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1. INTRODUCTION

A Nuclear Power Plant (NPP) Seismic Probabilistic Risk
Assessment (SPRA) [1] aims at estimating the probability
of occurrence of different sizes of earthquakes that may
affect the NPP and assesses the NPP response to such
earthquakes. The results of the assessment are presented
in terms of seismically induced Core Damage Frequency
(CDF) and Large Early Release Frequency (LERF). SPRA
is a multi-disciplinary activity combining the inputs and
experience of different specialized domain disciplines, such
as seismic hazard analysis, seismic fragility evaluation and
system analysis, under the normative umbrella of risk
analysis.

All the analyses carried out in SPRA are affected by
uncertainties: in general, these can be categorized as either
aleatory or epistemic. Aleatory uncertainty reflects our
inability to predict random observable events, whereas
epistemic uncertainty represents the analyst lack of knowl-
edge of the values of (constant) parameters (e.g. probabilities,
failure rates,…) that are used in the model for a particular
SPRA task. These uncertainties have to be represented

coherently with the data, information and knowledge
available, and propagated onto the risk measures of interest
(i.e. CDF and LERF) in order to establish the level of
confidence that can be placed in the decisions or conclusions
taken, based on the results of the assessment. Then, the aim
of analyzing the uncertainties and assessing their impact
onto the SPRA results is to provide reasonable assurance
that the decisions taken based on such results are robust,
and would therefore not warrant reconsideration.

In the traditional SPRA practice both types of uncertainty,
aleatory and epistemic, are represented by probability
distributions. However, the choice of a probability distribu-
tion (e.g. lognormal, gamma or beta) for representing
epistemic parameter uncertainty due to imprecise and
incomplete data is somewhat arbitrary and often made
because of conventional reasons and simplifying assump-
tions [2]. On the other hand, various recent studies [3, 4]
have recognized that it may be more appropriate to use a
set (i.e. a family) of probability distributions to represent
incomplete and imprecise information about a parameter,
rather than a unique presumed probabilistic distribution.
Such a family can be represented by probability boxes

The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are
affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified
coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be
taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is
typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST)
framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main
contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the
Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian
updating based on plant specific data into the framework. The results of the application to a case study show that the approach
is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii)
providing ‘conservative’ bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the
(limited) state of knowledge of the experts about the system of interest.
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(p-boxes), possibility distributions or belief/plausibility
functions within the paradigm of Dempster-Shafer Theory
(DST). The DST appears as an appealing framework for
uncertainty treatment because it allows a very flexible
uncertainty representation and it has a well-established
connection to many other frameworks. In the early stages
of DST, the application was mainly focused on data fusion
and artificial intelligence [5, 6]. The studies of its application
to complex industrial systems are still limited. Recently,
a framework using the DST for dealing with uncertainties
in the context of NPP risk analysis has been proposed
and developed [7]. Within this framework, the intention
of this paper is to demonstrate how to treat uncertainty
using the DST in NPP SPRA.

The paper is organized as follows. In section 2, we
introduce the logic scheme of the NPP SPRA and the
necessary basic information of each phase such as seismic
hazard analysis, component fragility evaluation etc.. In
section 3, we outline briefly the methodology for uncertainty
treatment, demonstrate the building of the Dempster-Shafer
structure for some simple general cases and introduce the
process of Bayesian updating, when data becomes available.
Section 4 presents the steps to build the Dempster-Shafer
structure to represent the uncertainty of the parameters
appearing in the different SPRA analyses and the framework
for propagation. In Section 5, the proposed approach is
practically illustrated on a simplified NPP SPRA model.
Finally, some conclusions and perspectives are discussed
in Section 6.

2. BASICS OF NPP SPRA

SPRA is a multi-disciplinary activity combining the
inputs and experience of different specialized domain
disciplines, such as seismic hazard analysis, seismic fragility
evaluation and system analysis, onto a risk analysis frame-
work [1]. Steps to perform NPP SPRA include:

• Probabilistic analysis of the Seismic Hazards of the
plant site.

• Evaluation of the seismic fragility of the system
components. 

• Construction of SPRA logic model of the NPP.
• Propagation of aleatory and epistemic uncertainties.

For completeness of the paper, each of these steps is
described briefly in the subsections below.

2.1 Probabilistic Seismic Hazard Analysis

A basic prerequisite for performing a SPRA for a facility
located at a given site is the development of seismic hazard
curves associated with that site. A seismic hazard curve
presents the annual frequency of exceedance of a given
threshold for different values of a selected ground motion
parameter. Hazard curves, which are used as input data in
the SPRA, are the final output of a Probabilistic Seismic
Hazard Analysis (PSHA) [8], which results in the com-

putation of the mean annual frequency of exceedance for
the selected ground motion parameter and the associated
uncertainty at a particular site. The uncertainty is due to both
randomness (aleatory uncertainty) and lack of knowledge
about the earthquake phenomenon affecting the site
(epistemic uncertainty).

The hazard curves developed by a PSHA represent
the aggregate hazard from potential earthquakes of many
different magnitudes occurring at many different source-
site distances. The conduction of a PSHA represents a
substantial effort in both time and cost, and it involves the
contributions of several specialists in the areas of geology,
seismology, and geotechnical engineering. PSHA involves
the following basic steps:

• Identification and characterization of earthquake source
zones, which are capable of producing significant ground
motions at a specific site.

• Construction of a model describing the temporal dis-
tribution or recurrence of earthquakes within each
source zone, commonly expressed in terms of frequency
of occurrence versus a measure of earthquake size.

• Construction of a model describing the conditional
distribution of the strong motion parameter of interest
for a specific site, given the occurrence of an earthquake
of given magnitude and distance. The predictive rela-
tionships of motion parameter for various source events
in terms of magnitude and site distance, are referred
to as ground motion attenuation relationships.

• Integration of the first three steps to produce the hazard
curves for the chosen site.
Hazard curves are usually presented in terms of the

annual frequency of occurrence for a given site versus a
ground motion parameter, such as Peak Ground Acceleration
(PGA). The presentation of the resulting curve has on the
ordinate axis the logarithm of the occurrence frequency
and on the abscissa axis the linear value of the ground
motion parameter. The variability in the hazard is shown
by plotting the percentiles of the hazard curve, as shown
in Figure 2-1. For example, the 85% percentile curve
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defines the motion level that has a 15% chance of being
exceeded or alternatively the level that will not be exceeded
with a confidence of 85%. A tabular presentation (see
Table 2-1) of the hazard analysis results, supplemented
by a few hazard curves, is a preferred presentation format
for PSHA results.

Traditionally, most NPP SPRA models only use a single
hazard curve (50% or mean). This implies treating the
ground motion parameter as a random (aleatory) variable,
only. The (single) hazard curve is, then, used to combine
all calculated results of conditional core damage probability
(CCDP) for different PGA values, to generate the CDF
distribution induced by the seismic hazard. 

2.2 Seismic Fragility Evaluation and Estimation of
Components Failure Probabilities

The objective of a fragility evaluation [9] is to estimate
the capacity of resistance of components with respect to a
given value of the ground motion parameter. The capacity
is represented by fragility curves. A fragility curve depicts
the conditional probability of failure of the component for
any given ground motion level. In Figure 2-2, it can be seen
that the conditional failure probability of a component
increases with the ground motion level to which the site may
be subjected to, approaching 1.0 at high accelerations.

The output of the fragility analysis is a set of three
fragility parameters, the median capacity Am, the logarithmic
standard deviation of randomness R and the logarithmic
standard deviation of uncertainty U, for each component
important to seismic analysis. With perfect knowledge of
the failure mode and parameters describing the ground
acceleration capacity (i.e. only accounting for the random
variability, R, and setting the state of knowledge uncertainty
parameter, U, equal to zero), the conditional probability
of failure, f0, for a given PGA value, a, is given by:

where [.] is the standard Gaussian cumulative distribution
function of the term in brackets. 

The relationship between f0 and a is the median fragility
curve, plotted in Figure 2-2 for a component with a median
ground acceleration capacity Am = 0.87g and R = 0.25. For
a median conditional probability of failure value ranging
from 5% to 95%, (- and + 1.65 logarithmic standard devia-
tions of randomness), the ground acceleration capacity
ranges from Amexp(–1.65 R) to Amexp(1.65 R), i.e. from
0.58g to 1.31g as shown in Figure 2-2.

When the state-of-knowledge uncertainty U is included,
the fragility at a specific acceleration value becomes an
uncertain variable. At each acceleration value a, the fragility
is now represented by the subjective probability Q (also
known as “confidence” ranging from 0 to 1) of not exceed-
ing a fragility f '. The terms Q and f ' are related by the
following equation:

where Q = P(f < f ' a) is the subjective probability (con-
fidence) that the conditional probability of failure, f, is
lower than f ' for a PGA value a, and –1[.] is the inverse
of the standard Gaussian cumulative distribution of the
term in brackets.

For example, the conditional probability of failure f '
at a PGA of 0.6g that has a 95% subjective probability (con-
fidence) of not being exceeded is obtained from Equation
(2-2) as 0.79, as shown in Figure 2-2 on the 95% confidence
curve. The 5% to 95% probability (confidence) interval on
the failure probability at 0.6g is [0, 0.79]. A mean fragility
curve is also plotted in Figure 2-2. This is obtained using
Equation (2-1), by replacing R with the composite variability

C = ( R
2 + U

2 )1/2.
The fragility data of components are used to evaluate

the probabilities of the seismic damage states (SDSs), given
an occurred earthquake.

Fig. 2-2. Example of Fragility Curves for a Component

Annual probability of
exceedance

PGA

10%

0.0082

0.0149

…

…

0.7249

0.7500

50%

0.0106

0.0187

…

…

1.1804

1.2086

8.11E-01

5.57E-01

…

…

5.17E-07

2.52E-07

90%

0.0129

0.0224

…

…

1.6358

1.6673

Table 2-1. Tabular Presentation Format of PSHA Results

(2-1)

(2-2)



2.3 Construction of the SPRA Logic Model of the NPP

The objective of SPRA is to assess the NPP response
to earthquakes. To achieve this goal, we have to construct
a logic model to evaluate the seismic induced CDF and
LERF. In NPP practice, a seismic equipment list (SEL) is
used to define the analysis scope of SPRA, including the
equipment and systems required to provide protection for
all seismically induced initiating events and the structures
that house them. The structures and equipment listed in
SEL are considered for fragility evaluation. A seismic event
tree (SET) is constructed to define the SDSs according to
the combination of headings (top events) successes and
failures, given an occurred earthquake.

An example of SET is shown in Figure 2-3. The head-
ings (top events) in the SET are failures of structures and
equipment in the SEL. The SDSs in the SET include success
(OK), core damage (CD), and the occurrence of seismic
initiating events (e.g. loss of outside power, loss of coolant
etc.). The OK means the plant safety is not challenged by
the seismic hazard and the CD means the plant suffers core
damage given an earthquake has occurred. To evaluate the
CDF and LERF under the seismic conditions, the frequencies
of occurrence of the seismic initiating events must be
combined with the non-seismic failure probabilities of
the mitigation and safety systems still available after the
earthquake.

Only the seismic induced impacts on the plant are
considered in the SET. The success of a heading event in
the SET (hence, the success of the equipment which the
heading refers to) means that the equipment does not fail
due to seismic ground motion. However, it may still fail
from non-seismic failure causes. For seismic initiating
events, the non-seismic failures (e.g., random hardware
failure or operator errors) are evaluated in a separate event
tree from the internal events accident sequence model.

The CCDPs for each seismic initiating event are based
on an internal Probabilistic Risk Assessment (PRA) model,
typically made by event trees and system fault trees. Since
the CCDPs are seismic independent, they can be developed
in advance and treated as plant level parameters.

For the evaluation of non-seismic failures in the internal
events model, we have to estimate the random failure
probabilities of the components. In general, the compo-
nent generic data in the nuclear industry is often provided
in terms of the most likely value of the variable (mean)

with a confidence interval (5% and 95% percentiles). The
possible values of the parameters are obtained from statistical
estimation methods, such as the Maximum likelihood
Estimation or the Bayesian estimation [2]. The uncertainty
associated to the parameters is generally represented by
presumed probability distributions (such as the log-normal,
gamma or beta distributions), which express a subjective
confidence of the analyst in the possible parameter values.
Such uncertainty treatment scheme allows Bayesian updating
when plant specific data is available.

2.4  Propagation of Uncertainty through the Logic
Model

The total seismic induced CDF accounts for the core
damage due directly to the seismic hazard and the core
damage resulting from the accident sequence that developed
from the seismic initiating events. The overall seismic
risk quantification process presented in Figure 2-4 shows
the propagation of uncertainty through the logic model
under assessment. 

The first step of performing the risk quantification is
top event evaluation. In this step, the fault tree associated
with each top event (heading) included in the SET is used
to determine the conditional probability of the top event.
This is done over a specific interval of ground motion values
that the plant site may be subjected to. The individual
component conditional failure probabilities for each top
event are combined to determine the conditional probability
of the top event: this is referred to as top event level fragility
curve for each top event.
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The second step is the SET sequence quantification.
In this step, we compute the sequence level fragility curves
for each sequence defined in the SET according to the
combination of top events along the sequence. As top
events, the sequence level fragility curves are calculated
over a specific interval of ground motion that the plant
site may be subjected to.

The third step is the quantification of the core damage
probability induced by seismic initiating event sequences.
In this step, the sequence level fragility curves for each
seismic initiating event are combined with the associated
non-seismic event tree CCDP distribution to generate the
core damage fragility curves. These core damage fragility
curves of seismic initiating events are, then, combined
with the sequence level fragility curves of core damage
directly induced by the seismic hazard, to get the plant
level core damage fragility curves.

The final step is the estimation of the CDF: the plant
level fragility curves are combined with the seismic hazard
curves to fulfill the seismic risk assessment.

3. BASICS OF DST AND POSSIBILISTIC BAYESIAN
UPDATING PROCESS

It is claimed that the data, information and knowledge
typically available for the analysis involved in NPP SPRA
is typically limited and challenge a (single distribution)
probabilistic treatment of epistemic uncertainty. Then,
the main purpose of this paper is to show the treatment of
uncertainty by DST in NPP SPRA based on data information
and knowledge available. Since plant specific data brings
information for uncertainty analysis, we consider also
Bayesian updating. In this section, we outline briefly the
DST and Bayesian updating.

3.1 Dempster-Shafer Theory

The DST of evidence [10], also known as the theory of
belief functions, is a generalization of the Bayesian theory
of subjective probability in that it allows less restrictive
assumptions about the likelihood, than in the case of a
probabilistic characterization of uncertainty.

The DST is a mixed representation, which combines the
probabilistic representation and the interval representation
in a single representation. Over the set of the real numbers,
the DST resembles a discrete probability theory except
that the locations at which the probability mass resides
are sets of real values, rather than precise points. These
sets associated with non-null mass are called focal elements.
Typically, focal elements are chosen among closed intervals
also called focal intervals. The correspondence of probability
masses associated with the focal intervals is called the
basis belief assignment (BBA), noted m. In the DST, this
BBA on the real line is a mapping such that m: 2R [0,1]
where m(Ø) = 0 and A Rm(A) = 1, for all subsets A of R.
The BBA for a given set can be understood as the weight
of evidence that the truth is in that set, evidence which
cannot be further subdivided on the basis of the data
information and knowledge available. Unlike a discrete
probability distribution where the mass is concentrated at
distinct points, the focal intervals in DST may overlap one
another (see on Figure 3-1). As can be seen in this Figure,
the uncertainty associated with an epistemic variable X
can be represented by the so-called Dempster-Shafer
structure as:

where ai  bi
n
i=1 mi ([ai, bi]) = 1 and [ai, bi] R 1  i  n.

The Dempster-Shafer structure is, thus, a collection of
pairs consisting of closed intervals and corresponding BBAs.
From a computational point of view, this construction is
helpful for propagating the uncertainty through a given
model function by simulation.

Associated with each BBA are two functions, Bel and
Pl, which are referred to as belief and plausibility functions.
The belief and plausibility functions of uncertain variable
X belonging to a subset [_b, –b] R are defined as:
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(3-1)

(3-2)

(3-3)
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The belief function Bel(X [_b, –b]) represents the degree
of belief, based on the available evidence (e.g., given focal
intervals [ai, bi]), that the true value of variable X belongs
to [_b, –b]. On the other hand, the plausibility function Pl(X

[_b, –b]) can be interpreted as the total evidence that the
true value of variable X belongs not only to [_b, –b], as for
Bel(X [_b, –b]), but also to any other given focal interval
which overlaps with [_b, –b]. When the focal intervals are
reduced to precise values, the belief and plausibility functions
coincide with the cumulative distribution function (cdf)
of probability theory.

The belief and plausibility functions are recognized to
be the lower and upper bounds of the cdf. In fact, according
to the imprecise probabilities theory [11], the imprecision
in the cumulative distribution function is characterized
by lower and upper cdfs [_F, –F] (named a p-box), such
that _F(x)  F(x)  –F(x) where F(x) = P(X  x) is the cdf
(probabilistic). Given a Dempster-Shafer structure as in
Equation (3-1), these two functions are equated with the
cumulative belief and plausibility functions and defined as:

Thus, we can see that the (probabilistic) cdf F(x) =
P(X  x) is bounded by the cumulative belief and plausibility
functions see Figure 3-2. Inversely, since a unique p-box,

[_F, –F], can induce many Dempster-Shafer structures, in
practice a Dempster-Shafer structure is often approximately
obtained using discretization techniques [12].

The DST is also related to the possibility theory which
can be seen as an extension of the fuzzy set theory. In the
possibility theory, uncertainty is represented by a possibility
distribution which is equivalent to the belief functions of
DST when the focal intervals are nested. Therefore, it is
recognized that the possibility theory is a special case of
the DST [13]. The relationship between the possibility
theory and the DST is very important for the Bayesian
updating process, as we shall see in section 3.3 below.

3.2 Building Dempster-Shafer Structure Based on
Available Information 

In the absence of specific data, precise information
and sure knowledge, it seems more reasonable to specify
a possible range of values for a variable rather than a single,
point value. To clarify this, in the following, we consider
a handful of examples of commonly encountered situations.
Suppose, for example, that it is known that an uncertain
parameter cannot be smaller than  nor larger than : then,
the interval [a, b] is used and the associated Dempster-
Shafer structure is {([a, b], 1)} (Figure 3.3). If the median
c of an uncertain variable is also known, this pinches the
uncertainty distribution to a definite point at the 50%
probability level. As shown in Figure 3-3, the associated
Dempster-Shafer structure for this case is {([a, c], 0.5)},
{([c, b], 0.5)}. Having reliable knowledge of other per-
centiles would correspond to similar structures. The focal
intervals in this case do not overlap.

If in addition to the range, the mean of a random variable
is also known, the p-box can be further refined. Let xinf, xm

and xsup be the minimum, mean and maximum values
respectively. First, consider the x-values between the
minimum and the mean. The upper bound on probability
over this range can be found by determining the largest
possible values attained by a distribution function under
the specified constraints [12]. Consider an arbitrary value
x [xinf, xm], the value p of a distribution function at x
represents the probability mass at and to the left of x. The
probability mass on the left must be balanced by the mass
on the right of the mean. The greatest possible mass would

Fig. 3-3. Dempster-Shafer Structure Based on Range and Median Value

(3-4)

(3-5)

Fig. 3-2. Cumulative Belief and Plausibility Functions



be balanced by assuming that the rest of the probability,
1 – p, is concentrated at xsup. Likewise, the arrangement of
mass on the left side requires the least balance when it is
all concentrated at the point x. These considerations lead
to the expression which can be solved to yield px + (1 – p)xsup

= xm, which can be solved to yield p = (xsup – xm)/(xsup – x),
specifying the largest value of the distribution function
for the value x. If there were any more probability mass
at values less than or equal to x, the constraint of the mean
could not be satisfied by any arrangement of mass at values
less than or equal to xsup. Clearly, then, the spike distributions
defined by this expression describe the bounding distribution
over the range [xinf, xm], subject to the fundamental constraint
0  p  1. The position of the lower bound is determined
by the degenerate distribution which has all its mass at
the mean. Its distribution function is zero from xinf to xm.
Lower and upper bounds for values larger than xm can be
derived by similar (but inverted) arguments. The resulting
p-box is, then, [_F, –F], where

The belief and plausibility functions of this case are
plotted in Figure 3-4. As shown in Figure 3-4, the associated
Dempster-Shafer structure can be obtained by canonical
discretization [12].

3.3 Possibilistic Bayesian Updating Process 

The possibilistic Bayesian updating process has already
been proposed in the literature [14]. As mentioned in the
previous section, in possibility theory, uncertainty is rep-
resented by a possibility distribution which is equivalent
to the belief functions of the DST when the focal intervals
are nested. We can transform the belief and plausibility
functions of parameter X, obtained based on industry generic

data, to an equivalent possibility distribution and embed
the possibilistic Bayesian updating process based on plant
specific data into the uncertainty analysis framework. In
the following, we briefly summarize the possibility theory
and address how to transform the belief and plausibility
functions in a possibility distribution, and introduce the
process of Bayesian updating of possibility distributions
when new information is available.

Possibility theory [15] is relevant to represent consonant
imprecise knowledge. The basic notion is the possibility
distribution, denoted , an upper semi-continuous mapping
from the real line to the unit interval. A possibility distribu-
tion describes the more or less plausible values of some
uncertain parameter X. Possibility theory provides two
evaluations of the likelihood of an event, for instance
whether the value of a real variable X lies within a certain
interval: the possibility and the necessity N are defined as:

A unimodal numerical possibility distribution may also
be viewed as a nested set of confidence intervals, which
are the  -cuts [_x , –x ] = {x,  (x)  } of . The degree of
certainty that [_x , –x ] contains X is N([_x , –x ]) = – (if 
is continuous). Conversely, a nested set of intervals Ai with
degrees of certainty i that Ai contains X is equivalent to
the possibility distribution (x) = min{1 – i, x  Ai, i = 1 …n}
provided that i is interpreted as a lower bound on N(Ai),
and is chosen as the least specific possibility distribution
satisfying these inequalities [16].

We can interpret any pair of dual functions necessity/
possibility [N, ] as upper and lower probabilities induced
from specific probability families.

Let be a possibility distribution inducing a pair of
functions [N, ]. We define the probability family P( ) =
{p, A measurable, N(A)  p(A)} = p, A measurable, p(A)

 (A)}. In this case, supp P( )p(A) = (A) and infp P( )p(A)
= N(A) hold. In other words, the family p( ) is entirely
determined by the probability intervals it generates.

Suppose pairs (interval Ai, necessity weight i) supplied
by an expert are interpreted as stating that the probability
p(Ai) is at least equal to i where Ai is a measurable set. We
define the probability family as follows: p( ) = {p, Ai, i

 p(A)}. We thus know that –p = and _p = N.
For a unimodal continuous possibility with core {a}

(i.e. ({a}) = (a) = 1 and x  a, (x)  1), the set of
probability measures P( ) can be more conveniently
described by a condition on the cdfs of these probabilities,
that is P( ) = {p, x, y, x  a  y, F(x) + 1 – F(y)  max
( (x), (y))}. Note that we can choose x and y such that

(x) = (y) in the expression of P( ), i.e. suppose that [x,
y] is a cut of . If I is the -cut of , it holds that P( ) =
{p, p(I ) N(I ),  (0.1]}.

Considering a particular probability box [_F, –F] such
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(3-6)

(3-8)

(3-9)

(3-7)

Fig. 3-4. Dempster-Shafer Structure Based on Range and Mean



that –F(x) = (X  (– , x]) and _F(x) = N(X  (– , x]), it is
clear that

The probability box [_F, –F] above has an important
specific feature; there exists a real value a such that –F(a)
= 1 and –F(a) = 0. It means that the p-box contains the
deterministic value a, so that the two cdfs are acting in
disjoint areas of the real line separated by this value. We
can retrieve a possibility distribution from such two cdfs
as  = min ( –F, 1 – _F) and, thus, retrieve the possibility
distribution that generated the p-box.

Once we use Equations (3-6) and (3-7) to build the
belief and plausibility functions of parameter X based on
industry generic data expressed in a form [m, μ, M], where
μ is the mean and m, M are, respectively, the lower bound
and the upper bound, we can transform them to a prior
possibility distribution such that (x) = (M – μ)/(M – x)
for x [m, μ] and (x) = 1 – (x – μ)/(x – M) for x [μ, M],
as we discussed above. The prior possibility distribution
is a unimodal continuous distribution with core {μ}.

The objective of Bayesian updating is to calculate the
posterior possibility distribution (x y) of X after y is
obtained. To this aim, we employ a method based on a
purely possibilistic counterpart of the classical, probabilistic
Bayes’ theorem [17]:

where L(xi y)  is the possibilistic likelihood of the parameter
X given the newly observed data y, and quantities (x y)
and (x) are defined above. Notice that max[ l(xi y) (xi)]
is a normalization factor such that max[ (x y)] = 1, as
required by possibility theory [18].

The posterior possibility distribution (x y) thereby
obtained is also a unimodal continuous distribution. Then,
we can obtain the corresponding belief and plausibility
functions using Equations (3-10) and (3-11).

4. DST OF EVIDENCE FOR UNCERTAINTY
REPRESENTATION AND PROPAGATION IN NPP
SPRA

The construction of belief functions within the DST
does not rely on any assumption and is carried out directly
from the original data. In this section, we describe the
typical characteristics of the data available for SPRA and
show how to build Dempster-Shafer structures based on
this (limited) information.

4.1 Building Dempster-Shafer structure of Seismic
Hazard Curves

As mentioned earlier, most NPP SPRA models use
only a single hazard curve (50% percentile or mean); this
implies that we treat the ground motion parameter (i.e. PGA)
as a random (aleatory) variable, only. However, the seismic
hazard experts provide more than one hazard curve to
represent the uncertainty bounds based on their knowledge;
we can, then, build the corresponding Dempster-Shafer
structures for the ground motion parameter (i.e. PGA)
following these steps:

• Transform each hazard curve to a PGA cumulative
density function, given an earthquake has occurred.

• Discretize the lower (i.e. 10%) and upper (i.e. 90%)
PGA cumulative density functions to generate the
focal intervals and corresponding masses (notice the
focal intervals may overlap).

• Subdivide each focal interval by another percentile
(e.g. 50%) PGA cumulative density function and
distribute the mass of each focal interval to the two
(new) focal intervals thereby originated; the subdivided
focal intervals in each focal interval will not overlap
as shown on Figure 3-3.

• Integrate all subdivided focal intervals to build the
final Dempster-Shafer structure. 
As mentioned in section 2.1, the  x% percentile curve

defines the motion level that we are  x% confident that it
will not be exceeded. If the bounding curves (i.e. x = 0
and x = 100) exist, we can define the uncertainty bound.
Unfortunately, this is not always true in practice; in this
case, we can take the lowest (e.g. 10%) and highest (e.g.
90%) as bounds, and this is the only assumption we make
in the whole analysis framework. The process of converting
the hazard curve to a cdf and, then, building the Dempster-
Shafer structure will be shown in section 5.

4.2 Building the Dempster-Shafer Structure of
Seismic Fragility Curves

Traditionally, most NPP SPRA models use mean fragility
curves to represent the conditional failure probability of a
component. For a given PGA value, the conditional failure
probability calculated by Equation (2-1) (replacing R with

C) is just a point value. This implies that the component
fragility parameters do not contribute to the epistemic
uncertainty. For a given PGA value, the conditional failure
probability, calculated by Equation (2-2), is a single curve,
which means that we have perfect knowledge about the
probability and we can treat fragility as a random (aleatory)
variable. However, for a given PGA focal interval [am, aM],
we can directly build the Dempster-Shafer structure of
the component failure probability based on Am, R, and U

by Equation (2-2).
Figure 4-1 is an example of the Dempster-Shafer

structure of component conditional failure probability,
given the PGA focal interval [0.2g, 0.3g]. The number of
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(3-12)

(3-10)

(3-11)



component failure probability focal intervals is 20 and
the mass of each is 5%. The lower bound is calculated by
setting confidence level QL = [0.005, 0.05, 0.1,…, 0.95]
and the upper bound is calculated by setting confidence
level QU = [0.05, 0.1,…,0.95, 0.995].

4.3 Building the Dempster-Shafer Structure of
Component Failure Probabilities

The generic data of component reliability provided
by industry data banks usually contain mean values and
presumed distribution parameters. Thus, the data of an
input parameter X can be typically expressed in a form
[m, μ, M], where μ is the mean and m, M are, respectively,
the lower bound and the upper bound. The value of m and
M can be obtained directly from the 5% and 95% percentiles
of the 90% confidence interval. Hence the Dempster-Shafer
structure of the parameter based on generic data can be
built by Equation (3-6) and (3-7), as shown in Figure 3-4.

In the traditional PRA practice, collected plant specific
data is used to provide more information to reduce the
uncertainty in the parameter estimate. In case we use the
Dempster-Shafer structure to represent the epistemic
uncertainty in the parameters, the plant specific data is used
to reduce the epistemic uncertainty and narrow down the
focal intervals using the method described in section 3.3.

4.4 Uncertainty Propagation through the Logic Model

This step consists of propagating the uncertainty in
the input parameters (seismic hazard curves, seismic
fragility curves, component failure probabilities,…) through
the logic model of the system (i.e. the SET) in order to
estimate the CDF of the NPP of interest. In the Dempster-
Shafer framework, the propagation of uncertainties is not
as straightforward as for the probabilistic approach as it
consists of propagating focal intervals. When the input
parameters are independent, the uncertainties are propagated
by performing the Cartesian product of the input focal
intervals and propagating them, the probability mass of
the resulting output focal intervals is obtained using the
product of the probability masses of the input intervals.

5. CASE STUDY

In this section, we refer to a simplified model to demon-
strate the whole SPRA uncertainty assessment process.
The scheme of the hypothetical (simplified) NPP sketched
in Figure 5-1 is located in a seismic area characterized by
the seismic hazard curves of Figure 5-2 [19]. The fragility
curves parameters for the 14 components of the simplified
NPP are given in Table 5-1 [20], and the components generic
and specific data available is provided in Table 5-2 [2, 21].

The corresponding SET is shown in Figure 5-3: OSP
is offsite power system; EDG represents emergency diesel
generator system including day tank (EDGDT), diesel
generator (EDGDG), fuel storage tank (EDGST), fuel
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Fig. 4-1. Example of DST Structure for Component Failure Probability

Fig. 5-1. Simplified NPP Layout

Fig. 5-2. Seismic Hazard Curves



transfer pump (EDGFP) and starting air receiver (EDGSA);
CST is the condensate storage tank; HP represents high
pressure coolant injection system including system piping
(HPCPI) and pump (HPCPP); SRV represents the safety
relieve valve and LP represents low pressure coolant
injection system including system piping (RHRPI), pump
(RHRPP) and heat exchanger (RHRHX).

There are 8 sequences in the SET. Notice that since
the median capacity Am of the OSP is much smaller than
the others (see Table 5-1), if the offsite power system
survives after the earthquake, it is very likely that the other
systems also survive. Thus, even if a transient occurs under
this condition, there are still many safety systems that can
mitigate the transient and can lead the reactor to a safe
state. Thus, the final plant state for sequence 1 is set directly
to ‘OK’ in case of OSP success (Sequence 1). Instead, if
the OSP and EDG fail simultaneously (Sequence 8), we
conservatively assume that the core will be damaged,

although there are some additional safety systems that
can intervene.

The other sequences reflect the scenarios possibly
generated by the LOOP event. The SDS of Sequences 3, 5,
6 and 7 are ‘CD’ due to loss of coolant injection (Sequences
5, 6 and 7) or long term cooling (Sequence 3). Since
Sequence 2 (LOOP1) and Sequence 4 (LOOP2) still have
other systems available to mitigate the seismic events,
they must be combined with the internal event trees to
consider the contribution of non-seismic failures.

5.1 Seismic Hazard Curves

A tabular presentation of the hazard curves (Figure 5-1)
is also provided by the seismic hazard experts [19]. There
are 166 point values for each hazard curve, partially shown
in Table 5-3 (first 12 and last 10 points). The high-con-
fidence -of-low-probability-of-failure (HCLPF) capacity
of the weakest component (i.e. OSP) is 0.083g. This means
that we can assume the reactor still operates normally
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OSP

EDGDT

EDGDG

EDGST

EDGFP

EDGSA

CST

HPCPI

HPCPP

SRV

RHRPI

RHRPP

RHRHX

Structure/Component

Offsite Power Transformers

Fuel Oil Day Tank

Emergency Diesel Generator

DG Fuel Oil Storage Tank

EDG Fuel Transfer Pump

EDG Starting Air Receivers

Condensate Storage Tank

High Pressure Injection System Piping

High Pressure Injection System Pumps

Safety Relief Valve

RHR System Piping

RHR Pumps

RHR Heat Exchangers

Am

0.3

2.33

3.4

2.39

6.9

8.58

1.1

4.02

4.75

3.8

4.02

3.48

8.8

R

0.39

0.36

0.33

0.18

0.29

0.3

0.33

0.38

0.31

0.43

0.38

0.31

0.38

U

0.39

0.38

0.39

0.13

0.31

0.42

0.33

0.43

0.41

0.43

0.43

0.41

0.46

Table 5-1. Parameters of Component Fragility Curves

Basic
Event

Industry Data

5% mean, 95%

Specific Data

# of demand 
(running hours)# of failure

6.0E-5

8.0E-5

6.0E-5

5.0E-5

1.3E-4

1.2E-3

1.0E-3

1.5E-3

4.0E-4

3.4E-3

4.0E-3

3.0E-3

5.0E-3

1.0E-3

1.3E-2

7

9

9

2

--

8844

9052

4538

3329.8h

--

AVD

MVD

PMA

PME

HR-ADS

Table 5-2. Component Reliability Data

Fig. 5-3. Seismic Event Tree



when the ground motion is lower than this value. From
this point of view, the annual probability of exceedance
of the ground motion threshold is 6.80E-2 (see the tenth
row of Table 5-3), since the PGA value of the 90% hazard
curve is the first one larger than 0.083g. The lower bound
of PGA value, then, is determined by the 10% hazard curve
(i.e. 0.0529g) and the upper bound is set to the maximum
PGA value (i.e. 1.6673g) that the plant site may be subjected
to according to the seismic hazard experts.

As explained in section 4.1, in order to build the
Dempster-Shafer structure for the hazard curves, first we
transform each hazard curve into a PGA cdf conditional
on the seismic event. This is achieved by calculating the
frequencies between two neighborhood PGA point data
and, then, normalizing them by the annual probability of

exceedance of the ground motion (i.e. 6.80E-2) to obtain
the probability densities of the PGA intervals. For example,
according to the 10% hazard curve data in Table 5-3, the
frequency between 0.0529g and 0.0564g is 1.03E-2 (=
6.80E-2 - 5.77E-2) and the probability density of this PGA
interval is 1.51E-1 (1.03E-2/6.80E-2). After calculating
the probability density for each interval, we can integrate
them and obtain the corresponding cdfs as Figure 5-4.

Using the lower (i.e. 10%) and higher (i.e. 90%)
PGA cdfs, we can generate the related Dempster-Shafer
structure, i.e. the focal intervals and the corresponding
masses (BBA) (solid lines in Figure 5-5). Then, using the
additional information about the median, these focal
intervals are further subdivided by the 50% curve and the
Dempster-Shafer structure is reconstructed accordingly,
as shown by the dashed lines in Figure 5-5.

5.2 Conditional Failure Probability of Top Events

There are six top events in the SET (see Figure 5-3).
In this step, the fragility curves of each component are
used to construct the Dempster-Shafer structure for each
top event probability.

First of all, we represent the component fragility curves
by Dempster-Shafer structures. As described in section
4.2, we can use fragility curves to calculate the bounds of
each focal element and, then, build the Dempster-Shafer
structure of the component failure probability given each
PGA value of interest. An example of component fragility
interval curves (OSP) is shown in Figure 5-6. In this Figure,
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Annual probability of
exceedance

PGA (g)

10%

0.0082

0.0149

0.0213

0.0269

0.0321

0.0368

0.0412

0.0452

0.0492

0.0529

0.0564

0.0599

…

0.6355

0.6433

0.6516

0.6605

0.6702

0.6810

0.6930

0.7072

0.7249

0.7500

50%

0.0106

0.0187

0.0264

0.0334

0.0400

0.0463

0.0522

0.0580

0.0637

0.0691

0.0745

0.0799

…

1.0532

1.0654

1.0781

1.0916

1.1060

1.1216

1.1387

1.1580

1.1804

1.2086

8.11E-01

5.57E-01

3.81E-01

2.71E-01

2.01E-01

1.54E-01

1.22E-01

9.85E-02

8.11E-02

6.80E-02

5.77E-02

4.94E-02

…

3.18E-06

2.79E-06

2.41E-06

2.06E-06

1.72E-06

1.39E-06

1.09E-06

7.95E-07

5.17E-07

2.52E-07

90%

0.0129

0.0224

0.0314

0.0398

0.0479

0.0557

0.0633

0.0708

0.0782

0.0854

0.0926

0.0998

…

1.4710

1.4875

1.5047

1.5228

1.5419

1.5623

1.5844

1.6087

1.6358

1.6673

Table 5-3. Tabular Data of Hazard Curves

Fig. 5-4. PGA Cdfs Corresponding to the Seismic Hazard
Curves of Figure 5-2

Fig. 5-5. Dempster-Shafer Structure of the Seismic Hazard
Curves



the 5%, 50% and 95% percentile curves are shown, for a
given PGA value. For comparison, the fragility curves
calculated by Equation (2-2) are also plotted.

There are three top events consisting of only one
component (i.e. OSP, CST and SRV): in this case, the
top event level fragility interval curves are the same as the
component fragility interval curves. For the other three
top events (i.e. EDG, HP and LP), all the components
fragility interval curves have to be propagated through
the corresponding Fault Tree to get the top event level
fragility interval curves. In this paper, the propagation
has been carried out by standard Monte Carlo Simulation
(MCS). The Dempster-Shafer structure corresponding to
a given PGA value is, then, reconstructed according to
the calculated focal intervals. An example of top event
probability interval curves (for top event EDG) is shown
in Figure 5-7; notice that the single fragility curve in the
Figure (solid line) is the result of the traditional method
combining the mean fragility curve (corresponding to
parameters Am and C) of each component.

5.3 Conditional Probability of SDSs

This step propagates the fragility curves of the top events
through the SET of Figure 5-3 to obtain the Dempster-
Shafer structure of the probability of each SDS. There
are four SDS (OK, LOOP1, LOOP2 and CD) in SET (see
Figure 5-3). The equations of the sequence probabilities
are shown in Table 5-4. The conditional probability of core

damage directly induced by seismic (SDS CD) is shown
in Figure 5-8 as a function of the different possible PGA
values. Notice that the conditional failure probability
monotonically increases with the ground motion as in the
curve obtained by traditional methods.

The conditional probability curves of seismic initiating
event LOOP1 are also shown in Figure 5-9. In this Figure,
we can see that the conditional failure probability initially
increases and, then, falls off with increasing PGA. This is
due to the contribution of all the seismic initiating event
sequences involving at least one safety system that operates
successfully: the safety system success probabilities go to
zero at high ground motions.

5.4 Conditional Probability of Core Damage
Induced by Seismic Initiating Event Sequences

This step quantifies the conditional probabilities of
core damage induced by seismic initiating event sequences.
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Seismic
Damage
States

OK

LOOP1

LOOP2

CD

Equation

1-OSP

OSP*(1-EDG)*(1-CST)*(1-HP)*(1-LP)

OSP*(1-EDG)*(1-CST)*HP*(1-LP)

OSP*[1-(1-EDG)*(1-CST)*(1-LP)*(1-HP*SRV)]

Table 5-4. SDS Equations

Fig. 5-6. Dempster-Shafer Structure of the Failure Probability
of Component OSP for Different PGA Values

Fig. 5-8. Dempster-Shafer Structure for the Probability of SDS CD

Fig. 5-9. Dempster-Shafer Structure for the Conditional
Probability of Sequence LOOP1

Fig. 5-7. Dempster-Shafer Structure for the Probability of Top
Event EDG



In this step, the sequence probability curves for seismic
initiating events (i.e. LOOP1 and LOOP2) have to be
linked to the non-seismic event tree CCDP distribution
bounds, so we need to build the Dempster-Shafer structure
for the non-seismic event tree CCDP probability. 

Taking seismic initiating event LOOP1 as an example,
we build the corresponding internal event tree as in Figure
5-10. System fault trees are also constructed according to
the simplified plant layout of Figure 5-1 to evaluate the
probabilities of failure of system HP, DP and LP.

Before sequences quantification, we have to evaluate
the failure probability for each safety system (headings
HP, DP and LP) by means of the corresponding fault tree.
For example, the HP fault tree (Figure 5-11) representing
the logic of failure of the high pressure injection system,
has to open two air-operated valves (AOV) and start the
injection pump when receiving the auto-start signal: any
of these components failing by demand and pump failing
while running imply high pressure injection function
failure. There are four basic events in the HP fault tree.
The Dempster-Shafer structures for the failure probability
of each basic component are constructed based on industry
and plant data, (see Table 5-2) and then propagated through
the fault tree to obtain the Dempster-Shafer structure for
the failure probability of the safety system.

According to the procedure already outlined in [14], first,
we use the industry generic data to build the Dempster-
Shafer structure for each basic event failure probability
(Section 3.2). The 5-th and 95-th percentiles are set as the
lower and upper bounds, respectively, of the uncertain
probability ranges. The resulting belief and plausibility
functions are shown in Figure 5-12 with reference to the
AOV, only for illustration purposes. The predetermined
(i.e. presumed) a priori beta function traditionally used in
NPP PRAs to represent the AOV demand failure probability
is also plotted in Figure 5-12, for comparison.

Then, the belief and plausibility functions constructed
by means of the industry generic data are updated Bayesianly
using the plant specific data available (Table 5-2). Thus,
for Bayesian updating purposes, we transform the belief
and plausibility functions into possibility distributions
(Section 3.3). These possibility distributions are the prior
possibility distributions used in the Bayesian update. As
shown in Figure 5-13 with reference to the AOV failure
probability, the left part of the prior possibility distribution
coincides with the corresponding plausibility function,
whereas the right part is equal to the complement of the
corresponding belief function.

The prior possibility distributions are updated using
the plant specific data by Equation (3-12). Continuing
with the example, the posterior possibility distribution of
the AOV failure probability is shown in Figure 5-13, for
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Fig. 5-10. Internal Event Tree Corresponding to Seismic
Initiating Event LOOP1

Fig. 5-11. The Fault Tree of Heading HP

Fig. 5-12. The Belief and Plausibility Functions for the AOV
Failure Probability

Fig. 5-13. Possibility Distributions for the AOV Failure
Probability before (Dashed Line) and after (Solid Line) the

Bayesian Update



comparison. It can be seen that after Bayesian update, the
distribution is more peaked than before.

Finally, we reconvert the posterior possibility distribution
of each basic event into belief and plausibility functions
using Equations (3-10) and (3-11). Figure 5-14 shows the
prior and posterior belief and plausibility functions for the
AOV failure probability corresponding to the possibility
distribution of Figure 5-13.

Once the Dempster-Shafer structures of the failure
probability of all the basic events are built, they are prop-
agated by the Monte Carlo simulation through the system
internal event tree to obtain the Dempster-Shafer structure
of the CCDP of seismic initiating events. The Monte Carlo
uncertainty propagation for the LOOP1 CCDP is shown
in Figure 5-15. In addition, for comparison purposes
Figure 5-15 also reports the CCDP distributions obtained
with the traditional Monte Carlo simulation using single
(presumed and subjective) probability distributions for
the basic events probabilities.

To construct the conditional probability intervals of
core damage induced by the seismic initiating event of
interest, we have to combine the Dempster-Shafer structure
for each seismic initiating event (i.e. LOOP1 and LOOP2)
with their associated CCDP bound. Again obtained by
the MCS, the conditional probabilities of core damage
induced by LOOP1 are shown as a function of PGA values
in Figure 5-16.

5.5 Core Damage Probability

The probability curves of core damage induced by seis-
mic initiating events are then combined with the sequence
level fragility curves of core damage due directly to the
seismic event in order to get the plant level core damage
fragility curves (Figure 5-17): this means that for each
ground motion value, the total conditional probability of
core damage is obtained as CDPtotal = CDPLOOP1 + CDPLOOP2

+ CDPseismic. 

5.6 Core Damage Frequency

The final step is the estimation of the CDF. The total
conditional probability curves for core damage are combined
with the seismic hazard curves to complete the seismic
risk assessment. The conditional probability bounds of
core damage are obtained by sampling the PGA intervals
constructed in Section 5.1. Figure 5-18 shows the final
results and compares them with the traditional results
obtained by employing the 50% hazard curve and mean
component fragility curves.

We can see that a part of the traditional CDF result is
not bounded by the bounding analysis. There are two
reasons for this: first, the conditional probability of failure
calculated by the mean component fragility curve is larger
than 95% when ground motion value is small; second,
using the 50% hazard curve neglects some contribution
of low magnitude ground motion. 
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Fig. 5-14. The Prior and Posterior Probability Bounds for the
AOV Failure Probability

Fig. 5-15. The CCDP Bounds for Seismic Initiating Event
LOOP1

Fig. 5-16. The CCDP Induced by LOOP1 as a Function of
Different PGA Values

Fig. 5-17. Total Conditional Probability of Core Damage



6. SUMMARY AND CONCLUSION

The American Nuclear Society has developed a
national standard [22] which provides requirements of
three Capability Categories for conducting Probabilistic
Risk Assessment of seismic events: Capability Category
I can rely on generic or regional mean seismic hazard
estimates and only a calculation of the mean CDF. Capability
Category II requires a more thorough seismic hazard
analysis and a full uncertainty analysis of the risk quan-
tification. Capability Category III follows along the lines
of the Seismic Safety Margin Research Program [23] and
is likely considered only in a research program. In most
practical cases, a calculation of the mean CDF (Capability
Category I) is accepted to determine any changes in risk
or in addressing Generic Safety Issues. For example, only
a mean CDF estimate is required in IPEEE (Individual
Plant Examinations of External Events) and, therefore,
almost all of the IPEEE SPRA submittals would only
comply with this requirement. 

On the contrary, for confident decision making, more
information is needed, in particular, addressing the (aleatory
and epistemic) uncertainties affecting the SPRA. 

The principal purpose of assessing uncertainty is to
provide a reasonable assurance that the decisions are robust
and would therefore not warrant reconsideration. In order
to overcome the existing drawbacks of the traditional
uncertainty analysis approaches in SPRA context, a DST
framework for handling uncertainties has been proposed
in this paper. This approach allows a representation and
propagation of uncertainties that are coherent with the
often limited information available on the system, and do
not require arbitrary and subjective assumptions and
distributions. In this paper, a demonstration of how to treat
uncertainty using DST in SPRA has been given with
reference to a simplified NPP. The procedure for building
the Dempster-Shafer structures on the uncertain parameters
based on generic data has been shown, the Bayesian
updating based on specific data has also been introduced.
The results have shown that the approach is feasible and
effective in (i) describing and jointly propagating aleatory
and epistemic uncertainties in SPRA models and (ii)

providing ‘conservative’ bounds on the safety quantities
of interest (i.e. CDF) that reflect the (limited) state of
knowledge of the experts about the system of interest. On
the other hand, the presence of (possibly wide) uncertainty
bounds makes the decision making process difficult, and
this will be solved in future work.
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