptive
quantization tool does not cause transform complexity variations, whereas
it introduces additional rate-distortion penalty in terms of BDBR score, as
previously explained.

6. Throughput Determination for Hardware Design

The purpose of this Section is to show how to determine the throughput
requirements for the design of a real-time hardware implementation of the

19

Table 7: BDBR and CI variation: Adaptive Quatization.

Preset Class BDBR[%] CI [%] ∆CI [%]

Veryslow

UHD 0.1 -22.2 1.3
A 1.4 -21.9 1.3
B 0.8 -22.7 0.7
F 8.0 -23.2 0.9

AVG 2.6 -22.5 1.1

Medium

UHD 30.1 -90.8 2.4
A 22.7 -91.9 2.7
B 28.6 -91.5 2.8
F 67.1 -91.2 1.3

AVG 37.1 -91.3 2.3

Ultrafast

UHD 118.4 -96.5 0.8
A 67.7 -96.9 0.8
B 105.6 -96.7 0.8
F 159.8 -96.2 0.3

AVG 112.9 -96.6 0.7

transform sub-module in an HEVC encoder. We propose to use a worst
case method, based on the absolute value of the CI index, considering all
the overheads due to the rate-distortion optimization process for a given
coding configuration. Four different configurations have been considered in
the following: the random-access main configuration of the HM encoder,
which comprises all the coding tools specified in the HEVC standard as shown
in the column labeled CTC of Table 4, the HM encoder configured according
to [31], the x265 encoder with Veryslow and Medium presets.

The following steps summarize the practical procedure to calculate the
actual throughput: I) select the maximum resolution and frame rate, i.e., the
worst-case scenario for these parameters; II) evaluate the CI as a function of
the bit-rate, taking into account different types of content.

For the sake of clarity, we propose a practical case study which ad-
dresses the encoding of video sequences with maximum resolution equal to
3840×2160 pixels and frame rate equal to 30 fps. We chose to configure the
encoder according to the random-access main configuration, which is typi-
cal for entertainment applications. Moreover, the whole SJTU data set [29]
(which includes 15 UHD sequences) has been analyzed. Such analysis pro-
vides the results shown in Fig. 8, where the maximum rate-complexity-index

20

 36

 37

 38

 39

 40

 41

 42

 43

 0 1000 2000 3000 4000 5000 6000 7000

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

HEVC
Placebo

Veryslow
Medium
Ultrafast

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1000 2000 3000 4000 5000 6000 7000

C
I

Bit-rate (kbit/s)

HEVC
Placebo

Veryslow
Medium
Ultrafast

(b)

Figure 7: Rate-distortion and rate-complexity-index curves of Kimono 1920×1080, 24 fps,
for different x265 presets.

curve and the corresponding rate-distortion curve of the SJTU dataset are
reported. From the graph in Fig. 8b, the maximum value of CI can be eval-
uated for the bit-rate of interest. In the proposed case study, we choose to
work with a bit-rate of 12 Mbits/s, therefore the corresponding CI results to
be equal to 134. This value can be used to determine the actual throughput
by reversing Eq. (1):

TA = TH · CI = W ·H · Sc · Fs · CI , (5)

which yields TA equal to 50 Gsamples/s in our case.
The same approach can also be followed when different encoder config-

urations are desired. For instance, using the configuration suggested in [31]
for UHD video content and reported for completeness in the last column of
Table 4, the corresponding rate-distortion and rate-complexity-index curves,
shown in Fig. 8, are obtained. As it can be observed, the performance degra-
dation is very low (BDBR nearly 1.28%), whereas the complexity is reduced
by about 80%. This is because the considered configuration differs from
the random-access main of the CTC only in those parameters which effec-
tively reduce the complexity index without significantly impairing the qual-
ity: RQT depth, TS, AMP tools and the fast-encoding settings. Similarly
to the random-access main configuration, the CI and the actual throughput
can be calculated. For the same bit-rate CI is equal to 27, therefore Eq. 5
indicates 10 Gsamples/s as throughput requirement. Moreover, Fig. 8 also

21

 33

 34

 35

 36

 37

 38

 39

 40

 41

 0 5000 10000 15000 20000 25000 30000 35000

P
S

N
R

Y
U

V
 (

d
B

)

Bit-rate (kbit/s)

HM Random access config.
HM config. [31]
x265 Veryslow
x265 Medium

(a)

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000 35000

C
I

Bit-rate (kbit/s)

HM Random access config.
HM config. [31]
x265 Veryslow
x265 Medium

(b)

Figure 8: Rate-distortion and rate-complexity-index curves of worst-case UHD content
for the HM encoder configured in the random-access main and in [31], and for the x265
encoder in the Veryslow and Medium presets.

shows the rate-distortion and rate-complexity-index curves of the x265 en-
coder configured with the Veryslow and the Medium presets. In these cases,
at bit-rate of 12 Mbits/s the CI is about 54 and 5 respectively, thus de-
termining a throughput requirement of 20 Gsamples/s and 1.8 Gsamples/s
respectively.

As it can be observed, both configurations have very high throughput
requirements, which can only be achieved with the aid of hardware imple-
mentations. For instance, we consider the DCT hardware architecture for
HEVC, which has been proposed in [18]. When working at an operating
clock frequency of 400 MHz, it is able to process 32, 32, 16 and 8 sam-
ples/cycle, respectively for DCT size equal to 4, 8, 16 and 32. The resulting
throughput for the two-dimensional DCT are 12.8, 12.8, 6.4 and 3.2 Gsam-
ples/s respectively. Considering the DCT statistics in [19], the computed
average throughput is equal to 12.38 Gsamples/s. Therefore, the architec-
ture in [18] supports the real-time encoding of UHD video sequences using the
configuration suggested in [31] (10 Gsamples/s) and the x265 encoder with
Medium preset (1.8 Gsamples/s), while its throughput is not large enough
to achieve the requirement imposed by the reference encoder in the random-
access main configuration (50 Gsamples/s) and by the x265 encoder in the
Veryslow preset (20 Gsamples/s).

This result suggests that hardware designers of the transform sub-module
should resort to additional techniques to sustain the actual required through-

22

put. As an example, the throughput of small size DCTs can be increased by
reusing the hardware resource required for large size transforms, to concur-
rently compute several small size ones, as proposed in [15]. Moreover, it is
worth noting that transform operations on different TU partitioning can be
computed in parallel, because there is no data dependency. This allows the
designers to create a transform sub-module by instantiating many parallel
hardware architectures as the ones in [15–17].

7. Conclusion

In this work a careful analysis of HEVC transform module to set the actual
throughput requirement for hardware implementations, has been presented.
Stemming from our recently proposed metric, named complexity index CI ,
this work evaluates both HEVC and AVC transform coding complexity. This
comparison points out that HEVC achieves significant bit-rate reduction at
the cost of much higher transform complexity. Moreover, a tool-by-tool in-
vestigation has been conducted to quantify the complexity of the transform
stage as function of different coding options. It has been shown that several
coding tools among the considered ones have a significant impact on both
rate-distortion performance and CI . In particular, it is worth noting that the
largest CI variations are caused by the coding options related to the CU and
TU partitioning. Finally, a practical procedure to exploit the results of this
analysis for the design of real-time hardware implementations in different
configurations has been proposed and applied to some case studies.

Acknowledgment

The authors would like to thank the HPC@POLITO, a project of Aca-
demic Computing within the Department of Control and Computer Engi-
neering at the Politecnico di Torino (http://www.hpc.polito.it), which has
provided the computational resources.

References

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, T. Wiegand, Overview of the
High Efficiency Video Coding (HEVC) Standard, IEEE Transactions on
Circuits and Systems for Video Technology 22 (12) (2012) 1649–1668.
doi:10.1109/TCSVT.2012.2221191.

23

http://dx.doi.org/10.1109/TCSVT.2012.2221191

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the
H.264/AVC video coding standard, IEEE Transactions on Circuits and
Systems for Video Technology 13 (7) (2003) 560–576. doi:10.1109/

TCSVT.2003.815165.

[3] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, T. Wiegand, Com-
parison of the Coding Efficiency of Video Coding Standards - Includ-
ing High Efficiency Video Coding (HEVC), IEEE Transactions on Cir-
cuits and Systems for Video Technology 22 (12) (2012) 1669–1684.
doi:10.1109/TCSVT.2012.2221192.

[4] F. Bossen, B. Bross, K. Suhring, D. Flynn, HEVC Complexity and
Implementation Analysis, IEEE Transactions on Circuits and Systems
for Video Technology 22 (12) (2012) 1685–1696. doi:10.1109/TCSVT.

2012.2221255.

[5] J. Vanne, M. Viitanen, T. D. Hamalainen, A. Hallapuro, Compara-
tive Rate-Distortion-Complexity Analysis of HEVC and AVC Video
Codecs, IEEE Transactions on Circuits and Systems for Video Tech-
nology 22 (12) (2012) 1885–1898. doi:10.1109/TCSVT.2012.2223013.

[6] G. Correa, P. Assuncao, L. Agostini, L. A. da Silva Cruz, Performance
and Computational Complexity Assessment of High-Efficiency Video
Encoders, IEEE Transactions on Circuits and Systems for Video Tech-
nology 22 (12) (2012) 1899–1909. doi:10.1109/TCSVT.2012.2223411.

[7] J.A. Michell, J.M. Solana, G.A. Ruiz, A high-throughput ASIC proces-
sor for 8x8 transform coding in H.264/AVC, Signal Processing: Image
Communication 26 (2) (2011) 93–104. doi:10.1016/j.image.2011.

01.001.

[8] K. Yoo, K. Sohn, Hardware design of motion data decoding process for
H.264/AVC, Signal Processing: Image Communication 25 (3) (2010)
208–223. doi:10.1016/j.image.2009.12.001.

[9] M. Shafique, L. Bauer, J. Henkel, Optimizing the H.264/AVC Video En-
coder Application Structure for Reconfigurable and Application-Specific
Platforms, Journal of Signal Processing Systems 60 (2) (2010) 183–210.
doi:10.1007/s11265-008-0304-5.

24

http://dx.doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1109/TCSVT.2012.2221192
http://dx.doi.org/10.1109/TCSVT.2012.2221255
http://dx.doi.org/10.1109/TCSVT.2012.2221255
http://dx.doi.org/10.1109/TCSVT.2012.2223013
http://dx.doi.org/10.1109/TCSVT.2012.2223411
http://dx.doi.org/10.1016/j.image.2011.01.001
http://dx.doi.org/10.1016/j.image.2011.01.001
http://dx.doi.org/10.1016/j.image.2009.12.001
http://dx.doi.org/10.1007/s11265-008-0304-5

[10] M. U. K. Khan, J. M. Borrmann, L. Bauer, M. Shafique, J. Henkel,
An H.264 Quad-FullHD Low-latency Intra Video Encoder, in: Design,
Automation Test in Europe Conference Exhibition, San Jose, CA, USA,
2013, pp. 115–120. doi:10.7873/DATE.2013.037.

[11] J. Meehan, S. Busch, J. Noel, F. Noraz, Multimedia IP architecture
trends in the mobile multimedia consumer device, Signal Processing:
Image Communication 25 (5) (2010) 317–324. doi:10.1016/j.image.

2010.04.001.

[12] K. Miyazawa, H. Sakate, S. i. Sekiguchi, N. Motoyama, Y. Sugito,
K. Iguchi, A. Ichigaya, S. i. Sakaida, Real-time hardware implemen-
tation of HEVC video encoder for 1080p HD video, in: Picture Coding
Symposium, 2013, pp. 225–228. doi:10.1109/PCS.2013.6737724.

[13] G. Pastuszak, A. Abramowski, Algorithm and Architecture Design of
the H.265/HEVC Intra Encoder, IEEE Transactions on Circuits and
Systems for Video Technology 26 (1) (2016) 210–222. doi:10.1109/

TCSVT.2015.2428571.

[14] M. Budagavi, V. Sze, Unified forward+inverse transform architecture for
HEVC, in: IEEE International Conference on Image Processing, 2012,
pp. 209–212. doi:10.1109/ICIP.2012.6466832.

[15] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, C. Yeo, Efficient
Integer DCT Architectures for HEVC, IEEE Transactions on Circuits
and Systems for Video Technology 24 (1) (2014) 168–178. doi:10.1109/
TCSVT.2013.2276862.

[16] J. Zhu, Z. Liu, D. Wang, Fully pipelined DCT/IDCT/Hadamard uni-
fied transform architecture for HEVC Codec, in: IEEE International
Symposium on Circuits and Systems, 2013, pp. 677–680. doi:10.1109/
ISCAS.2013.6571937.

[17] A. Ahmed, M. U. Shahid, A. Rehman, N Point DCT VLSI Architecture
for Emerging HEVC Standard, VLSI Design 2012, Article 752024 (2012)
1–13. doi:10.1155/2012/752024.

[18] G. Pastuszak, Hardware architectures for the H.265/HEVC discrete
cosine transform, IET Image Processing 9 (6) (2015) 468–477. doi:

10.1049/iet-ipr.2014.0277.

25

http://dx.doi.org/10.7873/DATE.2013.037
http://dx.doi.org/10.1016/j.image.2010.04.001
http://dx.doi.org/10.1016/j.image.2010.04.001
http://dx.doi.org/10.1109/PCS.2013.6737724
http://dx.doi.org/10.1109/TCSVT.2015.2428571
http://dx.doi.org/10.1109/TCSVT.2015.2428571
http://dx.doi.org/10.1109/ICIP.2012.6466832
http://dx.doi.org/10.1109/TCSVT.2013.2276862
http://dx.doi.org/10.1109/TCSVT.2013.2276862
http://dx.doi.org/10.1109/ISCAS.2013.6571937
http://dx.doi.org/10.1109/ISCAS.2013.6571937
http://dx.doi.org/10.1155/2012/752024
http://dx.doi.org/10.1049/iet-ipr.2014.0277
http://dx.doi.org/10.1049/iet-ipr.2014.0277

[19] W. Zhao, T. Onoye, T. Song, High-performance multiplierless transform
architecture for HEVC, in: IEEE International Symposium on Circuits
and Systems, 2013, pp. 1668–1671. doi:10.1109/ISCAS.2013.6572184.

[20] M. Masera, L. Re Fiorentin, M. Martina, G. Masera, E. Masala,
Optimizing the Transform Complexity-Quality Tradeoff for Hardware-
Accelerated HEVC Video Coding, in: Conference on Design and Ar-
chitectures for Signal and Image Processing, 2015, pp. 1–6. doi:

10.1109/DASIP.2015.7367269.

[21] G. J. Sullivan, T. Wiegand, Rate-distortion optimization for video
compression, IEEE Signal Processing Magazine 15 (6) (1998) 74–90.
doi:10.1109/79.733497.

[22] J. Henkel, M. U. K. Khan, M. Shafique, Energy-efficient multimedia
systems for high efficiency video coding, in: IEEE International Sympo-
sium on Circuits and Systems, 2015, pp. 613–616. doi:10.1109/ISCAS.
2015.7168708.

[23] M. U. K. Khan, M. Shafique, J. Henkel, Fast hierarchical intra angular
mode selection for high efficiency video coding, in: IEEE International
Conference on Image Processing, 2014, pp. 3681–3685. doi:10.1109/

ICIP.2014.7025747.

[24] L. Shen, Z. Zhang, X. Zhang, P. An, Z. Liu, Fast TU size decision
algorithm for HEVC encoders using Bayesian theorem detection, Signal
Processing: Image Communication 32 (2015) 121–128. doi:10.1016/

j.image.2015.01.008.

[25] C. Feldmann, F. Jäger, M. Wien, Decoder complexity reduction for
the scalable extension of HEVC, in: IEEE International Conference
on Image Processing, 2014, pp. 3729–3733. doi:10.1109/ICIP.2014.

7025757.

[26] M. Wien, M. Budagavi, K. Mishra, K. Ugur, X. Xiu, JCT-VC AHG re-
port: Single-loop scalability (AHG16), Doc. JCTVC-O0016 (Jul 2013).

[27] F. Bossen, Common test conditions and Software Reference Configura-
tions, Doc. JCTVC-J1100 (Jul. 2012).

26

http://dx.doi.org/10.1109/ISCAS.2013.6572184
http://dx.doi.org/10.1109/DASIP.2015.7367269
http://dx.doi.org/10.1109/DASIP.2015.7367269
http://dx.doi.org/10.1109/79.733497
http://dx.doi.org/10.1109/ISCAS.2015.7168708
http://dx.doi.org/10.1109/ISCAS.2015.7168708
http://dx.doi.org/10.1109/ICIP.2014.7025747
http://dx.doi.org/10.1109/ICIP.2014.7025747
http://dx.doi.org/10.1016/j.image.2015.01.008
http://dx.doi.org/10.1016/j.image.2015.01.008
http://dx.doi.org/10.1109/ICIP.2014.7025757
http://dx.doi.org/10.1109/ICIP.2014.7025757

[28] R. Weerakkody, M. Mrak, High Efficiency Video Coding for Ultra High
Definition Television, in: Proc. 2013 NEM Summit, 2013, pp. 9–14.

[29] L. Song, X. Tang, W. Zhang, X. Yang, P. Xia, The SJTU 4K video se-
quence dataset, in: Fifth International Workshop on Quality of Multime-
dia Experience, 2013, pp. 34–35. doi:10.1109/QoMEX.2013.6603201.

[30] G. Bjøntegaard, Calculation of Average PSNR Differences Between RD
Curves, Doc. VCEG-M33 (Apr. 2001).

[31] M. Naccari, A. Gabriellini, M. Mrak, S. G. Blasi, I. Zupancic,
E. Izquierdo, HEVC coding optimisation for Ultra High Definition
television services, in: Picture Coding Symposium, 2015, pp. 20–24.
doi:10.1109/PCS.2015.7170039.

[32] K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman, G. Sul-
livan, High Efficiency Video Coding (HEVC) Test Model 16 (HM16)
Improved Encoder Description, Doc. JCTVC-N14970 (Oct. 2014).

[33] MulticoreWare, x265 HEVC Encoder.
URL https://bitbucket.org/multicoreware/x265/wiki/Home

27

http://dx.doi.org/10.1109/QoMEX.2013.6603201
http://dx.doi.org/10.1109/PCS.2015.7170039
https://bitbucket.org/multicoreware/x265/wiki/Home
https://bitbucket.org/multicoreware/x265/wiki/Home

	Introduction
	HEVC and AVC Overview
	Codecs
	Rate-Distortion Optimization

	Transform Coding Complexity
	Simulation Setup
	Results
	HEVC Complexity vs AVC
	HEVC Analysis
	x265 Analysis

	Throughput Determination for Hardware Design
	Conclusion

