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Abstract
Coast-down techniques are widely used on bicycles and motorized vehicles in order to estimate retarding forces and
respective coefficients. The mathematical model behind coast-down data analysis is usually based on the assumption
that both drag and rolling-resistance coefficients do not depend on the vehicle speed. This assumption restricts the
model validity to the specifically tested range of speeds and provide averaged values for the force coefficients. In the
attempt to overcome this limitation, the proposal of a complete polynomial equation of motion is developed, evaluated
and discussed through a human-powered vehicle case study. The analysis points out that the extended model is
adequate for experimental data fitting and could potentially provide a more reliable power-speed prediction outside
the testing range. However, the expressions included in the model in order to account for speed-dependent coefficients
is a first approximation with limited capability to represent these complex phenomena. As a consequence, further
experimental testing is needed in order to achieve a validation. Advantages and side effects of both the classical and
the complete polynomial models are discussed, concluding that the two approaches could be complementary and could
answer different needs that specifically depend on the purpose of the coast-down analysis.

Keywords
Coast-down, equation of motion, rolling-resistance, aerodynamic drag, cycling tires, Human Powered Vehicles

Introduction

The coast-down is a quite popular method to assess the
performance of bicycles and Human Powered Vehicles
(HPVs). The procedure consists of letting the vehicle slow
down through a specific range of speeds in order to estimate
the resistive forces for the assumed physical model. The
selected road segment has to be flat or at least with a known
slight and constant slope. The road surface must be regular
with no bumps and holes. Since the wind can strongly affect
the results, the ideal proving ground is an indoor track.
However, open-air measurements are possible with a steady
wind up to 4-5 km/h in speed, by measuring it in order to
correct acquired data.

Coast-down techniques can be used at different levels
of accuracy and complexity depending on the available
data-logging tools and post-processing capabilities. These
methods have been used to assess performance of bicycles1–5

and wheelchairs6;7 and can be potentially applied to every
sport involving rolling or even sliding on a surface,
after proper adaptation of the model. Similar approaches
based on deceleration measurement have been applied also
to swimming8, ice skating9 and bobsleighing10. At the
industrial level, the automotive industries make a wide use of
such kinds of tests11–14 that are also defined by SAE (Society
of Automotive Engineers) Recommended Practices15;16 and
combined with laboratory and wind tunnel results17.

The equation of motion

A coast-down procedure involves the logging of speed and
time data in order to obtain a quantitative estimation of all

the resistive forces through the application of a mathematical
model. The full equation of motion has to be considered, and
the choice of the correct model plays a crucial role in the
following.

The equation of motion for a freewheeling cyclist has been
largely discussed and analyzed in literature3–5;7;18–21 and can
be summarized in its simplest form as:

m · dv
dt

= −Fr − Fd (1)

where Fr and Fd are the rolling-resistance and the air-drag
forces respectively acting against the vehicle.

By definition of the drag coefficient Cd, the aerodynamic
force Fd can be expressed black as:

Fd =
1

2
· ρ · Cd ·A · v2 = Kd · v2 (2)

where ρ is the air density, A is the frontal area and Kd is
the aerodynamic drag factor.

By definition of the rolling-resistance coefficient Crr, the
rolling-resistance force Fr can be expressed as a function of
the normal load N :

Fr = Crr ·N. (3)
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It must be noted that Fr includes not only the tire
rolling-resistance, but also a contribution from the wheel hub
bearings.

If the aerodynamic lift forces are negligible, the normal
load N corresponds to the weight of the vehicle plus rider.

The overall equation of motion can be summarized in:

m · dv
dt

= −Crr ·N −
1

2
· ρ · Cd ·A · v2. (4)

From this expression multiplied by the speed, it is possible
to obtain the power required at the wheel Pw, which is
the mechanical power at the pedals Pp reduced by the
transmission efficiency η:

Pw = η · Pp = −Crr ·N · v −
1

2
· ρ · Cd ·A · v3. (5)

The pure quadratic model
Under the assumption that both Crr and Cd (and thus Fr

and Kd) do not depend on the speed,Eq. (4) is defined as a
first-order pure quadratic differential equation and it has the
closed-form solution reported by Hennekam and Govers4;5:

v(t) = β · tan

(
φ− t

τ

)
(6)

where φ is obtained by imposing the initial speed v0 for
the time t = 0:

φ = arctan
v0
β
. (7)

By estimating the parameters β and τ through experimen-
tal data fitting, it can be finally obtained:

Fr =
m · β
τ

Kd =
m

β · τ
.

(8)

In the following, this model and its solution will be
referenced as PQ (pure quadratic).

It is likely that the above-mentioned assumption is
acceptable when fitting data for bicycles in their typical
range of speeds. However, when the purpose is to obtain
a predictive model of the power required at speeds beyond
the range of testing, some caution should be used before
relying on a PQ model. If Kd and Fr are not really
constant, but depend on the speed, the values estimated by
the PQ model will represent some sort of average within
the experimental range of velocities. This implies that the
estimated coefficients will depend on the selected range
of speeds and any prediction outside this range will be
affected by such approximation. Moreover, the further the
target speed is far from the experimental range, the more
the prediction error will be increased. Finally, any accurate
comparison among different vehicles and/or configurations
will be possible only with Cd and Crr values that were
derived from a similar range of testing speeds.

The need for a predictive model
The need for a predictive model is often occurring with top-
speed HPVs due to significant differences between racing

and testing conditions. In particular, this class of machines
includes the streamlined vehicles yearly attending the World
Human Powered Speed Championship22;23 (WHPSC) in
Battle Mountain (Nevada, US) with the purpose of reaching
top speeds at the end of a quite flat segment (average slope
−0.6%) of 8 km length on the State Route 305. Pushing the
cycling technology beyond the limit of the Unione Cycliste
Internationale (UCI) rules, this competition offers an ideal
framework for engineering education and stimulates the
frontier research on HPVs24;25, as confirmed by the regular
presence of university teams. Since it is unlikely for the
participants to have a proving ground with the quite ideal
conditions of the SR305, all training and testing is usually
limited to speeds up to 90-100 km/h. However, there is a
need to predict the power required for much higher velocity.
Indeed, the world speed record was broken at 139.45 km/h in
September 2015 by the Canadian rider Todd Reichert on the
prototype Eta26 (Aerovelo Team).

The complete polynomial model
As observed before, the typical literature model for bicycle
coast-down is a PQ expression, which means it has no
linear terms or, in other words, it is an incomplete quadratic
polynomial. In the context of a specific case study, it was
in the interest of the author to verify if speed dependent
Cd and/or Crr could be estimated by using a complete
polynomial model (CP) for the equation of motion.

A quadratic CP model has the following general form:

m · dv
dt

= −a− b · v − c · v2. (9)

The solution of Eq. (9) will be discussed and developed in
the following section.

Mathematical solution of the CP model for the
equation of motion
Eq. (9) has a closed form solution in the form:

v(t) =

d · tan

[
1

2

(
k · d− t

m
· d
)]
− b

2c
(10)

where
d =

√
4ac− b2, (11)

Eq. (10) can be rewritten as:

v(t) = β · tan

(
φ− t

τ

)
− δ (12)

where 

β =
d

2c

τ =
2m

d

δ =
b

2c

φ =
k ·m
τ

= arctan
v0 + δ

β
.

(13)
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As for the PQ model, the phase factor φ is determined by
imposing the initial speed condition at t = 0:

v(0) = v0 = β · tanφ− δ. (14)

Finally, the polynomial coefficients can be expressed as a
function of the mass and of the fitting parameters β, δ and τ :

a =
m · (β2 + δ2)

β · τ

b =
2 ·m · δ
β · τ

c =
m

β · τ
.

(15)

The obtained solution looks very similar to the PQ one,
with the only apparent difference being in the term δ. In fact,
Eq. (12) is a more general solution that includes Eq. (4). It
can be verified that the factors expressed in Eq. (15) reduce
to the ones of the PQ model4;5 when b = 0⇒ δ = 0.

The physics behind the CP model
With the mathematical solution of the CP model now
available for data fitting, it is important to clarify the physical
meaning that each estimated parameter could have, with
particular focus on the newly introduced linear term in
Eq. (9).

In the following, three physical phenomena are assumed
as potential sources of the linear term:

1. a linear dependence on the speed for the freehub
mechanical losses;

2. a linear dependence on the speed for Crr;
3. an inverse linear dependence on the speed for Cd.

Concerning the first phenomenon, it must be noted
that, during the coast-down procedure, the rider stops
pedaling and the chain is not moving. Under this
condition, the freehub plays its role by letting the wheel
rotate independently from the cassette sprockets. Freehub
mechanisms are available in the market in a wide range
of prices and quality levels. A resistive force contribution
arising from the freehub is certainly present in every bicycle
and HPV, and it is possible that it linearly depends on the
speed, as typically happens with transmission mechanical
losses.

The dependence on speed for the rolling-resistance
coefficient is often reported by automotive27;28 and cycling29

literature, but with a lack of experimental data. In one
experimental case30, both the linear and the quadratic
dependencies of Crr on the speed appeared to be negligible,
at least for the limited range of speed of the specific case.

Finally, dependence on the speed for the drag coeffi-
cient is a well-known phenomenon, often reported in liter-
ature24;31;32 by plotting Cd as a function of the Reynolds
number Re, defined as:

Re =
v · l
ν

(16)

where l is the length of the body and ν is the air kinematic
viscosity (1.5111 · 10−5 at 20 ◦C).

Actually, the relationship between Cd and Re is not
usually representable by means of specific mathematical
laws on a large scale. In fact, it is a complex behaviour
that can show rapid changes and critical transition zones
between different flow regimes. However, considering that
an inverse linear trend should be a better approximation than
fully neglecting a true dependence on the speed, this simple
relationship will be introduced in the model and discussed
again later.

In order to have these phenomena contributing to the
linear term of the CP model, the retarding forces can be
mathematically expressed as: Fhub = fh · v

Fr = Fr0 + Frv = Fr0 + frv · v
Fd = Fdv1 + Fdv2 = kd1 · v +Kd2 · v2

(17)

where:  Fr0 = Cr0 ·N
frv = crv ·N
Crr = Cr0 + crv · v

(18)

and: 
kd1 =

1

2
· ρ ·A · cdv

Kd2 =
1

2
· ρ ·A · Cd0

Cd = Cd0 +
cdv
v
.

(19)

Finally, the CP equation of motion including all these
contributions has the following form:

m · dv
dt

= −Fr0 − (fh + frv + kd1) · v −Kd2 · v2 (20)

.
As a consequence, by comparison with Eq. (9):

a = Fr0

b = fh + frv + kd1

c = Kd2.

(21)

It is important to point out that the presence of combined
phenomena in the expression of b changes the perspective
in which the model results have to be interpreted. With
the CP model it will be still possible to plot each term
contribution to the required power, but it will not be possible
to quantify rolling-resistance and air-drag separately. Only
under specific conditions, it will be possible to distinguish
these contributions:

1. when the speed dependence of two terms over three
have been already assessed through other tests; or

2. when it has been verified that one of them is largely
dominating while the two others are negligible.

In all other cases, it will be impossible to separate these
contributions, and the only way to compare different vehicles
or configurations will be through plotting of power-speed
curves.

In the following, the PQ and CP models will be applied
and compared through a case study in order to evaluate
differences in their fitting capabilities and in their predictive
behaviour.

Prepared using sagej.cls
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Case study application
During the WHPSC 2015, a student team coordinated by
the authors had its debut and set the national Italian record
at 116.19 km/h. After designing and manufacturing the
prototype (PulsaR, Figure 1), the coast-down method was
largely used in order to assess the vehicle performance. This
provided the opportunity to examine the methodology and to
develop the work presented in this paper.

Figure 1. PulsaR, the HPV prototype of the Policumbent
Student Team at Politecnico di Torino.

Testing setup and procedure
The testing was performed on a 7.8 km long circuit. Since the
track is generally used for trucks, the road asphalt surface is
quite rough, but regular in slope (≤ 0.1%) and with no bumps
in the selected straight segment of about 3 km.

The speed data were logged through a rear-wheel magnet
and Hall sensor connected to an Arduino UNO micro-
controller as shown in Figure 2. The controller checks for
the presence of the magnet at a frequency of 60 Hz. With
each two consecutive passages of the magnet, the controller
calculates the rotational speed considering the tire metric
development (measured on the road with the rider on the
vehicle) and with a preselected resolution of 0.001 m/s. As a
consequence, the acquired data do not have a fixed resolution
in time, but in space, corresponding to the circumference of
the rear wheel.

The overall prototype plus rider mass was 91 kg, strongly
unbalanced towards the front wheel, that was supporting
60 kg (66% of the total). A frontal area of 0.259 m2 was
estimated from 3D CAD drawings. An overall length of
2.78 m was measured for the vehicle.

The rider performed three coast-down repetitions on
the same segment of the track. The target speed range
was from 20 to 5 m/s (72-18 km/h), but data for the
fitting were selected between 19.0 and 6.0 m/s (68.4-
21.6 km/h) according to the minimum common range
effectively obtained.

Air conditions were measured with a Kestrel 3500
portable weather station: temperature, pressure and relative
humidity were registered at each run during the test as far
as the wind speed average and peak in the direction of
motion. A maximum wind peak of 0.8 m/s was registered and
average values of the three repetitions were of 0.0, 0.5 and
0.7 m/s, respectively, with a good alignment to the direction
of motion. The average wind speed for each run was then
subtracted from the measured vehicle speed. This operation
does not fully remove the error, but rather moves it to the

Figure 2. Scheme of the logger system.

ground relative speed and the rolling-resistance estimation.
Since the purpose was to obtain a model for power prediction
beyond the testing range of speeds, it has been considered
acceptable to move this error to the relative minor contributor
in order to have a more accurate estimation on the air-
drag. Average temperature was 19.2 ◦C, with 1007.1 hPa
of pressure and 53.1% relative humidity, resulting in an
approximated air density ρ = 1.1946 kg/m3.

Data fitting and analysis

All three repetitions were shifted in order to start from
t = 0 at 19 m/s and then aggregated in a single cloud of
experimental points to be sorted by ascending values of
t. Then, each set was imported into QtiPlot33 and fitted
with both the models (PQ and CP) in order to estimate the
parameters β, τ and δ (and then a, b and c).

When fitting experimental data with mathematical
expressions, two statistical measurements are especially
useful to evaluate and compare alternative models. The first
one is the well-known coefficient of determinationR2, which
quantify how close the obtained curve is to the experimental
data. However, the presence of useless additional parameters
in a model can produce an artificial increase of R2. From
this perspective, it becomes rather important to consider the
value of another statistical measurement named adjusted-R2

(or R̄2). By definition34, R̄2 is lower than R2 and increases
only when the increase of R2, due to the inclusion of a new
parameter, is more than what is expected by chance. In other
words, unlike R2, the value of R̄2 is lowered by the presence
of extra parameters that do not improve the model.

In this specific case, if Cd, Crr and Fhub are effectively
independent from the speed, then data fitting with a CP
model is expected to provide the following results:

Prepared using sagej.cls
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a ' Fr = Crr ·N
b ' 0

c ' Kd =
1

2
· ρ · Cd ·A

R̄2
CP < R̄2

PQ.

(22)

Otherwise, in particular if R̄2 is increased for the CP
model, it means that the additional term is not useless and the
physics behind the phenomenon is more accurately described
by its inclusion.

Results and discussion
In Figure 3 the speed vs. time aggregated data are plotted,
showing a good repeatability, and fitted with the CP model.
The PQ model fitting is omitted in the plot, as it would not
be distinguishable from a qualitative point of view in this
range of speeds. For a more detailed evaluation, the estimated
parameters for the two models are compared in Table 1,
including the above-mentioned statistical measurements.

Figure 3. Aggregated data and CP fitting curve with 95%
reliability prediction bounds.

Both the parameters a and c are significantly different for
the two models, and the value of the parameter b estimated
for the CP model cannot be approximated to zero at all. The
high R2 of the PQ model confirms that it is sufficient to
adequately approximate the retarding forces in the testing
range of speeds. The use of the CP model gives only a
marginal improvement to the fitting in such a range, but its
slightly higher R̄2 confirms that the additional parameter
is not useless. The difference becomes significant when
comparing the required power at the wheel versus speed that
is predicted by the two models (Figure 4). The two curves
significantly overlap below 100 km/h (as a consequence of
the fitting procedure below 70 km/h), but they significantly
diverge beyond such speed, showing a difference up to
100 W close to the current world record speed.

The role of the new term b can be quantified for the
case study by plotting the contribution of each term to
the overall power-speed curve (Figure 5). In this case b
gives a contribution comparable to the quadratic term (cubic
for power) up to 60 km/h and gets closer to the constant
term (linear for power) after 100 km/h. It is to be stressed
again that in the CP model, unlike the PQ model, none
of the terms are self-sufficient to quantify the air-drag or

Figure 4. Comparison of the power versus speed curves
estimated by the two models.

the rolling-resistance power. Only by keeping in mind this
point, it is possible to fully understand Figure 5 and to avoid
misunderstandings.

Figure 5. Overall power versus speed and specific
contributions from the three terms of the CP model.

In the following, through comparison with literature and
simulation data, it will be verified whether the estimated
value of b can be addressed to a single contribution among
the three of Eq. (21).

Hp.1) Only the freehub losses depend on the
speed
Under this hypothesis, it would be:

a = Fr0 = Fr

b = fhub +�
�>

0

frv +�
�>

0

kd1

c = Kd2 = Kd.

(23)

However, excluding the case of defective components, it is
unlikely that the contribution of the freehub can reach the
level suggested by Figure 5. Based on the positive experience
of over 1000 km training, testing and even racing at the
WHPSC with the same prototype, transmission anomalies
(i.e. from incorrect assembly or defective components) were
excluded in the specific case study. Moreover, under this
hypothesis, the air-drag coefficient resulting from the value

Prepared using sagej.cls
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Table 1. Fitting parameters with R2 and R̄2 for the two models.

Model a b c R2 R̄2

PQ* 4.218 - 0.01090 0.99896366 0.9989597
CP 3.813 0.1037 0.00728 0.99897128 0.9989654

* a = Fr and c = Kd for the CP model, with reference to Eq. (4)

of c would be 0.047, far below any CFD estimations (details
under Hp.3) and not compatible with the obtained top speed
at the WHPSC 2015.

This leads to the conclusion that, although the freehub
resistance can give a minor contribution to the linear term,
it is largely insufficient to justify the estimated value of
b. As a consequence, hypothesis 1) is rejected and further
investigations should be considered in order to assess if the
freehub contribution can be neglected at all.

Hp.2) Only the rolling-resistance coefficient
depends on the speed
The second hypothesis is that the linear term is to be fully
addressed to the dependence on the speed of the rolling-
resistance coefficient Crr, so that:

a = Fr0

b =�
��*

0
fhub + frv +�

�>
0

kd1

c = Kd2 = Kd.

(24)

In this case, by using the values of a and b in Table 1,
the overall vehicle Crr of Eq. (18) can be plotted as shown
in Figure 6. The obtained behaviour looks disproportional

Figure 6. Rolling coefficient versus speed as it would result
from Hp.2).

to what could be expected, resulting in a 23% decrease,
from 19 to 6 m/s, in the overall rolling-resistance coefficient
during the coast-down procedure. Moreover, when projected
to world record speeds, the rolling-resistance would double
its initial value. Finally, as with the first hypothesis, also in
this case the air-drag coefficient obtained by the value of c
would be much lower than expected.

This leads to conclude that, although a variation of the
rolling-resistance with the speed can partly contribute to the
linear term, it does not provide a self-sufficient explanation
for it. As a consequence, hypothesis 2) is rejected.

Hp.3) Only the drag coefficient depends on the
speed
Under this third hypothesis it would be:

a = Fr0 = Fr

b =�
��*

0
fhub +�

�>
0

frv + kd1

c = Kd2.

(25)

Starting from Eq. (16) and Eq. (19), it is possible to write
the Cd as a function of the Reynolds number:

Cd =
2

ρ ·A
·
(
Kd2 +

kd1
v

)
=

2

ρ ·A
·
(
c+

b · l
ν ·Re

)
.

(26)
Then, from the values of b and c in Table 1 combined with

the vehicle data reported before, it is possible to obtain the
plot of Figure 7.

Here, additional literature data and CFD (Computational
Fluid Dynamics) results are included with some regression
lines. The CFD model was implemented through CD-
Adapco35 Star-CCM+ R© and simulated at the speeds of 10,
25, 75 and 125 km/h. A simulation domain of 25× 6×
5 m as in Figure 8(a) was used referring to length, width
and height, respectively. The rotation of the wheels was
imposed as a boundary condition for the flow as far as
the ground movement and no-slip wall condition. Since the
model was originally developed to evaluate the effects of
internal ventilation on the overall drag (a detailed analysis
is planned for future publication), the main bodies inside
the fairing were included as far as the air inlet and outlet.
The overall domain mesh counts approximately 6E+6 cells.
The segregated flow solver with Spalart-Almaras turbulence
model converged in 7.6 hours (CPU time 59 hours) on a Dell
Precision T7400 workstation with 2× Intel R© Xeon R© quad-
core and 16 GB RAM.

Under hypothesis 3), the estimated dependence of Cd on
the speed looks excessive with respect to both literature
and simulation trends. Moreover, the power regression on
CFD data fits better than the inverse linear one (higher R2),
suggesting that the speed dependence for the drag coefficient
could have a different form than the one assumed in the
present work. It must be remembered that this qualitative
evaluation is based on a first approximation model for Cd

as a function of speed, Eq. (26), which is supposed (but
not proved) to be better than assuming a fully constant
behaviour. This approximation is not able to identify any
flow regime transition, critical Re or other effects that could
occur at higher speeds. Also, the CFD model used for the
comparison is based on a full turbulent model with no
capabilities to predict any laminar-turbulent transition. From
this perspective, considering the roughly finished junctions
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Figure 7. Drag coefficient versus Reynolds number: PQ and CP models, CFD simulations and literature data.

of the tested prototype (i.e. at the border of the front acrylic
glass, Figure 1), it is likely that the testing regimes were
also rather fully turbulent. This implies that, although a
variation of the drag coefficient with the speed can partly
produce the estimated linear term, it does not provide a self-
sufficient explanation for its overall value. As a consequence,
hypothesis 3) is rejected.

Selecting the more suitable model

Since all three hypotheses were rejected, in the specific case
study there is no way to obtain a distinct estimation of the
force coefficients and this highlights the main disadvantage
of the CP model. It is the price to pay for the potentially
improved predictive reliability given by the introduction of
speed-dependent force coefficients.

Advantages and disadvantages of the PQ and CP models
are summarized in Figure 9. It follows that the selection of
the appropriate coast-down model for a specific case study
should be based on the overall purpose of the analysis:

• if the aim is to compare different vehicles or
configurations within a specific range of speeds, the
PQ model gives a more direct and clear tool by
providing distinct quantification of the air-drag and of
the rolling-resistance contributions;

• if the aim is to obtain a predictive evaluation or
comparison of the required power beyond the available
testing range, the CP model is expected to provide a
more reliable result by including first approximation
models for the speed-dependent force coefficients.

Figure 8. CFD model volumetric mesh: overall domain (a) and vehicle internal details (b).

Prepared using sagej.cls
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Figure 9. Comparison scheme for the PQ and the CP models.

Conclusions
This work started from the need of a coast-down model
overcoming the assumption of speed-independent force
coefficients. The aim was to obtain a model providing more
reliable prediction of the power required beyond the testing
speed range, which is often restricted by external boundary
conditions for top-speed HPVs. A complete polynomial
model for the equation of motion was then considered,
developed and applied to a case study.

From the developed model, the obtained results and the
discussion, it was possible to point out that:

• due to its basic assumptions, the PQ model provides
distinct averaged values for the resistive forces within
a defined range of speed;
• the CP model includes a speed-dependent linear term

that accounts for three potential sources: the freehub
losses, a linear dependence on speed for the coefficient
of rolling-resistance and an inverse linear dependence
on speed for the coefficient of drag;
• fitting comparison on a case study showed that the

additional term of the CP model is not useless (bothR2

and R̄2 are increased) and that the difference between
the two models becomes significant when predicting
the power required above 100 km/h;
• as a side effect for its potentially improved reliability

in prediction, the CP model does not allow a distinct
estimation for the retarding forces, due to the presence
of a mixed contribution in the linear term.

Eventually, by neglecting the freehub contribution, it
would be possible to assume one of the obtained CFD
regressions (Figure 7) for the Cd in order to estimate
the residual contribution for the Crr dependence on the
speed. However, considering the number of assumptions and
approximations that this process would involve, it is not
considered a reliable way to obtain an accurate distinctive
evaluation of the retarding forces.

A validation of the CP model will be possible by
collecting data at higher speeds, possibly completed with
a power meter. Moreover, an interesting development for
future testing with this kind of vehicles is the possibility to
accurately log deceleration data instead of (or beside) the
speed. By overcoming the need for solving the differential

equation, this would allow the exploration of a larger amount
of possibilities for the equation of motion in order to achieve
an adequate predictive reliability.
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Appendix I

Notation
a, b, c Generic polynomial coefficients
cdv Inverse linear factor for the speed-dependent aerody-

namic drag coefficient
crv Linear factor for the speed-dependent coefficient of

rolling-resistance
fh Linear factor for the speed dependence of the freehub

retarding force on the speed
frv Linear factor for the speed-dependent part of the

rolling-resistance force
kd1 Linear coefficient of the speed-dependent aerody-

namic drag factor
l Length of the vehicle
m Mass of the vehicle
t Time variable
v Velocity
v0 Initial velocity at the beginning of the coast-down
A Frontal area of the vehicle
Cd Overall aerodynamic drag coefficient
Cd0 Speed independent part of the aerodynamic drag

coefficient
Cr0 Speed independent part of the coefficient of rolling-

resistance
Crr Overall coefficient of rolling-resistance
Fd Overall aerodynamic drag force acting on the vehicle

Fdv1 Portion of the drag resistance with linear dependence
on the speed

Fdv2 Portion of the drag resistance with quadratic depen-
dence on the speed

Fr Overall rolling-resistance force acting on the vehicle
Fr0 Speed independent part of the rolling-resistance force
Frv Speed dependent part of the rolling-resistance force
Fhub Resistive force given by the freehub
N Ground normal force (the gravitational load if the

aerodynamic lift force can be neglected)
Kd Overall aerodynamic drag factor
Kd2 Quadratic coefficient of the speed-dependent aerody-

namic drag factor
Pp Mechanical power at the pedals
Pw Mechanical power at the wheel
Re Reynolds Number

β, δ, τ Parameters of the condensed form for the solution of
the differential equation of motion

η Transmission efficiency (mechanical power at the
wheel over mechanical power at the pedals)

φ Phase factor
ρ Air density
ν Air kinematic viscosity
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