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Abstract. Masonry infills panels placed among framed structures meshes have a relevant in-

fluence in presence seismic actions in terms of strength stiffness and global displacement ca-

pacity. In the case of RC structures, the modifications of internal forces due to infill-frame 

interaction may be not compatible with surrounding frame members strength especially con-

sidering additional shear forces arising at the ends of beams and columns in contact with the 

panel under lateral actions. Such effects may be in many cases the cause of unexpected brittle 

collapse mechanisms which compromise the safety of the entire structure. In this paper by 

means of a double (micromodeling and macromodeling) procedure regarding RC meshes in-

filled with hollow brick masonry, a parametric study is provided defining a connection be-

tween local shear forces in critical frame regions and axial force on diagonal pin jointed strut. 

Proposed strategy allows to predict effective local shear forces using the simple macromodel-

ing approach to reproduce the effect of masonry infills in models.  
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1 INTRODUCTION 

Masonry infill panels are largely diffused in the common building practice of framed struc-

tures even if they are usually considered as non-structural elements. By the observation of 

seismic damage on infilled frames structures and as largely documented by several analytical 

and experimental studies in the last decades, it is clear that frames and infills have a strong 

interaction under seismic load that is not always possible to consider as beneficial for struc-

tural safety. 

The infilled meshes show, respect to bare ones, a significant increasing of lateral strength 

and stiffness. However global predictions extended to a whole structural complex are not easy 

to perform without specific analyses because these depend on the effective distribution of in-

fills among structural meshes.  

If planar distribution is regular and approximately symmetric, the contribution given by in-

fill panels is generally beneficial especially in the case of buildings designed to resist to gravi-

ty loads only. Conversely irregular planar or elevation distributions are potentially dangerous 

being often the cause of additional torsional effects and soft story mechanisms activation re-

spectively. 

Another relevant aspect to consider in frame-infill interaction regards the modification of 

internal forces caused by the infills on the adjacent RC members and constitutes the central 

topic of this paper. As well known, in presence of lateral actions, the panel has a detachment 

from the infill, remaining in contact with this only in correspondence of the two opposite cor-

ners (Fig. 1). 

 

Figure 1. Transmission of local shear forces in infilled frames nodal regions in presence of seismic actions. 

Lateral force increasing that occurs on infilled frames because of their higher stiffness is 

however allowable if RC members adjacent to panels (beams, columns and joints) have suffi-

cient shear strength to avoid local failures. 

Especially in the cases of strong infills combined with low shear reinforced frames, local 

collapse mechanisms are possible to activate compromising global capacity and safety of the 

entire structure. In Fig. 2 some examples of local shear failure mechanisms due to interaction 

with infills are reported.  

Several authors proposed strategies to reproduce infills effects in structural models. Among 

these the most employed refer to the macromodel approach which is based on the substitution 

of the infill by means of an equivalent diagonal concentric pin jointed strut.  Such approach, 

introduced for the first time by Holmes (1961) [1] and suddenly developed by other research-

ers Stafford Smith (1966) [2], Stafford Smith and Carter (1969) [3], Mainstone (1974) [4], 

Angel et al. (1994) [5], Papia et al. (2003) [6], has a good reliability in modelling of stiffening 



effects produced by panels but is unable to provide any prediction about infill – frame interac-

tion effects in nodal regions. 

More complex macromodels, able to reproduce these aspects by means of two or three di-

agonal struts were also developed by Crisafulli et al. (2000) [7], Crisafulli and Carr (2007) [8], 

Fiore et al. (2012) [9]. Anyway the identification of mechanical properties to attribute to sin-

gle struts is quite difficult to accomplish since this depends not only on mechanical features of 

masonry but also on infill – frame stiffness and geometrical ratios.  Such difficulties in identi-

fication are more relevant when nonlinear analyses should be performed and the attribution of 

monotonical or cyclic nonlinear laws for multiple struts is required. 

     

     

Figure 2. Local shear failures of frames due to interaction with infills under seismic loads. 

Conversely to above mentioned methods, others authors Mallik and Severn (1969) [10], 

Mehrabi and Benson Shing (1997) [11],  Benson Shing et al. (2002) [12], Gosh et al. (2002) 

[13], Asteris (2008) [14], Koutromanos et al. (2011) [15]  adopted micromodeling approach to 

reproduce infill – frame interaction.  In these cases panel and frames are modelled using pla-

nar shell finite elements while infill – frame contact regions are governed by means of inter-

face elements able to reproduce frictional effects and infill – frame detachment. This kind of 

approach, that is surely more accurate, gives the best results in terms of local effects and 

global internal force distribution but, also in this case, the calibration of models and the at-

tribution of interface laws is not easy to accomplish being often not well known all mechani-

cal properties of infill masonries that depend moreover on manufacturing and constructive 

modalities. Besides the analyses of framed structures which involve micromodels require a so 

high computational effort to be unacceptable for practical engineering uses.  

Interaction between infills and RC frames is also treated by technical codes. Eurocode 8 

[16] in the section devoted to modelling in structural analysis prescribes that infill walls 

which contribute significantly to the lateral stiffness and resistance of building should be tak-

en into account. Then, in the section regarding irregularities in plan, it is stated that infills 

should be included in the model and a sensitivity analysis regarding the position and the prop-

erties of the infills should be performed. Then, with reference to non-uniform distribution of 

infills in elevation, if a more accurate model is not used, one can calculate the seismic action 

effects on columns by amplifying them by the magnification factor η calculated as:  



L. Cavaleri, F. Di Trapani, M. Papia 

 
Sd

Rw

W

W
1

∆

∆
η +=  (1) 

where ∆WRw is the strength reduction of considered storey respect to the upper infilled one 

and ∆WSd is the sum of the seismic shear forces acting at the top of considered storey.  

Although many times the use of a reliable model is recommended, no models for the infill are 

included in Eurocode 8 as a support for practical applications, leaving designers free in choos-

ing a criterion for modelling infills and identifying the complex frame-infill interactions. 

In a similar way Italian technical code, D.M. 14/01/2008 [17], suggest to amplify forces in 

potentially soft storeys multiplying by a magnification factor which have a fixed value of 1.4  

but also in this case no modelling criteria are given. 

Unlike Eurocode 8 and Italian codes, the Federal Emergency Management Agency (FEMA) 

code 356 [18] explains clearly enough how to take infills into account: the effect of infills has 

to be considered by a FEM analysis or, alternatively, by introducing a diagonal pin-jointed 

strut equivalent to the infill. For the first option no more is said, unlike according the second 

one is specified that the equivalent strut should have the same thickness and modulus of elas-

ticity as the infill panel (but it is not clear along which direction the modulus of elasticity 

must be calculated) while the width w is given by the following equation: 

 ( ) d'h175.0w
4.0

1

−
= λ  (2) 

where, with reference to Fig. 3, 'h  is the height of the frame, measured between the centre-

lines of the beams, d is the measure of the diagonal dimension of the infill  and λ1 is given by 

the equation:  
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in which t is the thickness of the infill, h and l are its height and length, respectively, 

θ=atan(h/l), Ic is the moment of inertia of the columns, Ed and Ef are Young’s modulus of the 

infill and of the material constituting the frame, respectively. 

 

Figure 3. Geometrical features of infill-frame system for the identification of equivalent diagonal strut. 

The FEMA code also specifies that beams and columns adjacent to infills should have suf-

ficient strength to support local shear effects arising from the infill – frame interaction in 

presence of lateral actions. When more accurate analyses are not performed FEMA code 

states that flexural and shear strength of beams and columns in nodal regions should exceed 



the internal forces evaluated by the application, at a specified length (Eqs. 3-4), of the hori-

zontal and vertical components of the axial force in equivalent struts (Fig.4).  
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Figure 4. Schemes for evaluation of local effect according to FEMA 356: a) on columns; b) on beams. 

A second condition should be verified calculating shear request in the case of formation of 

a possible ductile mechanism which originates by the activation of plastic hinges at the ends 

of the reduced lengths lceff and lbeff. 

Despite the question of local failure of RC members adjacent to infills is treated in FEMA 

356 more the other codes do, the modalities suggested for the evaluation of local effects do 

not derive form an effective evaluation on the model and may lead to possible overestimations 

of additional local effects to consider. 

Taking into account what above mentioned, a strategy for the evaluation of effective local 

shear effects when single equivalent strut macromodels are used is developed in this paper. 

Masonry typology constituting infill panels which is object of the actual study is hollow 

brick masonry as defined in ASTM C652 REV A [19]. 

Infilled meshes which are object of investigation are reproduced by means of two equiva-

lent models in order to compare results: the first one (M1) which provides the use an equiva-

lent concentric braced strut, the second (M2), which makes use of plane shell elements to 

model infills, nonlinear beam elements to model beams and columns and multilinear elastic 

links (MElink) resisting to compression only to model infill – frame interfaces. Comparisons 

are carried out varying mechanical features, geometry and stiffening ratios between frame and 

infill, evaluating for fixed interstorey drifts, the relationship between the axial force evaluated 

on equivalent strut in M1 model and shear forces evaluated in critical sections of beams and 

columns in M2 model. The final scope is the definition of a tool which permits to use the 

simple equivalent concentric strut approach as reference model for the analysis, being able to 

provide adequate correction coefficients for local shear forces arising in nodal regions. 

 

2 FEM MODELLING 

2.1 Models definition 

As above mentioned the results of this work are based on the comparison between two dif-

ferent approaches to model same structural system. Referring to a generic infilled mesh, hav-
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ing geometrical features indicated in Fig. 5, the responses for a fixed interstorey drift are 

compared for both M1 and M2 modelling approaches. The M1 model (Fig. 6a), based on the 

identification of an equivalent diagonal concentric strut replacing panel has a better perfor-

mance in term of required computational effort. Nevertheless local shear effects on the RC 

members adjacent to the panel are not evaluable by means of this model. The M2 model (Fig. 

6b) requires conversely a higher computational effort but it allows to determine the effective 

internal forces distribution on RC members trough micromodeling of panels, which are con-

nected to beams and columns trough interfaces elements. 

The two models are considered equivalent and comparable when they exhibit the same 

stiffness both in linear and nonlinear field. More generally stiffness equivalence is defined as 

function of interstorey drift (dr) and expressed by the equation:   

 )()( r2Mr1M dKdK =  (6) 

KM1(dr) and KM2(dr) being the lateral stiffness of M1 and M2 model for assigned dr.  

The identification of M1 and M2 models is afterward exposed while comparing procedures 

and results are discussed in the subsequent sections. 

 

Figure 5. Generic features for an infilled mesh. 

      

Figure 6. Modelling of infilled mesh: a) M1 model; b) M2 model. 



2.2 M1 Model 

The M1 model, represented in Fig. 6a, simulates RC infilled mesh having geometrical and 
mechanical characteristics reported in Fig. 5, in which bt and ht  are width and depth of beams 
cross sections respectively and Ab the resultant area while bc and hc  are width and depth of 
columns cross sections respectively and Ac the resultant area. The elastic Young modulus of 
concrete is indicated as Ef. Masonry infills are mechanically characterized by the parameters 
E1, E2, G12, ν12 which are respectively the elastic Young modulus, shear modulus and Poisson 
ratio referred to directions 1 and 2. Equivalent diagonal strut cross section height w is identi-
fied through the below reported expression [6]: 

 
( )β
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1

z

c
dw =  (7) 

in which coefficients c and β depends on Poisson ratio νd  along the diagonal direction and are 

defined by the below reported equations. 

  
2

dd 567.00116.0249.0c νν +−=  (8) 

 
2

dd 0.1260.00730.146 ννβ ++=  (9) 

while the coefficient z depends on panels shape and is evaluable as: 

 )1h/(25.01z −+= l  (10) 

In Eq.(7) the coefficient k takes into account the effect of the vertical loads involving infill 
panels. This can be obtained as function of the vertical deformation on columns εv due to 
compressive load Fv  (Amato et al. (2008) [20]) through the equation 

 v

*
)20018(1 ελκ ++= : (11) 

εv being evaluated as: 
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The parameter λ*
 (Eqs. (7) and (11)), which characterize stiffness ratios between infill and 

frame is finally defined as: 
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Masonry elastic Young modulus Ed and Poisson ratio νd along diagonal direction can be 
expressed as function of the above defined mechanical parameter (E1, E2, G12, ν12) as suggest-
ed in Cavaleri et a. (2013) [21].  

The equivalent strut constitutive law is defined by a trilinear force-displacement compres-
sive diagram with no tensile strength (Fig. 6). The initial elastic stiffness K1 evaluated as: 

 
d

twE
K d

1 =  (14) 

while strength at elastic limit F1 is defined as function of α parameter as follow: 

 21 FF α=  (15) 

Stiffness in post elastic branch K2 is instead related to the parameter β as: 
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 12 KK β=  (16) 

Elastic limit and peak strength displacements are therefore directly identified: 

   111 KF /=δ ;      21212 KFF /)( −+= δδ  (17) 

The softening branch is linearized by connecting points F2-δ2 and F3-δ3, since F3=0.7S2 

and δ3  is obtained by the following expression (Cavaleri et al. (2005) [22]): 
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Figure 6. Force – displacement law for equivalent diagonal strut. 

Peak strength F2 of equivalent strut is determined as function of mean shear strength of the 

panel fv0m as follow: 

 d
~

tfF m0v2 =  (19) 

in which d
~

 represent the ideal diagonal dimension of the panel and is introduced in order to 
take into account a shear strength reduction due to its aspect ratio. The ideal dimension d

~
 is 

calculated as a fraction of the effective diagonal length d of the panel as shown by means of 
the reduction factor ψ (Eq. (20)). 

 dd ψ=
~

 (20) 

ψ  being obtained as: 

 
)( 22

h
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Table 1 shows d
~

 values calculated by substituting Eq. (21) in Eq. (20) for l/h ratios 1, 1.5 
and 2. 

l/h d
~

 

1.0    d 

1.5 0.78 d 

2.0 0.63 d 

Table 1. Equivalent diagonal length dimensions for different l/h ratios. 

The case of collapse for crushing of the corners units in contact with the frame is conserva-
tively here not considered.  

The frame mechanical nonlinearities are introduced by means of 4 interacting axial force – 
bending moment plastic hinges (P-M) defined considering the effective cross section rein-



forcement and geometrical dimensions. Nodal regions at the intersections between beams and 
columns are modelled as rigid links. 

Values adopted for parameters α, β and ζ , defining constitutive law shape for the equiva-
lent diagonal strut, are the same of those proposed in Cavaleri et al. (2012) [23]  for hollow 
brick masonry infills. Besides, basing on results reported in [22], is assumed that the elastic 
Young modulus ratio γ=E1/E2 is equal to 0.75, shear modulus G12=0.4E2, Poisson’s ratio 
νd ≅ ν12 =0.1 while shear strength fv0m of panels is 1.07 MPa as noticeable by the experimental 
tests. The above mentioned parameters governing equivalent strut compressive law are sum-
marized in Table 2. 

 

α β ζ 
fv0m 

 [Mpa] 

0.4 0.15 0.02 1.07 

Table 2. Parameters defining equivalent diagonal strut constitutive law. 

2.3 M2 Model 

Referring to the generic infilled mesh (Fig. 5a), the M2 model was also defined (Fig. 5c) 
providing micromodeling of infill panel by means of orthotropic elastic shell elements identi-
fied by the elastic Young moduli E1 and E2 along the two orthogonal directions, shear modu-
lus G12 and Poisson ration ν12. Modelling of RC beams and columns and plastic hinges is the 
same of M1 model. The distance between infill panel and surrounding frame beam elements is 
covered by means of null weight rigid links while mortar joint are modelled as interface ele-
ments. Rigid links have the unique function to transmit at each joint the mutual interface infill 
– frame forces. A similar approach is also proposed in Doudomins (2007) [24]. Interface ele-
ments are modelled using multilinear elastic link elements having only axial stiffness, no ten-
sile strength and a constitutive law that is assumed elastic in compression. As above 
mentioned the interface elements are used to simulate mortar joints between masonry infills 
and RC frames. Taking into account the high manufacturing variability affecting the realiza-
tion of these interface joints, a conventional elastic Young modulus Em=3000 MPa and a con-
ventional joint thickness hm=20 mm is fixed. Considering that under lateral loads the infill – 
frame contact lengths are strongly reduced and mortar interface joints undergo a significant 
damaging, frictional effects are not included in the model. Moreover other studies (e.g. [9]) 
demonstrate that friction arising in interfaces is not decisive on the overall response.  

Nonlinearity of shell elements, used to model infill panels, is introduced by iteratively 
modulating an equivalent thickness of masonry. The latter corresponds to the ideal thickness 
which allows to gain for M2 model,  the same lateral stiffness exhibited by M1 model for a 
fixed interstorey drift.  

The M2 model furnishes more detailed results being able to simulate both interface de-
tachment and local shear effects on RC members ends.  

 

3 PARAMETRIC ANALISYS 

3.1 Models comparison procedure 

As defined in section 2.1, the comparability of the models is possible when they exhibit the 

same stiffness at a generically assigned interstorey drift. The steps that make up the procedure 

used to evaluate local shear effects produced by infill panels on RC surrounding frames are 

below exposed: a) assignment of the mechanical properties and geometry of infilled mesh; b) 

choice of a reference interstorey drift (dr); c) definition of M1 equivalent strut macromodel; d) 

definition of M2 micromodel in which thickness (t) of infill is initially set equal to the real 

thickness; e) identification of the level of damage in M2 model (iteratively reducing infill 
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thickness) restituting the same secant stiffness exhibited by M1 model (the damage of the 

frame is uniquely defined by assigning the drift ratio); f) evaluation of effective RC frame in-

ternal forces on M2 model. 

3.2 Experimental validation of  models 

In order to verify reliability of the models used to accomplish analyses, an experi-

mental/analytical validation is preliminary performed on the basis of experimental results 

proposed by Cavaleri et. al (2012) [23], who investigated on the cyclic behaviour of hollow 

brick masonry infilled frames (Fig. 7). Experimental secant stiffness shown by specimens in 

cyclic tests are compared, for different drift levels, with those exhibited models M1 and M2 at 

the same drifts. Geometrical and mechanical characteristics of specimens are reported in Ta-

ble 3. 

 

Figure 7. Hollow brick masonry infilled frame specimens details (Cavaleri et. al., 2012 [23]). 

hc 
[mm] 

bc 
[mm] 

ht 
[mm] 

bt 
[mm] 

h 
[mm] 

h' 
[mm] 

l  
[mm] 

l' 
[mm] 

200 200 200 200 1600 1800 1600 1800 

t 
[mm] 

fv0m  
[Mpa] 

E1 
[Mpa] 

E2 
[Mpa] 

G12 
[Mpa] 

ν12 
Ef 

[Mpa] 
Fv 

[kN] 

 150 1.07 6401 5038 2550 0.07 25000  400 

Table 3. Geometrical and mechanical features of hollow brick masonry infilled frames specimens (Cavaleri 

et al., 2012 [23]). 

Interstorey drifts selected for validation of M1 and M2 models are representative of three 
fundamental conditions of the overall response of the system: elastic phase (dr=0.03%), post-
elastic phase (dr=0.1%) and peak strength (dr=0.6%). The comparison between the experi-
mental medium KSPM secant stiffness of tested specimens and numerical secant stiffness KM1 
and KM2 exhibited by models, provided the results reported in Table 4 for the previously de-
fined interstorey drifts. 
 

dr  
[%] 

Kspm  

[kN/mm] 
KM1  

[kN/mm] 
KM2  

[kN/mm] 

0.03 125 130 112.6 

0.1 62.50 66.1 67.2 

0.6 17.6 16.64 16.55 

Table 4. Comparison between experimental medium secant stiffness of specimens (Cavaleri et al., 2012 [23]) 

and  M1, M2 models stiffness for different drift levels. 

 



3.3 Parametric analysis 

Parametric analyses afterwards discussed are carried out to evaluate the responses, for as-
signed damage level (identified by interstorey drift ratio), of infilled systems modelled by 
means of both the above described approaches. Geometrical and mechanical properties of 
frames and infills are varied in order to evaluate their influence on the distribution of shear 
forces occurring on beams and columns ends in contact with infills.  

 

Figure 8. Critical section on RC frame. 

With reference to Fig. 8, four critical sections can be identified as the most affected by lo-
cal shear effects due to infill – frame interaction: BNO (Beam Northwest), BSE (Beam South-
east), CNO (Columns Northwest), CSE (Columns Southeast).  

For each considered infilled mesh M1 and M2 models were generated and compared for a 
fixed drift by means of the previously described procedure. The below reported dimensionless 
quantities can be thus evaluated: 
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in which 
( )1M

P
N  is the axial force on the equivalent diagonal strut evaluated in M1 model 

while )( 2M

BNOV , )( 2M

BSEV , )( 2M

CNOV , )( 2M

CSEV are shear forces in critical sections evaluated in model M2. 

In this way, the coefficients BNOα , BSEα , CNOα , CSEα  define the relationship existing between 

shear forces on frame critical sections and axial force on the equivalent strut. If their predic-

tion is possible a priori, they become a useful tool to evaluate the effective shear forces on 

frame sections as a quote of equivalent strut axial force for all cases in which modelling is 

performed by means of concentric equivalent strut models. The analyses are executed for two 

different fixed drift levels, which are representative (taking also into account the experimental 

evidence) of medium damage and peak strength damage (respectively dr1= 0.1% and dr2 = 

0.6%).  

For dr1 analyses the parameter λ*
 (Eq. (13)) was chosen as representative of the infill – 

frame system since it takes into account geometrical and stiffness ratios, while for dr2 analyses 

the product ξλ*
 was adopted, being ξ= ht/hc. This difference on the choice of parameters iden-

tifying the infilled mesh is due to the fact that the term λ*
 is determined by means of an elastic 
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approach not taking into account the strength ratios between beams and columns. The latter 

significantly affects coefficients BNOα , BSEα , CNOα and CSEα when high drift levels occur, espe-

cially with regard to plastic hinges formation. The term ξ  does not exactly define the flexural 

strength ratio between beams and columns, however is closely related to it as it is defined. 

Two sets of numerical specimens, having different infill aspect ratios (l/h=1.0 and 

l/h=2.0) were analyzed. The geometrical dimensions are indicated in Tables 5-6 together with 

the terms λ*
, ξλ*

 and w. Elastic properties are the same of those indicated in §2.1 while rein-

forcement geometrical ratio is 1% for all columns sections. It was furthermore assumed that 

beams have a higher flexural strength respect to columns as in the case of structures designed 

to resist to gravity loads only. Finally a dimensionless axial force n=0.2 is assigned on col-

umns. 

Case 
bc 

[mm] 

hc 

[mm] 

bt 

[mm] 

ht 

[mm] 

h 

[mm] 
l 

[mm] 
λ*

      ξλ*
 

w 

[mm] 

C1A 200 200 200 400 1600 1600 1.70 3.40 623 

C2A 200 200 200 400 1600 1600 3.40 6.80 565 

C3A 250 400 250 500 2700 2700 0.85 1.06 1190 

C4A 250 400 250 500 2700 2700 1.30 1.63 1190 

C5A 250 400 250 500 2700 2700 2.60 3.25 1034 

C6A 250 400 250 500 2700 2700 3.00 3.75 1012 

C7A 250 400 250 500 2700 2700 2.05 2.56 1067 

C8A 600 300 300 500 2700 2700 0.82 1.37 1192 

C9A 600 300 300 500 2700 2700 3.00 5.00 1054 

Table 5. Numerical models features - l/h=1. 

Case 
bc 

[mm] 

hc 

[mm] 

bt 

[mm] 

ht 

[mm] 

h 

[mm] 
l 

[mm] 
λ*

 ξλ*
 

w 

[mm] 

C1B 200 200 200 400 1600 3200 1.10 2.20 757 

C2B 200 200 200 400 1600 3200 2.82 5.64 707 

C3B 200 400 200 500 2700 5400 1.30 1.63 1362 

C4B 200 400 200 500 2700 5400 2.00 2.50 1368 

C5B 200 400 200 500 2700 5400 2.80 3.50 1121 

C6B 200 400 200 500 2700 5400 0.85 1.06 1450 

C7B 200 400 200 500 2700 5400 3.25 4.06 1200 

C8B 600 300 300 500 2700 5400 0.82 1.37 1453 

C9B 600 300 300 500 2700 5400 2.14 3.57 1293 

Table 6. Numerical models features - l/h=2. 

Results of analyses are reported in Figs. 9-12 and show the relationship between the quan-

tities λ*
 and ξλ* 

 and coefficients αBNO,  αBSE,  αCNO,  αCSE  for drift levels dr1 and dr2. Analyti-

cal best fitting functions are also provided.  

It can be observed that for both considered drift levels α – coefficients undergo a reduction 

when increasing values λ*
 and ξλ*

. This trend expresses the general tendency of RC frames to 

receive shear forces quotes on critical sections that are much relevant as higher is frame stiff-

ness with respect to the panel one. Results also show that the influence of panels’ aspect ratio 

(l/h) has a relevant role only for significant drift levels (dr2). In these cases, when horizontal 

dimension l prevails on height h, local shear effects are significantly more relevant on col-

umns respect to beams.  
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Figure 9. αCNO - αCNE vs. λ*
 parametric analysis at dr=0.1% and best fitting functions. 
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Figure 10. αBNO - αBNE vs. λ*
 parametric analysis at dr=0.1% and best fitting functions. 
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Figure 11. αCNO - αCNE vs. ξλ*
 parametric analysis at dr=0.6% and best fitting functions. 
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Figure 11. αBNO - αBNE vs. ξλ*
 parametric analysis at dr=0.6% and best fitting functions. 

In Fig. 10 a comparison between the response exhibited by models M1 and M2 for a fixed 

drift is reported in terms of deformed shapes and internal shear forces distribution on RC 
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frame members evidencing also the strong relevance of local shear effects on critical sections 

determined by means of M2 model with respect to M1.  

              a) 

              b) 

Figure 10. Comparison between M1 and M2 models responses: a) deformed shape; b) shear distribution. 

Results of the above reported analyses can be used for verification RC members capacity 

when linear or nonlinear analyses are performed by means of equivalent concentric strut mod-

els. The suggested verification procedure provides first the evaluation of damage level by 

simply identifying the occurring interstorey drift ratio, the evaluation of the axial force on 

equivalent strut and subsequently the identification of parameters λ*
 and ξλ* 

for the reference 

infilled mesh. Once panel l/h ratio is assigned, coefficients BNOα , BSEα , CNOα and CSEα  are 

univocally identified through the analytical interpolating functions. Shear demand to be con-

sidered for verification of critical section VBNO, VBSE, VCNO, VCSE is thus evaluable by means of 

the following expressions: 

 PBNO0BNO NVV α+= ; PBSE0BSE NVV α+=  (24) 

 PCNOCNO NV α= ; PCSECSE NV α=  (25) 

V0 being shear force due to the vertical loads on the beams and Np the axial load on equivalent 

strut. 

 

4 CONCLUSIONS 

The present paper provides a tool for the evaluation local shear forces acting at the ends of 

beams and columns of hollow brick infilled frames in presence of lateral loads when adopting 

equivalent concentric strut macromodels.  

By means of a parametric analysis, in which the mechanical characteristics of infill – frame 

systems are varied with the parameter λ*
, α - coefficients are evaluated providing also analyt-

ical best fitting functions. The latter permit to express local shear forces on critical sections of 

beams and columns as a fraction of axial load evaluated on the equivalent strut.  

Once verified the substantial dependence of these coefficients on stiffness infill – frame ra-

tio in linear and nonlinear phases, the latter become a predictive tool that is useful to asses 



shear demand on RC members critical sections which is otherwise undetectable by means of 

simple equivalent concentric strut models. 

The proposed tool was obtained by considering the mechanical properties of hollow brick 

masonry infills and primary structure configurations representative of RC frames designed to 

resist to vertical loads only. The study can be surely improved including the cases of masonry 

infills having different mechanical properties and seismic designed frames. It is however here 

possible to point out that a more accurate assessment of local shear effects is achievable even 

if high detailed and onerous models are not used to perform analyses. Moreover, the proce-

dure here developed, may represent a supplementary instrument to technical codes prescrip-

tions which may be often cause overestimations in evaluation of local infill – frame 

interaction effects. 
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