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They are more desirable than gold

yes, than much fine gold.
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Abstract

The exponential increase of the needs of people in the modern society and the contextual

development of the space technologies have led to a significant use of the lower Earth’s

orbits for placing artificial satellites. The current overpopulation of these orbits also

increased the interest of the major space agencies in technologies for the removal of at

least the biggest spacecraft that have reached their end-life or have failed their mission.

One of the key functionalities required in a mission for removing a non-cooperative

spacecraft is the assessment of its kinematics and inertial properties. In a few cases, this

information can be approximated by ground observations. However, a re-assessment

after the rendezvous phase is of critical importance for refining the capture strategies

preventing accidents. The CADET program (CApture and DE-orbiting Technologies),

funded by Regione Piemonte and led by Aviospace s.r.l., involved Politecnico di Torino

in the research for solutions to the above issue.

This dissertation proposes methods and algorithms for estimating the location of

the center of mass, the angular rate, and the moments of inertia of a passive object.

These methods require that the chaser spacecraft be capable of tracking several features

of the target through passive vision sensors. Because of harsh lighting conditions in

the space environment, feature-based methods should tolerate temporary failures in

detecting features. The principal works on this topic do not consider this important

aspect, making it a characteristic trait of the proposed methods. Compared to typical



v

treatments of the estimation problem, the proposed techniques do not depend solely on

state observers. However, methods for recovering missing information, like compressive

sampling techniques, are used for preprocessing input data to support the efficient usage

of state observers. Simulation results showed accuracy properties that are comparable to

those of the best-known methods already proposed in the literature.

The developed algorithms were tested in the laboratory staged by Aviospace s.r.l.,

whose name is CADETLab. The results of the experimental tests suggested the practical

applicability of such algorithms for supporting a real active removal mission.
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Introduction

Since the launch of Sputnik, the first artificial satellite, by the USSR in 1957, a significant

number of satellites have been launched into space by several countries, for different

purposes. In particular, from the second half of the twentieth century up to the present, the

number of artificial satellites in low-Earth orbit has increased considerably, a few of which

are currently inactive and uncontrolled. As the number of failed spacecraft increases

significantly every year, so does the risk of dangerous collisions between relatively large

space objects. A well-known accident that happened in 2009 between Cosmos 2251 and

Iridium 33 caused an environmental disaster because of the fragmentation of the two

bodies [1].

In this context, major space agencies such as NASA and ESA are interested in the

possibility of removing relatively large space objects. As a result, several concepts

of active removal systems were developed. Many methods for enabling space debris

capturing and removal were proposed in the past decade, and several approaches were

tested on the ground or in parabolic flight experiments [2].

In particular, although some possible contact-less techniques have been investigated

[3], it is an established idea to dock and guide passive spacecraft with active chaser

spacecraft. A few of the pioneering techniques involve, for example, the use of nets or

electrodynamic tethers [4]. However, no one has removed any space debris yet.



2 Introduction

The operation presents several challenges that are related to the typical non-cooperativeness

of these objects. In particular, space debris can have a large variety of dimensions, shapes,

and motion conditions. However, these characteristics are often partially or even com-

pletely unknown.

Evidently, for planning the docking between spacecraft and the successive target

removal, it is important to estimate the whole relative dynamic state between the chaser

and the target. If there is a lack of such information, or if it is inaccurate, the contact

between spacecraft during capturing and removal may lead to compromise the stability

of the entire system.

Some authors made a significant effort for determining the complete dynamic state

of passive objects from astrometric and photometric data [5], [6]. In both works, the

fusion of angles data together with the information contained in light curves lead to the

goal. The second work, in particular, proposes an approach for estimating the mass of

the object. The accuracy of the relative position estimation is on the order of ten meters;

this makes the method efficient for planning rendezvous with the objects. However, the

estimation accuracy is not sufficient for the docking of the object.

A relatively precise orbit determination can also be obtained by laser ranging from

ground stations [7]. It is achieved in this case a high precision in measuring the distances

of space debris from the station (0.7 m RMS). However, this information, which is

necessary to reach the target, is still insufficient for predicting the dynamic response of

the chaser during capture maneuvers. Thus, for the success of the capturing, there is a

need to consider an in-situ refinement of these estimates

In particular, an accurate estimation of the location of the center of mass (CoM)

of the target leads to the prediction of the potential torques caused by the interaction

between spacecraft. At the same time, it is necessary to predict the direction of the
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angular acceleration of the target for assessing its mass distribution. For this purpose, it

is important to estimate a normalized form of the inertia tensor of the target.

The mentioned relative state estimation is not completely trivial even when the chaser

and the target are fully cooperative. In particular, examples can be found in [8], [9], and

[10]. When the spacecraft are non-cooperative, the estimation becomes more difficult

as the absence of suitable sensors results in a loss of most of the information about the

motion of the target spacecraft.

Hence, to collect sufficient information for the state estimation, it is necessary to track

the passive target by using appropriate vision sensors on the chaser that is designated

to capture the object. This phase should follow the rendezvous and precede the capture

maneuver.

The most high-performance techniques findable in the literature involve the exploita-

tion of active sensors, such as laser range finders. Lichter and Dubowsky [11] proposed

an architecture for the estimation of the dynamic state of non-cooperative spacecraft.

This instrumentation primarily consists of 3D laser sensors, which are suitable for use in

harsh lighting conditions. Aghili et al. [12] presented a method for pose estimation of

passive space bodies using a laser 3D scanner. Their method also considers the possibility

of failures during the scanning procedure without compromising the estimation. On the

other hand, this method requires a CAD model of the object.

The use of active sensors, although they are relatively reliable, could nevertheless be

less appealing than obtaining the same information using passive sensors, because of the

possibility of saving energy. Besides, secondarily, even costs result inferior. A survey of

the most common tracking techniques based with stereo-vision is in [13]. In [14] and

[15], two different methods are presented to maintain a target space body in the field

of view (FOV) of cameras on a chaser spacecraft after the rendezvous phase. In these
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studies, the estimation of the angular rate is not present. Both of the methods seem to be

applicable over a relatively extended period.

The key aspect of diffidence regards the reliability of these techniques: occlusions,

critical reflections, and poor lighting conditions contribute to probable tracking failures.

Though in an incomplete way, some researchers have taken this aspect into consideration.

In [16], the prediction of the velocities of its features allows the tracking of a target

body. This prediction depends on a kinematic model of the object. This article considers

the problem of recovering the pose and the angular rate of the body during occlusions;

however, it does not show any results in the case in which no features are detectable.

Moreover, when the number of detected features decreases, the precision of the estimation

significantly decreases. The paper states, however, that the prediction is useful for re-

initializing the tracking.

The work presented in [17] considers the determination of the relative pose between

a chaser and a larger target that are cooperative. This work is interesting for two reasons:

tracking is performed using stereo-vision cameras, and when occlusions occur, despite the

missing attitude information, the position of the body is predicted using a mathematical

model of the body itself. The tracking can then continue after the occlusion intervals;

however, the pose of the object is not obtained in these periods. An important assumption

underlying the cooperativeness between the spacecraft is that the positions of certain

artificial features on the target (in the case considered, LEDs) are known a-priori.

Other authors decided instead to ignore the problem proposing, on the other hand,

very efficient estimation methods. In [18] a 3D-model-matching technique, as used in

[12], is combined with stereo-vision sensors. Notwithstanding, the considered method

requires a large number of detected features and a very detailed model of the failed

satellite.
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The work of Segal et al. [19] illustrates a method that is based only on tracking

features. The measured locations of several extracted features are used to make the

estimation by employing the iterated extended Kalman filter. However, they excluded

the possibility of sudden interruptions of the tracking. This assumption implies that this

method is infeasible in the case of occlusions, or when the features disappear temporarily

from the FOV of cameras.

Ultimately, the current state of the art appears to be missing of fault-tolerant methods

for target state estimation from features detected using stereo cameras or, generally,

passive sensors.

The purpose of this dissertation is to propose two estimation methods: the first for

locating the CoM of a target debris, the second for estimating its rotational state, which

is composed of the angular rate and the inertia tensor.

The method proposed in this work offers the possibility of recovering the dynamic

conditions of a non-cooperative space body such as a failed spacecraft, even if the

continuity of the feature tracking is missing. Thus, the method can recover the object

poses when momentary failures in feature detection occur. This last aspect is probably

one of the most novel elements of this dissertation.

Hence, the developed techniques are into the category of the feature-based methods:

characteristic points of the target spacecraft are tracked in-situ for understanding the

high-level motion of the entire object. The methods belonging to this category have

the reputation of being not reliable. That holds because, typically, they are not robust

to the several challenges due to the harsh lighting conditions of the space environment.

Instead, the proposed techniques are fault-tolerant, meaning that temporary defections of

the tracking sensors do not compromise the quality of the motion understanding.

The difficulty in obtaining real data to be processed led to the necessity of simulating

them with the scope of assessing the proposed approach to the problem.
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A virtual simulation environment was implemented in MATLAB-Simulink to evaluate

trajectories of points belonging to a rigid body. The motion of this rigid body was

according to the classic dynamics of an Earth’s orbiting satellite. The chaser spacecraft

was simulated as a reference system on which expressing the trajectories. Moreover,

uncertainties were added to these trajectories. Besides, the data were further corrupted

by introducing losses of data to enhance the realism of the dataset.

The work described in this paper has been developed within the CADET research

program [20], which is co-funded by Regione Piemonte. CADET, which is also men-

tioned in [2], aims at the functional development of technologies for the capture and

removal of space debris. In CADET, the Team of Politecnico di Torino is in charge to

determine both the actual motion parameters and the inertial properties of the target.

The program leader was Aviospace s.r.l.: they built a laboratory named CADETLab

to simulate the various phases of a removal mission. The methodologies that are proposed

in this work were tested in this lab with the help of other project partners, who extracted

feature trajectories from the vision sensors that equip the laboratory.

This work produced some original contributions to the state of the art (see [21], [22],

[23], [24], [25]). The contents of these publications will be presented with greater detail

in this dissertation.

The following dissertation is mainly divided into four chapters. Each of the chapters

contains both original and theoretical sections. Although the latter parts do not signifi-

cantly contribute by themselves to increase the scientific knowledge, they are essential for

a full comprehension of the newly developed techniques. Moreover, all the original parts

of the chapters have backgrounds that are afferent to very different areas of Engineering.

In particular, they include celestial and applied mechanics, controls, statistics, and signal

processing.
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Thus, in this multidisciplinary context, it seemed convenient to give to the reader

coming from one of the mentioned areas the keys for a full understanding of all the

sections of this work.

The first chapter treats the virtual simulation of two close Earth’s orbiting satellites.

It concludes giving the instruments for obtaining two different sets of simulated data,

both consisting of partial and corrupted trajectories of features belonging to the simulated

target debris. The first section synthesizes the classic laws for modeling the orbital and

the attitude dynamics of Earth’s orbiting satellites. The second section introduces the

implemented simulation environment, based on the mentioned principles. Moreover,

the ways used for corrupting the simulated datasets are discussed as a function of the

selected models of the considered sensors.

The second chapter illustrates an original alternative method for localizing the CoM

of the target. In particular, the first section introduces an estimator that is based only on

kinematic considerations. While the estimator is tested in this section on ideal data, the

other two sections treat methods for enhancing the robustness of the proposed estimator:

the second section shows the principle of the statistical shape analysis, while the third

section illustrates a proper application of these concepts for estimating the CoM position

from corrupted data.

The third chapter concerns the estimation of the angular rate and inertia moments of

the target. One of the most interesting aspects of this chapter is that the presented methods

come from the original combined application of two modern techniques: compressive

sampling and Kalman filtering. The first technique has been useful for several purposes

like image coding/decoding, pattern recognition, and prognostic. The second approach

belongs to the world of the Bayesian state observers, and it has been extensively used

for modern feedback controls. In this work, these techniques cooperate for recovering

attitude and angular rate of a space object. The first two sections are dedicated to
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the theory of these approaches. The third section illustrates two possible estimation

procedures.

Finally, the last chapter presents the tests of the methods in the CADETLab environ-

ment. In particular, two different tests were performed. In the first test the data came

from a monocular infrared camera; in the second one, the data came from a classic 3D

stereo-rig system. The first section of the chapter presents the laboratory environment.

The second section provides an adaptation of the developed algorithms to the particular

conditions of the laboratory. Finally, the third section shows the test results.



Chapter 1

Simulation of feature tracking

This work presents methods and algorithms to estimate in-situ the motion conditions

and the mechanical properties of uncontrolled satellites. The data required to feed the

estimation algorithms consist of the Euclidean coordinates of some natural features of

the target satellite.

Despite the interest of the principal space agencies and organizations, no active

removal missions have been completed today. Thus, the unavailability of real data

has led to validate the developed methods by testing them on simulated data. The

observation phase of the removal mission can be reproduced physically in a laboratory

environment or by mathematically modeling the dynamics of both the target and the

chaser spacecraft. This chapter illustrates the equations to simulate numerically the

acquisition of an appropriate input dataset to test the algorithms



10 Simulation of feature tracking

1.1 Kinematic and dynamic equations for satellites

The purpose of this section is the introduction of the fundamental equations for the

simulation of relative motion between the target and the chaser. Those equations are

derived from the classic principles of the celestial mechanics.

Since the underlying concepts have been firmly established for very long time, it

seemed appropriate to list only the essential expressions that will be sometimes recalled

in the remainder of this dissertation. Moreover, this section introduces the notation used

in this work. For the interested reader, Appendix A and Appendix B illustrate the basics

of the orbital and attitude mechanics of satellites.

The first introduced equations are the ones for simulating the relative orbital motion

between the chaser and the target:

ℓ
ρ̈1

ρ̈2

ρ̈3

=

ℓ

2ϑ̇ ρ̇2 + ϑ̈ρ2 + ϑ̇ 2ρ1− µ(r+ρ1)

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2 +

µ

r2

−2ϑ̇ ρ̇1− ϑ̈ρ1 + ϑ̇ 2ρ2− µρ2

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2

− µρ3

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2


(1.1)

In Eq. (1.1) ρρρ is the position of the center of gravity of the chaser from the one of the

target, r is the magnitude of the position rrr of the target from the Earth’s center, ϑ is the

true anomaly of target, and µ is the planetary constant.

In the whole dissertation the left superscript indicates the coordinate system about

which the relevant vector is expressed. In particular, the symbol ℓ indicates the local

vertical-local horizontal (LVLH) triad of the target.
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The following equation expresses the orientation of such reference triad about the

axes of the Earth-centered inertial (ECI) coordinate frame I:

IAℓ =

[
I r̂rr − I r̂rr×

Irrr×I ṙrr
|Irrr×I ṙrr|

Irrr×I ṙrr1

|Irrr×I ṙrr|

]
(1.2)

where IAℓ is the direction cosines matrix (DCM) from frame ℓ to frame I. In the whole

dissertation, the symbol ζ̂ζζ indicates the unit vector corresponding to ζζζ .

Introducing the principal body-fixed frame B of the target, it is possible to write the

equation of the attitude kinematics of the target, known as Darboux’s equation:

BȦI =−B
ωωω
× BAI (1.3)

where ωωω is the angular rate of the target. The notation ζζζ
× indicates the following

skew-symmetric matrix:

ζζζ
×
=


0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0

 (1.4)

Different kinematic equations can be obtained from Eq. (1.3) if the DCM is substi-

tuted by other kinds of attitude parameters. For instance, choosing the 321 Euler angle

sequence it holds:


φ̇

θ̇

ψ̇

=
1

cosθ


cosθ sinφ sinθ cosφ sinθ

0 cosφ cosθ −sinφ cosθ

0 sinφ cosφ

B
ωωω (1.5)
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Otherwise, the choice of quaternions leads to the following equation:

Bq̇I =
1
2

B
0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0


BqI =

1
2

BW BqI (1.6)

Quaternions can be obtained from a DCM by using one of the following four equiva-

lences:

Bq0I =±
1
2

√
1+A11 +A22 +A33

Bq1I =
1

4 Bq0I
(A23−A32)

Bq2I =
1

4 Bq0I
(A31−A13)

Bq3I =
1

4 Bq0I
(A12−A21)



Bq0I =
1

4 Bq1I
(A23−A32)

Bq1I =±
√

1+A11−A22−A33

Bq2I =
1

4 Bq1I
(A12 +A21)

Bq3I =
1

4 Bq1I
(A13 +A31)



Bq0I =
1

4 Bq2I
(A31−A13)

Bq1I =
1

4 Bq2I
(A12 +A21)

Bq2I =±
√

1−A11 +A22−A33

Bq3I =
1

4 Bq2I
(A23 +A32)



Bq0I =
1

4 Bq3I
(A12−A21)

Bq1I =
1

4 Bq3I
(A13 +A31)

Bq2I =
1

4 Bq3I
(A23 +A32)

Bq3I =±
√

1−A11−A22 +A33

(1.7)
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The Eq. (1.6) can be recast for obtaining the angular rate as a function of the attitude

variation [26]:

B
ωωω = 2

(Bq0I
Bq̇qqI− BqqqI

Bq̇0I
)
−2 BqqqI× Bq̇qqI (1.8)

Equation (1.7) shows that besides choosing one of the possible four ways for the

conversion, it is also necessary to choose the sign of the obtained quaternion. Although

this choice does not affect the attitude information carried out by the quaternion, it may

reveal important if this conversion is made for different time samples during a motion

simulation. Indeed, to have a convenient representation of the whole body kinematics,

one would like to interpolate the multiple quaternions with four continuous smooth

curves. A powerful conversion algorithm that guarantees this possibility is Stanley’s

algorithm [27], of which a brief description is given:

1. calculate four quaternion components as a function of the elements of the principal

diagonal of BAI(tk) (e.g. Bq0I in the first system of eq. 1.7);

2. evaluate the maximum value qmax, and then, calculate BqI(tk) according to BqhI =

qmax (a good example is again given by eq. 1.7 with BqhI =
Bq0I = qmax );

3. apply the following rule to guarantee continuity (except when k = 0):

if BqhI(tk−1)< 0 then BqI(tk)←−BqI(tk)

Note that this kind of algorithm fails when the time step is not constant; therefore, if

there is any lack of information at some time instant regarding the attitude of the body,

the continuity of the quaternions cannot be guaranteed.

Attitude dynamics of spacecraft is governed by the Euler’s equation. Both the

environmental perturbation torques and the distance between the center of gravity and
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the CoM of the target are neglected in this work. This assumption is acceptable if the

dynamics of the target is studied for short time periods [11]. Hence:

BJ B
ω̇ωω + B

ωωω×
(BJ B

ωωω
)
= 000 (1.9)

Notice that the solution of this system does not change if the principal inertia moments

vector

BJJJ =
[BJ1

BJ2
BJ3

]T
(1.10)

is multiplied by a positive scalar k. Thus, in the following BJJJ will always be considered

a unitary norm vector.

For a generic body, the analytic solution of Eq. (1.9) with J1 > J2 > J3 was found by

Jacobi [28]:

B
ω1 = P cn[Ξ,Θ]

B
ω2 = Q sn[Ξ,Θ]

B
ω3 = Rdn[Ξ,Θ] (1.11)

P, Q, R, and Θ are constants that depend on both the initial angular rate and the inertia

tensor; Ξ is a linear function of time; and cn, sn, and dn are the Jacobi elliptic functions.

Despite the fact that this formula does not contain sines and cosines, it is worth to notice

that the solution is periodic.

Jacobi elliptic functions are known to be expandable as Lambert series, i.e. is of the form

∞

∑
n=1

an
qn

1−qn (1.12)
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where an is a trigonometric function, and q, called nome, is a function of the arguments

of the elliptic function. It holds that 0 < q< 1, so the series is convergent.

1.2 Models for the production of simulated datasets

The theoretical aspects of the kinematics and dynamics of satellites orbiting the Earth

introduce the possibility of simulating the motion of a chaser spacecraft meeting a

non-cooperative tumbling object. The simulation consists of the numerical integration

of the dynamic and kinematic equations shown in the previous section. In particular,

MATLAB-Simulink has been the software chosen for this simulation. These bodies

have been synthetically represented by their CoM, assumed coincident with the center of

gravity, and by a principal body-fixed coordinate system for the target.

This simulation permits to compute a dataset of Euclidean coordinates of a set of

characteristic points or features, which are fixed to the target-fixed reference frame and

expressed in a proper coordinate system whose origin belongs to the chaser.

Then, it is necessary to obtain equations for the trajectories of the features in this last

coordinate system.

These trajectories, which are representative of the target-chaser relative state, will be

used as inputs for the algorithms proposed in this work.

Figure 1.1 provides the flowchart representing this approach. Note the importance of

some preprocessing steps between the outputs of the mathematical simulation and the

realistic inputs for the algorithm.

First of all, features are not always detectable in realistic conditions. In general, a

particular feature cannot be tracked continuously; typically, the body to which the feature

belongs has not transparencies. So, the feature may be hidden to the detecting sensor
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Figure 1.1 Flowchart showing the approach for validating the developed algorithms by mathemat-
ical simulations.

by the body itself in some instances. This last aspect, considered in the input dataset

simulation, corresponds to the concept of feature detectability in Fig. 1.1.

Moreover, although the algorithms contained in this work are capable of treating data

coming from many types of sensors, they are particularly suitable for exploiting data

from passive sensors like cameras. Thus, it is also needed to consider possible failed

detections and corresponding temporary lacks of input data. Occlusions are relevant

examples.

Finally, it is necessary to introduce uncertainties on the data about the mentioned

trajectories. This noise adding step is shown in Fig. 1.1. The entity of these uncertainties

has to be coherent with at least an approximate model of the sensor that is assumed to be

capable of tracking the features of the target.
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1.2.1 Feature selection and tracking

The first necessary step consists in the choice of a mock-up of the target; the realistic

perspective target chosen is the third stage, H10, of the expendable launch system Ariane

4 [29] (see figure 1.2). This object is 11.53m high, 2.66m in diameter, and 12000kg in

gross mass.

It is worth to notice that an observer will always see one part of the target due to

its rotation; the other parts of the target will always be hidden to the observer, so it is

possible to consider two different approaches. In the first approach, each feature has a

label that identifies its position in the body-fixed coordinate system; the observer knows

these labels and it can always recognize the point once it appears after being hidden.

According to the first approach, the observer needs prior information about the shape of

the target; in particular, the observer requires the possession of a model of the target.

According to the second approach, the observer considers an appearing feature as

it would never have been observed before. The following part of this section will show

Figure 1.2 Third stage of Ariane 4, H10.
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more details about the two sets of data used, which correspond to the two mentioned

approaches respectively.

Considering the first approach, the following five peculiar features have been chosen.

In particular, their positions are expressed in B.

Bddd1 = [4,0,0]m
Bddd2 = [−5,71,0,−0,81]m
Bddd3 = [−3,91,0,1,42]m
Bddd4 = [−3,97,1,02,−1,02]m
Bddd5 = [−7,61,0,0]m

(1.13)

Figures 1.3, 1.4, and 1.5 show the presented features.

Considering the second approach, the lack of a-priori information about the shape

of the body is compensated by a greater number of points tracked. Fig. 1.6 shows the

Figure 1.3 H10 model with features Bddd3 (on the left) and Bddd1 (on the right)
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Figure 1.4 H10 model with features Bddd4 (on the left), Bddd2 (middle point) and Bddd5 (on the right)

Figure 1.5 H10 model with features Bddd4 , Bddd3 and Bddd5
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Figure 1.6 Position of the 44 unlabeled complementary features

position of the chosen features. The total number of considered features on the body

surface is 44: 20 of those points are placed along three circular sections of H10, while

the rest are placed along spirals.

Once the features have been placed on the body, they will move according to the

target attitude dynamics, expressed by Eq. (1.9). It is important to observe the trajectory

of the features from a proper reference frame. In particular, a convenient coordinate

system in which expressing the position of the features has the same orientation of the

inertial coordinate system I. The attitude dynamics of the chaser should be considered

known, since it is a controlled spacecraft. In particular, it is equipped with sensors

capable of accurately observe its own motion.



1.2 Models for the production of simulated datasets 21

Thus, it is possible to define a coordinate system C whose origin coincides with the

CoM of the chaser, and whose axes are oriented as the ones of the system I. Hence, it

holds:

IAC = I3 (1.14)

The characteristic coordinate system of the tracking sensor is referred as S, which is

different from C in orientation and origin. In particular, the position of its origin is Csss,

while its orientation is given by the matrix CAS.

Both these two quantities are time dependent, according to the controlled attitude

dynamics of the chaser. However, the coordinates of the features that are measured in S

can be transformed by

C
ρρρ i =

Csss+CAS
S
ρρρSi (1.15)

The vector Csss and the matrix CAS are considered known. So, this calculation could

be avoided. Moreover, it is not necessary to simulate the attitude dynamics of the chaser,

but only its orbital one, which is relative to the system ℓ of the target using Eq.(1.1).

Thus, the computation of the coordinates of the features will be performed directly in C.

Figure 1.7 shows the defined reference frames.

The position of the target CoM in C comes from:

C
ρρρ =− IAT

C
IAℓ

ℓ
ρρρ (1.16)

where IAℓ is defined by Eq.(1.2).
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Figure 1.7 Reference frames: body, chaser, sensor, and features

The position of a generic i-th feature of the target with respect to the frame C is

obtained from the knowledge of the constant position Bdddi in the body-fixed frame B:

C
ρρρ i =

C
ρρρ + IAT

C
BAT

I
Bdddi (1.17)

BAI is obtained by solving the differential equation system deriving from Eq.(1.3)

and Eq.(1.9).

Equation (1.17) is used to obtain the final result of the simulation.

To give an example of the computed trajectories, it is necessary to define the following

initial conditions of the target and the chaser:

• orbit of the target, defined by orbital parameters. An example is given in Tab. 1.1.

The considered orbit is strongly eccentric.
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• the initial conditions of the relative translational dynamics between target and

chaser. In this first example, to solve Eq. (1.1), ℓρρρ0 and ℓ
ρ̇ρρ000 are chosen as follows:

ℓ
ρρρ0 =

[
−0.22,−92.86,0

]T
m

ℓ
ρ̇ρρ0 =

[
−0.044,0.004,0

]T
m/s

• the principal inertia moment BJJJ = [0.7014,0.5762,0.4196]

• the initial absolute angular rate Bωωω0 = [10.2 0.72 −17.1] deg/s

ep
he

m
er

is

e = 0.55

in = 6.93◦

ωp = 146.4◦

Ωan = 132.2◦

a = 15371 km

ϑ0 = 349.9◦

Table 1.1 Keplerian parameters used in the simulation

The trajectories of the features defined in Eq. (1.13) are shown in Fig. 1.8; note that

the curves wrap around the trajectory of the center of mass of the target.

It has been mentioned that most of the target surface is hidden to the observer. For

that reason, the data obtained through Eq. (1.17) can not be directly exploited, but some

of the data have to be discarded. Indeed, it is practically impossible that a feature always

remains visible to the observer. That can occur just if the chaser is guided such to point

always toward the specific feature. This last condition is tough to be achieved. Obviously,

if some feature is belonging to the hidden parts in one generic instant of time, its position

should be eliminated from the simulated data in that instant. Thus, a certain feature is
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Figure 1.8 Trajectories of features with respect to the chaser reference frame C. The considered
time interval starts from zero to one target orbital period

subjected to appear and disappear repeatedly from the observer, and it is necessary a

method to determine which features are visible at every instant of time.

There are many techniques for hidden surface determination; in this work the backface

culling technique has been used [30]: the direction of the normal to the examined surface

has been evaluated and then, if the scalar product between the normal vector and the

view direction is negative, then the surface and its points are visible (see Fig. 1.9 and

Eq. (1.18)).

An example of the elimination of tracking data after backface culling is given in

Fig. 1.10 where the piece-wise position signal related to the feature ρρρ1 of the Fig. 1.8 is

shown for a short interval of time.
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Figure 1.9 Backface culling technique. The surface normal in the hidden feature (case b) form an
angle with the feature position which is bigger than 90 degrees.
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Figure 1.10 Euclidean coordinates of the point ρρρ1 after the application of the Backface culling
technique in a short time interval. ρρρ1i

is the i-th coordinate of the point ρρρ1

Cρρρ i ·Cnnni

||Cρρρ i||
= cosαi > 0 =⇒ feature i (1.18)
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This simple technique is perfectly valid only if the body to which the surface belongs

is convex (i.e. cylinders, cubes). Otherwise, it produces some errors. So for complex

bodies backface culling has to be followed by other techniques (e.g. z-buffer) [30].

However, this is beyond the purpose of this work, in which a coarse determination of the

hidden surfaces is more than sufficient.

Using the above algorithm, one can create a Boolean array χi for the generic point i

containing the visibility information.

When few features are considered the non-visibility condition frequently occurs.

Notice that by using few features (first approach) all of them can be hidden at the same

time. As this would happen frequently, this condition simulates de-facto several global

losses of measured data. The second approach, on the contrary, considers a higher

number of features. This would guarantee that some points are visible at every instant.

However, it is proper to consider that some temporary interruptions in data acquisition

can occur, e.g. occlusions. In this case, provisional lacks of data may occur, so there

is the need of robust algorithms that can deal with lacks of input data; to provide the

Figure 1.11 Second approach for the dataset production: simulation time is divided in intervals,
and in some of these ones there are no data available. That corresponds to the introduction of
artificial occlusion periods.
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robustness of the proposed algorithm, artificial occlusions have been introduced (see Fig.

1.11).

1.2.2 Uncertainties on trajectories of the features

At this step of the production of the data, the trajectories of the features are available. As

underlined before, many parts of these trajectories are not available for several intervals

of time. That holds due to the visibility issue or to the artificial occlusions added. To

better simulate the acquisition of the trajectories, it is necessary to add some noise, which

should be characteristic of the considered acquisition process. This noise is proper of the

sensor, so it is needed to consider a particular sensor model to identify its characteristics.

The algorithms proposed in this work have been thought to be exploited with different

kinds of sensors. Among these, stereo cameras can be considered the most affected by

errors, so their model is used to create noisy data and test the algorithms in the worst

case.

In the following, stereo cameras observation model is described, with particular at-

tention to noise. Then, it is described the procedure to create noisy data from trajectories.

Assume that a stereo rig, composed of two parallel cameras, is mounted rigidly on the

chaser. A coordinate system S originating at the center of mass of the chaser is defined.

Referring to Fig. 1.12, the axis S1 points from the center of projection of the left camera

COPSl to the one of the right camera COPSr , S3 is vertical and positive upward, and S2

follows the right-hand rule.

The right camera’s center of projection COPSr is located on the CoM of the chaser,

and the left one is located at a distance bS from COPSr .

SCCCOOOPPPSr = [0,0,0]T ,SCCCOOOPPPSl = [−bS,0,0]T (1.19)
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Figure 1.12 Stereo rig system.

In this framework, the perspective projection model [31] can be used to describe the

visual observation of the features by the stereo rig. Feature points are transformed onto

the image plane according to the function π:

π(S
ρi) =

[
Sρi1
Sρi2

,
Sρi3
Sρi2

]T

(1.20)

Therefore, the observations corresponding to the i-th feature point are:

ε
r
i = π(S

ρρρ i),ε
l
i = π(S

ρρρ i +
SbbbS) (1.21)

where SbbbS = [bS,0,0] is the baseline vector.

To understand how the noise added at the image plane level affects the Euclidean

coordinates of the features, we considered 106 points that we distributed uniformly inside

a 3m×10m×3m box. This box was placed at [0 25 0] m in the frame S. Then, the two
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projections π(Sρρρ i) and π(Sρρρ i +
SbbbS) were applied. Adding a zero-mean Gaussian noise

to the projected points and after an inverse projection, the error distribution at coordinate

level is obtained. Two extremal noise conditions have been examined, so these steps

were repeated for two cases. In particular, the standard deviation of the Gaussian noise

was set to 10−4 in the first instance and 10−5 in the second. The latter value is consistent

with the usage of a medium-high end camera. For example, a 8 megapixel camera with a

3296x2472 pixel array, 5.5 µm pixel pitch, and 70 mm of focal length 1.

Fig. 1.13 and Fig. 1.14 show that, in both cases, the greatest error affects the depth

coordinate (Sρ2).

1https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7566
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Figure 1.13 Histogram of the errors on the trajectory after the inverse projection, σ = 10−4

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7566
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Figure 1.14 Histogram of the errors on the trajectory after the inverse projection, σ = 10−5

In both cases, the distribution of the errors on the three components of the position

of the points is similar to the zero-mean Gaussian. In the first case, in particular, the

empirical standard deviations of the first and the third components are both 0.0042 m,

while 0.0927 m is the standard deviation of the second component. In the second case,

the empirical standard deviations for the first and the third components are both 0.0004

m, while 0.0093 m is the standard deviation of the second component.

Notice that these values have been derived in the S framework, which is the original

framework of the sensor. However, the simulated dataset contains coordinates of features

of the target in the C framework. Eq. (1.15) expresses the mapping between positions in



C and S. Since the considered system S has its origin in the CoM of the chaser, it holds
Csss = 0.

Moreover, the matrix CAS is orthonormal. Thus, the amplitude of the noise on each

component of Cρρρ i should not be greater than the one of the depth coordinate of Sρρρ i. As
CAS is not known a-priori, the worst case has been considered: the noise added to the each

component of Sρρρ i has a standard deviation equal to the biggest found in Sρρρ i. Therefore,

the range for the standard deviation of the noise on each component of detected features

can vary from 10 mm to 100 mm.

These last remarks complete the data simulation phase (see Fig. 1.1). The final

dataset obtained can be sufficiently realistic for a first validation of the methods presented

in the following.



Chapter 2

Localization of the center of mass

The most explored methods for active removal of space debris require the contact

between the chaser spacecraft and the target. When the mechanical parts of the docking

mechanism come in touch with some natural interfaces on the target surface, they exert

forces and torques on the tumbling object. These actions have to be accurately controlled

to prevent the loss of the chaser control. In particular, to predict the torques exerted on

the target, it is necessary to have at least an approximate knowledge of the location of

the CoM of the object.

The rotation of a tumbling space object is about its CoM since it is completely

unconstrained. Thus, the problem of identifying the location of the CoM is equivalent

to the research of the point about which the body rotates. Hence, the identification of a

dynamic property of the target reduces to a problem of kinematic nature.

However, from an analysis of state of the art, this kinematic approach is typically

avoided. That probably holds due to the difficulties in finding reliable information about

the body rotation from corrupted measurements of feature positions. Approaches that

exploit statistical state observers are more common due to their powerful capabilities

of indirectly estimating unknown quantities from corrupted measurements of related
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quantities and the knowledge of a reliable mathematical model of the dynamics of the

observed system. Indeed, by simply assuming the coincidence of the CoM with the

center of gravity of the satellite, it is considerable that this point moves according to the

Kepler’s laws whose treatment can be found in Appendix A.1.

Nevertheless, also this kind of approaches present drawbacks linked to the assump-

tions needed for their application. As it will be described in the next chapter with greater

detail, the measurements required to feed the observer have to be taken at regular time

steps for many samples. If interruptions of this depicted sequence occur, then the observer

loses the capability of estimating the unknown quantities of interest. Moreover, all the

measured samples must always refer to the same quantities.

Approaches that rely on state observer use the positions of the features as the men-

tioned sequence of measurements. Thus, they are forced to assume that the tracked

features are always the same for the whole observation period. Moreover, failures in the

feature detection have to be excluded (for instance, see [19] or [32]). However, for the

considerations exposed in section 1.2, these assumptions appear to be quite restrictive.

For those reasons, in this work, it has made an attempt in developing a complete

estimation approach based on kinematic considerations only.

Two poses of the object, represented by the same set of homologous features in two

different time samples, underlie a finite motion represented by a rotation about an axis

and a translation along the same axis. This statement is the result of the Mozzi-Chasles’

theorem [33].

The first arising problem is that this representation depends only on the initial and

final configuration of the body, and it does not take into account the actual motion during

the considered interval of time. Thus, a correct description of the motion needs that the

mentioned time interval is infinitesimal.
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A second issue is that if the body does not move in a plane, there is an infinite set of

points having the same velocity, which all belong to the same axis whose direction aligns

to those velocities. This axis is the instantaneous screw axis. Thus, it is not clear how to

discriminate the CoM from the infinite points belonging to that axis until no information

comes from the motion analysis during more intervals of time.

This chapter will show that an approximate identification is possible if the relative

velocity between the target and the chaser becomes very low at a certain moment of

the observation. This unique but fundamental assumption for the effectiveness of the

presented method turns practically in the closeness of the orbits of the two objects.

However, that condition seems unavoidable for having a close rendezvous, which is

necessary for considering the capture of the target.

The first part of this chapter dedicates to the characterization of an estimator of the

location of the CoM of the target from the positions of homologous features at three

adjacent time samples. For a better discussion of the properties of this estimator, a

first subsection treats the estimation problem neglecting issues about detectability of

the features or uncertainties on measurements (see section 1.2). A second subsection

introduces the possibility of missing input data still without the addition of the noise.

This subsection also proposes the estimation in a body-fixed frame.

Then, to apply the developed estimator on corrupted data, it is necessary to exploit

filtering techniques to regularize the uncertainties. The second part of this chapter will

describe such techniques. Finally, the final accuracy of the estimation is discussed

through some application examples.
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2.1 A new estimator in absence of uncertainties

2.1.1 Estimation without missing data

The knowledge of the Euclidean coordinates of some points of a rigid body in different

instants of time could be used to perform the so-called kinematic registration of the body.

This term means essentially to determinate axes and poles of the finite rotations of the

body.

In 1985, Franz Reuleaux [34] proposed a general graphical rule for evaluating the

position of the pole of the rotation underlying a planar rigid displacement of a body. This

rule starts from the knowledge of the position of two points of the body after and before

the movement, i.e. two couples of homologous points. Then, the method individuates the

pole U of the displacement finding the intersection point of bisecting lines that connects

the corresponding homologous points (see Fig.2.1).

Implicitly, the usage of this rule corresponds to represent the finite motion of a body

with one simple rotation around a pole. However, the movement of an unconstrained rigid

body on a plane can be seen instantaneously as the combination of a translational motion,

Figure 2.1 Application of the Releaux method.
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characterized by the velocity of its CoM, and of a rotational motion, characterized by an

angular velocity around the same CoM.

Thus, the application of the Reuleaux rule does not provide information about the

actual motion of the object, but it provides only a synthetic representation of the final

configuration of the body as a function of the initial one. Indeed, the found pole of

the rotation is not coincident, in general, with the CoM of the body, nor it is a point

belonging to the body itself.

Even considering an infinitesimal time interval, the application of the Releaux rule

identifies an instantaneous center of rotation that is not, in general, coincident with the

CoM. In particular, the distance between this instantaneous center of rotation and the

CoM is proportional to the rate between the magnitudes of the CoM velocity and the

angular rate (vG/ω). As a consequence, if the motion is a pure rotation, the Reuleaux

rule is useful to find exactly the CoM of the body.

Demonstration of this statement follows (see Fig.2.2):

Figure 2.2 Application of the Releaux method in an infinitesimal time interval.



2.1 A new estimator in absence of uncertainties 37

Let P1 and P2 two points of the rigid body, whose CoM is G. Due to the fact that the

body is rigid, it holds

vvvPi = vvvG +ωωω×dddi i = 1,2 (2.1)

where dddi is the distance between Pi and the CoM. According to the Releaux method,

the pole U of the displacement is the intersection point of bisecting lines that connects

the corresponding homologous points. It holds that

P′i = Pi +∆t vvvPi i = 1,2 (2.2)

The axis of the line connecting the two points is normal to vPi . If the time interval is

infinitesimal, then homologous points tends to coincide (P′i → Pi), and the bisecting line

defined by the Releaux rule would be the axis aaaRi passing for Pi and normal to vvvPi .

A generic point of aRi is of the form:

Ui = Pi +λi

 0 −1

1 0

vvvPi i = 1,2 (2.3)

Hence, to find the pole of the rotation, the intersection between aR1 and aR2 has to be

computed. Thus, the constraint U1 =U2 is imposed and the system of linear equation

represented by Eq.(2.3) is solved in (λ1,λ2). It is found that λ1 = λ2 =− 1
ω

, and

U =U1 =U2 = P1−
1
ω

 0 −1

1 0

(vvvG +ωωω×ddd1) (2.4)

Finally, the distance between U and G is computed; it holds that:
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|U−G|= vG

|ω|
(2.5)

Eq. (2.5) shows that, if a translation occurs, the pole computed by the Releaux

method is different from the exact CoM of the body even if an infinitesimal time interval

dt is considered. Clearly, the error will increase with the interval duration.

Reuleaux rule is not suitable when it is necessary to characterize the motion of a

body in the three-dimensional space. Different works regarding the parameterization of

3D rigid body motions have been published: Some reliable methods are, for instance,

in [35] or in [36]. In [37] it is possible to find a complete theoretical treatment of the

parameterization of a 3D rigid motion with compact dual orthonormal tensors.

However, the parametrization method chosen in this work is the one provided by

Eberharter and Ravani [38]. This choice has been made due to the simplicity and effec-

tiveness of the proposed method. In particular, the method is an efficient generalization

of the two-dimensional Reuleaux rule. It exploits the knowledge of the coordinates of

three couples of homologous points to find a rotation axis and a point belonging to this

axis.

Given three vectors gggi connecting as many couples of homologous points (Pi and

P′i ), the vectors ccc1 = ggg2−ggg1 and ccc2 = ggg3−ggg1, span a plane which is perpendicular to

the finite screw axis êee [39]. Then, from the family of planes that are normal to êee, it is

considered the one passing through the origin of the reference frame in which points are

expressed, namely ε (see Fig. 2.3).

The components of the axis êee can be evaluated through the subsequent formula:

êee =
ccc1× ccc2

||ccc1× ccc2||
(2.6)
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Figure 2.3 Plane individuation and axis localization.

After the identification of the direction of the screw axis êee, for continuing with the

kinematic registration, it is necessary to localize a point that belongs to that axis. To

make that, one can project only two couples of homologous points on the found plane ε .

The Reuleaux rule can be then applied to find the location of a pole of the rotation of the

body.

The calculation of the translational displacement and the rotation angle of the body

completes the kinematic registration. The translational displacement te is simply the dot

product between êee and one of the gggi vectors. The rotation angle α is the angle formed

by line segments connecting U to two projected homologous points. However, for the

purpose of this work, only the localization of the screw axis is sufficient.

As well as for the simple Reuleaux rule, the method does not provide information

about the actual motion of the considered body, but it provides only a relationship

between the initial and final poses of the body. The found screw axis does not pass, in

general, through the CoM of the body. However, if the motion of the body is a pure

rotation, then the found axis will pass through the CoM of the body. If one would extend
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the above concepts from planar motions to 3D motions, the error made assuming that

the center of mass belongs to the found axis is proportional to the rate between the

magnitudes of the in-plain (normal to the rotation axis) component of the CoM velocity

and the angular rate (vg⊥/ω)

If the chaser were capable of perfectly following the trajectory of the center of gravity

of the target, which will be considered coincident with its CoM, the following elementary

equation would substitute the Eq. (1.1) for simulating relative orbital dynamics between

the chaser and the target:

C
ρ̇ρρ =

[
0 0 0

]T
(2.7)

For instance, imposing the initial condition

C
ρρρ0 =

[
14 10 0

]T
m,

and considering the five features of the target in Eq. (1.13), the dataset computed from

Eq. (1.17) would be such that the direct application of the method in [38] provides

results illustrated by Fig. 2.4. All the computed axes intersect exactly in the CoM of

the simulated target. Note that the backface culling technique for eliminating the hidden

features were not applied, so all the features were always detectable.

In real conditions, the relative distance between the two objects can vary significantly,

or also diverge as a function of the initial conditions chosen for solving Eq. (1.1). It

is assumed, however, that the orbits of the two objects are close enough so that two

conditions are guaranteed. The first one is that the objects remain sufficiently close, at

least for a short interval of time, so that the features can be detected accurately with

vision based sensors. The second one is that there is, at least, one instant in which the

relative velocity between the two object tends to zero. For instance, the initial conditions



2.1 A new estimator in absence of uncertainties 41

13.9 14 14.1

C1 [m]

9.85

9.9

9.95

10

10.05

10.1

10.15
C

2
 [

m
]

-2

0

0

C
3
 [

m
] 2

5

10

C1 [m]

15
15

C2  [m]

10

520
0

1

2

3

4

5

CoM

Figure 2.4 Center of mass localization if there is no relative dynamics between chaser and target.
In (b) the trajectories of the five features in Eq. (1.17) are shown, while in (a) the projections of
the rotation axes on the C1C2 plane are illustrated.

proposed is subsection 1.2.1 for obtaining the trajectories in Fig. 1.8 are such that the

mentioned conditions are satisfied.

Let us consider three separated time instants t−1, t and t +1, being t a generic time

index. Given the locations of three features at the instant t−1 and t in the frame C, the

screw axis direction Cêeet−1,t comes from Eq. (2.6); moreover, also a point of this axis

Ut−1,t comes from the 3D extension of the classic Reuleaux rule. In the same way, a

second screw axis direction Cêeet,t+1 and a point Ut,t+1 are obtainable from other three

features at the instants t and t +1.

As a relative translation between the chaser and the target occurs, two successive

screw axes do not intersect as they are non-coplanar. So, in this condition, it is not

possible to find the CoM via a rigorous axes intersection. Nevertheless, it is still possible

to determine approximately the location of this point.
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If the sample time is very much lower than the orbital period of the target (sampling

frequency in the order of 1 Hz), the distance between two successive screw axes will be

tiny. Hence, a possible estimator of the location of the CoM could consist, for instance,

of the following set of linear operations. Being V and T two parametric points of the two

screw axes in the unknown parameters λT and µV , it holds:

T (λT ) = λT
Cêeet−1,t +Ut−1,t

V (µV ) = µV
Cêeet,t+1 +Ut,t+1

(2.8)

Then it can be imposed the orthogonality between the line segment T −V and the

screw axes:

[T −V ]T Cêeet−1,t = 000

[T −V ]T Cêeet,t+1 = 000
(2.9)

that leads to the following linear system in the parameters λT and µV :

Γ

λT

µV

= ξ =⇒

λT

µV

= Γ
−1

ξ (2.10)

The solution of the system always exists if the two screw axes are non-coplanar.

Moreover, it is unique. The 2×2 matrix Γ depends only on the directions of the axes,

while the column matrix ξ also contains the information related to the axes location.

Then, after the elimination of the parameters, the location of the CoM can be finally

estimated at the instant t as:

C
ρ̄ρρ t =

1
2
[T +V ] (2.11)
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Moreover, the distance between the two screw axes is evaluable as:

det = |T −V | (2.12)

An illustration of this kind of estimation via pseudo-intersection of the screw axes is

in Fig.2.5.

The properties of this kind of estimator will be now discussed with the aid of two

examples of application. Two different orbits of the simulated target will be considered.

The first considered orbit is strongly eccentric; the related Keplerian parameters are

in Tab. 1.1. The initial dynamic conditions of the target are those listed in subsection

1.2.1. For a better understanding of how the attitude dynamics influences the proposed

estimator, another simulation ran with the normalized principal inertia moments equal to

BJJJ =
[

0.075 0.705 0.705
]T

,

T

e  t   1,t

CoM ( t )

e t ,t+1

V

Figure 2.5 Pseudo-intersection of successive axes of rotation.
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Figure 2.6 Axes distances de (upper charts) and estimation errors δg for two different attitude
dynamics: a) axisymmetric BJJJ; b) generic BJJJ

so the distribution of the target mass was axisymmetric.

The results that comes out from the estimation via Eq. (2.11) and Eq. (2.12) (see

Fig. 2.6) are illustrated by the quantities de and

δg = ||Cρ̄ρρ−C
ρρρ||2,

which rigorously is the distance between the localized CoM and the center of gravity of

the target. Assuming negligible the difference between center of gravity and CoM, δg

represents a localization error.
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Figure 2.7 Axes distances de (upper charts) and estimation errors δg after changing initial relative
conditions

Changing the relative initial conditions to:

ℓ
ρρρ0 =

[
−2 −85 −1.5

]T
m

ℓ
ρ̇ρρ0 =

[
−0.045 0.01 0.025

]T
m/s

leads to the results shown in Fig. 2.7. Only the axisymmetric model of the target is

considered.

Before commenting these results, to have a global view of its performances, the

method is tested also for a completely different kind of target orbit. In this case, a near-

circular orbit with a smaller semi-major axis is considered. The Keplerian parameters for

this orbit are shown in Tab. 2.1

The initial conditions for the simulation model in this new configuration are here

resumed:
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ep
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e = 0.0011

in = 48.45◦

ωp = 228.11◦

Ωan = 285.11◦

a = 6795 km

ϑ0 = 270◦

Table 2.1 Keplerian elements of a near-circular orbit

ℓ
ρρρ0 =

[
−9 −64 6

]T
m (2.13)

ℓ
ρ̇ρρ0 =

[
−0.005 0.013 −0.03

]T
m/s (2.14)

B
ωωω0 =

[
7.2 0.96 −7.74

]T
deg/s (2.15)

The inertia moments are the one of the axisymmetric case. The results relative to

this last case are given another time under the form of charts. These charts are shown in

Fig. 2.8

In all the studied cases the estimation error δg appears to be strongly correlated with

the distances de. In particular, note that whenever de has a relative maximum, δg has a

relative minimum (see Fig. 2.6, Fig. 2.7 and Fig. 2.8). This property holds whatever are

the initial conditions of the simulation and the inertia tensor of the target. This result is

because both the quantities de and δg are influenced by the relative motion between the

two considered objects. For instance, for the axisymmetric target, both the quantities

present a period between two relative maxima that is the half of the one of the angular

rate vector, whose tip traces the polhode (see Appendix B.2).
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Figure 2.8 Axes distances de (upper chart) and estimation errors δg with a near-circular orbit

Looking at the instantaneous relative motion, the importance of the direction of the

instantaneous screw axis arises immediately: the vertical component of the velocity

to the rotation axis depends obviously on the axis direction. The time behavior of the

magnitude of this component is shown in Fig. 2.9 for the two different target-chaser

conditions relevant to Fig. 2.7 and Fig. 2.8.

The curves in Fig. 2.9 are very similarly shaped to the appropriate error curves.

Indeed, the existence of velocity components that do not align with the rotation axis is

the main source of error of the proposed estimator. In the studied cases two successive

finite rotations of the target are parametrized with two non-coplanar axes whose distance

is slight (see Fig. 2.7 and Fig. 2.8). However, the biggest problem is that they do not

pass through the CoM of the body, as they were found using a 3D generalization of the

Reuleaux rule. It is useful to remind that the module of the angular rate influences this

kind of error. However, this magnitude is constant due to the conservation of the kinetic

energy of the target, which is an unperturbed body in space.
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Figure 2.9 magnitude of the normal-to-axis component of the relative velocity between the centers
of mass of the target and the chaser: case a) is relevant to Fig. 2.7; case b) is relevant to Fig. 2.8

It is evident that the curves in Fig. 2.9 are not available until the CoM of the target is

localized, but on the other hand the time behavior of de, which comes from measured

data, is also influenced by the shape of those curves.

Then, it approximately reveals the time behavior of δg. It is important to underline

that the values of both de and δg depend marginally on the sample time of the dataset

simulation. On the contrary, they strongly rely on the relative instantaneous motion

between the chaser and the target. Notwithstanding, the sample time should be at least a

tenth of the time interval between the relative maxima of de. Otherwise, the signals will

be down-sampled, and no information may be extracted from them.

From these examples, it is possible to conclude that the proposed estimator is biased.

However, the magnitude of the error does not diverge if the component of the relative

velocity, which is normal to the rotation axis, remains bounded. Moreover, when

the distance between two successive screw axes has a maximum, the corresponding

estimation error has a minimum.
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Note that in this subsection, the features of the target have been assumed to be always

detectable. Thus, no algorithms removed information about hidden parts of the target

surface. This choice was made for allowing a better characterization of the proposed

estimator regarding the approximation level. Actually, the estimation is repeatedly

performed using data about three successive time samples. So, the presence of missing

data for a certain number of time samples does not prevent the estimation at other time

samples for which data are available.

2.1.2 Estimation with missing data

When the application of the backface culling technique (see subsection 1.2.1) reduces

the available data, there will be several instants in which the finite screw axis is not

determinable. Considering the detectability of only five features, such as the ones in Eq.

(1.17), the function de will show several missing samples. Indeed, there are many time

samples in which three of the features are hidden. Remember that the locations of three

couples of homologous features at two instants are necessary for applying the presented

3D generalization of the Reuleaux’s rule.

Notwithstanding, making the numerical derivative (whenever possible) of de is useful

to find its relative maxima. Moreover, the mean of the available values of de is obtainable

in different short time intervals. This mean serves to determine the intervals in which it

is the lowest one. These intervals are the ones in which the estimator’s bias should be the

lowest possible.

In Fig. 2.10 the results of a searching algorithm, which relies on the latest consider-

ations, are displayed. The algorithm provides the time samples in which the proposed

estimator of the CoM location produces the most accurate results. Figure 2.10 is referred

to the considered eccentric orbit (Tab. 1.1).
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Figure 2.10 Result of the selection method, eccentric orbit (Tab. 1.1).The circles indicate the
found relative maxima

A collection of several estimates of the position of the CoM in a body-fixed frame

can be useful for analyzing the error distribution. Given the positions of three features

(e.g. Cρρρ1, Cρρρ2, and Cρρρ4), a body-fixed frame can be built through the following sample

procedure:

• evaluate first axis through Cννν i =
Cρρρ2−Cρρρ1
||Cρρρ2−Cρρρ1||

• evaluate second axis through Cννν j =
Cννν i×(Cρρρ4−Cρρρ1)
||Cννν i×(Cρρρ4−Cρρρ1)||

• evaluate third axis through Cνννk =
Cννν i×Cννν j

Once the estimates are expressed in the built body-fixed frame, they will be distributed

around the true center of mass of the body. Then the expected value of the position of

the center of mass can be obtained by meaning all the estimates. In Fig. 2.11 it is shown

the application of this procedure to the eccentric orbit case.
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In the case represented by Fig. 2.11, the true location of the CoM in the built body-

fixed reference frame (namely F) is:

F
ρρρg =

[
3.9862 −0.3141 0.1090

]T
m (2.16)

The expected value of the center of mass is instead:

E(Fρρρg) =
[

3.9852 −0.3209 0.1153
]T

m (2.17)

So the difference is:

∆ecc =
[
−0.001 −0.006 0.006

]T
m (2.18)

0.05
-0.2

0.1

-0.25 3.995

0.15

3.99
-0.3 3.985

0.2

3.98-0.35
3.975

-0.4 3.97

estimates
true CoM
expected CoM

Figure 2.11 Global estimation of the center of mass location, eccentric orbit (Tab. 2.1).
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Figure 2.12 Distribution of the estimation error for the second coordinate of the CoM, eccentric
orbit (Tab. 2.1).

Then, the error between the expected position of the target’s center of mass and the

true one is equal in magnitude to 9 mm. The distribution of the error for the second

coordinate of the CoM is in Fig. 2.12; the distributions for the other coordinates have a

quite similar shape, so they are omitted. The latter figure shows that residuals are almost

centered. Moreover, their distribution is light tailed. However, it seems not rigorous to fit

any canonical probability density function to the residuals.

The same methodology can also be applied to the near-circular orbit case (Tab. 2.1):

Fig. 2.13 shows the results of the same searching algorithm used for the previous case.

Fig. 2.14 illustrates the collected estimates expressed in the body-fixed frame F. The

true position of the CoM in this body-fixed frame is equal to the one shown in Eq. (2.16).

The expected value of the CoM position is in this case:

E(Fρg) =
[

3.9876 −0.2888 0.1553
]T

m (2.19)

Then, the difference is:

∆circ =
[

0.001 −0.025 0.046
]T

m (2.20)
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Figure 2.13 Result of the selection method, near-circular orbit (Tab. 2.1) .
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Figure 2.14 Global estimation of the center of mass location, eccentric orbit (table 2.1).
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The error between the expected position of the target’s CoM and the actual one

is equal this time to 52mm in magnitude. The distribution of the error for the second

coordinate of the CoM is in Fig. 2.15; the distributions for the other coordinates have

quite similar shapes, so they are omitted. In comparison to the case of Fig. 2.12, here the

residuals are more spread, although a significant part of them are concentrated around

the mean. No elementary probability density function fits the residuals, neither coarsely.

From these two scenarios it is possible to conclude that although the distribution of

the estimates around the true CoM is not strictly traceable to standard distributions, the

mean of the estimates remains sufficiently near to the nominal position of the CoM. This

result holds because, in general, the error made by the proposed estimator is bounded

and directly correlated to the magnitude of the velocity of the target about the chaser.

Thus, the more the relative dynamics between the two objects is slow, the less will be the

difference between the mean of the estimates and the actual position of the CoM in a

body fixed-frame.

If the orbits of the two objects are such that it exists an interval of time in which the

distance between the objects variates slowly (e.g. few meters in five minutes), then the
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Figure 2.15 Distribution of the estimation error for the second coordinate of the CoM, eccentric
orbit (table 2.1).
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proposed estimator will show fair properties in that interval (see Fig. 2.9, Fig. 2.6, and

Fig. 2.8).

The mentioned slow relative dynamics is a standard requirement for starting the

capture maneuver (e.g. see [40]). Hence, this hypothesis is not particularly restrictive.

The localization errors are sufficiently high to justify the assumed equivalence between

the CoM and the center of gravity. So, in conclusion, the proposed estimator appears to

be compliant for the application. Its robustness in case of corrupted data will be proved

in the next sections of this chapter.

2.2 Regularizing noise by Procrustes analysis

The presence of large uncertainties on the actual location of the detected features from vi-

sion sensors prevent the direct application of the estimation technique that was illustrated

in the previous section. However, a significant part of this uncertainty may be filtered out

by exploiting some reasonable assumptions about the target body and its motion. Then, if

a quite accurate representation of the movement of the body is obtainable through finite

screw axes, it is possible to exploit the fine properties of the presented estimator to obtain

many rough estimates that are reasonably distributed about the actual CoM. In fact, a

single estimate could also be extremely far from the real value, but the fundamental

aspect is that the mean of the error is almost zero.

The fundamental assumption to be considered regards the rigidity of the tracked

target. The detected features must maintain through the time a constant relative distance.

Screw axes are representations for the rigid displacement of a body between two different

poses. The accuracy of this representation is greatly affected by the violation of the

rigidity constraint. Moreover, neglecting the presence of moving appendages (that is
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beyond the purpose of this work), the only significant reason for this violation consists

of errors in detecting the actual location of the features.

Indeed, the first noticeable effect of the presence of noise on the coordinates of the

features is that the tracked body does not appear rigid. The size of the target can also

change due to thermal expansions or shrinkages, but these size variations have a too slow

dynamics for being compared to the effect of the noise on the coordinates.

The mentioned noise acts as a source of distortion of the actual geometry of the

considered target. The theory of statistical shape analysis specifically addresses the

problem of distinguishing this distortion from the original contour of a body. In particular,

the Generalized Procrustes Analysis (GPA) [41] is the considered technique in this work

to address this problem.

According to the terminology of statistical shape analysis, a shape is defined as the

set of all the geometric information that remains when location, scaling, and rotational

effects are filtered out from an object. A finite number of features on the outline of the

body can be a synthetic description of the defined shape.

Within a certain time interval, because of the motion of the body, these homolo-

gous features take different positions, setting the pose of the body. A configuration is

here defined as the disposition in R3 of the homologous features at a given instant of

the considered time interval. The main purpose of GPA is the alignment of different

configurations to recover the original shape of the body.

GPA is an iterative procedure that starts by assuming that the first configuration

in chronological order is the best representative of the original shape. Then, all the

configurations need to be aligned with the first.

Mathematically, the Euclidean coordinates of the features of the i-th configuration

are included in a configuration matrix Xi, which has 3 rows and nc columns, nc being the
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number of homologous features. The relationship between Xi and the initial configuration

matrix, i.e., X0, is as follows:

Xi = RiX0 +Ti +ηci (2.21)

The optimization variables Ri and Ti represent the i-th rotation matrix and a translation

matrix whose columns are equal to the i-th optimal translation vector ttt i, respectively.

Matrix ηci represents the unknown inaccuracy.

To align the configurations with respect to the location, the centroids are computed.

Then, the optimal t̄tt i consists of the vector connecting the centroids. Position information

is filtered out by subtracting the resulting optimal T̄i to the configuration matrix Xi:

XCi = Xi− T̄i (2.22)

Thus, the centered configuration matrix XCi and X0, can be compared to find the

optimal rotation matrix. That corresponds to solve the so-called orthogonal Procrustes

problem: given the matrices XCi and X0, it is needed to search for the orthogonal matrix

R̄i that most closely maps XCi to X0:

R̄i = argmin
R
∥RXCi−X0∥2 subject to RRT = I3 (2.23)

Note that this problem is equivalent to find a matrix that is most closely orthogonal

to the product X0XT
Ci. The latter matrix can be factorized through the singular value

decomposition (SVD):

X0XT
Ci = Σ∇DT (2.24)
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where ∇ is a diagonal matrix, while Σ and D are both orthogonal matrices. It is proved

that the problem in Eq. (2.23) has a closed-form solution [42]:

R̄i = DΣ
T (2.25)

The result in Eq. (2.24) has both a physical and a statistical meaning. From the

physical point of view, the three terms of the SVD represent two pure rotations through

the orthogonal matrices, plus a scaling of the set of features through the diagonal matrix.

Thus, only the composition of rotations is taken to find the optimal rotation matrix R̄i.

The scaling part is filtered out instead. From a statistical point of view the matrix R̄i,

obtained through Eq. (2.25), is the one that maximizes the correlation between the two

matrices XCi and X0.

Following this logic of finding for each i-th configuration the optimal translation

vector and the optimal rotation matrix from the 0-th configuration, it is possible to bring

all the available jc configurations to the initial time, making them comparable. This

procedure is illustrated in Fig. 2.16. The number, jc, of estimates, X̄ i
0, can be obtained

through

X̄ i
0 = R̄T

i (Xi− T̄i) ∀i = 1,2... jc (2.26)

Then, the original shape of the body is estimated by averaging the transformed

configurations. The Procrustes mean is obtained as follows:

X̄PM =
jc

∑
i=0

X̄ i
0

jc
(2.27)
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Figure 2.16 GPA procedure: all the configurations are linearly transformed for comparison. The
mean configuration is assumed to be optimal.

All the described procedure can be iteratively repeated by aligning the jc configura-

tions to the current Procrustes mean. The procedure stops when the Procrustes mean

does not change significantly. This requirement often occurs at the second iteration; thus,

the procedure is not computationally expensive [43].

At the end of the GPA, applying the optimal inverse similarity transformations on

the mean configuration generates a set of filtered data. After this procedure, the relative

distances between features become equal at each sample time. Hence, the tracked body

behaves as a rigid body.

It is worth mentioning that the problem in Eq. (2.21) leads to an overdetermined

linear system that consists of 12 unknowns, which are subject to 6 nonlinear constraints.

Several numerical techniques are available in the literature for this type of problems. The

proposed solution scheme ensures numerical stability and excellent capability of dealing

with nearly-singular conditions. Since the sampling frequency of vision-based sensors is
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much higher (from 30 Hz up to 100 Hz) than natural frequencies of space debris attitude

kinematics (quite less than 1 Hz), numerical stability is a fundamental aspect.

As it will be shown in the next section, on the other hand, since the dimension of

configurations to obtain acceptable results is low (15 is appropriate), the reduced dimen-

sionality of the problem makes any possible gain negligible in terms of computational

efficiency.

Considering the two kinds of datasets that were discussed in subsection 1.2.1, while

there is a high confidence about the quality of GPA results on the dataset based on the

features of Fig. 1.6, the GPA is not fairly applicable on the other dataset, which contains

the trajectories of the five features in Eq. 1.17. In fact, after the application of the

backface culling technique for the elimination of undetectable parts of trajectories, for

too many time samples there are only three tracked features, or even less.

Hence, for the estimation of the CoM location from corrupted data, only the dataset

with 44 unlabeled features is exploited (see Fig. 1.6). This aspect cannot be considered

a problem for the method. Indeed, it is easier to track a huge number of features than

recognizing on-board few particular points of the target surface on a CAD drawing of

it. Moreover, this last recognition procedure requires obviously the possession of such

CAD model of the object. As discussed in subsection 1.2.1 this assumption could be

restrictive for certain removal scenarios.

Clearly, the considered 44 features are not all detectable at a particular instant of

time. Moreover, once they disappear from the FOV of sensors they are definitively lost

in the sense that they reappear after some time as new features. Fig. 2.17 provides an

illustration of that concept.

Since configurations consists of a fixed set of features with different poses, the

simulation time was split into several intervals such that, for each of them, a reasonably

large set of homologous features is tracked without interruptions. In particular, the
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Figure 2.17 Appearing and disappearing features from the FOV of the vision-based sensors. Note
that features 1, 2 and 3 are exactly the same of 11, 12 and 13, but no algorithm is exploited to
recognize this fact.

minimum dimension obtained for the configurations was equal to 9, while the maximum

one was equal to 21. As mentioned in subsection 1.2.1 with Fig. 1.11, some of the

considered intervals are useful to simulate occlusions or rather temporary losses of

measured data. When occlusions occur, the GPA is not applicable. It will be shown in

the next section as this problem does not compromise the final estimation of the entire

trajectory of the CoM.

2.3 Estimation in realistic conditions

The GPA were first applied to the dataset obtained with the following initial conditions

for the relative orbital dynamics:

• Keplerian parameters of the target in Tab.1.1, here resumed:

ep
he

m
er

is

e = 0.55

in = 6.93◦

ωp = 146.4◦

Ωan = 132.2◦

a = 15371 km

ϑ0 = 349.9◦
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• initial relative position and velocity:

ℓ
ρρρ0 =

[
−0.22 −92.86 0

]T
m

ℓ
ρ̇ρρ0 =

[
−0.044 0.004 0

]T
m/s

• the principal inertia moment BJJJ =
[

0.7014 0.5762 0.4196
]

• the initial absolute angular rate Bωωω0 =
[

10.2 0.72 −17.1
]

deg/s

Then, after the imposition of the rigidity condition to the features, the 3D extension of

the Reuleaux’s rule is applied to the filtered dataset. According to the average accuracy of

existing stereo-vision systems (see subsection 1.2.2 for details) a 10 mm noise amplitude

was considered for being added to the coordinate of the features. Moreover, the artificial

occlusion intervals had a duration of 120 s.

The successive screw axes representing the target pose evolution are described by

a 6-th dimensional signal in time domain. The first three dimensions are the direction

cosines of the screw axes, while the last three ones are the coordinates of one point of

those axes. This signal is illustrated in Fig. 2.18.

Note from Fig. 2.18 that the signal above is still corrupted by an high-frequency noise

that is not coherent with the underlying motion of the target. However, the application

of the GPA allowed the noise to have a small amplitude. The estimation of the CoM

location should follow through the pseudo-intersection of Fig. 2.5, whose properties

were illustrated in section 2.1. However, the pseudo-intersection procedure involves

an amplification of the noise amplitude. The amplification holds because the resulting

position of the CoM is the product of the combination of information regarding successive

time samples. Therefore, the pseudo-intersection behaves as a noise amplifier like the

numerical derivative.
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Figure 2.18 Raw (solid line) and filtered (dashed line) screw axis and pole of rotation. An
occlusion period interrupts data.

For those reasons, a preliminary filtering of the signal in Fig. 2.18 is necessary to

obtain meaningful estimates of the CoM location. For recovering the original information,

we applied a low-pass filter to all parts of the signal. The recommended cutoff frequency

is 1 Hz, which is reasonably high for preserving information related to the typical slow

motion of a tumbling target. To avoid signal distortion, we considered zero-phase filtering

using a high order Butterworth filter. The filter transfer function has the following form:

|H( jω)|2 =
G2

0

1+
(

ω

ωc

)2n f
(2.28)

where G0 is the gain at zero frequency, ωc is the cut-off frequency, and n f is the filter

order (we set it to 22). The unique limitation on the choice of n f is given by the minimum

number of samples within the periods in which occlusions do not occur. In particular,
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Figure 2.19 Representation of the three estimated coordinates of the center of mass (CoM) in the
chaser-fixed reference frame C. The standard deviation of the measurement noise is equal for
each coordinate to 10 mm.

this number must be more than three times the filter order. The filtered signal is also

shown in Fig. 2.18 together with the relevant raw signal.

After these operations, the pseudo-intersection of the screw axes leads to the estimated

coordinates of the CoM. The procedure output is shown in Fig. 2.19. Clearly, the presence

of occlusion periods leads to missing samples in the estimated trajectory of the CoM.

Moreover, as expected, the estimation errors are significantly high due to the noise

amplification produced by the proposed estimator.

However, Fig. 2.19 shows that although the noise has a high power, its mean appear

shaped like the actual trajectory of the CoM. This result is something expected due to the

properties of the proposed estimator, discussed in section 2.1. Thus, the original trajectory

can be restored even by simply fitting the data through appropriate polynomials.
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Figure 2.20 Final estimation error in the CoM trajectory. The standard deviation of the measure-
ment noise is equal for each coordinate to 10 mm.

In fact, the last estimated trajectory of the CoM, from the chaser point of view, is

recovered by fitting the coordinates with a tenth order polynomial. In Fig. 2.19, the

resulting curves are overlaid on the corrupted components of the trajectory of the CoM.

In particular, these curves also cover the missing information regarding the artificially

introduced occlusion intervals.

Finally, the norm of the absolute estimation error for the considered example is shown

in Fig. 2.20. The mean error is approximately under 30 mm, which is a relatively low

value. Indeed, the accuracy level reached with the proposed method is comparable to

that of the best-known methods (e.g., in [19] 40 mm RMSE was obtained). However,

differently from state-of-the-art methods, the proposed method is robust to occlusions

and does not require the continuous detection of a particular fixed set of features. This

result holds because the proposed method does not rely on state-observers as mentioned

at the beginning of this chapter.

The GPA were secondly applied to the dataset obtained with the following initial

conditions for the relative orbital dynamics:
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• Keplerian parameters of the target in Tab.2.1, here resumed:

ep
he

m
er

is

e = 0.0011

in = 48.4◦

ωp = 228.1◦

Ωan = 285.1◦

a = 6795 km

ϑ0 = 270◦

• initial relative position and velocity:

ℓ
ρρρ0 =

[
−9.00 −63.99 5.99

]T
m

ℓ
ρ̇ρρ0 =

[
−0.003 0.011 −0.030

]T
m/s

• the principal inertia moment BJJJ =
[

0.5978 0.7399 0.3085
]

• the initial absolute angular rate Bωωω0 =
[

0.14 0.14 −0.09
]

deg/s

Then, as in the first case, we applied the 3D extension of the Reuleaux’s rule to the

filtered dataset, considering also noise and artificial occlusions. The pseudo-intersection

of the screw axes leads to the estimated coordinates of the CoM. The procedure output is

shown in Fig. 2.21.

The original trajectory can be restored by simply fitting the data through appropriate

polynomials, see Fig. 2.21.

In Fig. 2.21, the fitted coordinates are overlaid on the corrupted components of the

trajectory of the CoM.

Finally, the norm of the absolute estimation error for the considered example is shown

in Fig. 2.22. The mean error is approximately under 20 mm. Again, the accuracy level

reached with the proposed method is comparable to that of the best-known methods.
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Figure 2.21 Representation of the three estimated coordinates of the center of mass (CoM) in the
chaser-fixed reference frame C. The standard deviation of the measurement noise is equal for
each coordinate to 10 mm.
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Figure 2.22 Final estimation error in the CoM trajectory. The standard deviation of the measure-
ment noise is equal for each coordinate to 10 mm.

In a third example, the GPA were applied to the dataset obtained with the following

initial conditions for the relative orbital dynamics:
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• Keplerian parameters of the target here resumed:

ep
he

m
er

is

e = 0.34

in = 89.4◦

ωp = 45.8◦

Ωan = 12.7◦

a = 10359 km

ϑ0 = 11.7◦

• initial relative position and velocity:

ℓ
ρρρ0 =

[
−5.72 −68.37 0

]T
m

ℓ
ρ̇ρρ0 =

[
−0.022 0.009 0

]T
m/s

• the principal inertia moment BJJJ =
[

0.5978 0.7399 0.3085
]

• the initial absolute angular rate Bωωω0 =
[

0.14 0.14 −0.09
]

deg/s

As usual, the 3D extension of the Reuleaux’s rule is applied to the filtered dataset.

The estimated coordinates of the CoM are shown in Fig. 2.23.

Again, the original trajectory are restored fitting the data through appropriate polyno-

mials, see Fig. 2.23.

In Fig. 2.23, the fitted coordinates are overlaid on the corrupted components of the

trajectory of the CoM.

Finally, the norm of the absolute estimation error for the considered example is shown

in fig. 2.24. The mean error is approximately 30 mm.

The GPA were finally applied to the dataset obtained with the following initial

conditions for the relative orbital dynamics:
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Figure 2.23 Representation of the three estimated coordinates of the center of mass (CoM) in the
chaser-fixed reference frame C. The standard deviation of the measurement noise is equal for
each coordinate to 10 mm.
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Figure 2.24 Final estimation error in the CoM trajectory. The standard deviation of the measure-
ment noise is equal for each coordinate to 10 mm.

• Keplerian parameters of the target here resumed:



ep
he

m
er

is

e = 0.17

in = 234.8◦

ωp = 94.2◦

Ωan = 66◦

a = 8559 km

ϑ0 = 102.10◦

• initial relative position and velocity:

ℓ
ρρρ0 =

[
−4.63 −24.07 0

]T
m

ℓ
ρ̇ρρ0 =

[
0.0007 0.0038 0

]T
m/s

• the principal inertia moment BJJJ =
[

0.4915 0.4915 0.7189
]

• the initial absolute angular rate Bωωω0 =
[
−0.18−0.160.19

]
deg/s

The coordinates of the CoM obtained by the pseudo-intersection of the screw axes

are shown in Fig. 2.25.

The original trajectory is then restored fitting the data through appropriate polynomi-

als.

In Fig. 2.25, the fitted coordinates are overlaid on the corrupted components of the

trajectory of the CoM.

The norm of the absolute estimation error for the considered example is shown in

Fig. 2.26. The mean error is approximately under 60 mm.
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Figure 2.25 Representation of the three estimated coordinates of the center of mass (CoM) in the
chaser-fixed reference frame C. The standard deviation of the measurement noise is equal for
each coordinate to 10 mm.
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Figure 2.26 Final estimation error in the CoM trajectory. The standard deviation of the measure-
ment noise is equal for each coordinate to 10 mm.



Chapter 3

Estimation of attitude, angular rate

and inertia ratios

The accurate knowledge of the attitude dynamics of the target is of critical importance to

the success of the capture maneuver, especially if the capture system rely on tentacles or

robotic arms. To approach the target without having abrupt impacts, both the capture

system and the chaser spacecraft have to cooperate during the approach phase to reduce

the relative angular rate between the parts that should become in contact.

Thus, the estimation of the actual angular rate of the passive object is fundamental.

A typical estimation approach consists of achieving information on the pose of the object

in different time samples to derive the actual dynamics of the target from a state-space

model of it.

The main difficulties are related to the intrinsic complexity in representing the attitude,

and to the non-linearity of the dynamic equations. However, the possibility of assuming

the principal moments of inertia of the target as constants gives an important help in

solving the task. Moreover, the estimation of the dynamic rotational state of the target
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is further hampered by the fact that the sensors for achieving the pose of the object are

subject to momentary failures.

If there are interruptions in the acquisition of the pose information, the common

state observers used for the estimation start to learn a wrong time behavior of the state

without having the possibility of correcting it through the measurements. Then, when the

measures become available again, the state observer need to employ several samples to

re-learn the actual state, hoping that new data interruptions will not occur.

This chapter presents the basic theory of stochastic state observers and the determined

ways to support their employment in case of sudden losses of measured data. Different

applications of the developed methods are presented as a function of the typology of

acquired data: few tracked features and prior information on the target shape, and a

greater number of features without that a-priori information.

3.1 Theory of observers for stochastic systems

The observation of any dynamic system has necessarily to start from the measurement of

some physical quantities that are influenced by the dynamics that should be observed.

In the language of the systems theory, these measurable quantities are often denoted

as the outputs of the system, typically contained in a column vector y. Clearly, one or

more sensors are necessary to have an estimate of these quantities. In particular, all the

measurements are collected in a column vector z such that the following measurement

equations hold for any instant k:

zk = yk + vk (3.1)
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The measurement noise vk is the uncertainty due to the imperfection of the sensors

used for measuring yk. The sensors behave as a simple estimator of the outputs of the

system; the error made by this estimator is evidently equal to vk, which is a random

variable whose distribution is completely dependent by the characteristic of the sensors.

Based on the particular application, the accuracy of this estimator is sometimes not

sufficient so, to obtain better estimates, it arise the necessity of defining mathematical

procedures that are based on some prior knowledge about the dynamics of the system.

Moreover, the directly measurable quantities are not usually sufficient for a complete

description of the system behavior. The quantities that completely represent the dynamics

of the system are collected into a column vector x that is called state vector. In the most

general case the outputs are linked to the state variable by a function h, so that the

measurement equations become:

zk = h(xk)+ vk (3.2)

An appropriate way of mathematically representing the actual dynamics of the

system is the statement of the state equations, which can be a system of finite difference

equations. For instance, it holds:

xk+1 = f (xk)+wk (3.3)

where wk is the so-called process noise. The introduction of the random variable wk

represent the fact that, evidently, the actual dynamics of the system is not perfectly

known. Moreover, the process noise takes into account also of the inherent inaccuracy of

a discrete representation of a typical continuous-time process.
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Since they contribute to the knowledge of information about the system behavior,

state equations are very useful to identify an estimator of the state vector. Both the

measurement equations and the state equations are not deterministic due to the presence

of the random variable vk and wk. Thus, the uncertainties in the system description

should be described by the probability theory. The time behavior of the measurement

reflects its joint probability function; assuming there is no correlation between the values

of vk at two different instants, it holds:

p(vN) = p(v0,v1, ...,vn) = p(v0)p(v1)...p(vN) (3.4)

The same applies for the process noise, which is also assumed to be a white noise.

By sampling from the assumed joint probability distribution of the process noise,

Eq. (3.3) gives the opportunity of estimating the state vector from the mathematical

model of the considered system. However, at the same time the acquired measurements

produce more information about the state of the system through Eq. (3.2), in which also

the measurement noise have to be sampled from its joint probability distribution.

Formally, the combination of this information in terms of probability density function

is expressed by the Bayes formula for conditional probability:

p
(

xk | zk
)
=

p(zk | xk) p
(
xk | zk−1)

p
(
zk | zk−1

) (3.5)

where p
(
xk | zk) is the conditional probability of xk given the entire history of the

measurements of the system output, which is represented by the joint probability function

p(zk). p(zk | xk) is the conditional probability of the current measurement zk given

the actual outcome of the state xk. Evidently, this last probability density function is

directly influenced by the distribution of the measurement noise p(vk) through Eq. (3.2).
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p
(
xk | zk−1) represents the predicted probability density function of xk given all the past

measurements but not the current one. Thus, this can be obtained using only Eq. (3.3)

and the probability distribution of the process noise p(wk−1). In particular, it holds:

p
(

xk | zk−1
)
=

∫
p(xk | xk−1) p

(
xk−1 | zk−1

)
dxk−1 (3.6)

where p(xk | xk−1) is the transition probability density function.

Finally, the normalizing constant p
(
zk | zk−1) can be obtained from the following

convolution:

p
(

zk | zk−1
)
=

∫
p(zk | xk) p

(
xk | zk−1

)
dxk (3.7)

Equations (3.5) and (3.6) defines the general formulation for a Bayesian filter. Note

that the latter is not properly a filter because it does not perform any signal processing or

transformation. Instead, it performs the estimation of the time behavior of the probability

distribution of the state variables. Thus, it is an observer of the state treated as a random

variable.

The estimation is mainly composed of two operations. The first is the prediction,

represented by Eq. 3.6, in which the assumed state-space model of the system reveals

a-priori information about the probability distribution of the future state, before the

acquisition of any measure of the system outputs. Then, once the distribution of the

relative measurements is available, the a-priori estimated distribution of the state is

updated via Eq. 3.5. That justify the use of the word filter.

From assumptions and algorithms, simpler observers then the general Bayesian filter

can be obtained. For instance, one common assumption is that the process represented

by Eq. (3.3) is a Markov chain. A process is Markov [44] if it holds:
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p
(

xk | xk−1
)
= p(xk | xk−1) (3.8)

Equation (3.8) states that the probability density function of the state at k is influenced

only by the state at the precedent instant k− 1. Monte Carlo sampling the function

p
(
xk−1 | zk−1), it is possible to propagate the outcomes through the assumed generic

nonlinear model of the system to estimate p
(
xk | zk−1). A genetic treatment of the

predicted outcomes, that are called particles, lead to the updating phase of the particle

filter [45].

Assuming the linearity and Gaussianity of both process and measurements, it is

possible to derive the formula for one of the most appreciated observers: the Kalman

filter. The latter will be used in this work together with its adaptations for treating

nonlinear systems. The reason for its usage in many applications consists of its simplicity,

effectiveness and robustness.

3.1.1 Kalman filter

The assumption of the linearity of the system leads to the following state-space represen-

tation:

xk+1 = Fkxk +wk (3.9)

zk = Hkxk + vk (3.10)

where Fk is a square matrix with dimension nx, and Hk is a nz×nx dimensional matrix.

Moreover, the following assumptions hold:
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E
[
wkwT

l
]
= E [wk]E

[
wT

l
]

(3.11)

E
[
vkvT

l
]
= E [vk]E

[
vT

l
]

(3.12)

Thus, the noises at instant k are both white noises. Moreover it holds:

E
[
wkwT

l
]
= 0 l ̸= k (3.13)

E
[
vkvT

l
]
= 0 l ̸= k (3.14)

Hence, both the process and the measurement noise at instant k have not correlation

with themselves at other instants. Then they are Gaussian noises with zero mean. If

k = l, their covariance matrices will be indicated as Qk and Rk respectively. Besides, the

process and the measurement noise are not mutually dependent:

E
[
wkvT

l
]
= 0 (3.15)

Finally, it is assumed that the state equations represent a Markov chain and that the

state at instant k is a Gaussian random variable with mean xk and covariance Pk.

The updating phase of the Kalman filter have to be derived from the Bayes formula

in Eq. (3.5). The calculation requires the knowledge of the a-priori probability density

function of the state given the past measurements:

p
(

xk | zk−1
)
=N

(
xk : x−k ,P

−
k

)
(3.16)
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Equation (3.16) states that the a-priori distribution of the random variable xk is a

Gaussian characterized by a mean x−k and a covariance P−k . Thus, the superscript ”− ”

indicate an estimation that is only based on the assumed model of the actual system. The

notation N introduces a multivariate Gaussian with a certain mean and covariance.

It is straightforward to verify that the measurement probability density function can

be characterized through Eq. (3.10) as follows:

p(zk | xk) =N (zk : Hkxk,Rk) (3.17)

Finally, from Eq. (3.16) and from Eq. (3.17) the normalization constant has to be:

p
(

zk | zk−1
)
=N

(
zk : Hkx−k ,HkP−k HT

k +Rk
)

(3.18)

The Bayes formula gives then:

p
(

xk | zk
)
=

N (zk : Hkxk,Rk)N
(
xk : x−k ,P

−
k

)
N
(
zk : Hkx−k ,HkP−k HT

k +Rk
) (3.19)

The updated probability density function of the state have to be Gaussian. It can be

demonstrated that if the measurement probability density function is Gaussian, the fact

that the prior distribution is Gaussian ensure that also the posterior one is Gaussian [46].

The prior and the posterior distribution are then called conjugate distributions.

Hence, the posterior distribution is characterized as follows:

p
(

xk | zk
)
=N

(
xk : x+k ,P

+
k

)
(3.20)
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where the superscript "+" indicates that the estimated statistics of the state are updated.

By the definition of multivariate Gaussian probability density function, it holds:

N
(
xk : x+k ,P

+
k

)
=

(2π)
nx
2

|Pk|
1
2

exp
[
−1

2
(
xk− x+k

)T (P+
k

)−1 (xk− x+k
)]

(3.21)

In the same way, Eq. (3.19) can be appropriately rewritten by exploiting the properties

of exponential functions:

N
(
xk : x+k ,P

+
k

)
=

kp exp

{
−1

2

[
δz

T (Rk)
−1

δz+

+δ
−
x

T (P−k
)−1

δ
−
x −δ

−
z

T (HT
k P−k Hk +Rk

)−1
δ
−
z

]} (3.22)

where kp is an appropriate constant, and the symbol δ indicates the deviation between

the outcome and the expected value.

From the expansion and comparison of Eq. (3.21) and Eq. (3.22), it is possible to

obtain two important relationships:

P+
k
−1

= HT
k R−1Hk +P−k

−1 (3.23)

P+
k
−1x+k = HT

k R−1
k zk +P−k

−1x−k (3.24)
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Deriving x+k from Eq. (3.24), substituting P−k
−1 with the expression obtainable from

Eq. (3.23), and applying the following matrix inversion lemma on the second member of

Eq. (3.23):

(
HT

k R−1Hk +P−k
−1
)−1

= P−k −P−k HT
k
(
HkP−k HT

k +Rk
)−1

HkP−k (3.25)

it is possible to obtain also the following expression:

x+k = x−k +P−k HT
k
(
HkP−k HT

k +Rk
)−1 (

zk−Hkx−k
)

(3.26)

Rewriting and collecting the last two expressions, it holds:

Kk = P−k HT
k
(
HkP−k HT

k +Rk
)−1

(3.27)

x+k = x−k +Kk
(
zk−Hkx−k

)
(3.28)

P+
k = P−k −KkHkP−k (3.29)

where the matrix Kk is known as the Kalman gain. Equations from Eq. (3.27) to Eq.

(3.29) constitutes the updating or filtering stage of the Kalman filter.

For deriving the prediction scheme it is necessary to rely on the explicit computation

of the integral in Eq. (3.6):

N
(
xk+1 : x−k+1,P

−
k+1

)
=

∫
N
(
xk : x+k ,P

+
k

)
N (xk+1 : Fxk,Qk)dxk (3.30)
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It is verifiable that the integral in Eq. (3.30) have the following result:

k′p exp
[
bT

p

(
P+

k
−1

+FT
k Q−1

k Fk

)
bp− x+k

T P+
k
−1xk + xT

k+1Q−1
k xk+1

]
(3.31)

where

bp = P+
k
−1x+k +FT

k Q−1
k xk+1

and k′p is an appropriate constant.

As the prior distribution is Gaussian, it holds:

N
(
xk+1 : x,k+1P−k+1

)
= k′p exp

[
−1

2
(
xk+1− x−k+1

)T (P−k+1

)−1 (xk+1− x−k+1

)]
(3.32)

The expansion and comparison of Eq. (3.30) and Eq. (3.22) leads to two fundamental

relationships:

x−k+1 = Fkx+k (3.33)

P−k+1 = FkP+
k FT

k +Qk (3.34)

Equation (3.33) and Eq. (3.34) constitute the prediction stage of the Kalman filter.

An alternative way for expressing the equations useful for the updating stage of the

Kalman filter exploits the following theorem [47]: If xk and zk are two random variables,

distributed according to a multivariate Gaussian distribution, then the distribution of xk

conditional on zk is multivariate normal with the following mean and covariance matrix:
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x+k = x−k +PxzkP−1
zzk

(zk− zk) (3.35)

P+
k = P−k −PxzkP−1

zzk
Pzxk (3.36)

where it holds:

Pxzk = E
[[

xk− x−k
]
[zk− zk]

T
]

(3.37)

Pzxk = E
[
[zk− zk]

[
xk− x−k

]T
]

(3.38)

Pzzk = E
[
[zk− zk] [zk− zk]

T
]

(3.39)

The developed observer requires the satisfaction of several assumptions. Other as-

sumptions that emerge from the theoretical development regard the knowledge of the

distribution of the process noise and the measurement one for each considered time

sample. Moreover, the initial prior distribution of the state has to be guessed. Notwith-

standing, the broad usage of this observer for many applications has revealed its very high

robustness to slight alterations of the nominal conditions for which the filter is optimal.

This statement holds especially with regards to the Gaussianity, whiteness and mutually

independence of the process and measurement noises. Their covariance matrices, which

should be known for a correct state estimation, are often chosen efficiently after a manual

tuning.

However, if the observed system has an actual nonlinear behavior, the usage of the

Kalman filter is highly discouraged. Nevertheless, it is quite evident that also a nonlinear

dynamics is approximable by a linear model for a certain amount of time depending on



84 Estimation of attitude, angular rate and inertia ratios

the local slope of the function that describes the actual nonlinear dynamics. In particular,

if the sampling frequency is sufficiently high such that the numerical derivative of that

function remains almost constant, then an accurate state-space model as in Eq. (3.2) and

in Eq. (3.3) is efficiently approximated by:

xk+1 ≃ f (x+k )+Fk
(
xk− x+k

)
(3.40)

zk ≃ h(x−k )+Hk
(
xk− x−k

)
(3.41)

where now it holds:

Fk =
∂ f
∂xk

∣∣∣xk=x+k

(3.42)

Hk =
∂h
∂xk

∣∣∣xk=x−k

(3.43)

Thus, it is easy to verify that the usage of the Bayes formula leads to filter equations

that are formally identical to the ones shown from Eq. (3.27) to Eq. (3.29), and Eq. (3.33)

together with Eq. (3.34). The set of these formula constitutes the so-called extended

Kalman filter (EKF), which is probably the most used state observer in practice. With

the EKF, the nonlinear state-space model of the system is approximated to the first

order of its Taylor’s series expansion. Thus, also in the case in which all the other basic

assumptions of the Kalman filter are satisfied, the accuracy of the final estimation will

suffer from that approximation.

If the observed system is highly nonlinear, the first order approximation could not be

sufficient to assure the filter stability or satisfactory results concerning accuracy.
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In that case, it is possible to consider higher orders of the above Taylor’s series

expansion. However, this kind of approach is rare. Indeed, this way requires the explicit

computation of at least the Hessians of the functions f and h. For that reason, approaches

that involve the usage of the unscented transform [48] are typically preferable.

3.1.2 Unscented Kalman filter

Referring to the idea of Monte Carlo sampling the posterior distribution of the state

variables, the availability of a high number of predicted values of the state can lead

to a decent approximation of the actual prior distribution at the immediately future

instant. Indeed, a famous statement indicates that it is much more easier to approximate

a probability distribution than a nonlinear transformation [49].

A set of deterministic samples of the state is chosen to represent its posterior distribu-

tion. Thus, also a set of weights should be considered to obtain that the sample mean

and covariance of these samples, called sigma points, coincide with the posterior mean

and covariance of the state. To avoid biased estimates it is necessary that the sum of the

weights be equal to one:

Nσ

∑
i=0

Wσi = 1 (3.44)

where Wσ i is the i-th sigma point and Nσ is the number of sigma points. One 2nx-

dimensional set that respect the above condition is the following one:
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χi = x+
(√

nxP
)

i

Wσi = nx/2

χnx+i = x−
(√

nxP
)

nx+i

Wσnx+i = nx/2 (3.45)

where the notation
(√

nxP
)

i indicates the i-th column of the matrix
√

nxP

Sigma points belonging to this set have the same weight and are symmetrically

distributed on the covariance contour. If the moments of the set are the same of the

ones of the represented distribution they are optimal, otherwise they will represent an

approximate distribution. For instance, in [50] it is shown that the fourth-order moment

of the set of symmetric sigma points in Eq. (3.45) is equal to nxP2, while for Gaussian

distributions is equal to 3P2. Thus, the symmetric set of sigma points is capable of

approximately representing a Gaussian distribution. To capture the fourth-order moment

it is possible to introduce one additional sigma point. For instance, it is feasible to

consider the following set:
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χ0 = x

Wσ0 =Wσ0

χi = x+
(√

nx

1−Wσ0

P
)

i

Wσi =
1−Wσ0

nx

χnx+i = x−
(√

nx

1−Wσ0

P
)

nx+i

Wσnx+i =
1−Wσ0

nx
(3.46)

If Wσ0 is set equal to (1−nx/3), the fourth-order moment of the set becomes identical

to the one of the Gaussian distribution. Thus, at least from a theoretical point of view, it

is possible to represent any distribution by the appropriate choice of the sigma point set.

The weight Wσ0 in Eq. (3.46) can be set arbitrarily to increment or decrement the

spread of the sigma points about the expected value of the state. Note that also negative

values are selectable because the sigma points represent a probability density function

but, clearly, they are not.

Another possible set of sigma points is findable in [51]:
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χ0 = x

Wσ0 =
α2

W −1
α2

W
+1−α

2
W +βW

χi = x+
(√

α2
W nxP

)
i

Wσi =
1

2α2
W nx

χnx+i = x−
(√

α2
W nxP

)
nx+i

Wσnx+i =
1

2α2
W nx

(3.47)

where αW is the spreading parameter, and βW is a scaling parameter used to appropriately

match some of the higher order moments of the actual distribution. The values for αW

should be between 1×10−4 and 1, while the optimal βW for Gaussian distributions is

equal to 2.

For reducing the number of involved sigma points without affecting the accuracy

of the distribution representation, [52] presents an algorithm for sampling nx +1 sigma

points that lie on a hypersphere centered in the mean value of the state:

1. Choose Wσ0 between 0 and 1

2. Choose a weight sequence:

Wσi =
1−Wσ0

nx +1
(3.48)

3. Initialize vector sequence as:

χ
1
0 = [0] , χ

1
1 =

[
− 1√

2Wσ1

]
, χ

1
2 =

[
− 1√

2Wσ1

]
(3.49)
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4. Expand vector sequence for j = 2,3, ...,nx according to

χ
j

i =



 χ
j−1

0

0

 for i = 0 χ
j−1

i

− 1√
j( j+1)W1

 for i = 1, ..., j

 000 j−1

− 1√
j( j+1)W1

 for i = j+1

(3.50)

Note that each sigma point except the 0− th has the same weight and lies on the

hypersphere of radius
√

n/(1−W0). Clearly, the complete sigma points are obtained at

any sample time k summing χ
j

i to the current mean of the state

The selected set of sigma points is subjected to a non linear transformation, that

could be represented by the function f or by the function h in Eq. (3.3) and in Eq.

(3.2). Thus, the mean and the covariance of the transformed sigma points is calculated to

approximate the distribution of the corresponding transformed random variable. This

process is referred as unscented transform.

To realize the approximation level of this operation, the Taylor series expansion of

the mean z̄ as a function of the state x is given below:

z̄ = E[h(x̄+ e)] = h(x̄)+E

[
D(1)

e h+
D(2)

e h
2!

+
D(3)

e h
3!

+ ...

]
(3.51)

It is straightforward to verify that, truncating the series to the second order, it holds

z̄ = h(x̄)+ x̄D(1)
e h+PD(2)

e h (3.52)
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Thus, it is necessary to have correct information about the first two moments of the

distribution of x to obtain a second order approximation of z̄.

A similar relation holds for the covariance:

ΣΣΣz =H(x)ΣΣΣxHT (x)+E

[
D(1)

e h(D(3)
e h)T

3!
+

D(2)
e h(D(2)

e h)T

2×2!
+

D(3)
e h(D(1)

e h)T

3!

]
+

−E

[
D(2)

e h
2

]
E

[
D(2)

e h
2

]T

+ ...

(3.53)

Here, it is necessary to have correct information about the first four moments of the

distribution of x to obtain a second order approximation of ΣΣΣz.

Sigma points are chosen to match the first two moments of the x distribution, and in

some case can even match the first four moments.

The unscented transform involves the knowledge of the entire transforming nonlinear

function, and of at least two moments of the transforming variable distribution. Thus, a

filter based on the unscented transform guarantees an accuracy of the second order for

the state mean, and of the first order for the state covariance.

The scheme of the filter is the following:

1. calculate the sigma points set χ
+
k from a-posteriori estimate of the state mean x+k ,

according to one of the Equations (3.45), (3.46), (3.47), and (3.50)

2. propagate sigma points through the non-linear dynamics of the system:

χ
−
k+1 = f (χ+

k ) (3.54)
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3. calculate mean and covariance of the propagated sigma point

x̄−k+1 =
L

∑
i=0

Wσi χ
−
ik+1

(3.55)

P−k+1 =
L

∑
i=0

Wσi

(
χ
−
ik+1
− x̄−k+1

)(
χ
−
ik+1− x̄−k+1

)T
+Rk+1 (3.56)

where L−1 is the cardinality of χ
+
k ;

4. recalculate the sigma points set χ
−
k+1 from a-priori estimate of the state mean x−k+1

5. calculate the so-called innovations:

Z−k+1 = h
(
χ
−
k+1

)
(3.57)

6. calculate innovation mean and covariance, and cross-covariance with the state

x−k+1:

z−k+1 =
L

∑
i=0

WσiZ
−
ik+1

(3.58)

Pzzk+1 =
L

∑
i=0

Wσi

(
Z−ik+1

− z−ik+1

)(
Z−ik+1

− z−ik+1

)T
(3.59)

Pzxk+1 =
L

∑
i=0

Wσi

(
Z−ik+1

− z−ik+1

)(
χ
−
k+1− x̄−k+1

)T (3.60)

Pxzk+1 =
L

∑
i=0

Wσi

(
χ
−
k+1− x̄−k+1

)(
Z−ik+1

− z−ik+1

)T
(3.61)

7. update the estimates of mean and covariance:

x+k+1 = x−k +Pxzk+1P−1
zzk+1

(zk+1− zk+1) (3.62)

P+
k+1 = P−k+1−Pxzk+1P−1

zzk+1
Pzxk+1 (3.63)
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The steps above describe the so-called unscented Kalman filter. From the computa-

tional point of view, the critical step is the computation of the sigma points, in which the

covariance matrix P appears within square root. Thus, P has to be semidefinite positive;

Cholesky decomposition, meaning finding V such that

P =VV T (3.64)

is the most used technique to compute
√

P in unscented Kalman filter applications.

Evidently, the computation complexity increases with the dimension of the state vector

and, thus, with the number of sigma points that need to be propagated.

3.2 Compressive sampling for signal recovery

State observers have very interesting properties of optimality in the estimation of the

system dynamics. These properties are essentially related to the combination of the

information contained into a mathematical approximate model of the real system, and

into a set of sequential measurements of sensitive quantities depending on the dynamics.

In particular, with regard to Kalman filters, it has been shown that all the history of the

measurements contributes to the state learning by sequentially updating information

coming from a Markov process like the state equations.

Sudden interruptions of the measurement availability influence negatively this optimal

chain of prediction and updating operations. From a practical point of view, the estimation

error starts to diverge until new measurements are available. However, if the error have a

slow convergence to zero, for instance because of the non strict Gaussianity of the process

and measurement noises, the global quality of the estimation becomes insufficient.
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For instance, it is possible to consider the data in Fig. 1.8 after the application of the

backface culling technique; raw attitude information can be achieved from the detectable

features at any time sample in which three or more characteristic points are visible.

As mentioned in the previous chapter, given the positions of three different features

at a given sample time k in the frame C, one can define two connecting vectors, Cννν i

and Cνννu, whose cross product is the vector Cννν j, which is perpendicular to both. A third

column vector, Cνννk, can be simply obtained through another cross product between Cννν i

and Cννν j. Then, the orientation of a body-fixed reference frame F, which (in general)

is different from the principal reference frame B, with respect to the inertial frame I, is

given by the following expression:

IACk
CAFk =

IAFk =
[

C
ν̂νν i

C
ν̂νν j

C
ν̂ννk

]
∈ SO(3) (3.65)

A similar expression can be found in Eq. (1.2). Vectors C
ν̂νν i,

C
ν̂νν j, and C

ν̂ννk are the

unit vectors corresponding to Cννν i, Cννν j, and Cνννk, respectively. Moreover, it is reminded

that Eq. (1.14) holds; hence, C and I have the same orientation by construction.

A non-singular mapping between an element of the SO(3) group and a unit quaternion

always exists (see Appendix B.1). This mapping has been shown in Eq. (1.7) for the

orientation of I relative to B. However, the aforementioned mapping is valid for any

considered reference frames.

At a new instant, e.g. k + 1, the visible features can be different from the ones

visible at k. Thus, the vectors connecting the features define a new coordinate system

F′. However, assuming the knowledge of a model of the target, and thus of the relative

positions of all the detectable features (first approach in subsection 1.2.1), it is possible

to evaluate the orientation of F by exploiting the knowledge of matrix FAF′ . The latter

matrix is constant and depends only on the layout of the features on the target surface.
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The resulting attitude quaternions FqI associated to IAT
F are shown in Fig. 3.1. The

reference frame F has been defined at the initial sample time by the first, third, and fourth

feature defined in Eq. (1.13).

The fourth dimensional signal shown in Fig. 3.1 presents many missing samples

because in the relevant time samples three of the five considered features are hidden to

the observer on the chaser. The Stanley’s algorithm depicted in the subsection 1.1 have

been applied for any part of the signal. However, the sign of the first quaternion sample

time [s]

0 50 100 150 200

q 3

-1

0

1
0 50 100 150 200

q 2

-1

0

1
0 50 100 150 200

q 1

-1

0

1
0 50 100 150 200

q 0

-1

0

1

Figure 3.1 Example of raw attitude information
(
FqI

)
. The amplitude of the noise on the

coordinates of the features has been set to 30 mm for each coordinate.
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for each part had to be chosen randomly. This aspect will imply considerations that will

be further discussed in the next sections. The amplitude of the noise on the coordinates of

the features has been set to 30 mm for each coordinate, according to the actual accuracy

of existing stereo-vision systems (see subsection 1.2.2 for details).

The attitude of the target is absolutely sufficient for observing its angular rate because

of the direct correlation between the two quantities. However, the presence of so many

missing samples prevent from the usage of the signal as a set of measurements for feeding

Kalman filters. Thus, the preliminary recovery of the missing attitude information has a

fundamental importance for the further estimation of the global rotational state of the

target. However, some assumptions on the nature of this attitude signal have to be made

to perform the recovery.

An extensive treatment of attitude dynamics can be found in Appendix B.2; however,

from Eq. (1.11) it can be deduced that the angular rate of a torque-free body is a

continuous, differentiable, and periodic function of time. Moreover, its Lambert’s series

expansion, shown in Eq. (1.12), is convergent. Approximating the function by truncating

the series at the nor-th order, with nor positive and finite, the angular rate is approximately

a linear combination of trigonometric functions.

Thus, the frequency spectra of the components of the angular rate vector are ap-

proximately sparse. Alternatively, it is possible to state that the angular rate signal is

approximately sparse in the frequency domain.

The attitude of the target is obtainable from the integration of Eq. (1.6). Altought it

is very difficult to find a closed form solution of this differential equation, there are not

evident contraindications in assuming that also quaternions are approximately sparse in

frequency domain. Indeed, the numerical integration of Eq. (1.6) with an explicit method

like the Euler’s one leads to evidence that each component of the quaternion at the future

time sample BqIk+1 is approximately a linear combination of trigonometric functions,
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whose coefficients are proportional to the components of the current quaternion sample
BqIk . In addiction to the aforementioned theoretical evidences, the assumption of sparsity

of attitude signals in the frequency domain is also supported by simulation results [53].

The recovery of sparse signals affected by noise is a well known task in the field of

image processing and telecommunications. The developed methods are covered by the

so-called compressive sampling (CS) theory, whose basics will be discussed in the next

subsection for illustrating their application for attitude recovery. In the next subsections

of this chapter, each component of the chosen attitude parameterization for the target

will be considered as a separated mono-dimensional signal that have to be recovered.

3.2.1 Theoretical basis

In general, a noisy measured signal with missing samples s ∈ Rps can be modeled as:

s = Sσ +ηs (3.66)

where σ ∈ Rms represents the unknown original signal, ηs represents the noise, and

S is a ps×ms matrix that can be defined using the following expression:

STS= diag(τ) (3.67)

where τ is an array whose elements τ j, j = 1,2...,ms are equal to zero when a lack

of attitude information is associated with the time instant t j. Otherwise, τ j is equal to

one. Using these definitions, one can find that S must be a matrix whose columns are null

when the column index corresponds to a time instant with a lack of attitude information.

Additionally, it is easy to verify that the following equation holds, SST = Ips , where Ips

is the ps× ps identity matrix.
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The theory of CS addresses the problem of recovering a signal that is approximately

decomposable into a linear combination of a small number of elementary functions of

time. When a sufficient number of measurements of the signal is available, it is possible

to assume the parametric forms (at least) of the functions that compose the signal. This

result leads to the definition of an arbitrary-but-finite number of unit-norm signals that

might contribute to the signal to be recovered. Finding the most relevant elementary

signals, which are also called atoms, corresponds to the statement and solution of an

optimization problem. In particular, it is desirable to find the smallest possible number

of atoms whose linear combination optimally fits the available measurements.

All of the atoms are grouped into a set that is called a dictionary, whose properties

can be easily examined via the associated synthesis matrix. The dictionary synthesis

matrix Φ is defined as a representation of the linear mapping between certain complex

coefficients c ∈ Cns and the original signal σ . An interesting dictionary is the so-called

Fourier dictionary; the synthesis matrix Φ of this dictionary is given by the following

formula:

σk =
ns−1

∑
u=0

c(u)
√

ns
ei 2π

ns uk ∀k = 0,1, ...,ms−1 (3.68)

Φk,u =
1
√

ns
ei 2π

ns uk ∀k = 0,1, ...,m−1 ∧ ∀u = 0,1, ...,ns−1 (3.69)

When ms is equal to ns, the linear mapping Φ : Cns → Rms becomes the so-called

inverse discrete Fourier transform (IDFT) multiplied by the normalization constant ns.

Additionally, it is possible to define the dictionary analysis matrix Φ∗ as the conjugate-

transpose of Φ, showing that when ms = ns the linear mapping Φ∗ : Rms → Cns becomes

the so-called discrete Fourier transform (DFT). This property holds because of the

orthogonality of the matrix Φ. It is defined the coherence parameter as follows:
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ϑc = max
ι ̸=κ

∣∣∣∣∣ms−1

∑
k=0

Φk,ιΦk,κ

∣∣∣∣∣ (3.70)

where the Fourier dictionary is found to be completely incoherent (ϑc = 0), which

is, in general, a very useful property for a dictionary because the atoms are linearly

independent. This result implies that it is easier to find the atoms that compose the

original signal. On the contrary, if two atoms are very similar, it is harder to determine

the separate contributions of each of them. Note that in the common case of ns > ms,

the dictionary has a null coherence because of the well-known orthogonality of sine and

cosine waves.

Based on these definitions, Eq. (3.66) can be conveniently rewritten as:

s = SΦc+ηs = Φ̃c+ηs (3.71)

Equation (3.71) proposes the problem of estimating the coefficient vector c from a

noisy signal with missing samples s. This problem is obviously ill-posed; a naive attempt

to solve it could be formulated as follows:

argmin
c
∥c∥2

2 subject to s = Φ̃c (3.72)

The problem formulated in Eq. (3.72) could be solved, for example, using the

common Gauss method; however, for signal recovery pursuit, the solution is certainly

inaccurate. For example, adopting the Fourier dictionary and obtaining ΦΦ∗ = nsIns , the

solution to the problem in Eq. (3.72) becomes:

c =
1
ns

Φ
∗ST s (3.73)
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from which it is easy to show that the product ST s produces a signal with missing

samples substituted by zero values. Furthermore, because the solution is not (in general)

sparse, i.e., most of the coefficient values are far from zero, one obtains only another

representation of a disguised noisy signal. Thus, a clever approach will introduce some

regularizer that can induce sparsity in the coefficient vector. Therefore, a problem that is

optimal could be stated as follows:

argmin
c
∥c∥0 subject to ∥s− Φ̃c∥2 ≤ ε0 (3.74)

where ε0 is a reasonable tolerance of the estimation error and the l0-norm is defined as

the number of non-zero elements of the argument. Unfortunately, obtaining a solution

to this problem requires searching for a solution among all possible combinations of

the non-zero elements of c. For this reason, it is appropriate to use a relaxation of the

problem, which leads to the following problem:

argmin
c
∥c∥1 subject to ∥s− Φ̃c∥2 ≤ ε1 (3.75)

where ε1 depends on ε0 and the l1-norm is defined as the sum of the elements of the

argument.

The problem in Eq. (3.75) is equivalent to the one in Eq. (3.74) under certain

restrictions that are synthesized by the so-called restricted isometry property (RIP) [54].

This last condition can be stated as: let Φ̃s a matrix composed by ss < ns columns of Φ̃,

a positive constant δs < 1 exists such that for every sub-matrix Φ̃s and for every sparse c

with only ss non-null elements, it holds:



100 Estimation of attitude, angular rate and inertia ratios

(1−δs)∥cs∥2
2 ≤ ∥Φ̃scs∥2

2 ≤ (1+δs)∥cs∥2
2 (3.76)

where cs is the vector of the actual non-null elements of c. From a practical point of

view the property in Eq. (3.76) requires that if the vector to be reconstructed has actually

ss non-null elements, all the possible sub-matrices of Φ̃ with ss columns should have a

l2-norm that is not too far from one. This means, in other words, that the columns of Φ̃

should not be too similar.

Evidently, for a completely incoherent dictionary like the Fourier one, the RIP is

satisfied for δs equal to zero. Thus, if the l2-norm of any appropriate sub-matrix of Φ̃

is equal to one, the relaxed problem in Eq. (3.75) is capable of recovering the sparse

vector c with errors bounded by ε1. Using the Fourier dictionary, this occur if there are

not missing samples on measurements s, because S becomes an identity matrix.

If missing samples occur, the presence of null columns on S leads to a slight reduction

of the l2-norm of the sub-matrices of Φ̃. Clearly, the entity of this reduction depends

mainly on the number the percentage of missing samples contained into the signal.

For instance, considering that the 50% of the samples are missing, which is a very

high percentage, the l2-norm of a sub-matrix of Φ̃ with only three columns is coarsely

0.75, which is a sufficiently high value for the satisfaction of the RIP. If the number of

considered columns increases, then also the l2-norm of the sub-matrix grows.

Note that the problem in Eq. (3.75) is convex; thus, it has only one suitable solution,

if a solution exists. However, a more convenient method to solve this problem is to write

it in its Lagrangian form:

argmin
c

1
2
∥Φ̃c− s∥2

2 +λ∥c∥1 (3.77)
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The regularization parameter λ is defined as a penalization parameter: when λ is

equal to zero, the solution of the problem is a coefficient vector that accurately represents

the signal s; however, the entire noise vector is preserved and contained in the coefficients.

When λ →+∞ the only coefficient vector that can solve the problem is c→ 0, which

represents a null constant signal. In other words, for higher values of λ , the signal will

be smoother but the recovery will be less accurate.

The problem stated in Eq. 3.75 is known as the basis pursuit denoising problem;

several algorithms have been created to solve it. The problem stated in Eq. (3.77) is

known as the lasso problem; it directly descends from the basis pursuit problem.

To better understand the capabilities of lasso for recovering sparse signals including

noise, one can consider a dictionary synthesis matrix whose columns have a unitary

l2-norm. Unfortunately, the matrix Φ̃ does not have this property, because the matrix

S presents (in general) null columns. However, without any loss of generality, one

can re-normalize the column of the matrix Φ̃, contextually multiplying the norms of

the columns by the relevant coefficients contained in c. After re-normalization of the

columns, the dictionary associated with the synthesis matrix Φ̃ has a non-null coherence

ϑc. However, the condition of having a null coherence is not mandatory: as stated in [55],

the fundamental condition that assures that an exactly sparse signal can be optimally

recovered with most of the existing algorithms is that a subset Λ of linearly independent

atoms in the dictionary that multiplies the support of the unique minimizer of the problem

stated in Eq. (3.77) should exist. In other words, all of the non-zero elements of the

optimal c, should be multiplied by only the mentioned subset of linearly independent

atoms Λ. This condition is met, at least for a sufficiently large value of λ , if the following

fundamental relationship holds [55]:

∥Φ̃∗(s−aΛ)∥∞ ≤ λ

[
1−max

γ ̸∈Λ

∥(Φ̃∗ΛΦ̃Λ)
−1

Φ̃
∗
ΛΦ̃γ∥1

]
(3.78)
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where matrix Φ̃Λ is the sub-matrix of Φ̃ that is composed by atoms belonging to the set

Λ, Φ̃γ is the generic γ-th column of Φ̃ that is not contained in Φ̃Λ, and

aΛ = Φ̃Λ(Φ̃
∗
ΛΦ̃Λ)

−1
Φ̃
∗
Λs

is intended as the best approximation of the signal using only the atoms contained in Λ.

Note that aΛ is obtained by multiplying Φ̃Λ to its Moore pseudo-inverse, and then to the

measured signal s with missing samples.

In Eq. (3.78) the quantity included in square brackets can be defined as the Exact

recovery coefficient ERC. Note that the relationship in Eq. (3.78) holds for some positive

λ if ERC is greater than zero. Note also that when λ is arbitrarily large, the estimated

signal becomes the null vector.

The ERC defines the extent to which a subset of linearly independent atoms in a

dictionary is different from any other subset in it. For example, in an entirely incoherent

dictionary (such as the Fourier dictionary), ERC = 1 holds. Therefore, to guarantee a

satisfying solution, the value of λ could be quite small. However, note that, although the

coherence of the dictionary is not null, it is sufficient that the signal to be estimated can

be represented as a combination of linearly independent atoms that are not too similar

to others in the dictionary. This situation can also occur if the coherence value ϑc is a

strictly positive value.

After all, this requirement of having different atoms is necessary also to the satis-

faction of the RIP. Hence, if the RIP is satisfied, it is reasonable to assume that also

the condition in Eq. (3.78) is respected for relatively low values of the penalization

parameter λ
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Signal recovery via basis pursuit is a very powerful tool for estimating the quantities

that directly depend on the corrupted measured signals; however, finding a fast algorithm

capable of accurately identifying the minimizer of the function in Eq. (3.77) can be

tough. Various algorithms base their strength on avoiding the high computation and

storage of dictionary synthesis matrix, which means that they include fast transformation

algorithms that map coefficients to signals and vice-versa. This process is inevitably

reflected in the choice of a suitable dictionary. For example, the Fourier dictionary is

very convenient because it is well-known that direct and inverse fast Fourier transform

algorithms can easily be implemented within the main algorithm.

The chosen algorithm is an alternative version of the iterative SALSA, the acronym

of split augmented Lagrangian shrinkage algorithm [56]. The reasons for this choose

reside in the speed, computational efficiency, and ease of implementation.

3.2.2 Split augmented Lagrangian shrinkage algorithm

The two most important theoretical contributions to the selected algorithm are so-called

variable splitting and the use of the augmented Lagrangian function. Variable splitting is

a method for solving a problem of the following form:

min
u f

f1(u f )+ f2(g(u f )) (3.79)

where f1, f2, and g are real functions. Defining g(u) = v, the previous problem

becomes:

min
u f ,v f

f1(u f )+ f2(v f ) subject to g(u f ) = v f (3.80)
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Thus, this first contribution consists of introducing a new variable in the optimization

problem. The second contribution of SALSA can be applied, for example, to the

following general constrained optimization problem:

min
za

Ea(za) subject to Waza−ba = 0 (3.81)

The augmented Lagrangian function for this problem can be defined as follows:

Ea(za)+ψ
T
a (ba−Waza)+

µa

2
∥Waza−ba∥2

2 (3.82)

where ψa is the Lagrange multiplier’s array and µa ≥ 0 is another penalization parameter.

Minimizing the function in Eq. (3.82) corresponds to giving the constraint in Eq. (3.81)

extra weighting.

Note that the quantity in Eq. (3.82) can be recast in the following form:

Ea(za)+
µa

2
∥Waza− l∥2

2 (3.83)

Now, the described contributions can be applied to Eq. (3.77). The result of variable

splitting is as follows:

argmin
c,v f

1
2
∥Φ̃c− s∥2

2 +λ∥v f ∥1 subject to c− v f = 0 (3.84)

where, by substituting c in the l1-norm, we obtain the new variable v f , which is con-

strained to have values equal to those of c. The function to be minimized appears to be

a function of the vector z =
[
c v f

]T ; comparing this definition to the problem in Eq



3.2 Compressive sampling for signal recovery 105

(3.81), it is possible to find that Wa = [Ins − Ins] and ba = 0. Thus, recasting the problem

using the augmented Lagrangian function, the following is obtained:

argmin
c,v f

1
2
∥Φ̃c− s∥2

2 +λ∥v f ∥1 +
µa

2
∥c− v f − l∥2

2 (3.85)

In this formulation of the problem, the high value of the parameter µa forces the

equality of c and v f , compensating for the introduction of a new auxiliary variable.

However, the problem in Eq. (3.85) is difficult to solve because both variables, c

and v f , are in the norm. One way to address this issue is to minimize the function for

only one variable while holding the other fixed; this is repeated alternately for the two

variables for a fixed number of iterations.

This algorithm is the proposed SALSA algorithm. The algorithm consists of the

following operations once λ ,µa, and some arbitrary initial guesses v f0 and l0 are chosen:

• cν+1 = argminc ∥Φ̃c− s∥2
2 +µa∥c− v fν − lν∥2

2

• v fν+1 = argminv f
λ∥v f ∥1 +

µa
2 ∥cν+1− v f − lν∥2

2

• lν+1 = lν − (cν+1− v fν+1)

• ν ← ν +1

These basic steps can be solved in a closed form: the first step represents a classic

constrained least-squares optimization problem, as the function to be minimized is a

strictly convex quadratic function. The solution is as follows:

cν+1 = (Φ̃∗Φ̃+µaIns)
−1[Φ̃∗s+µa(v fν + lν)] (3.86)
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The second step is minimization of a function that is a pure denoising function,

meaning that the parameter λ is the regularizer of the equivalence condition between a

known vector cν+1− lν and the variable v f : if λ = 0, v f = cν+1− lν ; if λ is bigger than

zero, it induces sparsity in v f .

The closed-form solution to this kind of problem is well known [57]. Specifi-

cally, when the regularizer is applied to the l1-norm, the solution is the so-called soft-

thresholding function.

This non-linear function is defined for every component of the argument array ∆:

soft(∆i,L) = sign(∆i)max{|∆i|−L,0} (3.87)

Then, the solution to the second step is:

v fν+1 = soft
(

cν+1− lν ,
λ

µa

)
(3.88)

To obtain a simpler algorithm, this method can be slightly modified, according to

[58], by changing the variables u fν = v fν + lν . Thus, Eq. (3.86) can be written as follows:

cν+1 = (Φ̃∗Φ̃+µaIns)
−1(Φ̃∗s+µau fν ) (3.89)

Using the matrix-inverse lemma, the matrix inversion above can be simplified:

(Φ̃∗Φ̃+µaIna)
−1 =

1
µa

Ins−
1
µa

Φ̃
∗(µaIps + Φ̃Φ̃

∗)−1
Φ̃ (3.90)

Then, because the following equations hold (as in the case of using the Fourier

dictionary):
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SST = Ips (3.91)

Φ̃Φ̃
∗ = nsIps (3.92)

the expression can be turned into

(Φ̃∗Φ̃+µaIns)
−1 =

1
µa

Ins−
1

µa(µa +ns)
Φ̃
∗
Φ̃ (3.93)

and thus

cν+1 =

(
1
µa

Ins −
1

µa(µa +ns)
Φ̃
∗
Φ̃

)
(Φ̃∗s+µau fν ) = u fν +

1
µa +ns

Φ̃
∗(s− Φ̃uν), (3.94)

which leads to:

cν+1 = u fν +
1

µa +ns
Φ
∗[ST s−diag(τ)Φuν ] (3.95)

Equation (3.95) shows that because a fast transform that maps coefficients to signals

and vice-versa exists (i.e., the direct and inverse fast Fourier transform), the explicit

computation of Φ and Φ∗ can be avoided, which allows the algorithm to be very fast and

efficient.

Then, the final algorithm obtained (gathering all of the equations presented in this

section) is as follows:
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• u fν+1 = soft(cν − lν ,λ/µa)+ lν

• cν+1 = (Φ̃∗Φ̃+µIns)
−1(Φ̃∗s+µau fν )

• lν+1 = u fν+1− cν+1

• ν ← ν +1

To implement the algorithm, it is still necessary to choose values for λ and µa, and

to specify the initial guesses for c0 and l0.

The presented algorithm has been used to recover the attitude of the target. In the

following it will be described the direct application of the theory for estimating the

rotational dynamics of the target.

3.3 Original estimation algorithms and results

The theoretic sections about state observers and compressive sampling techniques serve

as the basic background for the description of algorithms for the identification of the

rotational dynamics of the target from trajectories of its tracked points. As shown in

the section 1.2.1 two complementary datasets have been simulated. In particular, they

correspond to two different estimation conditions: in a first instance, few features of

the target are matched to a model of the shape of the object; in a second condition no

prior information is available about the target surface, but a larger number of features

are detectable. The same fundamental problem unites both the conditions, that is the

impossibility of having continuity in the input data. Some temporary lacks of data must

be taken into account. For instance, for the first tracking condition, the evaluation of a

raw attitude signal has been possible. An example of the result of this assessment is in

Fig. 3.1. However, it is evident the presence of relatively large time intervals in which no
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information is available. The condition of unavailability of data is indicated in this work

as occlusion.

Regardless of the tracking conditions considered, the missing attitude information

will be recovered by using compressive sampling techniques, then the estimated attitude

will be exploited for feeding unscented Kalman filters for the estimation of the angular

rate and mass distribution of the target.

What it changes between the two different approach is the way of evaluating the raw

attitude signal. Indeed, if no prior information about the shape of the target is available,

it is impossible to obtain the quaternions in Fig. 3.1. This statement holds because the

values of the quaternions depend on the particular considered body-fixed coordinate

system, which is attached to three particular features of the target. Thus, once the tracking

of these features is lost, it is also lost the information about the orientation of the system

attached to them. On the contrary, in the first tracking condition, this information is

obtained by the detected position of new features due to their known disposal relatively

to the hidden features. These concepts are schematically illustrated in Fig. 3.2

Hence, it must be found a parameter that describes the rotation of the body, which

should be independent of the particular set of considered features, but also should be

computable from their trajectories. Then, the state-space model of the target dynamics

has to be modified such that the relevant state observer can be fed with the new indirectly

measured attitude information.

3.3.1 First approach: few known features

Equation (1.7) shows that the two opposite quaternions represent the same attitude of

a body. Therefore, CS techniques described in the previous section are not directly

applicable to recovery of quaternion signals (such as those represented in Fig. 3.3).
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Figure 3.2 Illustration of the different implications on the proposed estimation algorithms accord-
ing to the characteristics of the available set of data. If the features have correspondence with
the one of a CAD model of the target, the attitude of one particular body-fixed frame is always
monitored. Otherwise, other motion descriptions must be found.

Actually, the recovery of the missing samples for these kinds of signals does not, in

general, lead to the restoration of a continuous attitude signal. In fact, once the sign of

the first value of the quaternions is chosen, the signs of the other (subsequent) values

are not freely selectable: when the signs are randomly selected, the attitude signal, in

general, presents abrupt changes. However, having fixed the sign for the first value, a

unique sequence of choices that leads to a smooth signal exists. In other words, the

assumption concerning the sparsity of the quaternions is valid only if the sign of each

value of the quaternions is properly selected. This selection is often made by exploiting

known algorithms, an example of which is Stanley’s algorithm that was presented in
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subsection 1.1. Unfortunately, these algorithms are not applicable when the quaternions

have missing samples.

The chosen approach to this problem consists of recovering all possible signals

produced by all possible choices of value signs of the signals. This principle relies on

the hypothesis of finding some criterion to identify the individual smooth signal that

represents the body attitude.
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Figure 3.3 Example of raw attitude information
(
FqI

)
. The amplitude of the noise on the

coordinates of the features has been set to 30 mm for each coordinate.



112 Estimation of attitude, angular rate and inertia ratios

0 10 20 30
time [s]

-1

-0.5

0

0.5

1

q
0

0000

0 10 20 30
time [s]

-1

-0.5

0

0.5

1

q
0

1001

Figure 3.4 Two possible sequences of same attitude information. The signal marked with 0000
consists of the first five pieces of FqI0 in Fig 3.3. The label 1001 indicates that the second and the
last pieces have inverted signs.

The quaternion signals that have missing samples can be considered a set of Np

pieces. Excluding the first piece, all of the other pieces may be marked with a Boolean

label. If no changes have been made to the sign of the values of the input pieces, all of

the labels are set to zero. On the contrary, whenever a sign change affects the values of a

specific piece, the Boolean label switches to one. Thus, by sorting all the Np−1 digits,

a set of labels that uniquely characterizes the relationship between a general sequence

and the original input sequence can be composed. An example of this labeling technique

is in Fig. 3.4, where the first five pieces of FqI0 in Fig. 3.3 are considered. The first

piece has not to be taken into account. Then, in Fig. 3.4 the signal marked with 0000 is

the original sequence, while the one marked with 1001 presents the second and the fifth

pieces with changed signs.

Based on these considerations, note that the number of all possible different signals

must be 2Np−1. These signals contain the same piece of information regarding the attitude

of the body.

Once all of the signals have been recovered, we must determine which criterion can

be used to identify the correct one.

For example, it can be assumed that the searched signal is the sparsest signal from

among the recovered signals.
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This assumption is supported by numerical simulations and by theoretical considera-

tions that were discussed at the beginning of the section 3.2. Furthermore, it is intuitive

that signals with abrupt variations have a more complex frequency spectrum than smooth

signals. Clearly, if these variations occur because the noise has a large amplitude, the

quaternions are not more sparse; however, in this case, it seems impossible to separate

the attitude information from the noise using any method.

The sparsity of the h-th signal can be quantified using, for example, a penalty score

calculated as follows:

PS = const1∥ch∥0 + const2∥ch∥1 (3.96)

where const1 and const2 are two steady gains, and ch is the vector of the coefficients

of the Fourier transform of the recovered h-th signal. Any reasonable score can be used

to make classifications of the signals. The score used herein has been proven to be valid

using numerical simulations.

Using this principle, one can find that if the number Np of pieces of quaternions

is large, the total number of piece-wise signals that should be recovered will increase

exponentially, which would make the explained idea inapplicable. For example, the

quaternions shown in Fig. 3.3 present Np = 28 pieces for each element, which means that

the overall number of signals that should be recovered would be roughly one hundred

million.

A suitable method for making the recovery procedure feasible consists of preliminar-

ily considering a relatively small number N′p << Np of pieces, and then, recovering all of

the resulting 2N′p−1 signals. This technique allows us to make a preliminary selection of

the best signals. Once one or more signals are selected using the score in Eq. (3.96), the

complete recovery is performed by adding new pieces considering both possible signs.
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Figure 3.5 Preliminary phase, N′p = 5: raw data (crosses) and recovered signal (red line).

Specifically, every intermediate recovery is followed by discarding the worst recovered

signals. At the end of this procedure, only the best signal remains.
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Figure 3.6 Values of penalty scores, as defined in Eq.(3.96); best recoveries in blue correspond to
1111 and 1100 label sets.
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Figure 3.7 Introduction of a new piece of quaternion: the component is added to the best recovered
signals with opposite sign.

Considering the quaternions shown in Fig. 3.3, a number N′p = 5 pieces of Fq0I is

considered. Note that the number N′p cannot be excessively low because insufficient

information concerning measurements leads to poor preliminary recovery. In Fig. 3.5

recovery for sixteen signals is shown. Each signal is characterized by a set of boolean

labels that specifies the relationship between the signal itself and the original input,

marked with 0000.
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Figure 3.8 Final best recovery of the quaternionFqI : raw data (blue crosses) and recovered signal
(red line).
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In Fig. 3.6, a bar chart showing the penalty scores for the recovered signals is

presented. Intuitively, the sparsest recovered signals are those marked with 1100 and

1111 (see also Fig. 3.5). However, it was challenging to predict which of the two signals

was actually the best. Therefore, they are both preserved for the next phase, in which the

6-th piece of Fq0I is added to the two best-recovered signals (see Fig. 3.7 for example).

The new signals could be recovered using the same method as employed in the

preliminary phase. Therefore, a new score calculated using Eq. (3.96) can be associated

with each recovered sequence so as to eliminate the worst cases. This process can be

stopped when all of the available input data are exploited. The complete recovered Fq0I

signal is shown in Fig. 3.8. Notice that the recovery is completely automated and doesn’t

need any external supervision.

Figure 3.9 depicts the complete recovery of four different quaternion signals derived

from distinct sets of initial angular rates and inertial properties of the benchmark space-
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Figure 3.9 Attitude recovery performed for different target conditions (see Tab. 3.1).
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CaseID BJ1
BJ2

BJ3
Bω01

Bω02
Bω03 εθ

1) 0.618 0.707 0.345 7.200 5.525 -1.624 0.503
2) 0.601 0.446 0.664 8.400 -0.263 2.860 0.508
3) 0.657 0.489 0.574 7.200 5.914 6.023 0.585
4) 0.518 0.461 0.720 6.000 6.600 4.440 0.591
M. unit: [-] [-] [-] [deg/s] [deg/s] [deg/s] [deg]

Table 3.1 Attitude error for different dynamic conditions of the target (algorithm’s output in
fig. 3.9); the standard deviation of the measurement noise is equal for each coordinate to 50 mm.

craft. Each simulation ran for 1500 s. Only the final parts of the signals are shown for

better illustrating the output quality. For these cases, the standard deviation of the noise

added to the feature coordinates increased to 50 mm for assessing the robustness of the

algorithm.

Parameters that characterize each of the cases are in Tab. 3.1. The latter table

presents also root-mean-square errors εθ (RMSE) for each attitude recovery. The attitude

estimation error eθ was defined by the following expressions:

δq = q⊗ q̂−1 (3.97)

eθ = 2cos−1(δq0) (3.98)

where q̂ is the estimated quaternion, and⊗ is the symbol employed to identify quaternion

multiplication (see Appendix B.1). Due to the complete generality of Eq. (3.97), no

indications about coordinate systems are given.

Table. 3.2 illustrates the RMSE for other six different recoveries. The graphical

outputs regarding these last scenarios are not shown since they do not provide remarkable

information for a deeper understanding of the algorithm capabilities.
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CaseID BJ1
BJ2

BJ3
Bω01

Bω02
Bω03 εθ

5) 0.295 0.781 0.551 7.200 0.253 -13.198 0.565
6) 0.531 0.473 0.703 8.400 0.545 0.458 0.577
7) 0.719 0.658 0.224 6.600 1.296 9.557 0.470
8) 0.745 0.512 0.427 6.000 -7.620 12.000 0.482
9) 0.742 0.521 0.421 -3.000 4.800 -2.700 0.686
10) 0.371 0.743 0.557 3.000 -4.800 -2.100 0.555
M. unit: [-] [-] [-] [deg/s] [deg/s] [deg/s] [deg]

Table 3.2 Attitude error for different dynamic conditions of the target; the standard deviation of
the measurement noise is equal for each coordinate to 50 mm.

From a brief analysis of the data presented in Tab. 3.1 and in Tab. 3.2 it appears that

attitude estimation errors are in the order of 5 ·10−1 deg. In particular, the mean value of

RMSE in the considered cases is equal to 0.552 deg, while the error range is from 0.470

deg to 0.686 deg

Making, for instance, a comparison with the method presented in [19] that, although

is a very effective method, is not fault-tolerant, the errors made in estimating attitude are

comparable. In [19], the noise on the feature coordinates is dependent on the relative

position between chaser and target. Indeed, the noise is added at the camera’s image

plane level. Two extremal noise conditions were examined. In particular, they considered

noise standard deviations equal to 10−4 and 10−5. As seen in Fig. 1.14 and in Fig. 1.13,

these two values correspond approximately to standard deviations equal to 100 mm and

10 mm for the depth coordinate, which is the most affected by noise. With the first

condition, the obtained attitude errors have been under 2.5 deg, while with the second

one, the errors have decreased to 2×10−1 deg.

On the other hand, the attitude recovery method proposed in this work provides,

before making use of state observers, attitude errors that are in the order of 5× 10−1

deg, having 50 mm of noise amplitude at coordinate level. After a comparison with the
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current state of the art, this result is quite encouraging to future practical applications of

this method.

Finally, certain considerations regarding the sample period should be made: the

value strictly depends on the type of sensor chosen for tracking the features of the

body. The recovery is reliable if the sampling frequency is sufficiently higher than the

highest significant frequency in the quaternion signal. Most torque-free space bodies

have a slowly oscillating attitude; thus, tracking sensors such as simple cameras often

have a high acquisition frequency. For example, a sampling frequency equal to 1 Hz is

considered sufficient, while a point tracking system can operate even up to 30−50 Hz.

The estimation of the rate from attitude information, i.e., from Eq. (1.8), requires the

evaluation of the quaternion’s derivative. Numerically performing the derivative of the

estimated signal produces unacceptable results because the recovered attitude signal still

contains high-frequency noise, which is drastically amplified in the numeric derivative.

For solving this issue, an unscented Kalman filter was implemented. The discrete-time

nonlinear dynamic system,

xk+1 = f (xk)+wk = xk +∆t

 1
2

BW k

(
B

ωωωk

)
BqI k

04×1

diag
(

BJJJk

)−1 [B
ωωωk ×

(
diag

(
BJJJk

)
B

ωωωk

)]
03×1

+wk (3.99)

zk = h(xk)+ vk =
FqBk⊗ BqIk + vk (3.100)

served as framework for the UKF. In Eq. (3.99) the state vector

xk =
[

BqIk
FqBk

B
ωωωk

BJJJk

]T

contains: the unit quaternion BqIk that describes the relative attitude between the principal

body frame B and the inertial frame I; the offset quaternion BqFk that describes the relative
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attitude between the body frame F attached to the features and B; the angular velocity
Bωωω of the body frame with respect to B; the column array BJJJ which entries are the

normalized principal moments of inertia of the target body. Moreover, ∆t indicates the

time step, and wk is the process noise.

The state equations for the UKF have been derived from Eq. (1.6), Eq. (1.9), and the

conservation of the principal inertia moments. Clearly, also the offset quaternion must be

constant.

Regarding Eq. (3.100), zk =
FqIk is the measurement vector (the recovered quater-

nions), the operator⊗ represents the quaternion multiplication, and vk is the measurement

noise.

The prediction and updating scheme of the UKF were detailedly described in section

3.1.2. In particular the chosen set of sigma points is the one in Eq. (3.50). Thus the

spherical simplex unscented transform was employed.

Note that because of the chosen state-space model of the system, at each completion

of the updating phase, the principal moments of inertia are normalized as well as the

quaternions involved. This brute-force operation for preserving quaternion norm is not

the most elegant approach but is proven to work generally well [59], [60].

An example of the final result of Kalman filtering the surrogate quaternion measure-

ments is depicted in Fig. 3.10: the components of the estimated angular rate are compared

to the ones obtained via simulation of the target attitude dynamics (see Appendix B.2).

The four results refer to the scenarios listed in Tab. 3.1. The estimated values of the

normalized inertia moments are shown in Fig. 3.11. The latter part of the figure puts in

evidence the simulated time needed by the observer to approximately learn the actual

inertia ratios. The estimation error is directly reflected into the accuracy in identifying

the angular rate and attitude. Notice that the mentioned time is different in each case,

and goes from 250 s (case 4) to 550 s (case 3, which seems to be the worst).
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Figure 3.10 Final estimation of the angular rate after Kalman filtering the recovered quaternions
in fig 3.9. Reference values of the angular rate components are represented by dashed lines.

.

Figure 3.11 Final estimation of the relative values of the principal moments of inertia after
Kalman filtering the recovered quaternions in fig 3.9. Reference values are represented by dashed
lines.
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CaseID εω1 εω2 εω3 εθ

1) 0.029 0.015 0.019 0.187
2) 0.080 0.036 0.098 0.203
3) 0.032 0.045 0.036 0.275
4) 0.093 0.085 0.016 0.139
5) 0.048 0.092 0.118 0.363
6) 0.053 0.099 0.036 0.398
7) 0.016 0.015 0.048 0.181
8) 0.017 0.041 0.051 0.171
9) 0.030 0.038 0.041 0.406
10) 0.008 0.016 0.065 0.176
M. unit: [deg/s] [deg/s] [deg/s] [deg]

Table 3.3 Angular rate and attitude estimation error after Kalman filtering; standard deviation of
the measurement noise is equal for each coordinate to 50 mm.

The estimation algorithm was also applied to the other recovered quaternions cor-

responding to scenarios listed in Tab. 3.2. To show the performances of the whole

approach, the final RMSE concerning the estimated attitude and each component of the

estimated rate, are listed in Tab. 3.3. These values were evaluated after the Kalman filter

convergence.

Analyzing the data shown in Tab. 3.3 it appears that the errors in the angular rate

estimation are approximately between 10−2 deg/s and 10−1 deg/s. Thus, the results

obtained with the presented algorithm are again comparable with the results obtained in

[19]. In such work, the angular rate estimation error was assessed between 10−2 deg/s

and 10−1 deg/s. However, these values have been obtained starting from data affected by

the minimum considered noise amplitude (10−5). In the presented work a 50 mm noise

amplitude was taken into account at coordinate level.

From Tab. 3.3, a new mean value of the attitude error was evaluated (0.3 deg). As

expected, the attitude estimation accuracy has been further improved after the non-linear

Kalman filtering stage.
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CaseID BJ1
BJ2

BJ3 ∆
BJ1 ∆

BJ2 ∆
BJ3

1) 0.6177 0.7068 0.3448 0.0000 0.0000 -0.0001
2) 0.6005 0.4462 0.6635 -0.0008 0.0013 -0.0001
3) 0.6570 0.4890 0.5738 -0.0001 -0.0001 0.0002
4) 0.5180 0.4614 0.7203 0.0000 0.0002 -0.0001
5) 0.2952 0.7806 0.5510 0.0016 -0.0026 0.0028
6) 0.5309 0.4729 0.7032 0.0004 0.0011 -0.0010
7) 0.7195 0.6575 0.2237 0.0030 -0.0029 0.0006
8) 0.7452 0.5123 0.4269 0.0002 -0.0001 -0.0003
9) 0.7421 0.5215 0.4212 -0.0003 -0.0013 0.0022
10) 0.3714 0.7428 0.5571 0.0032 0.0000 -0.0022
M. unit: [-] [-] [-] [-] [-] [-]

Table 3.4 Nominal normalized principal moments of inertia and difference beetwen nominal
value and estimation after convergence
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Figure 3.12 Mean and maximum estimation error for each angular rate component; the UKF
converges at about 1000 seconds

.

The mean estimated normalized principal moments of inertia after convergence J̄JJ are

compared to the reference values in table 3.4. The error in the inertia moment estimation

varies from 10−5 to 3.2×10−3. The mean error equals 9.6×10−4.

Finally, to show the convergence properties of the designed unscented Kalman filter,

the time behavior of mean and maximum angular rate estimation error in the considered
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scenarios is illustrated in Fig. 3.12. From the latter figure it can be noted that the error

level stabilizes at about 1000 s.

3.3.2 Second approach: no shape information

The assumption of having a model of the target object, for instance, a CAD (Computer

aided design) drawing, is realistic for certain cases. When the objects of interest are

fragmentation debris or foreign failed satellites, the mentioned knowledge must be

excluded. Moreover, mapping the in-situ detected features with the ones of the model

requires non-straightforward algorithms subjected to errors whose final effect is an

increase of the uncertainties on input data.

For those reasons, the development of a more general methodology remains a pressing

demand. As seen in the previous subsection, the knowledge of shape information

regarding the target allowed for the indirect measurement of the orientation of one

particular coordinate system that remains fixed to the body (see Fig. 3.2). This attitude

information is fundamental for the estimation of the dynamic rotational state of the

object.

The second approach discussed in subsection 1.2.1 consists in considering the 44

features in Fig. 1.6. However, all of them are not visible at the same instant. In particular,

Figure 3.13 Appearing and disappearing features typical of the second approach. Features 4 and
5 coincides with 6 and 7. The same holds for 1,2 and 3, which are the same of 13, 14 and 15.
However, no algorithm is exploited to recognize this fact. Occlusions contributes to this problem.
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Figure 3.14 Flow-chart describing the second estimation approach of the target rotational dynam-
ics

every time a feature appears in the field of view of the observer, the feature is marked as

a new one (see Fig. 3.13).

Then, once prior information regarding the target shape is not available, it arises

the necessity of a more global description of the finite rotations of the body. These

rotations occur between the poses that the target takes at each sample of the observation

time. Once an appropriate parameter is found, this should be evaluated from the detected

trajectories of features. At the same time, evidently, the parameter must be independent

by the considered set of features for its evaluation. Moreover, the evaluated parameter

will be necessarily corrupted by noise and missing samples. Thus, if it is sparse, the

evaluated parameter should be preprocessed via CS techniques (see section 3.2). Finally,

a state observer can be designed to estimate the global rotational state of the target. This

procedure, whose details will be given next, is resumed by the flow chart in Fig.3.14

Characterizing finite rotations from the noisy positions of a homologous point set

requires a consistent dimensionality of the set, at least for having an acceptable accuracy.

The number of points that could be tracked with well-known optical flow techniques,
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like the ones inspired by the work in [61], is typically very high. Moreover, the tracked

points do not need to be matched with the features of the model. Thus, the 44 points

shown in Fig. 1.6 do not have to correspond to natural features of the object for being

realistically detected by a pair of cameras.

The rotational motion of the target could be characterized from the set of homologous

feature by using some statements of the theory of rigid motions. As seen in chapter

2, The Mozzi-Chasles’ theorem states that the most general rigid body movement is

produced by a translation along an axis, called screw axis, and a rotation about that axis

[33]. Then, the displacement of any set of features may be represented according to these

two basic isometries:

C
ρρρ
′
i =

C
ρρρ i +

Cttt +Rêee,α

(
C

ρρρ i−C
ρρρg

)
(3.101)

where Cρρρg designates the position of the centroid of the set, while the symbol (′) indicates

that the entity refers to the displaced pose of the body. Equation (3.101) presents an

optimization program in the variables Cttt, which is the translation vector aligned with the

Euler’s axis êee, and Rêee,α , which is the matrix representing the body rotation through the

Euler’s angle α about êee.

It is evident that the parametrization consisting of Cttt and Rêee,α is highly redundant.

However, note that the actual values of these parameters are not dependent by the

considered set of features, but they characterize the displacement of any possible sets.

A similar but more compact parametrization is obtainable by following the approach

in [35]: the main idea that characterizes the latter part of the cited work is that finite

displacements are the result of the sum of infinitesimal displacements. Thus, similarities

between expressions that describe finite and infinitesimal motions should hold.
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The so-called kinematic fundamental formula, which is shown below, is the general-

ization of Eq. (3.101) for infinitesimal displacements:

ρ̇ρρ i = ρ̇ρρg +ωωω×
(

ρρρ i−ρρρg

)
= ρ̇ρρg +ωωω×dddi (3.102)

where dddi is the vector connecting the centroid of the set to the i-th feature belonging to

the set. Prescript C is removed for increasing readability. Indeed, Eq. (3.102) with all the

following expressions will have a general validity in any reference frame.

Angular rate ωωω is a very concise parameter for describing the infinitesimal rotational

motion of the object. ωωω does not depend on the velocity of the features but characterize

their speed and position. There is no possibility of finding ωωω directly from the location of

the features, but also the knowledge of their velocity is necessary. However, Eq. (3.102)

do not represent the unique source for identifying the angular rate.

The following equation gives the definition of the angular momentum of a set of unit

point masses:

∑
i

dddi× ρ̇ρρ i = Jgωωω (3.103)

where Jg is the inertia matrix of the feature set with respect to the centroid of the set. In

particular, it holds:

Jg =


∑i

(
d2

2i
+d2

3i

)
−∑i d1id2i −∑i d1id3i

−∑i d1id2i ∑i

(
d2

1i
+d2

3i

)
−∑i d2id3i

−∑i d1id3i −∑i d2id3i ∑i

(
d2

1i
+d2

2i

)
 (3.104)



128 Estimation of attitude, angular rate and inertia ratios

Hence, the angular rate of a rigid body may be obtained directly from Eq. (3.103), if

positions and velocities of some features are known. Actually, if uncertainties affect the

data, only an approximation of the real angular rate of the body will be provided. Indeed,

due to the uncertainties, the detected features do not belong rigorously to a rigid body.

Therefore, the higher the number of the detected features, the more the accuracy of the

angular rate estimation. This statement has been demonstrated, for instance, in [62].

Nevertheless, it is needed to find similar expressions for finite displacements. Evi-

dently, the composition of finite movement cannot be obtained via simple addition:

∆ρρρ i ̸= ∆ρρρg +α êee×dddi (3.105)

where ∆ρρρ i = ρρρ ′i−ρρρ i. However, one of the expressions of the famous Rodrigues’s rotation

formula [63] for spherical displacements states:

ddd′i−dddi = tan
(

α

2

)
êee×

(
ddd′i +dddi

)
(3.106)

In a complete analogy with the fundamental formula in Eq. (3.102), the expression

in Eq. (3.106) reveals the existence of an intrinsic description of the finite rotation of

a rigid body between two poses. In Eq. (3.106), the Gibbs representation of the axis-

angle parametrization ΩΩΩ = tan(α/2) do not depend on the features. Moreover, from the

definition of the vector dddi, it is possible to recast Eq. (3.106) in a form that is completely

similar to both Eq. (3.105) and Eq. (3.102):

∆ρρρ i = ∆ρρρg +ΩΩΩ×
(
ddd′i +dddi

)
(3.107)
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Therefore, it is possible to define a quantity that is very similar to the angular

momentum vector defined by Eq. (3.103):

∑
i

(
ddd′i +dddi

)
×∆ρρρ i = J′′g ΩΩΩ (3.108)

where J′′g have a similar structure to Jg in Eq. (3.104), but the components of the vector

dddi are substituted by the components of the vector ddd′i +dddi. The quantity J′′g /2 may be

physically interpreted as the inertia matrix of a virtual body whose contour is defined

by the midpoints of segments connecting the homologous points after and before the

displacement. ∆ρρρ i/2 is interpretable as a virtual displacement corresponding to the half

of the real displacement of each feature. Thus, eventually, the quantity
(
ddd′i +dddi

)
/2 is

the vector from the centroid of the virtual body to the virtually displaced i-th feature.

With this interpretation, Eq. (3.107) for the virtual body is totally equivalent to Eq.

(3.102) for the real body. Thus, the vector ΩΩΩ results aligned with the instantaneous

rotation axis of the virtual body.

The vector ΩΩΩ is easily obtainable from Eq. (3.108) through the knowledge of the

positions of homologous features at two adjacent time samples. An example of the

evaluation of ΩΩΩ is given in Fig. 3.15; the relevant dynamic conditions of the target are

the one illustrated in subsection 1.2.1. Occlusion periods having a duration of 60 seconds

were introduced with a regular frequency.

The equations presented in this subsection showed the equivalence between the

angular rate and the Gibbs representation of attitude. The sparsity of the angular rate

was discussed in the previous subsection. Thus, it is considerably reasonable to assume

that ΩΩΩ is sparse in the frequency domain. Indeed, Fig. 3.15 shows the periodicity of the

signal ΩΩΩ.
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Figure 3.15 Raw ΩΩΩ from trajectories of features. A local zoom on the time axis reveals the
periodicity and the sparsity of the signal

In the previous subsection, CS techniques were exploited to recover a partial and noisy

attitude signal. In this case, ΩΩΩ do not represent the orientation of a body-fixed coordinate

system. On the contrary, it represents finite rotations of a body-fixed coordinate system.

These finite rotations are represented without ambiguity because only three parameters

describe them. Hence, the recovery of the missing samples on the signal ΩΩΩ can be

performed by directly applying the theory shown in section 3.2.

The recovery of the signal in Fig. 3.15 with SALSA (see subsection 3.2.2) is

illustrated in Fig. 3.16

The recovered ΩΩΩ represents the rotational motion of the observed object. In particular,

each sample of the signal represents an attitude change of any body-fixed reference frame.

Both angular rate and mass distribution of the body influence the values of ΩΩΩ.
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Figure 3.16 Recovered ΩΩΩ: the amplitude of the signal is slightly decreased due to the reduction
of the noise power. The signal does not present missing samples.

Thus, the state vector

x =
[

I
ΩΩΩT BωωωT BJJJT

]T

can be observed starting from the measured values of I
ΩΩΩ. For that purpose, a UKF

was designed. Note that the orientation of the frame C, in which the Gibbs representation

of the Euler’s axis and angle is evaluated, is the same of the frame I by construction.

The discrete nonlinear state-space model, which serves as the framework for the UKF,

is introduced by the evaluation of the new finite rotation as a function of the angular rate.

First of all, an attitude variation in terms of quaternions should be calculated:

I
δqk =

[
cos

(
αk
2

)
e1k sin

(
αk
2

)
e2k sin

(
αk
2

)
e3k sin

(
αk
2

) ]
(3.109)

Remember that I
ΩΩΩk = tan(αk/2) I êeek. Considering the prior attitude of the body in terms

of quaternions, it holds:
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BqIk =
I
δqk⊗ BqIk−1 (3.110)

The prediction of the attitude at k+1 is performed by using a discretized form of Eq.

(1.6):

BqIk+1 =
BqIk +

1
2

∆t BW k
BqIk (3.111)

Then, one can obtain a predicted attitude variation:

I
δqk+1 =

(BqIk

)−1⊗ BqIk+1 =
(BqIk

)−1⊗
(

BqIk +
1
2

∆t BWk
BqIk

)
(3.112)

Because of the structure of BW in Eq. (1.6), it is straightforward to verify that it

holds:

I
δqk+1 =±

 1

−∆t
2

Bωωωk

 (3.113)

Thus, the predicted attitude variation I
δqk+1 can be easily converted into its Gibbs

representation:

I
ΩΩΩk+1 =

I
δqqqk+1

I
δq0k+1

=−∆t
2

B
ωωωk (3.114)

The prediction scheme of I
ΩΩΩk+1 is resumed by the flow chart in Fig. 3.17
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Equation (3.114) can be combined with a discretized form of Eq. (1.9) and with the

conservation of the principal moments of inertia to form state equations for the target

rotational dynamics:

xk+1 = xk +∆t

 −1
2

B
ωωωk

diag
(BJJJk

)−1 [B
ωωωk×

(
diag

(BJJJk
)B

ωωωk
)]

03×1

+wk (3.115)

Then, the measurement equations:

zk =
I
ΩΩΩk + vk (3.116)

complete the framework of the designed UKF. As mentioned in the previous subsection, it

is advantageous that quaternions do not appear explicitly in the state vector. If quaternions

represent the attitude, the classic update phase typically leads to a violation of their unit

norm constraint. On the other hand, other constraint-free attitude representations are

Figure 3.17 Prediction scheme of I
ΩΩΩk+1.
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not recommended due to the well-known gimbal-lock singularity (for instance, see Eq.

(1.5)). [60] is one of the works that treat this topic in detail.

Actually, there is a condition in which the vector I
ΩΩΩ can assume values that are not

finite. That is clearly the case of a rotation angle α = π/2. However, if ∆t is reasonably

small, this opportunity seems to be inconsistent.

Concerning the current state of the art, the proposed framework for the UKF is

original, and its strength lies in using finite rotations for representing attitude kinematics,

instead of orientation parameters. Using finite rotations leads to avoiding singular

attitude representations; moreover, there are no redundant attitude parameters, so it is not

necessary to manage constraint violations. Besides, it is worth noticing that (Eq.3.114) is

compact and in analogy with Eq.(1.5) when little rotations occur. Finally, the proposed

approach allows to overcome the main limits of the other two shown methods:

• quaternions are redundant, and a normalization step has to be applied to the output

of the filter, that produce singular state covariance matrix;

• Euler angles are not redundant but the solution of Eq.(1.5) can be singular; a lin-

earized formulation would exclude singularities but is not applicable for tumbling

objects due to the violation of small angles assumption.

The prediction and updating scheme of the UKF were detailedly described in section

3.1.2. As in the previous section, the chosen set of sigma points is the one in Eq. (3.50).

Hence, the spherical simplex unscented transform was employed again.

An example of the final result of Kalman filtering the recovered Gibbs representation

ΩΩΩ of the successive finite rotations of the target is depicted in Fig. 3.18: the components

of the estimated angular rate are compared to the ones obtained via simulation of the

target attitude dynamics (see Appendix B.2). The standard deviation of the noise added
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Figure 3.18 Final estimation of the angular rate after Kalman filtering the recovered Gibbs repre-
sentation ΩΩΩ of the successive finite rotations. Reference values of the angular rate components
are represented by dashed lines.

to the feature coordinates decreased to 10 mm. The latter value remains in the accuracy

standards of existing passive sensors (see subsection 1.2.2 for details))

Actually, it is expected that raw ΩΩΩ signal is much more corrupted than quaternion

signal, which is obtained assuming prior knowledge of the target shape. Indeed, ΩΩΩ

is derived in Eq.(3.108) starting from a discrete set of points, and the quality of its

estimation improves with the number of points. Ideally, the best estimation comes if all

the points of the target are available. This reasoning does not apply in the quaternion

approach, where the attitude signal is derived starting from the coordinates of only three

points, and the availability of a higher number of points would not be exploitable.

Finally, note that the 44 points (see.Fig.1.6) are not always all visible at the same time;

the minimum number of points that are visible at the same time is 9, which is a very low

value. Nevertheless, as seen is subsection 1.2.2, 10mm at coordinate level corresponds
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to 10−5 at the camera image plane level. Thus, the estimations given according to this

second approach can be compared with the ones of the current state of art methods e.g.

[64].

The four results refer to the scenarios listed in Tab. 3.1. The estimated values of the

normalized inertia moments are shown in Fig. 3.19. Even in this case, the latter part of

the figure puts in evidence the simulated time needed by the observer to approximately

learn the actual inertia ratios. Notice that the mentioned time is different in each case, and

goes from 30 s (case 3) to 1000 s (case 2, which seems to be the worst). The estimation

error directly reflects into the accuracy in identifying the angular rate and attitude.

The estimation algorithm was also applied to scenarios in Tab. 3.2. To show the

performances of the whole approach, the final RMSE about each component of the

Figure 3.19 Final estimation of the relative values of the principal moments of inertia after Kalman
filtering the recovered Gibbs representation ΩΩΩ of the successive finite rotations. Reference values
are represented by dashed lines.
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CaseID εω1 εω2 εω3

1) 0.0988 0.1095 0.0702
2) 0.0944 0.1281 0.1286
3) 0.0749 0.1473 0.1769
4) 0.1053 0.0745 0.0551
5) 0.0743 0.0485 0.0928
6) 0.0235 0.0197 0.0216
7) 0.0867 0.1793 0.1268
8) 0.1255 0.0778 0.0842
9) 0.0380 0.0633 0.0718
10) 0.0515 0.0572 0.0337
M. unit: [deg/s] [deg/s] [deg/s]

Table 3.5 Angular rate estimation error after Kalman filtering; standard deviation of the measure-
ment noise is equal for each coordinate to 10 mm.

estimated rate, are listed in Tab. 3.5. These values were evaluated after the Kalman filter

convergence.

Analyzing the data shown in Tab. 3.5 it appears that the errors in the angular rate

estimation are approximately between 10−2 deg/s and 10−1 deg/s. As expected, the

accuracy obtained with this second approach is similar to that of the first one, but the

error on data is now lower, as a 10 mm noise amplitude were considered at coordinate

level. Hence, the accuracy standards of the second approach slightly decrease, but this

method required few assumptions, so it is more general than the first. Indeed, no prior

information about the shape of the target is needed for the algorithm to be working.

Moreover, the method shows to be robust against occlusions as the one in the previous

section.

Nevertheless, the results obtained with the second approach are still comparable with

those in [19], where the angular rate estimation error was assessed between 10−2 deg/s

and 10−1 deg/s. These values were obtained starting from data affected by the minimum
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CaseID BJ1
BJ2

BJ3 ∆
BJ1 ∆

BJ2 ∆
BJ3

1) 0.6177 0.7068 0.3448 0.0028 0.0003 -0.0056
2) 0.6005 0.4462 0.6635 0.0015 -0.0020 -0.0000
3) 0.6570 0.4890 0.5738 -0.0002 -0.0007 0.0007
4) 0.5180 0.4614 0.7203 0.0034 0.0011 -0.0030
5) 0.2952 0.7806 0.5510 0.0035 -0.0025 0.0016
6) 0.5309 0.4729 0.7032 0.0040 0.0028 -0.0049
7) 0.7195 0.6575 0.2237 0.0000 -0.0004 0.0013
8) 0.7452 0.5123 0.4269 -0.0017 0.0007 0.0021
9) 0.7421 0.5215 0.4212 -0.0022 -0.0017 0.0059
10) 0.3714 0.7428 0.5571 -0.0010 -0.0002 0.0009
M. unit: [-] [-] [-] [-] [-] [-]

Table 3.6 Nominal normalized principal moments of inertia and difference beetwen nominal
value and estimation after convergence

considered noise amplitude (10−5) at the camera image plane level, corresponding to

just 10mm at coordinate level.
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Figure 3.20 Mean and maximum estimation error for each angular rate component; the UKF
converges at about 1000 seconds

.
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The mean estimated normalized principal moments of inertia after convergence J̄ are

compared to the reference values in Tab. 3.6. The absolute value of error in the inertia

moment estimation varies from 3×10−5 to 5.9×10−3. The mean absolute error equals

2×10−3 .

Finally, to show the convergence properties of the designed unscented Kalman filter,

the time behavior of mean and maximum angular rate estimation error in the considered

scenarios is illustrated in Fig. 3.20. From the latter figure, note that the error level

stabilizes at about 1000 s. Thus, the performances of the two unscented Kalman filters

designed for the two approaches are comparable. Actually, the two schemes are fed

with different indirect measurements, which come from the coordinates of the features.

However, with the first approach the error in the calculation of the quaternions from

the features is not amplified; on the other hand, for the second method, the error in the

computation of ΩΩΩ is amplified by the fact the only a subset of points of the target is

available. It is possible to conclude that the two approaches give comparable results

starting with different noise amplitude at coordinate level (50mm in the first case, 10mm

in the second).



Chapter 4

Experimental tests

Before thinking about a possible real application of any innovative technique for assisting

debris removal missions, a laboratory test campaign is certainly essential. However,

to perform optimal tests of the algorithms that were developed within this work, it is

necessary to simulate, at least to some extent, the complex relative dynamics between

two space objects.

It is quite evident that this is not an easy task. The most famous laboratories that

simulate the relative dynamics between satellites are more focused on the orbital dy-

namics. Typically, the test-bed comprises a flat-floor or a granite table facility in which

frictionless motion is achieved by releasing compressed air from appropriate tanks within

the mock-ups of the satellites.

However, this kind of laboratories is quite rare in the world. Some examples are

the Space System Lab at MIT [65], the Multivehicle Wireless Test-bed at Caltech [66],

the Spacecraft Robotics Laboratory at the Naval Postgraduate School [67], and the

Distributed Space Systems Laboratory at Technion [64].
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There are also few other laboratories in which the mock-ups of the satellite are

mounted on manipulators to better simulate the relative attitude dynamics. One example

is the Spacecraft Formation Flying Hardware Simulator at CISAS [68], in which the air

bearings for the two mock-ups support gimbals for allowing a 3 DOF attitude motion

for the mock-ups. However, with that structure, the rotations of the mock-ups remain

limited to few tens of degrees. In [69], the target mock-up is mounted on a 6 DOF

Stewart platform, while a stereo rig is placed on a fixed support. Even in this case, the

motion of the mock-up is severely restricted by the limited workspace of the supporting

manipulator.

Hence, there are no laboratories in which the formation flying of two spacecraft is

perfectly simulated for long time periods. However, it is possible to test state estima-

tion algorithms on data coming from simulated relative dynamics, which have similar

properties to the actual ones.

Politecnico di Torino does not own a specific facility for simulating spacecraft in

formation flying. However, within the CADET program, Aviospace S.r.l. developed

a test rig for the partial simulation of the relative motion between target and chaser

satellites during a removal mission. The developed laboratory environment was called

CADETLab [20]. This test-bed comprises the target mock-up mounted on a 3 DOF

mechanical architecture, and the chaser mock-up consisting of a 5 DOF robotic arm.

The algorithm presented in this work were tested in this laboratory. Thanks to the

respective work of Blue Engineering S.r.l. and of Eurix S.r.l., two sources of data were

considered: the output of an infrared camera and a 3D stereo-rig system respectively.

Both the two sensors were placed on the end-effector of the robotic arm. In particular,

they were pointed toward the target mock-up, which was moved by the mentioned

mechanical architecture.
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The two different outputs were put in the form of trajectories of points fixed to the

target mock-up. The mock-up was marker-free to simulate the non-cooperativeness

between the satellites. The following section provides a complete description of the

facility.

4.1 The CADETLab facility

The CADETLab facility consists of a control room and a series of ground test concepts

aiming to host breadboards of the target and the chaser to simulate a non-cooperative

rendezvous and capture in its major phases. The whole architecture was thought to

maintain the layout as simple as possible, thereby optimizing the available resources.

The mock-up of the target is a scaled physical model of an Ariane 4 upper stage

of the H10 family (see Fig. 1.2), whose virtual model were showed in Fig. 1.3. The

Figure 4.1 Scaled physical model of the H10 upper stage. The cylindrical part is approximately
1.2 m long and have a diameter of 330 mm. The texture formed by the external insulation layer is
reproduced with decorative paper
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chosen scale for the physical model, of which a photograph is shown in Fig. 4.1, was 1:8.

The main body of the mock-up is of plastic material, and it was obtained via additive

manufacturing techniques. The cylindrical part of the mock-up is hollow to accommodate

a suitably set of actuated mechanisms, which are capable of rotating the cylinder around

its axis of symmetry.

The operation of these mechanisms simulates the spin motion of an axisymmetric

body on which no torques are exerted (see subsection B.2 for the concept of spin motion).

A detail of this mechanism is in Fig.4.2 A second rotational degree of freedom is provided

to the mock-up through an actuated revolute joint, which is installed on a cylindrical

arm with one extreme connected to the mock-up surface, and the other to the base of the

whole mechanism, comprising the mock-up itself. A detail of this part of the mechanism

is shown in Fig.4.3.

Figure 4.2 Mechanism for the simulation of the spinning motion of the mock-up. The mechanism
is mounted inside the mock-up. A stepper motor allows the external structure rotating around its
symmetry axis. Ball bearings support the rotating structure with respect to the frame of the motor.
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Figure 4.3 Mechanism for rotating the mock-up around a fixed axis in the inertial space. In the
left image, one of the extremes of the visible cylindrical arm is hinged to a fixed platform welded
to the base. The other extreme is hidden by a black panel. The right image shows the connection
to the mock-up

The interface for connecting the mock-up surface to the rotating arm presents several

bores as interface points. These bores allow the spin axis to have different inclinations

with respect to the cylindrical arm. In particular, the inclination angle δsp can assume

values from 60 deg to 120 deg.

Finally, a scheme of the rotational motion capability of the target mock-up is repre-

sented in Fig. 4.4

Notice from Fig. 4.4 that the rotation γ is about an axis that remains fixed in the

inertial space. Thus, the spin axis performs a motion that develops on an inertially fixed

plane. In other words, the axis of symmetry of the mock-up traces a circle instead of a

cone. The latter fact leads to the result that also the resultant angular rate vector lays

on the mentioned plane while tracing a closed curve, which is, in particular, a circle. In

a body-fixed reference frame, the spin axis has a fixed direction even though it is not

aligned with the angular rate vector because of the rotation γ . In particular, this constant
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Figure 4.4 Scheme of the rotational degrees of freedom of the target mock-up. Note that θsp

identifies the spin motion of an axisymmetric torque-free body.

direction forms an angle δsp equal to the inclination of the spin axis about the floor of

the control room. Indeed, the cylindrical arm in Fig. 4.3 constantly remains parallel to

that floor.

The above-mentioned properties of the planned mock-up motion are not consistent

with the laws of spacecraft attitude dynamics (see Appendix B.2). The direction of

the angular rate vector is not constant in the principal body-fixed reference frame. On

the contrary, for an axisymmetric body, the angular rate vector traces a cone, and the

Polhode is a circle. Due to the architecture of the laboratory, the angular rate vector of

the mock-up traces a circle in an inertial frame.

The rotational degrees of freedom of the mock-up are both actuated by two com-

mercial stepper motors. The maximum number of steps per revolution is equal to 400,

while the maximum reachable velocity and absorbed current are equal to 5 rpm and 6 A

respectively. No feedback control for both position and velocity are implemented. Thus,

just a constant open-loop velocity set can be imposed for each mock-up axis. Thus, the
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tracking sensors, of which the laboratory is equipped, should be appropriately displaced

to obtain a realistic relative attitude dynamics. An additional difficulty is given by the

fact that at low velocities (less than 1 rpm) the chosen stepper motors produce a visible

discontinuous spin motion. This problem traduces in an additional source of noise on

input data that serves to estimate the mock-up kinematics.

The entire mechanism for moving the target mock-up is mounted on a dolly platform,

which is constrained to move along a linear guide. The dolly platform can be moved

manually or employing a 24 V DC motor, which is controlled in position; moreover, the

location of the dolly can be locked through a service brake. This structure, of which a

detail is given in Fig. 4.5 is thought to regulate the distance between the target mock-up

and the sensors, simulating a relative motion. Evidently, this system is not capable by

itself of replicating the complex relative orbital dynamics between two close Earth’s

satellites. It is here reminded that, for unperturbed satellites, this dynamics is governed

by Eq. (1.1).

As mentioned at the beginning of this chapter, the laboratory is equipped with a small

3D stereo rig and with an infrared camera. Both the sensors are integrated and fixed

together to the end effector of a 5 DOF articulated robotic arm. In particular, the robot

Figure 4.5 A detail of the dolly platform and of the linear slider that constraints the motion of the
platform
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Figure 4.6 A photo of the 5 DOF Kawasaki RS05N robot. The end-effector is equipped with a
plenty of sensors for the observation of the target mock-up.

is a Kawasaki RS05N. The total length of the robot in a fully stretched-out horizontal

configuration is approximately equal to 770 mm. The base of the robot is fixed to the

floor of the control room. In particular, the disposition of the elements in the control

room is such that the plane of symmetry of the robot is parallel to the linear guide of

the dolly platform of the mock-up. Moreover, the axis of symmetry of the mock-up

belongs to that mentioned plane. A detail of the 5 DOF robot is in Fig. 4.6, while its

characteristic dimensions and workspace are shown in Fig.4.7.

Finally, a real photographs of the complete layout of the CADETLab facility is shown

in Fig. 4.8

As visible in Fig. 4.8 and in Fig. 4.6, the robot end effector is equipped with two

different kinds of sensors for observing the motion of the target mock-up. In particular,

there are a 3D stereo-vision system and a monocular infrared camera.

The first one is a commercial system called 3DOne (see Fig. 4.9). The main character-

istic of this integrated system is a high resolution of 1920x1080, a fast acquisition rate of

30 Hz, and adjustable internal calibration parameters. However, the baseline between the
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Figure 4.7 Characteristic dimensions and workspace of the Kawasaki RS05N robot.

two integrated cameras has a length of only 60 mm. Thus, to have a sufficient disparity

between the images of the two cameras, it was necessary to consider a 0.9 m distance

between the mock-up and the robot end effector. With that configuration, the resolution

of the pixel became approximately equal to 1 mm, while the expected error in the depth

coordinate amounted approximately to 25 mm (1-sigma). Hence, the noise conditions

were similar to the ones of the simulated dataset in section 1.2.



4.1 The CADETLab facility 149

Figure 4.8 A photo of the CADETLab.

Figure 4.9 3DOne assembly and the case for tests

Actually, notice that the physical model of the target is eight times smaller than the

virtual model used for simulations. In particular, given the layout of the laboratory and

the architecture for rotating the target mock-up, the displacements in the depth direction

of the mock-up features are particularly reduced. Hence, it is expected a higher incidence

of the noise on the final results of the algorithms developed in this work.

Eurix s.r.l was responsible for the CADET research program of the feature-tracking

employing the stereo-vision system depicted in Fig. 4.9. In particular, they created



150 Experimental tests

Figure 4.10 Xenics uncooled silicon microbolometer with its case to form the monocular IR
camera used for tests in CADETLab.

a novel tracking algorithm whose details can be found in [70]. The detection of the

features exploits the classical Shi-Tomasi detector [71], which is combined with the

Lucas-Kanade algorithm [61] to predict the future positions of the features.

Then, results are filtered to find outliers, which should be eliminated to increase

usability of data. The underlying innovative idea consists of repeating the tracking

procedure reversing the direction of time. An error for each feature can be evaluated as

the distance between the back-tracked point and the same point at the original position.

Once this distance is superior to a reasonable threshold, the relevant feature is treated as

an outlier, and thus, it is discarded.

The monocular infrared camera, of which a photograph is given in Fig. 4.10, is

produced by Xenics, and it is based on a microbolometer with spectral response within

8-14 µm. The resistive amorphous silicon focal plane array has a resolution of 384x288

pixel, with a pixel dimension of 25 µm. Thus, the expected performances concerning

image definition are medium-low.

Blue Engineering s.r.l was responsible for the CADET research program of the target

pose estimation employing the IR camera shown in Fig. 4.10. The performed coarse

pose estimation was useful to be converted into the trajectory of three fictitious points.
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Blue Engineering transmitted these data as inputs for the algorithms developed in this

work for a strong refinement of the pose estimation.

Due to the low resolution of the camera, Blue Engineering was unable to use sophis-

ticated algorithms like SIFT [72] to detect the features of the mock-up. However, relying

on the expectable consistent difference between the temperature of the target and the

environment, they exploited several known filtering algorithms to identify approximately

the contour of the target. In the CADETLab environment, the target mock-up was

appropriately heated by the usage of high-power lamps.

From the possession of a CAD model of the mock-up, which is equivalent to assuming

the knowledge of prior information about the target shape, they performed a 3D rendering

of the found contour. Thus, they attached three points to this rendered model evaluating

their position for each time sample.

The necessity of producing 3D renderings of the detected contour led to a relatively

slow algorithm capable of generating outputs with a frequency in the order of 1 Hz.

However, this frequency is sufficient for an efficient refinement of the pose estimation

via the algorithms developed in this work. Figure 4.11 give an illustration of the result of

the rendering performed by Blue Engineering.

The described detection systems were useful to test with different kinds of inputs the

algorithms for the identification of debris kinematics. Although the described laboratory

does not reproduce exactly the formation flying of spacecraft, the provided data are the

outputs of real sensing systems whose application can be feasibly extended to the space

environment. Hence, the results of the algorithms in that context reveals with reasonable

reliability the robustness of the pursued approach for debris dynamics estimation during

a real removal mission.
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Figure 4.11 3D renedring of the object contour detected by Blue Engineering s.r.l. by Xenics IR
camera.

4.2 Algorithms for laboratory conditions

The main difficulty in the application of the methods exposed in chapters 2 and 3 consists

of the big difference between an approximate model of an Earth’s orbiting satellite and the

actual realizable motion of the mock-up in the depicted laboratory. In fact, as mentioned

at the starting of this chapter, the attitude motion of the mock-up is characterized by an

angular rate that behaves in an inertial frame in a similar way to the one of a satellite in

its body-fixed frames.

Actually, the replication of the behavior of the angular rate of an axisymmetric

satellite requires that the tumbling axis follows the spin motion while remaining fixed

to the body, instead to the inertial frame. This replication requires complex mechanical

architecture and high costs.

However, while the methodology exposed in chapter 2, independently from the actual

kinematic behavior, can work until the body constantly rotates around the same point,

the methods in chapter 3 are based on state observers. Thus, the latter methods are

model-based. In particular, they cannot work if the kinematic behavior of the object is

too far from the modeled kinematics.
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An idea to overcome this problem could be linked to the movement of the robotic arm

in Fig. 4.6 to simulate the realistic relative attitude dynamics accurately in a camera-fixed

reference frame. However, this attempt results in a very fast dynamics for the robot.

This dynamics is not consistent with the physical limits of the robot, though it would be

possible to replicate the movement for a very short amount of time. This last way is not

applicable with proficiency yet because of the relatively slow convergence rate of the

UKF used for the inertia estimation (see Fig. 3.12 and Fig. 3.19). However, this last

aspect is not critical for practical applications because the observation phase of a removal

mission can have a long duration.

Then, excluding the above solutions, it is needed to consider algorithms based on

a general kinematic model of the target that is suitable also for describing the attitude

kinematics of the mock-up. In particular, a simple triple integrator model [73] is often

exploited in practice to predict the motion of generic rigid bodies.

Because of the absence of singularities, quaternions are the most suitable parameters

for modeling the attitude kinematics of a rigid body. Thus, the considered stochastic

triple integrator model is the following:

xk+1 =


FqIk+1

Fq̇Ik+1

Fq̈Ik+1

=


I4 ∆tI4

∆t2

2 I4

04 I4 ∆tI4

04 04 I4




FqIk

Fq̇Ik

Fq̈Ik

+wk (4.1)

From the knowledge of the state in Eq. (4.1), Eq. (1.8), which is here resumed

and rewritten in the generic body-fixed reference triad F, allows the computation of the

angular rate.

F
ωωω = 2

(
Fq0I

Fq̇qqI−FqqqI
Fq̇0I

)
−2FqqqI×Fq̇qqI (4.2)
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The estimation of the state in Eq. (4.1) requires the measurement of quantities that

it directly affects. For instance, as treated in subsection 3.3.2, the computation of the

vector I
ΩΩΩ from the positions of the target features is an indirect measurement of the body

kinematics. Thus, the values of this vector are useful to evaluate the quaternions FqI .

This last evaluation would lead to the writing of the following measurement equation:

zk =
FqIk + vk (4.3)

Equation (4.1) and Eq. (4.3), which form a complete state-space model for the mock-

up kinematics, are linear in the state variables. Among these variables, the quaternion

derivative Fq̇I is necessary to compute the angular rate via Eq. (4.2). Optionally, after the

estimation of the quaternion FqI , one can compute the DCM FAI to express the angular

rate in the inertial frame (Iωωω).

Since the state-space model of the system is linear, if the assumptions regarding the

measurement and the process noise are approximately satisfied, the state can be observed

by using a classic Kalman filter (see subsection 3.1.1)

In particular, Eq. (3.33) and Eq. (3.34), which are here resumed, are used for the

prediction phase:

x−k+1 = Fkx+k (4.4)

P−k+1 = FkP+
k FT

k +Qk (4.5)

The Kalman Gain is computed via Eq. (3.27), here resumed:

Kk+1 = P−k+1HT
k+1

(
Hk+1P−k+1HT

k+1 +Rk+1
)−1

(4.6)
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Finally, the updating phase is characterized by Eq. (3.28) and Eq. (3.29)

x+k+1 = x−k+1 +Kk
(
zk+1−Hk+1x−k+1

)
(4.7)

P+
k+1 = P−k+1−Kk+1Hk+1P−k+1 (4.8)

Here, the matrices F and H are independent by the sample time k. In particular, they

are the following ones:

F =


I4 ∆tI4

∆t2

2 I4

04 I4 ∆tI4

04 04 I4

 (4.9)

H =
[

I4 04 04

]
(4.10)

The following part of this subsection explains how to evaluate quaternions from

measurements, i.e. the trajectories of the features.

The outputs of the 3DOne stereo-vision system (see Fig. 4.9), appropriately elabo-

rated by Eurix s.r.l, allows the effective evaluation of the vector I
ΩΩΩ (see section 3.3.2)

for the target mock-up. Indeed, the used stereo-rig system is capable of tracking rela-

tively dense clouds of points for several instants of time. The tracked features change

significantly during the overall observation time. Thus, the resulting dataset has the same

properties of the one used for simulations in subsection 3.3.2. In particular, the detected

features are tracked for few time samples but once they disappear, they are definitively

lost: no position information about those features is recoverable from the positions of

other tracked points.
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I
ΩΩΩ describes the finite variation of the orientation between two different poses of the

body. It was shown that this vector is not dependent on the particular group of points that

are considered for its estimation, but it is a description of a motion property of the entire

body.

If the motion of the object is regular, it is possible to assume that the components

of I
ΩΩΩ are sparse in the frequency domain. This property permits the application of

compressive sampling techniques to reduce noise in case of corrupted measurements of

this vector (see section 3.2).

From one among all the infinite body-fixed reference triads, it is possible without any

loss of generality to consider the one that at the initial time has the same orientation of

the inertial frame. If this generic frame is indicated as F, then the initial attitude of the

mock-up is:

FqI0 =
[

0 0 0 1
]T

(4.11)

Then, for a general instant k, it holds:

FqIk+1 =
I
δqk⊗FqIk (4.12)

where I
δqk is the attitude variation whose relationship with I

ΩΩΩ can be found in Eq.

(3.109), here resumed:

I
δqk =

[
cos

(
αk
2

)
e1k sin

(
αk
2

)
e2k sin

(
αk
2

)
e3k sin

(
αk
2

) ]
(4.13)

Again, remember that I
ΩΩΩ = eee tan(α/2).
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For having an example of the result of these operations, a simulation of the motion of

the mock-up was performed in a MATLAB-Simulink environment. A constant value of 1

rpm was set for both the angular rates θ̇sp and γ̇ (see Fig. 4.4), which represent the spin

motion and a pseudo-tumbling motion respectively. A set of unlabeled features were

placed arbitrarily on a scaled CAD model of the target surface such to completely cover

it.

The camera reference frame was assumed to be coincident with the inertial frame for

all the duration of the simulation. The inertial frame I were built such that its first axis I1

is parallel to the floor of the control room, its third axis I3 is directed toward the roof,

and the second axis I2 completes a right-handed triad. The angle δsp between I1 and the

spin axis of the simulated target was set to 60 deg.

A Gaussian noise with 40 mm of standard deviation was added to each component

of the simulated trajectories. The last value of standard deviation is consistent with the

expected error level of the 3DOne in detecting depth coordinates of features.
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Figure 4.12 Raw I
ΩΩΩ from simulated trajectories of features in laboratory conditions.
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Figure 4.13 Attitude quaternions FqI from I
ΩΩΩ in Fig. 4.12 by means of Eq. (4.12).

The simulation of the trajectories of the considered features led to a I
ΩΩΩ that is

illustrated in Fig. 4.12. Thus, after having performed a denoising of the signal via CS

techniques, the quaternions obtained with Eq. (4.13) are shown in Fig. 4.13.

Note from Fig. 4.13 that Eq. (4.13) operates as a first order filter for the high-

frequency noise contained in I
ΩΩΩ. Indeed, the composition of quaternions is equivalent

to summing-up all the finite rotations of the body. For time steps that tend to zero,

the mentioned sum becomes equivalent to an integral, whose filtering properties are

well known. The related undesired aspect consists in the typical drift of the integrated

high-frequency noise. That is one of the reasons for which a state observer is needed for

estimating the state vector x in Eq.(4.1).

The computation of the quaternions is necessary also when input data come from

the IR camera. As seen in the previous subsection, Blue engineering s.r.l. developed
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algorithms for extracting the trajectories of three features from the images taken by the

used monocular microbolometer.

The tracked features are always the same for the whole observation period. Thus, the

obtained dataset is practically equivalent to the one used to perform the simulations in

subsection 3.3.1.

From the positions of three features at k in the frame I, one can define two connecting

vectors, Iννν i and Iνννu, whose cross product is the vector Iννν j, which is perpendicular to

both. A third column vector, Iνννk, can be simply obtained through another cross product

between Iννν i and Iννν j. Then, the orientation of a body-fixed reference frame F is given by

the following expression:

IAFk =
[

I
ν̂νν i

I
ν̂νν j

I
ν̂ννk

]
∈ SO(3) (4.14)

As mentioned in Appendix B.1, a non-singular mapping between an element of the

SO(3) group and a unit quaternion always exists. This mapping has been shown in Eq.

(1.7) for the orientation of I relative to B. However, the mapping mentioned above is

valid for any considered reference frames.

Hence, the same Kalman filter that serves to estimate the derivatives of FqI can be fed

indifferently with the mock-up attitude both in the case of data coming from stereo-vision

than from thermal images.

In both cases, from the estimated derivatives of the quaternions, the angular rate is

evaluated directly from Eq. (4.2) and transformed by means of IAF.

Notice that, differently from the simulated dataset, it is tough to determine the

principal inertia moments of the mock-up from data taken in the laboratory. Indeed,

oppositely from the case of kinematics observation, it is not evident the possibility of

finding a surrogate dynamic model that can approximate the actual dynamics of the
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mock-up. This issue holds because the mock-up dynamics is far to be similar to the one

of a torque-free body. On the contrary, it is sufficient that the mock-up motion is smooth

such to have a so little jerk such that the triple integrator model well approximates the

actual kinematics.

Hence, regarding the rotational state estimation, only the angular rate was estimated

during the laboratory tests.

As regards the localization of the CoM, it is not necessary to make any adaptations

to methods presented in chapter 3. Actually, during the whole motion, the angular

rate vector of the mock-up passes always through one specific point in a body-fixed

frame. In particular, this point is the intersection between the symmetry axis and the

pseudo-tumbling axis, which remain fixed in the inertial frame.

Clearly, this fixed point was not thought to be coincident with the real CoM of the

mock-up. However, this aspect does not require to modify algorithms because they rely

on the assumption that the CoM coincides with the point around which the body rotates.

The latter assumption is verified if the body is free from motion constraints. Although

this is not true for the actual target mock-up, it would have been true if the mock-up had

orbited the Earth. Thus, the laboratory tests of this method are reliable for proving their

estimation capacity

The results of the CoM localization will be shown in the next section for both the

kinds of data sources. Also, the results for the angular rate estimation will be illustrated.

4.3 Tests results

Data coming from the Xenics microbolometer (see Fig. 4.10) and from the 3DOne

(see Fig.4.9) were respectively elaborated by Blue Engineering s.r.l and by Eurix s.r.l

to provide suitable data in the form of 3D coordinates of points. During the tests, the
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Figure 4.14 Layout of the CADETLab control room and reference coordinate system for input
data

relative position between the cameras and the mock-up remained constant. Thus, the

orientation of the cameras with respect to the control room was constant.

For those reasons, the camera-fixed reference frames for both the sensors were

inertial. Hence, the achieved coordinates of the detected features were expressed in that

frames, which were considered coincident because they were placed on the same robot

end-effector. In particular, the same reference coordinate system was defined for both the

frames: the first axis, namely X was defined as parallel to the floor of the control room;

the third axis, namely Z was defined as directed toward the roof; the second axis, namely

Y completed a right-handed coordinate triad.

Figure 4.14 illustrates the reference coordinate system for input data.
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4.3.1 Data from infrared camera

The test of the algorithms on data from the IR camera was performed considering the

following conditions:

• Nominal constant spin rate θ̇sp = 1 rpm (counterclockwise)

• Nominal constant pseudo-tumbling rate γ̇ = 1 rpm (counterclockwise)

• Nominal inclination of the mock-up δsp = 76 deg

• Nominal fixed position of the motor axes intersection ρρρ =
[

3.5 0 0
]

m

• Acquisition time: 1200 s

Note that the above nominal set values are not actively controlled. For instance,

no feedback is available to measure the actual angular rates of the two stepper motors.

Figure 4.15 shows the coordinates of the three fictitious points coming from the rendered

mock-up contour on the image of the IR camera.

As described in the previous section, the trajectories in Fig. 4.15 are exploited to find

attitude quaternions of the mock-up. Then, the quaternions feed the Kalman filter, of

Figure 4.15 Trajectories of the three fictitious features from the elaboration of the data from the
IR camera. The dimensions are expressed in m.
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Figure 4.16 Estimated angular rate ωωω of the mock-up in the camera-fixed frame shown in Fig.4.14.
Notice the steadiness of the first component, which corresponds to the sum of the pseudo-tumbling
rate γ̇ and the constant component of the spin rate θ̇sp on the first axis

which Eq. 4.1 models the related process. The result is given in terms of the estimated

angular rate expressed in the camera-fixed frame. Figure 4.16 illustrates this result; The

output of the Kalman filter was further refined with a Savitzky-Golay filter [74].

The result in Fig. 4.16 does not give a direct idea of the accuracy of the taken

approach. Thus, it is appropriate to use information about the architecture of CADETLab

to decompose the estimated angular rate into the two fundamental components provided

by the motors.

The two approximate sinusoidal components of the estimated angular rate in Fig.

4.16 reveals the circular motion of the mock-up symmetry axis. In particular, the mean

period Tωt divided per 60 s gives an approximation of the pseudo-tumbling rate γ̇ . Thus

the vector

ωωω t =
[
−γ̇ 0 0

]T
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in the camera-fixed frame can be subtracted to the estimated angular rate ωωω for each

time sample. Hence, the direction of the mock-up symmetry axis is the unit vector

corresponding to the last obtained vector.

The first direction cosine of the mentioned symmetry axis is evidently the angle δsp.

Thus, an estimate of this angle is obtained for each time sample. The mean estimate of

δsp from the angular rate in Fig. 4.16 is equal to 76.116 deg, which is quite similar to the

nominal one.

Once an estimate of δsp is available, the estimated angular rate can be effectively

decomposed. In particular, assuming positive and counterclockwise the velocities of the

motors, it holds from simple kinematic considerations:

θ̇sp =
√

ω2
2 +ω2

3 − (1− sinδsp)ω1 (4.15)

γ̇ =−ω1− θ̇sp cosδsp (4.16)

The results of the application of Eq. (4.15) and of Eq. (4.16) are shown in Fig. 4.17

and in Fig. 4.18 respectively. To give a better idea of the committed relative errors, Fig.

4.19 shows the magnitude of the spin rate together with the pseudo-tumbling rate in the

camera-fixed frame. In those figures, also the mean values are illustrated.

As shown in Fig. 4.17, the estimated spin rate presents a bias with respect to the

nominal value of 1 rpm. It is visible that the estimation error is not perfectly centered,

but it is evident that it remains bounded by two continuous curves whose curvature is

quite low. This behavior could be attributed to different factors. First of all, the tracked

features are fictitious: they come from the elaboration of thermal images, which are

useful to a coarse estimation of the entire mock-up pose instead of the location of features.

Secondly, CS techniques, which are applied to attitude quaternions, try to recover sparse
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Figure 4.17 Estimated counterclockwise spin rate θ̇sp of the mock-up. The mean value is
represented with a thick line
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Figure 4.18 Estimated counterclockwise pseudo-tumbling rate γ̇ of the mock-up. The mean value
is represented with a thick line

signals; however, some minor residual frequency contributions to the spectrum of the

quaternions could be not eliminated causing the introduction of systematic errors. In

particular, the role of the parameter λ in Eq. (3.77) is fundamental: the higher its value,

the sparser the output signal. Notwithstanding, the accuracy decreases: the magnitude

of the coefficient vector c reduces globally due to the soft thresholding function in Eq.



166 Experimental tests

0 200 400 600 800 1000 1200 1400
time [s]

-1

-0.5

0

0.5

1

an
gu

la
r 

ra
te

 [r
pm

]

spin
tumbling
mean spin
mean tumb.

Figure 4.19 Estimated spin rate θ̇sp of the mock-up, and estimated pseudo-tumbling rate in camera
frame. Notice the tiny differences between the mean values and the estimated signals

(3.87). Thus, the amplitudes of the recovered signal decrease incorrectly. Hence, it is

better to accept the presence of low-amplitude residuals rather than losing accuracy in

the estimation.

The mean value of the estimated spin rate is equal to 0.934 rpm, so a bias of 0.065

rpm, equal to 0.39 deg/s, exists with respect to the nominal value of 1 rpm. However, note

that the nominal value is most probably different from the actual one. Indeed, the stepper

motors used for moving the target are open-loop controlled. It is expected that the actual

values of the angular rates are slightly inferior to the nominal one. This statement is also

supported by the analysis of the images captured by the cameras. In fact, it emerged that

after a minute of the mock-up motion, the object did not return exactly to its original

position before the starting of the movement. In particular, the delay was about 2.5 s

For those reasons, it is probably more interesting to evaluate the bounds of the

absolute deviations from the estimated mean. In particular, the difference between the

maximum and the minimum deviations over all the long observation time is equal to 0.09

rpm, that is 0.54 deg/s. This is a quite good result if compared with the ones of other

methods in the literature. For instance, in [19], experimental tests were conducted to

determinate the relative yaw rate between two satellite mock-ups on a frictionless table.
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In that work, the biggest estimation errors exceed 2 deg/s, which is approximately two

times the sum of the bias and the maximum error found in this section.

The same considerations apply exactly for the estimation of the pseudo-tumbling

rate, whose result is shown in Fig. 4.18. The mean value of γ̇ is equal to 0.965 rpm while

the nominal value was 1 rpm. Thus, it exists a bias of 0.037 rpm, that is 0.22 deg/s. The

difference between the maximum and the minimum deviations from the mean value is

equal to 0.021 rpm, whose corresponding value in deg/s is 0.12.

Hence, as visible from Fig. 4.19, the estimation of the pseudo-tumbling rate led to

better results.

Regarding the localization of the intersection point of the two motion axes of the

mock-up, all the methods exposed in chapter 2 were applied on data shown in Fig. 4.15.

Using an analogous representation as in Fig. 2.19 The results of this test are shown in

Fig. 4.20. The raw estimates are fitted with first order polynomials to avoid numerical

problems due to singularities. An extremely high condition number of the matrix in the

least-square fitting can be automatically detected. Thus there is no loss of generality: the

starting order of the fitting polynomial is ten like in section 2.3, but it is decreased until

the mentioned condition number is acceptable.

The constant values of the three components of the found position are 3.46 m, 0.03

m, and −0.04 m. Overall, an error in the order of 40 mm was made with respect to the

nominal values. Looking to the experimental tests in [19], the CoM is identified with

residuals that can be up to 0.1 m. Thus the quality of the achieved results is at least

comparable with the one of the best methods known. However, the method developed in

chapter 2 is free from hypothesis regarding the fixity of the detected set of features and

the uninterrupted availability of measured data. This last aspect is an important point of

novelty of the proposed method.
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Figure 4.20 Localization of the intersection point of the spin axis with the pseudo-tumbling axis.
The distance between this point and the camera was constant

4.3.2 Data from stereo-rig system

The test of the algorithms on data from the stereo-vision system was performed consider-

ing the following conditions:

• Nominal constant spin rate θ̇sp = 1.65 rpm (counterclockwise)

• Nominal constant pseudo-tumbling rate γ̇ = 1 rpm (counterclockwise)

• Nominal inclination of the mock-up δsp = 90 deg

• Nominal fixed position of the motor axes intersection ρρρ =
[

0.9 0 0
]

m

• Acquisition time: 120 s
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Again, note that the above nominal set values are not actively controlled. No feedback

is available to measure the actual angular rates of the two stepper motors. As described

in section 4.1, Eurix s.r.l. processed the images taken by the two cameras composing

the system. Due to the very low baseline length between the two cameras (60 mm), it

was necessary to bring the stereo rig near the mock-up. This operation led to a better

accuracy in the definition of the depth map of the object. Although the mock-up was

not included completely in the camera FOV, a huge number of features were detected:

Figure 4.21 shows the tracked points for each time sample.

The detected features are not in any way correlated to prior knowledge about the

mock-up shape. Once it is lost the tracking of a feature, there are not any possibilities of

recovering information about the hidden feature. The tracking durations for each feature

were collected into a histogram, which is in Fig. 4.22. From that histogram, note that

most of the features are tracked for a few time samples. In particular, 98 features are

tracked only for 7 time samples.

Figure 4.21 Tracked points from stereo-vision system by Eurix s.r.l. A total number of 3923
points were tracked with a 5 Hz frequency. A detail of the figure is offered to increase readability.
No relationships can be extracted between the features and a CAD model of the mock-up.
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Figure 4.22 Number of time samples in which the features are continuously tracked. The
horizontal axis shows the number of points associated to a specific tracking duration (in number
of time samples)

The features in Fig. 4.21 are exploited to find through Eq. (3.108) the finite rotations

of the mock-up in terms of the global parameter Ω. The Ω signal is filtered by using CS

techniques. Then, as shown in the previous section, attitude quaternions are derived from

Eq. (4.12) and Eq. (4.13). The obtained quaternions feed the Kalman filter, of which

Eq.(4.1) models the related process.

The result is given in terms of the estimated angular rate expressed in the camera-

fixed frame. Figure 4.23 illustrates this result; The output of the Kalman filter was further

refined with a Savitzky-Golay filter [74].

As seen in the previous subsection, in which data from IR camera are treated, the

result in Fig. 4.23 does not give a straightforward idea of the accuracy of the taken

approach. Thus, it is appropriate to decompose the estimated angular rate into the two

fundamental components provided by the motors.
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Figure 4.23 Estimated angular rate ωωω of the mock-up in the camera-fixed frame shown in Fig.4.14.
Notice the steadiness of the first component, which corresponds to the sum of the pseudo-tumbling
rate γ̇ and the constant component of the spin rate θ̇sp on the first axis

Following the same reasoning applied in the previous subsection, the mean estimate

of δsp from the angular rate in Fig. 4.23 is equal to 91.268 deg, which is similar to the

nominal one.

Once an estimate of δsp is available, the estimated angular rate can be effectively

decomposed. The results of the application of Eq. (4.15) and of Eq. (4.16) are shown in

Fig. 4.24 and in Fig. 4.25 respectively. To give a better idea of the committed relative

errors, Fig. 4.26 shows the magnitude of the spin rate together with the pseudo-tumbling

rate in the camera-fixed frame. In those figures, also the mean values are illustrated.

As visible in Fig. 4.17, the spin rate estimation is practically unbiased with respect

to the nominal value of 1.65 rpm. This last aspect is explained by the increase of the

angular rate. Indeed, the open-loop controlled step motors showed a poor behavior when
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Figure 4.24 Estimated counterclockwise spin rate θ̇sp of the mock-up. The mean value is
represented with a thick line
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Figure 4.25 Estimated counterclockwise pseudo-tumbling rate γ̇ of the mock-up. The mean value
is represented with a thick line

working at low angular rates. In particular, at lower rates, step losses and vibrations

seemed to occur.

The distribution of the estimation error seems to be regular and centered. Differently

from the case of the elaboration of IR camera data (see Fig. 4.17), the raw data are directly
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Figure 4.26 Estimated spin rate θ̇sp of the mock-up, and estimated pseudo-tumbling rate in camera
frame. Notice that the quality of the estimation is not too bad.

exploited without any complex processing. This aspect helps CS sampling techniques

in removing false residual frequency contributions to the Ω signal. In particular, this

removal is performed without the need of increasing the parameter λ in Eq. (3.77). The

role of this parameter has been extensively explained both in subsection 3.2.1 and in the

previous subsection.

The mean value of the estimated spin rate is equal to 1.652 rpm, so there is no

significant bias with respect to the nominal value of 1.65 rpm.

The difference between the maximum and the minimum deviations over all the

observation time is equal to 0.43 rpm, that is 2.58 deg/s. This result shows that, although

a well-distributed noise corrupts the data, the power of this noise is consistently higher

than the ones of the noise affecting data from IR camera. After all, despite the good

resolution of the cameras composing the 3DOne system (see Fig. 4.9), the very short

baseline of 60 mm does not let optimism on the expected accuracy of the result.

However, in [19], the results of the experimental tests revealed estimation errors that

exceed 2 deg/s. Thus, the results of the proposed methods are in-line with what can be
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found in the literature. On the other hand, the proposed method showed a generality

regarding assumptions that cannot be found in the state-of-art.

Same considerations apply exactly for the estimation of the pseudo-tumbling rate,

whose result is shown in Fig. 4.25. The mean value of γ̇ is equal to 0.969 rpm while

the nominal value was 1 rpm. Thus, it exists a bias of 0.031 rpm, that is 0.186 deg/s.

Actually, once the step motor works at low angular rates, a bias appear again. However,

this bias should be attributed to the fact that the actual rate of the mock-up is slightly

inferior to the nominal one. Again, from the analysis of the images captured by the

cameras, it emerged that after a minute of the mock-up motion, the object did not return

exactly to its original position before the starting of the movement. The delay was the

same of the previous test (2.5 s).

The difference between the maximum and the minimum deviations from the mean

value of the pseudo-tumbling rate is equal to 0.21 rpm, whose corresponding value in

deg/s is 1.26.

Again, as visible from Fig. 4.26, the estimation of the pseudo-tumbling rate led to

better results. Probably, this fact depends on the relative attitude between the mock-up

and the cameras.

Regarding the localization of the intersection point of the two motion axes of the

mock-up, all the methods exposed in chapter 2 were applied on data shown in Fig. 4.21.

Using an analogous representation as in Fig. 2.19 The results of this test are shown in

Fig. 4.27. The raw estimates are fitted with third order polynomials to avoid numerical

problems due to singularities. An extremely high condition number of the matrix in the

least-square fitting can be automatically detected. Thus there is no loss of generality: the

starting order of the fitting polynomial is ten like in section 2.3, but it is decreased until

the mentioned condition number is acceptable.
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Figure 4.27 Localization of the intersection point of the spin axis with the pseudo-tumbling axis.
The distance between this point and the camera was constant

The constant values of the three components of the found position are 893.8 mm,

83.2 mm, and 70.5 mm. Overall, an error in the order of 100 mm was made with respect

to the nominal values. As expected, the quality of this result is worse than the one

obtained with data from IR camera. The uncertainty on the depth coordinate due to the

short stereo rig baseline is probably decisive. Moreover, the movement of the features in

the depth direction is quite limited because of the particular architecture of the mock-up.

However, looking to the experimental tests in [19], the CoM is identified with errors

that can be up to 0.1 m. Thus the quality of the achieved results remains comparable with

the one of the best methods known. However, the method developed in chapter 2 is free

from hypothesis regarding the fixity of the detected set of features and the uninterrupted
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availability of measured data. This last aspect is an important point of novelty of the

proposed method.



Conclusions

The main goal of this work was the investigation of methods and algorithms for estimating

the dynamic state of non-cooperative spacecraft. Space debris mitigation is one of the

most important topics that are currently discussed within the space community. An

accurate knowledge of the CoM location and the rotational state of the target debris helps

the capture and the removal of the object significantly. Indeed, the contact between two

non-cooperative systems severely undermines the stability of the joint system.

One of the underlying assumption under which the methods were developed regards

the possibility of tracking the positions of several features of the passive object. This

operation has to be done through the exploitation of passive sensors only, which are

placed appropriately on a chaser spacecraft. The latter satellite, in particular, is the one

devolved to the capture and removal of the target.

The consideration that passive sensors should be preferred to active ones led to the

necessity of making the methods robust to probable interruptions of the tracking, to

which temporary unavailabilities of input data correspond. Moreover, part of the research

work was spent to overcome one of the most common but restrictive assumptions in the

literature, that is to consider the possibility of tracking one fixed set of features of the

objects. However, it is quite evident that different poses of the objects during its tumbling

motion correspond to diverse views of it from the sensors point of view. Hence, many

different sets of features should be tracked during the whole observation period.
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The answer to this need was differentiated for the estimation of the CoM location

and the rotational state of the target. In particular, regarding the first mechanical property,

it was developed a method that does not require the assumption of a specific dynamic

model of the orbital motion of the target. This aspect differentiates the proposed method

significantly from the other existing state-of-art methods. Typically, the coordinates

of the CoM are estimated together with the ones of the features within a single state

observer, which is also devolved to the estimation of the coupled rotational state of

the target. This approach results unfeasible if the tracked features changes during the

observation.

Given this non-feasibility, it was decided to put all the efforts in the development

of a pure kinematic estimation approach. Despite the general mistrust that experts have

against similar practices, it was proved through simulation results that the proposed

estimator is capable of finding the CoM location with sufficient accuracy.

In particular, the combined usage of statistical shape analysis and Butterworth filters

was decisive for guaranteeing similar accuracy in case of corrupted input data. The errors

obtained, although distributed in a non-cataloged way, resulted bounded. The found

accuracy is similar to one of the best methods known; however, the level of the necessary

hypothesis was significantly lowered.

A similar approach could not be obtained to estimate the rotational state, which

includes a normalized form of the inertia tensor. Indeed, the target dynamics characterize

too much its actual movement, so that it is necessary to consider a model for state

observation. At first, it was maintained the mentioned hypothesis of having a fixed set of

features to detect. The problem of having missing data was faced by using compressive

sampling techniques. In particular, an efficient patching of the available parts of the

attitude information led to a complete recovery of the missing parts. Thus, attitude

quaternions were restored as they were compressed images. That procedure allowed
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an unscented Kalman filter to estimate the angular rate and the inertia moments of the

object.

The level of accuracy and robustness reached by the method was slightly superior to

the one of other known methods. Then, to remove all the restrictive assumptions, the

attitude kinematics of the object were described through a succession of finite rotations.

The chosen parametrization for this sequence of rotations was proven to be an intrinsic

property of the motion, and so independent of the detected features. In this way, the

assumption regarding the fixity of the detected set of features was dropped.

An original and compact state-space model was proposed for the rotational state

observation. Another unscented Kalman filter was designed to be fed with rotation

measurements. In particular, the measured signal regarding finite rotations of the body

was preliminary treated with compressive sampling techniques to recover its missing

samples.

The results of this second estimation approach were slightly worse than the ones

of the first methodology, but still comparable to the ones of other state-of-art methods.

Nevertheless, even in this case, the level of the necessary hypothesis was significantly

lowered.

An important validation step to understanding the real applicability of the developed

methods in the context of a removal mission was the laboratory tests. The work of the

partners of the CADET research program allows us to collect data coming from two

different kinds of sensors: a monocular infrared camera and a stereo-rig system. The

tests produce satisfactory results, confirming the reliability of the proposed methods.

Finally, it is right to indicate some possible research directions for the improvement

of this work. Up to the knowledge of the author of this dissertation, the proposed methods

are the first ones that deal with the possibility of having missing input data. Much work

can be done to have a real-time implementation of the estimation algorithms.



In particular, regarding the algorithms for the angular rate estimation, instead of

applying compressive sampling techniques separately from Kalman filtering, it would

be possible to include the few constant frequencies that characterize the sequence of

body rotations into the state vector that has to be estimated. The assumption of sparsity

of that signal would enhance the prediction capability of the filter in case of missing

measurements

At the same time, with more challenges, even the estimator of the CoM location

could be introduced in the context of a robust real-time state observer. In that case, there

would also be the possibility of estimating the velocity of the CoM.

Doubtless, an experimental campaign in a microgravity laboratory could be planned

for a final validation of all the proposed methods.
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Appendix A

Basics of orbital dynamics

The motion of the major natural satellites about the Sun has fascinated several scientists

since the middle age. Very soon, they realized the importance of finding a compact

equation for describing both the terrestrial mechanical phenomena and the celestial ones.

In the book The Principia [75], Isaac Newton presented for the first time the law of

universal gravitation, which states that given two masses m and M, an attraction force FFF

is exerted on them:

FFF =−G
Mm
|rrr|2

r̂rr (A.1)

where rrr is the vector connecting the two masses, while

G = 6.672×10−11 ms−2 kg−1

is the so-called universal gravitational constant. The notation ∗̂∗∗ is used for indicating

the unit vector corresponding to ∗∗∗.
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Newton himself stated that in an inertial reference frame I, the sum of the forces

on an object is equal to the product of its mass and its acceleration. According to this

statement, if I has its origin in the center of the Earth and m is the mass of a relatively

near satellite, equation (A.1) becomes:

I r̈rr =−µ
1
|rrr|2

I r̂rr (A.2)

considering that no other masses are sufficiently large and near to further significantly

accelerate the satellite. The constant µ in Eq. (A.2), known as planetary constant, is the

product of G and the mass of the Earth. The prescript I indicates that the relevant vector

is expressed with respect to I; this kind of notation will have the same meaning for the

entire document.

Clearly, the validity of the Eq. (A.2) is subject to assuming a uniform spherical mass

distribution for both the Earth and the satellite. Altought this assumption is unrealistic, it

is possible to correct Eq. (A.2) by the addition of tiny accelerations to take into account

of the perturbation forces acting on the satellite. Other considerable environmental

perturbations are due atmospheric drag or solar radiation pressure. However, in the short

term, Eq. (A.2) is often a very reliable representation of the actual motion of a Earth

orbiting satellite. Thus, in this work, perturbations are neglected.

A.1 Kepler’s laws

Equation (A.1) reveals that the position and the acceleration of the satellite with respect

to I have the opposite direction. Hence:
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Irrr× I r̈rr = 0 (A.3)

From which:

d
dt

(Irrr× I ṙrr
)
= I ṙrr× I ṙrr+ Irrr× I r̈rr = 0 (A.4)

Thus, the first member of Eq. (A.4) is constant with respect to time.

From a graphical point of view, the magnitude of the result of a cross product is the

area of the parallelogram defined by the two factors of the product. In that specific case,

it holds:

2dA= | Irrr× I ṙrr|dt ⇒ Ȧ=
1
2
| Irrr× I ṙrr| (A.5)

where dA is the infinitesimal area defined by Irrr and the displacement d Irrr

From Fig.A.1, the area spanned by the vector rrr is the difference betweeen the areas

of the two triangles OPP′′ and PP′′P′. Hence:

dA=
| Irrr| · | Irrr|dϕ

2
− |

Irrr|dϕ ·d| Irrr|
2

(A.6)

The differentiation of the Eq. (A.6) with respect to time leads finally to the so called

second Kepler’s law:

Ȧ=
1
2
| Irrr|2ϕ̇ =

1
2

kc. (A.7)
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Figure A.1 Areas spanned by the moving vector Irrr. P′ is the displaced point P and P′′ is the
projection of P on Irrr after the displacement.

Equation (A.7) states that the position vector of a satellite sweeps out equal areas

during equal intervals of time. Thus, the areal velocity is constant. On the other hand, ϕ̇

is constant only if also | Irrr| is constant, i.e. the position vector traces a circle. More in

general, the position vector traces a curve on a plane.

The shape of the orbit of the satellite can be found by analyzing the factors of the

areal velocity. Any vector that lies on a plane can always be expressed in exponential

form as the product of its magnitude and a complex number eiϕ . ϕ represent the angle

between the vector and the horizontal axis of the Argand plane. Thus, also the position

of the satellite is representable in such form. For readability reasons, the magnitude of

the position | Irrr| will be indicated from now on as r (an analogous notation will be used

for other vectors):
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Irrr = reiϕ (A.8)

Differentiating with respect to time, the following expression is obtained:

I ṙrr = ṙeiϕ + irϕ̇eiϕ (A.9)

Hence:

I r̈rr = r̈eiϕ + ṙeiϕ iϕ̇ + i
[
rϕ̇ · eiϕ iϕ̇ + eiϕ (ṙϕ̇ + rϕ̈)

]
(A.10)

I r̈rr =
(
r̈− rϕ̇

2)eiϕ + i(2ṙϕ̇ + rϕ̈)eiϕ (A.11)

It can be easily demonstrated that multiplying the complex number i by a generic

number corresponds to rotate the corresponding vector in the Argand plane by π/2.

Thus, from Eq. (A.11) it is possible to identify two normal components of the satellite’s

acceleration:

ar = r̈− rϕ̇
2 at = 2ṙϕ̇ + rϕ̈ (A.12)

From Eq. (A.12) it can be observed that the tangential acceleration at is the time

derivative of the quantity r2ϕ̇ = kc. Since this last quantity is constant with time, the

tangential acceleration must be constantly null. Moreover, the radial component of the

satellite’s acceleration is given by:

ar = r̈− k2
c

r3 (A.13)
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Since the acceleration of the satellite is always directed toward the center of the Earth,

Eq. (A.2) reveals the trend of the radial component of the acceleration:

r̈− k2
c

r3 =− µ

r2 (A.14)

Equation (A.14) is an ordinary differential equation in the variable r(t). An efficient

way for solving the latter consists in making a change of the variable of integration:

ṙ =
dr
dt

=
dr
dϕ

ϕ̇ =
kc

r2
dr
dϕ

=−kc
d

dϕ

(
1
r

)
(A.15)

Moreover:

r̈ =
dṙ
dϕ

ϕ̇ =
kc

r2
d

dϕ

[
−kc

d
dϕ

(
1
r

)]
=−k2

c
r2

d2

dϕ2

(
1
r

)
(A.16)

Replacing 1/r with an auxiliary variable ua, it holds:

− k2
cu2

a
d2ua

dϕ2 − k2
cu3

a =−µu2
a, (A.17)

and dividing by −k2
cu2

a :

d2ua

dϕ2 +ua =
µ

k2
c

(A.18)

The solution of the associated homogeneous equation is: uac = Acos(ϕ +B), where

A e B are two arbitrary constants. One particular integral of Eq. (A.18) is ua p = µ/k2
c .

Then:
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ua = Acos(ϕ +B)+
µ

k2
c

(A.19)

Substituting again for the original variable r, it holds:

r =
1

Acos(ϕ +B)+ µ

k2
c

=
µ/k2

c
1+Acos(ϕ +B)

(A.20)

The arbitrariness of the constants A and B allows the imposition of

ϑ = ϕ +B,
k2

c
µ

= p,
Ak2

c
µ

= e

That leads definitively to:

r =
p

1+ ecosϑ
(A.21)

Equation (A.21) represents a conic in polar form. The pole of the coordinate system

coincides with a focus of the conic. A conic is the locus of all points having a distance

from a focus that is a multiple of their distance from a line called directrix. The rate of

these distances is the constant e, which is known as eccentricity.

Since the typical field of application of this work is restricted to satellites that have a

closed orbit, it will be assumed e < 1, so that the conic is an ellipse.

The minimum and the maximum values of r correspond to ϑ = 0 and ϑ = −π

respectively:

rmin =
p

1+ e
rmax =

p
1− e

(A.22)
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Referring to Fig. A.2, the sum of the values in Eq. (A.22) gives the major axis 2a of

the ellipse:

p
1− e

+
p

1+ e
= 2a⇒ 2p

1− e2 = 2a⇒ p = a
(
1− e2) (A.23)

From which:

r =
a
(
1− e2)

1+ ecosϑ
(A.24)

Equation (A.24) is better known as the first Kepler’s law. This law states that

satellites orbit their main attractor following an elliptic path, whose focus coincides with

the attractor. The actual expression of the vector orrrr with respect to the reference frame

of Fig. A.2 is:

Figure A.2 Characteristic parameters of an ellipse
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orrrr =
a
(
1− e2)

1+ ecosϑ


cosϑ

sinϑ

0

 (A.25)

the velocity vector of the satellite has a radial component ṙ and a peripheral one rϑ̇ :

ṙ =
a
(
1− e2)esinϑ

(1+ ecosϑ)2
kc

r2 =

√
µ

a(1− e2)
esinϑ (A.26)

rϑ̇ =
1+ ecosϑ

a(1− e2)

√
µa(1− e2) =

√
µ

a(1− e2)
(1+ ecosϑ) (A.27)

remembering that kc = r2ϑ̇ =
√

µa(1− e2) by definition.

Referring to the reference frame shown in Fig.A.2, the following is simply verifiable:

or ṙ1 = ṙ cosϑ − rϑ̇ sinϑ
or ṙ2 = ṙ sinϑ + rϑ̇ cosϑ (A.28)

Finally:

or ṙrr =
√

µ

a(1− e2)


−sinϑ

e+ cosϑ

0

 (A.29)

From Eq. (A.29) and Eq. (A.24), it is possible to obtain a compact relationship

between the magnitudes of or ṙrr and orrrr:

ṙ2 = µ

(
2
r
− 1

a

)
(A.30)
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Equation (A.7) has shown that the areal velocity Ȧ is constant. From that statement

it is possible to find the period of an elliptic orbit Tor as the time in which the position

vector of the satellite sweeps out the entire area of the orbit:

Ȧ=
πab
Tor

=
1
2

kc =
1
2
√

µ p (A.31)

From Eq. (A.22) it is straightforward to verify that the value of the parameter p is

coincident with b2

a . Hence:

2π
ab
Tor

=

√
b2

a
µ ⇒ T 2

or
a3 =

4π2

µ
(A.32)

This last result is the third Kepler’s law, which states that the squared period of an

orbit is proportional to the cube of its semi-major axis. That law is useful for calculating

the orbital period from the geometrical characteristics of the orbit:

Tor = 2π

√
a3

µ
(A.33)

Finally the so-called mean motion nm is introduced:

nm =
2π

Tor
=

√
µ

a3 (A.34)

A.2 Parametrization for orbits

The Kepler’s laws define the properties of the orbits of satellites by examining their

kinematic behavior on the orbital plane. However, a correct modeling of the orbit of a

space debris needs its characterization on an inertial reference frame I that has its origin

coincident with the center of the Earth.
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The ECI (Earth-centered inertial) frame is typically selectable for that purpose. The

ECI frame is not rigorously inertial because a relative acceleration exists between the

center of the Earth and the Sun. However, the effect of this very light acceleration is

typically negligible. The first axis I1 of the ECI frame points toward the vernal equinox,

which is the ascending node of the ecliptic. The nodes are the intersection point between

an orbit and the equatorial plane. The third axis I3 of the ECI is directed toward the

North pole, while the second axis I2 completes a right-handed coordinate system.

The definition of I allows the identification of five parameters that characterize the

geometry of the orbit, and of one parameter that describes the actual position of the

satellite at the current epoch.

The eccentricity e and the semi-major axis a are the two parameters that identify the

size and shape of the orbit. Three other parameters have to define its orientation. The

first one is the right ascension of the ascending node (RAAN), which indicate the angle

between the line segment connecting the nodes and the direction of the vernal equinox.

This quantity is named with Ωan. The second parameter is the inclination in, which is the

vertical tilt of orbit with respect to the equatorial plane, measured at the ascending node.

Finally, the argument of periapsis ωp is an angle measured from the ascending node to

the closest point reached by the satellite from the center of the Earth, i.e. the perigee.

Figure A.3 gives an illustration of the depicted five parameters.

Typically, the sixth orbital parameter to complete the set of the so-called two-line

elements is the mean anomaly at epoch Mϑ0. This is a fictitious angle that describe the

angular distance of the satellite from the perigee to the focus, assuming the satellite

traveling along a circular orbit with the same period of the actual one. Since this

parameter is fictitious, it is commonly converted into the true anomaly at epoch ϑ0. The

relationship between the two parameters is not straightforward; for low values of the
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eccentricity e, one possible method for approximately obtaining ϑ0 from Mϑ0 consists

of truncating the following series expansion [76]:

ϑ0 = Mϑ0 +2
∞

∑
s=1

1
s

{
Js(se)+

∞

∑
w=1

β
w
e [Js−p (se)+ Js+p (se)]

}
sinsMϑ0 (A.35)

where:

βe =
1
e

(
1−

√
1− e2

)
(A.36)

Jn(x) =
1
n!

(x
2

)n ∞

∑
m=0

(−1)m

( x
2

)2m

m!∏
m
k=1 (n+ k)

(A.37)

A simpler way consists in an indirect evaluation trough the calculation of the eccentric

anomaly Eϑ0, that is the true anomaly of a satellite that is traveling along the auxiliary

circle of its actual orbit. It can be demonstrated [77] that:

Figure A.3 Representation of the orbital parameters
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Mϑ0 = Eϑ0− esinEϑ0 (A.38)

tan
(

ϑ0

2

)
=

√
1+ e
1− e

tan
(

Eϑ0

2

)
(A.39)

Clearly, Eq. 1 has not a closed-form solution for Eϑ0, but numerical methods can

accurately solve it. However, in this work, there is no practical needing in considering the

mean anomaly for characterizing orbits; thus, the true anomaly will be used for defining

the initial position of the simulated target satellite.

Orbital parameters are a very convenient representation of the Keplerian motion of

satellites, but solving Eq. (A.2) requires the knowledge of the initial position and velocity

of the simulated satellite.

Equations (A.25) and (A.29) exploit the semi-major axis a, the eccentricity e, and

the current value of the true anomaly ϑ for finding the position and velocity of the

satellite in a reference frame that is represented in fig. A.2. Obviously, the initial position

and velocity can be found using the initial value of the true anomaly ϑ0. Between

the reference frame in fig. A.2 and the ECI frame I an affine transform have to exist.

In particular, it is a pure rotation that depends on the orientation of the orbit, which

is completely described by the other three orbital parameters Ωan, in, and ωp. Affine

transforms are linear maps between two vector spaces, so they can be represented by

products between a transformation matrix and a vector.

In particular, three different rotation matrices can be defined:
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• A first rotation by the angle Ωan about the third axis I3 of I

RI3,Ωan
=


cosΩan sinΩan 0

−sinΩan cosΩan 0

0 0 1

 (A.40)

• A second rotation by the angle in about the first axis I1 of I

RI1,in =


1 0 0

0 cos in sin in

0 −sin in cos in

 (A.41)

• A third rotation by the angle ωp about the third axis I3 of I

RI3,ωp
=


cosωp sinωp 0

−sinωp cosωp 0

0 0 1

 (A.42)

The appropriate multiplication of these rotation matrices gives:

orrrr = RI3,ωp
RI1,inRI3,Ωan

Irrr (A.43)

or ṙrr = RI3,ωp
RI1,inRI3,Ωan

I ṙrr (A.44)

Then, by simply inverting Eq. (A.43) and Eq. (A.44):
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Irrr = RT
I3,Ωan

RT
I1,in

RT
I3,ωp

orrrr (A.45)

I ṙrr = RT
I3,Ωan

RT
I1,in

RT
I3,ωp

or ṙrr (A.46)

Equations (A.45) and (A.46), together with Eq. (A.25) and Eq. (A.29) define the forward

transform from orbital to Cartesian parameters for the description of orbits.

For defining the inverse transform, it is convenient to preliminarily define some useful

quantities:

• The specific relative angular momentum vector. Its direction is perpendicular to

the orbital plane:
Ihhh = Irrr× I ṙrr (A.47)

• The nodal axis. It has a magnitude that depends on Ihhh; it is aligned with the line of

nodes
INNNa = [0 0 1]T × Ihhh (A.48)

• The eccentricity vector. Its expression is such that its magnitude is equal to the

eccentricity and its direction is aligned with the major axis of the orbit [78]:

IEEE =
1
µ

[(
ṙ2− µ

r

)
Irrr−

(Irrr · I ṙrr
) I ṙrr

]
(A.49)

Banally, the eccentricity e is the magnitude of the vector IEEE. The semi-major axis

can be found by exploiting Eq. (A.30):

a =

(
2
r
− ṙ2

µ

)−1

(A.50)
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The three parameters that describe the orientation of the orbit are obtainable from

simple trigonometric relations:

i = arccos
( Ih3

h

)
(A.51)

Ωan =


arccos

( INa1

Na

)
if INa2 ≥ 0

2π− arccos
( INa1

Na

)
if INa2 < 0

(A.52)

ω =


arccos

( INNNa · IEEE
NaE

)
if IE3 ≥ 0

2π− arccos
( INNNa · IEEE

NaE

)
if IE3 < 0

(A.53)

Finally, the inverse transform is completed by the calculation of the true anomaly ϑ :

ϑ =


arccos

( IEEE · Irrr
Er

)
if Irrr · I ṙrr ≥ 0

2π− arccos
( IEEE · Irrr

Er

)
if Irrr · I ṙrr < 0

(A.54)

A.3 Relative dynamics for two satellites

The target capturing involves a preliminary rendezvous with the chaser spacecraft such

that it is capable of starting with the observation of the motion of the target. The

most general meeting conditions are such that the chaser travels along an orbit that is

sufficiently close to the one of the target. Clearly, for the facilitation of the observation,

the relative range between the two bodies should not have a high variability, especially if

sensors consists of stereo cameras.
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Figure A.4 Definition of the LVLH coordinate system of the target

One can simulate this condition mathematically by modeling the orbital dynamics of

the chaser in the I frame. Then the relative position is computable by simple kinematic

relationships.

However, to avoid a diverging range to the target, the orbital parameters of the chaser

spacecraft should be selected appropriately. Typically, yet, the deviations from the orbital

parameters of the target are too tiny for efficiently being interpreted. From that point

of view, having the possibility of selecting the initial relative position and velocity is

of higher impact in terms of intelligibility. Thus, it is common to model the Keplerian

motion of one of the objects in a reference frame that has its origin in the center of gravity

of the other one.

The most used reference frame for that purpose is the local vertical-local horizontal

(LVLH) reference frame. The first axis of the LVLH frame ℓ1 is directed along the radial

direction, i.e. the corresponding unit vector to the position of the target Irrr. The third

axis ℓ3 has the same direction of the specific relative angular momentum vector Ihhh of the

target. Finally the second axis ℓ2 completes a right-handed coordinate system. Figure

A.4 gives an illustration of these definitions.
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Once an orbital reference frame has been defined, it is possible to derive the dynamic

equations of motion of the chaser in that frame. Introducing ℓρρρ as the position of the

chaser in the frame ℓ, it holds:

ℓrrrch =
[
r+ ℓ

ρ1
ℓ
ρ2

ℓ
ρ3

]T
(A.55)

Expressing the position of the target in the frame ℓ, it has only one component that is

not null. In particular, its value is clearly equal to r. The LVLH frame rotates with an

angular velocity and acceleration that are indicated as
ℓ
ϑ̇ϑϑ and

ℓ
ϑ̈ϑϑ respectively. However,

it is straightforward to verify that only the third component of these vectors is different

from zero. In particular, they coincide respectively with the first and second derivative of

the true anomaly ϑ . Thus, from kinematics:

ℓr̈rrch =
ℓr̈rr+

ℓ
ϑ̈ϑϑ × ℓ

ρρρ +
ℓ
ϑ̇ϑϑ ×

(
ℓ
ϑ̇ϑϑ × ℓ

ρρρ

)
+2

ℓ
ϑ̇ϑϑ × ℓ

ρ̇ρρ + ℓ
ρ̈ρρ (A.56)

The vectorial Eq. (A.56) can be treated by considering each component:

ℓ
r̈ch1

r̈ch2

r̈ch3

=

ℓ
r̈− ϑ̈ρ2− ϑ̇ 2ρ1−2ϑ̇ ρ̇2 + ρ̈1

ϑ̈ρ1− ϑ̇ 2ρ2 +2ϑ̇ ρ̇1 + ρ̈2

ρ̈3

 (A.57)

At any epoch, the Eq. (A.2) can be expressed in the frame ℓ. Hence, the position

vector from the center of the Earth to the center of gravity of the target has one only

non-null component:

ℓr̈1 =−
µ

r2 (A.58)

The same reasoning applies to ℓr̈rrch:
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ℓr̈rrch =−µ
1

r3
ch

ℓrrrch (A.59)

Thus, remembering Eq. (A.55), it is possible to obtain the following expression from

Eq. (A.57):

ℓ
ρ̈1

ρ̈2

ρ̈3

=

ℓ

2ϑ̇ ρ̇2 + ϑ̈ρ2 + ϑ̇ 2ρ1− µ(r+ρ1)

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2 +

µ

r2

−2ϑ̇ ρ̇1− ϑ̈ρ1 + ϑ̇ 2ρ2− µρ2

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2

− µρ3

[(r+ρ1)2+(ρ2)2+(ρ3)2]
3/2


(A.60)

Equation (A.60) gives the full nonlinear equations of relative motion.
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Basics of attitude dynamics

A possible definition of the attitude of a satellite could be the orientation of a right-

handed Cartesian coordinate system, which is fixed to the satellite. The attitude of a

satellite varies with time as a function of the angular rate of the body. For simulating

the motion of the target body, the time variation of its attitude could come from solving

proper kinematic equations, which are systems of ordinary differential equations whose

independent variable is the angular rate. In particular, they often involve the time

derivative of a set of redundant parameters representing the attitude.

In the same way, the angular rate is a fundamental property of the motion of the

target; it depends on the mass distribution and the exerted torques. Thus, dynamic

equations involving the derivative of the angular rate have to be identified for completing

the simulation of the motion of the target.

The choice of an appropriate attitude parametrization has an important role for the

purpose of simulating the motion of an object. The complexity of the kinematic equations

increases with the number of parameters used for describing the attitude. On the other

hand, the choice of a minimal set of parameters may lead to diverging solutions of the
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equations. That occurs especially if the body performs large rotations or have a high

angular rate.

B.1 Attitude kinematics and parameterizations

Given two arbitrary right-handed Cartesian coordinate systems Fa and Fb, it is possible

to define a direction cosines matrix (DCM) as:

FbAFa =


b̂bb1 · âaa1 b̂bb1 · âaa2 b̂bb1 · âaa3

b̂bb2 · âaa1 b̂bb2 · âaa2 b̂bb2 · âaa3

b̂bb3 · âaa1 b̂bb3 · âaa2 b̂bb3 · âaa3

 (B.1)

where b̂bbi and âaai are unit vectors aligned with the i-th axes F i
a and F i

b of the reference

frames Fb and Fa respectively. According to the original definition of Gibbs [79], a

vector is a directed line segment in a three-dimensional Euclidean space. So, a vector is a

mathematical entity independent of any reference frame. The dot product of unit vectors

is equal to the cosine of the angle formed by them, so each i-th column of the DCM in

Eq. (B.1) contains the components of the vector âaai in the reference frame Fb.

Hence, the DCM FbAFa expresses the orientation of the triad Fa about the triad Fb.

For that reason, a DCM gives a set of nine parameters for representing the attitude of a

body. In particular, it is the only one that univocally expresses the orientation between

two triads. For its particular structure, it is easy to demonstrate that it is orthonormal and

has a determinant equal to one. Then, a DCM belongs to the special orthogonal group

SO(3). This belonging shows the constraints to which the nine parameters are subjected.

Each column of a DCM have a unitary norm and the inner product between two different

columns must be equal to zero. Thus, as expectable, only three of the nine parameters

are independent. So, a DCM is a highly redundant attitude parametrization.
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For instance, the orientation of the LVLH frame with respect to the ECI is given by:

IAℓ =

[
I r̂rr − I r̂rr×

Irrr×I ṙrr
|Irrr×I ṙrr|

Irrr×I ṙrr1

|Irrr×I ṙrr|

]
(B.2)

The DCM allows performing the operation of vector basis transformation. For

instance, it is possible to consider the position of the target about the center of the Earth:

rrr = ℓr1ℓ̂ℓℓ1 +
ℓr2ℓ̂ℓℓ2 +

ℓr3ℓ̂ℓℓ3 =
Ir1ÎII1 +

Ir2ÎII2 +
Ir3ÎII3 (B.3)

where ℓ̂ℓℓi and ÎIIi are the unit vectors aligned with the i-th axes of the LVLH frame and

the ECI frame respectively. However, it holds:

ℓ̂ℓℓi =
(
ℓ̂ℓℓi · ÎII1

)
ÎII1 +

(
ℓ̂ℓℓi · ÎII2

)
ÎII2 +

(
ℓ̂ℓℓi · ÎII3

)
ÎII3 (B.4)

Thus, referring to Eq. (B.1) it is easy to verify that the following applies:

Irrr = IAℓ
ℓrrr (B.5)

Although it comes with a particular case, it is evident that Eq. (B.5) has a general

validity.

Due to its properties, a DCM is very similar to a rotation matrix, but there is a

conceptual difference between the two entities. While the DCM is useful for expressing

a vector in different reference frames, a rotation matrix transforms the orientation of

one particular reference frame, also rotating the vectors fixed to it. Moreover, supposing

that Fa is the rotated frame Fb, the generic vector Fbbbb that is fixed to Fb is transformed as

follows:
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Fbbbb′ = FaRFbbbb (B.6)

Nevertheless, due to the generality of Eq. (B.5), it holds:

Fabbb′ = FaAFb
Fbbbb′ (B.7)

Since Fa is the rotated frame Fb, the entities Fabbb′ and Fbbbb are identical. Hence:

FaAFb
FaRFb = I3 (B.8)

where I3 identifies the 3×3 identity matrix. Equation (B.8), together with the orthog-

onality property of both DCM and rotation matrix, demonstrates that the matrix that

rotates Fb into Fa is the transpose of the DCM from Fb to Fa.

Finally, for a complete description of the DCM parametrization, the following equa-

tion shows how the composition works:

FaAFb
FbRFc =

FaAFc (B.9)

where Fc is a third generic reference frame.

For finding the kinematic equations, having chosen DCM as attitude representation,

it is useful to introduce the concept of vectrice [80]: the vectors composing Euclidean

coordinate systems are grouped into vectrices such that:
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b̂bb1

b̂bb2

b̂bb3

= FaAFb


âaa1

âaa2

âaa3

 (B.10)

Introducing the principal body-fixed frame B of the target, it is possible to write:

{
B̂BB
}
= BAI

{
ÎII
}

(B.11)

Differentiating Eq. (B.11) in the ECI frame, it is possible to obtain the following:

d
dt

{
B̂BB
}
=

d
dt

(BAI
{

ÎII
})

=
BȦI

{
ÎII
}

(B.12)

Equation (B.12) holds because the axes of the frame I are obviously fixed in the same

frame. Equation (B.12) and Eq. (B.10) yield to:

d
dt

{
B̂BB
}
=

BȦI
BAT

I
{

B̂BB
}

(B.13)

If ωωω is the absolute angular rate of the target, the derivative in the ECI frame of a

generic unit vector aaa that is fixed to B is −ωωω×aaa. Thus:

d
dt

{
B̂BB
}
=−B

ωωω
×{B̂BB

}
(B.14)

Finally, comparing Eq. (B.14) to Eq. (B.13) it holds:

BȦI =−B
ωωω
× BAI, (B.15)
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that is the Darboux’s equation. It is important to note that it is valid only if the angular

rate is expressed in a body-fixed reference frame. The integration of Eq. (B.15) gives the

attitude kinematics of the target. However, it is necessary to appropriately define nine

initial dependent values such that the orthogonality property of BAI is fulfilled.

The numerical integration of nine dependent variables is not computationally efficient.

Moreover, the physical interpretation of the values of these variables is not immediate.

From that point of view, the best possible representation of attitude should consist

of only three independent parameters. Indeed, any coordinate system can be made

coincident with another one by three separate and independent rotations, each of them

about a different axis. For reasons of simplicity, it is convenient to perform rotations

about the axes of the moving coordinate system. Thus, twelve equivalent terns of axes can

be considered: six permutations without repetition (3!) of the axes (e.g. 123-312-321)

and six sequences for which the first and the third rotation develops about the same axis

(e.g. 121-212-323).

The rotation angles take the name of Euler angles, namely φ , θ , and ψ . It is important

to remark that the successive transformations apply to a moving coordinate system. Thus,

although the rotation axes are aligned with the axes of one particular coordinate system,

they are not perpendicular due to previous displacements of those axes. For that reason,

the time derivatives of the Euler angles are not directly the components of the angular rate.

Hence, the solution of the kinematic equations based on the Euler angles parameterization

does not consist merely in the numerical integration of the angular rate.

It is worth mentioning that other twelve sequences come from considering the three

rotations about a fixed coordinate system, instead of a moving one. The most famous

sequence is undoubtedly the 123 one, known as the roll-pitch-yaw representation. This
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choice simplifies the kinematic equations since the time derivatives of the angles are the

components of the angular rate expressed in the fixed frame.

However, for space applications, the motion of rigid bodies is often described in

body-fixed reference frames. For that reason, the usage of these alternative sequences

will not be treated in detail.

Considering the 321 sequence, which is probably the most appreciated one, it holds:

BAI = RI1,φ RI′2,θ RI′′3,ψ (B.16)

that is, explicitly:

BAI =


cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ

 (B.17)

The problems in using Euler angles for representing attitude arise for some specific

values of the angles. For instance, if θ = π/2 the Eq. (B.17) becomes as follows:

BAI =


0 0 −1

sin(ψ−φ) cos(ψ−φ) 0

cos(ψ−φ) −sin(ψ−φ) 0

 (B.18)

From Eq. (B.18), note that if BAI is known, the values of the Euler angles cannot be

univocally determined. The nonlinear mapping between a DCM and any sequence of

Euler angles can be singular for some attitude of the considered body.
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One can find the kinematic equations recasting the following expression:

B
ωωω = φ̇


1

0

0

+RI1,φ θ̇


0

1

0

+RI1,φ RI′2,θ ψ̇


0

0

1

 (B.19)

where the rotation matrices align the rotation axes with the ones belonging to the body-

fixed frame B. Hence:


φ̇

θ̇

ψ̇

=
1

cosθ


cosθ sinφ sinθ cosφ sinθ

0 cosφ cosθ −sinφ cosθ

0 sinφ cosφ

B
ωωω (B.20)

Equation (B.20) reveals definitively that the Euler angle parametrization is not suitable

for describing the motion of a tumbling space body. Once θ reaches values that are

in the neighborhood of π/2, the time derivatives of the Euler angles become not finite.

Obviously, the motion itself does not present any singularity, but its representation is not

efficient.

Since the number of parameters cannot be minimum for the presented reason, a

fourth dependent parameter should be introduced. One natural possibility of representing

motion with four parameters consists into considering the Euler axis and angle.

The Euler’s theorem [81] states that given two different coordinate systems, a unit

vector êee exists such that its components are identical in both systems. In particular, an

angle α exists such that one of the coordinate systems can be aligned with the other by

rotating it by the angle about the vector êee. Thus, the components of êee and the value of

the angle α are a description of the orientation of a reference frame in another one.
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However, for space applications, the most common parameters for representing

attitude are the quaternions, which are directly related to the Euler axis and angle:

q =


cos α

2

e1 sin α

2

e2 sin α

2

e3 sin α

2

=

 q0

qqq

 (B.21)

The first evident property of the quaternions is that their l2-norm must be equal to

one. This constraint equilibrates the presence of a fourth redundant parameter.

Referring to the properties of the Euler axis and angle, it is interesting to observe

that if both the signs of the vector êee and of the angle α change, the performed rotation is

the same. For that reasons, looking to Eq. (B.21), two opposite quaternions q and −q

represent the same attitude information.

With a similar reasoning, if the sign of only one between the vector êee and the angle

α changes, the new parameters represent an opposite rotation to the one represented by

the original parameters. Thus, the inverse of the quaternion q is:

q−1 =

 −q0

qqq

=

 q0

−qqq

 (B.22)

The Euler’s formula [81] shows the relationship between a DCM matrix and the

corresponding Euler axis and angle:

BAI = cos
(B

α I
)

I3 +
[
1− cos

(B
α I

)]BêeeI
BêeeT

I − sin
(B

α I
)Bêee×I (B.23)

Equation (B.21), together with the application of the bisection formulas for cos
(Bα I

)
and for sin

(Bα I
)
, give:
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BAI =
(Bq0

2
I − BqqqT

I
BqqqI

)
I3 +2 BqqqI

BqqqT
I −2 Bq0I

Bqqq×I (B.24)

Equation (B.24) gives the way for transforming a quaternion into a DCM. The inverse

transform is less straightforward because there is not a unique way for performing the

conversion. In particular, four different ways come from the analysis of the explicit

computation of the second member of Eq. (B.24):



Bq0I =±
1
2

√
1+A11 +A22 +A33

Bq1I =
1

4 Bq0I
(A23−A32)

Bq2I =
1

4 Bq0I
(A31−A13)

Bq3I =
1

4 Bq0I
(A12−A21)



Bq0I =
1

4 Bq1I
(A23−A32)

Bq1I =±
√

1+A11−A22−A33

Bq2I =
1

4 Bq1I
(A12 +A21)

Bq3I =
1

4 Bq1I
(A13 +A31)



Bq0I =
1

4 Bq2I
(A31−A13)

Bq1I =
1

4 Bq2I
(A12 +A21)

Bq2I =±
√

1−A11 +A22−A33

Bq3I =
1

4 Bq2I
(A23 +A32)



Bq0I =
1

4 Bq3I
(A12−A21)

Bq1I =
1

4 Bq3I
(A13 +A31)

Bq2I =
1

4 Bq3I
(A23 +A32)

Bq3I =±
√

1−A11−A22 +A33

(B.25)
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To conclude with the description of the properties of the quaternions, Eq. (B.24) and

Eq. (B.9) can be exploited to define the composition of two quaternions:

BqI⊗ IqB =

 Bq0I
Iq0B− BqqqT

I
IqqqB

Bq0I
IqqqB +

Iq0B
BqqqI +

BqqqI× IqqqB

=±


1

0

0

0

 (B.26)

Equation (B.26) defines the operator ⊗ as the quaternion multiplication. Clearly,

the product between one quaternion and its inverse represent the null rotation, which is

expressed by a null vectorial part.

B.2 Rotational dynamics in torque-free conditions

A particle with mass m have by definition a momentum that is given by:

I pppm = m Irrr (B.27)

where Irrr is the position of the particle in the inertial frame I. The definition of angular

momentum ILLL is the following one:

ILLL = Irrr× I pppm (B.28)

From the second Newton’s law [75] and from the definition of torque, it holds:

IL̇LL = IC (B.29)
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where C is the sum of the torques applied on the particle. If the target satellite is

treated as a simple particle, Eq. (B.29) leads to the definition of the orbital motion of the

target as seen in the paragraph A.1.

However, after the rendezvous, when the target satellite is observed from a chaser

spacecraft, it appears as a rotating continuous body. Since the target body is free

from physical constraints, its rotation develops about the center of mass (CoM), which

should not be confused with the application point of the gravity acceleration. The two

points would have been coincident if the magnitude of the gravity acceleration had been

uniform for each point of the space. However, the distance between the two points is

often negligible. In [51] it is shown that typical values of this distance are under 1 mm.

By definition, the CoM of a continuous body is the result of the following volume

integral:

Irrr =
1
m

∫∫∫
Q

ρd

(
Iddd
)

Iddd dV (B.30)

where ρd is the density of the body, Q is the volume of the body, and Iddd is the position of

the infinitesimal part of the volume dV . Since the CoM is the pole of the rotation of the

body, the angular momentum of the body relative to that point assumes the following

form:

BLLLB =
∫∫∫

Q

Bddd×ρd

(
Bddd

)
BḊDD dV = BJ B

ωωω (B.31)

where BDDD is a vector from the origin of the frame I, i.e. the center of the Earth, to

dV . Moreover, J is the inertia matrix. By definition, the inertia matrix is symmetric

and positive definite. Moreover, it holds Jii + J j j > Jkk and Jii > J jk for all i ̸= j ̸= k.
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The quantities in Eq. (B.31) are expressed in the reference frame B without any loss of

generality. Thus, BJ is diagonal and constant with respect to time. The subscript B on

the angular momentum vector indicates that the pole of the rotation is the origin of the

reference frame B, i.e. the CoM of the target body.

Since the angular momentum vector is expressed in a moving frame, the application

of the second Newton’s law leads to:

BL̇LLB +
B
ωωω× BLLLB = BC (B.32)

A tumbling space debris is not controlled; thus the only contributes to BC would be

tiny environmental torques and the gravity gradient torque due to the actual distance

between the center of gravity and the CoM. However, considering the term BC equal

to zero is acceptable if the dynamics of the target is studied for short time periods [11].

Hence, environmental perturbation torques are neglected. Thus, it holds:

BJ B
ω̇ωω + B

ωωω×
(BJ B

ωωω
)
= 000 (B.33)

that is the Euler’s equation for a torque-free rigid body. The explicit equations for each

component of the angular rate are:



B
ω̇1 +

BJ3− BJ2
BJ1

B
ω̇3

B
ω̇2 = 0

B
ω̇2 +

BJ1− BJ3
BJ2

B
ω̇1

B
ω̇3 = 0

B
ω̇3 +

BJ2− BJ1
BJ3

B
ω̇2

B
ω̇1 = 0

(B.34)
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Notice that the solution of this system does not change if the principal inertia moments

vector is multiplied by a positive scalar k.

Since the target body is considered free by torques, a first important consideration

regards the conservation of two fundamental quantities, i.e. the magnitude of the angular

momentum and the kinetic energy. The conservation is a direct consequence of the first

Newton’s law, which states that an object either remains at rest or continues to move at a

constant velocity unless acted upon by a net torque. Thus, for a generic frame:

L2
B = J2

1 ω
2
1 + J2

2 ω
2
2 + J3

1 ω
3
1 (B.35)

2E2
K = J1ω

2
1 + J2ω

2
2 + J3ω

3
3 (B.36)

where Ek indicates the kinetic energy of the target. Equations (B.35) and (B.36) are the

analytical representations of two intersecting ellipsoids. The result of this intersection is

a closed ellipse, which is traced by the angular rate vector during the body motion, and

whose name is Polhode. So, the angular rate vector creates a surface that is called body

cone. If the ellipsoids are seen from the reference frame B, they are fixed like the inertia

matrix. On the contrary, from an inertial point of view, the values of the inertia moments

variates during the motion of the body. Thus, the ellipsoids have a displacement in the

inertial space. However, if IC= 0, Eq. (B.29) shows that the angular momentum vector

is fixed in the inertial space. It is proved [82] that the endpoint of the angular rate moves

on a plane, which is perpendicular to the angular momentum vector. In particular, that

endpoint traces an open curve called Herpoloid.

The aforementioned curves are shown in Fig. B.1 and Fig.B.2. The graphic inter-

pretation of Eq. (B.36) and Eq. (B.35) suggests that the angular velocity vector has a

periodic behavior.
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The solution of Eq. (B.33) becomes simple if the inertia matrix takes particular forms.

Evidently, for a spherical mass distribution, the principal moments of inertia become all

equal. Thus, the solution of Eq.(B.34) become straightforward: the components of the

angular rate are constantly equal to their initial values.

A cylindrical mass distribution is a more interesting condition. It holds

BJJJ =
[BJcy,

BJcy,
BJ3

]
(B.37)

so Bω3 = const from (B.34). It is found using the energy conservation law that the

angular velocity magnitude ω is constant, and then also Bω2
1 +

Bω2
2 = Bω2

12 will be

constant. It is useful then to split angular velocity vector into two terms (with constant

norm), usually known as spin (rotation around the symmetry axis) and tumbling (rotation

around an axis orthogonal to the symmetry one). The spin and tumbling axes remain

Figure B.1 Intersection of momentum and energy ellipsoid. The tip of the angular rate vector lies
on the intersection curve, which is called Polhode
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Figure B.2 The angular rate vector traces in the inertial frame an open curve, which is called Her-
poloid. The energy ellipsoid rolls without sliding on the plane normal to the angular momentum
vector

fixed in the frame B. The angular velocity vector traces a cone, from both a body-fixed

point of view or from an inertial point of view. The exact solution of (B.34) is:



Bω3 = const

Bω12 = const =
√

ω2− Bω2
3

Bω1 =
Bω12 cos

(
(BJcy− J)Bω3

J
t +Φph

)

Bω2 =
Bω12 sin

(
(BJcy− J)Bω3

J
t +Φph

)
(B.38)
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