
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Role of long waves in the stability of the plane wake / Scarsoglio, Stefania; Tordella, Daniela; Criminale, W. O.. - In:
PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. -
ELETTRONICO. - 81:3(2010), pp. 036326-1-036326-9. [10.1103/PhysRevE.81.036326]

Original

Role of long waves in the stability of the plane wake

Publisher:

Published
DOI:10.1103/PhysRevE.81.036326

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2367581 since: 2017-05-24T13:46:52Z

APS



Role of long waves in the stability of the plane wake
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This work is directed toward investigating the fate of three-dimensional long perturbation waves in a plane
incompressible wake. The analysis is posed as an initial-value problem in space. More specifically, input is
made at an initial location in the downstream direction and then tracing the resulting behavior further down-
stream subject to the restriction of finite kinetic energy. This presentation follows the outline given by Crimi-
nale and Drazin �W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 �1990�� that describes the
system in terms of perturbation vorticity and velocity. The analysis is based on large scale waves and expan-
sions using multiscales and multitimes for the partial differential equations. The multiscaling is based on an
approach where the small parameter is linked to the perturbation property independently from the flow control
parameter. Solutions of the perturbative equations are determined numerically after the introduction of a
regular perturbation scheme analytically deduced up to the second order. Numerically, the complete linear
system is also integrated. Since the results relevant to the complete problem are in very good agreement with
the results of the first-order analysis, the numerical solution at the second order was deemed not necessary. The
use for an arbitrary initial-value problem will be shown to contain a wealth of information for the different
transient behaviors associated to the symmetry, angle of obliquity, and spatial decay of the long waves. The
amplification factor of transversal perturbations never presents the trend—a growth followed by a long
damping—usually seen in waves with wave number of order one or less. Asymptotical instability is always
observed.

DOI: 10.1103/PhysRevE.81.036326 PACS number�s�: 47.20.Ft, 47.15.Tr, 47.11.St, 47.35.De

I. INTRODUCTION

The traditional investigation of stability of shear flows is
cast as a linear initial-value perturbation problem. In prin-
ciple, save for the additional complexity of necessitating
three space dimensions as well as time, this is done by means
of a Laplace transform in time. Once the boundary condi-
tions have been satisfied, the stability or non stability is
found. Further, depending upon the mean shear flow that is
being investigated, the causes are determined. No attention is
given to any specific input or the effect of various physics.
Moreover, little attention was given to early period dynam-
ics, see, for example, Grosch and Salwen �1� and Salwen and
Grosch �2�. These authors showed that there can be early
time growth of a perturbation even if there is damping for
long time. In short, a branch cut can be present as well as any
pole when inverting the Laplace transform. Next, from the
laboratory, interest turned to spatial growth or decay after an
input at an initial location rather than the temporal behavior.
This construction creates new difficulties but they are not
insurmountable �3,4�. Still, just as in the temporal problem,
no specific initial input has been examined. Regardless of the
framework, it has been known since the first results of sta-
bility theory that the value of the wave number that comes
into the analytical framework �due to Fourier decomposition
in the variables in the plane that is perpendicular to the mean
flow� is small in the regions where there is instability, in

short, long waves. Such a result provides a sound means for
the analysis and examination of a specific initial input. This
is true whether posed as a temporal or spatial initial-value
problem. It further provides a means to investigate interac-
tion, the early period and a way to suppress any growth at the
early period or location. In 1962 a study about the instability
to long waves of unbounded parallel inviscid flow was given
by Drazin and Howard �5�. Using the normal mode analysis,
they found that there is a finite number of different modes
unstable to long waves, essentially one for each relative
maximum or minimum of the velocity profile. Healey �6�
considered long waves for investigating spatial instability of
the rotating-disk boundary layer, and by means of an analytic
theory in the inviscid long wave limit, he obtained an explicit
expression for the growth rate in terms of basic flow param-
eters.

Large or long waves have now been used in full nonlinear
simulations. For example, Ryzkov and Shevtsova �7� focused
on convective instability in multicomponent fluids, showing
by means of both linear stability analysis and nonlinear nu-
merical calculations that the instability is caused by the in-
terplay between the basic flow and the concentration waves
which have a long scale in a vertical direction. And Barros
and Choi �8� considered the inhibition of the shear instability
that can be induced by large amplitude internal solitary
waves traveling in a two-layer flow with a top free surface.
For large eddy simulations in turbulence see �9� or �10�
among many others.

The analysis in the present work is based on large scale
waves and expansions using multiscales and multitimes for
the partial differential equations. The multiscale is based on*daniela.tordella@polito.it
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an approach where the small parameter is linked to the per-
turbation property independently from the flow control pa-
rameter. In fact, the perturbation scheme is based on the in-
troduction of a small parameter which is the wave number k
in the limit k→0 and is analytically determined to the sec-
ond order. The perturbative equations used follow the formu-
lation given by Criminale and Drazin �11� that describes the
system in terms of perturbation vorticity and velocity. Nu-
merically, the complete linear system has also been inte-
grated for the nonparallel base flow. What results is an ex-
tension of a previous work based on a locally near parallel
assumption �12�. The formulation of the linear perturbation
initial-value problem is presented in Sec. II. Results are in
Sec. III. Conclusions follow in Sec. IV.

II. FORMULATION

By exciting the plane wake flow �U= �U�x ,y ;Re� ,
V�x ,y ;Re��� with small arbitrary three-dimensional perturba-
tions, the continuity and Navier-Stokes equations for the per-
turbed system linearized with respect to small oscillations
are given by
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where �ũ�x ,y ,z , t�, ṽ�x ,y ,z , t�, and w̃�x ,y ,z , t�� and
p̃�x ,y ,z , t� are the components of the perturbation velocity
and pressure, respectively.

The independent spatial variables z and y are defined from
−� to +� and x are defined from 0 to +�. All physical
quantities are normalized with respect to the free stream ve-
locity Uf, the body scale D, and the density �. The Reynolds
number is defined as Re=UfD /�, where � is the kinematic
viscosity.

The two-dimensional wake is a thin free flow that can be
schematized as shown in Fig. 1. Leaving aside the near field,
that is highly non parallel since it hosts the two symmetric
countercirculating vortices that constitute the separation
region, the intermediate and long term wake is a near
parallel flow. The wake slowly becomes thicker according to
a law which, at first order, scales as �x /Re�1/2. As
representation of this steady subcritical flow we consider the
asymptotic expansion solution in inverse powers of x ob-
tained in �13�. In particular, we consider the intermediate far
field well represented by a section placed near x=x0=10
and build the basic flow by freezing it at this longitudinal
station. In so doing, the basic flow is parameterized
through the downstream station x0 and the Reynolds number
Re �U= �U�y ;x0 ,Re� ,V�y ;x0 ,Re���. It is thus homogeneous

in x and z. As such, the long waves that are the main subject
of this paper are valid.

The explicit expressions of the base flow longitudinal and
transversal components are

U�y ;x0,Re� = �0 + �1x0
−1/2 + �2x0

−1 + �3x0
−3/2, �5�

V�y ;x0,Re� = �0 + �1x0
−1/2 + �2x0

−1 + �3x0
−3/2. �6�

The coefficients �i=�i�y ;x0 ,Re� and �i=�i�y ;x0 ,Re� of
this expansion up to i=3 are given in Appendix A. Figure 2
displays the intermediate wake profile for which there exists
a comparison based on laboratory and numerical simulation
results, see also �13–16�.

It should be noted that when using such a kind of repre-
sentation the base flow nonparallelism is considered and al-
lows for the effect of the lateral entrainment to be obtained
�16�. However, in this paper a fixed location x0 of the inter-
mediate wake is considered since in this region absolute in-
stability pockets have been found by recent modal analyses
�17,18�. The term intermediate is used in the general sense as

Wake thickness

y∼(πx/Re)1/2

x

y

Profile representing the
intermediate−far wake at x

0
=10

Re=100U(y; x
0
, Re)

10V(y; x
0
, Re)

FIG. 1. �Color online� Base flow sketch. The base flow has been
chosen in order to be an acceptable representation of the
intermediate-far field. To this aim we build a homogeneous field in
x ,z by using the information associated to a section, x0, placed in
the intermediate region, x� �5,30�. In the sketch the longitudinal
and transversal profiles at Re=100 are frozen at x0=10 �note that
the transversal velocity V is multiplied by a factor of ten�. The base
flow �U�y ;x0 ,Re� ,V�y ;x0 ,Re�� is thus a slightly non parallel flow
homogeneous in x ,z, which makes it possible to Laplace transform
the perturbative equations in x and to Fourier transform them in z.
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FIG. 2. Example of velocity profiles in the intermediate wake at
the downstream station x=x0=20. �a� Longitudinal velocity U and
�b� transversal velocity V. Continuous curves: analytical solutions
�Re=20, 60, and 100� by Tordella and Belan �2003� �13�, triangles:
numerical results �Re=34� by Berrone �2001� �14�, and circles:
laboratory data �Re=34� by Kovasznay �1948� �15�.
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that given by Barenblatt �19�: “… intermediate asymptotics
are self-similar or near-similar solutions of general problems
valid for times and distances from boundaries large enough
for the influence of the fine details of the initial or boundary
conditions to be insignificant but small enough that the
system is far from the ultimate equilibrium state….”
The distance beyond which the intermediate region is as-
sumed to begin varies from eight to four diameters D for
Re� �20,40� �13�.

By combining the momentum Eqs. �2�–�4� to eliminate
the pressure, the resulting governing equations become
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�8�

where ��̃x , �̃y , �̃z� is the perturbation vorticity field, �z

= � �V
�x − �U

�y � 	x=x0
is the mean vorticity in the spanwise direc-

tion, and the coefficients a, b, c, d, e are the spatial deriva-
tives of the base flow vorticity and velocity at x0, namely,
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By introducing the quantity �̃, which is defined by

�2ṽ = �̃ , �9�

we obtain three coupled Eqs. �7�–�9�. Equations �7� and �8�
are the Orr-Sommerfeld and Squire equations, respectively,
from the classical linear stability analysis for three-
dimensional disturbances. From kinematics, the relation

�̃ =
��̃z

�x
−

��̃x

�z
�10�

physically links the perturbation vorticity components in the
x and z directions ��̃x and �̃z, respectively� and the perturbed
velocity field. By combining Eqs. �7� and �9� then
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�11�

which, together with Eqs. �8� and �9�, fully describes
the perturbed system. Since seven unknown quantities

�ũ , ṽ , w̃ , �̃x , �̃y , �̃z , �̃� are involved in the above Eqs. �8�, �9�,
and �11�, the perturbation vorticity definition and the conti-
nuity equation

�̃� = � 	 ũ� , �12�

� · ũ� = 0, �13�

link the perturbative system of Eqs. �8�, �9�, and �11�.
For every dependent variable, we perform a combined

spatial Laplace-Fourier decomposition in the x and z direc-
tions defined by

ĝ�y,t;
,�� = �
−�

+� �
0

+�

g̃�x,y,z,t�e−i
x−i�zdxdz ,

where g̃ is the general dependent variable, 
, which is the
longitudinal wave number, is complex �
=
r+ i
i�, and �,
which is the transversal wave number, is real. By adopting
the velocity-vorticity formulation �3,11�, the governing Eqs.
�8�, �9�, and �11� can now be written as

�2v̂
�y2 − �k2 − 
i

2 + 2ik cos���
i�v̂ = �̂ , �14�

��̂

�t
= G�̂ + Hv̂ + K�̂y , �15�

��̂y

�t
= L�̂y + Mv̂ , �16�

where �=tan−1�� /
r� is the perturbation angle of obliquity
with respect to the x-y physical plane, k=�
r

2+�2 is the
polar wave number, 
i is the imaginary part of the complex
longitudinal wave number, �̂y is the transversal component

of the perturbation vorticity, and �̂ is the vorticity component

in the oblique direction which is defined as �̂= i�
�̂z−��̂x�.
In Fig. 3 the three-dimensional perturbative geometry
scheme is shown.

In order to have a finite perturbation kinetic energy, 
i can
only assume non-negative values. In so doing, we allow for
perturbative waves that can spatially decay �
i�0� or re-
main constant in amplitude �
i=0�. In the following, 
i is
called spatial damping rate. It should be pointed out that the

x

y

z

γ
α

r
φ

k

cylinder
axis

FIG. 3. �Color online� Perturbation geometry scheme.
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present analysis is not the standard eigenvalue problem
where poles result. Here, in fact, the spatial damping rate 
i
is a parameter and, as such, should be simply imposed. The
magnitude of the spatial damping rate can vary in order to
describe a physically meaningful damping of the perturbative
wave in the x direction �disturbances immediately damped to
zero are not allowed�. According to this and since long
waves �k10−1 ,10−2� are considered, 
i is non-negative and
at maximum 10−1 �see Fig. 4�. Symbols G, H, K, L, and M
represent ordinary differential operators, written in the form
G=G�y ;x0 ,k ,� ,
i ,Re�, and similarly for H, K, L, and M,
since they are functions of y and are parametrized through
the fixed longitudinal station x0, the polar wave number k,
the angle of obliquity �, the spatial damping rate 
i, and the
Reynolds number Re. All these operators are explicitly given
in Appendix B.

Equations �14�–�16� require proper initial and boundary
conditions in order to be solved. As far as the boundary
conditions are concerned, among all solutions, those whose
perturbation velocity field vanishes in the free stream are

sought. The initial conditions are necessary for �̂ and �̂y. As

far as the initial conditions for �̂ are concerned, according to
Eq. �6�, they can be shaped in terms of set of functions in the
L2 Hilbert space via the variable v̂, which is here represented
by the trigonometric system

v̂�0,y� = e−y2
cos�y�, v̂�0,y� = e−y2

sin�y� ,

for the symmetric and the asymmetric perturbations, respec-
tively. This trigonometrical system is a Schauder basis in
each space Lp�0,1� for 1 p�. The transversal vorticity
�̂y is instead taken initially equal to zero in the y domain, in
order to directly observe the net contribution of three dimen-
sionality on its temporal evolution. However, it can be dem-
onstrated that the eventual introduction of an initial transver-
sal vorticity does not substantially affect the perturbation
temporal evolution.

In the stability analysis of spatially developing flows, dif-
ferent scales can be determined. Usually, long and slow
scale, related to the slow base flow evolution, as well as short
and fast scales linked to the disturbance dynamics, can be
defined. However, it should be noticed that in some flow
configurations, long waves can be destabilizing. Examples of

this behavior are the two-dimensional Blasius boundary
layer, the three-dimensional cross-flow boundary layer, as
well as the free shear flows. In such instances, the perturba-
tion wave number is less than O�1� where instability occurs.
Thus, a regular perturbation scheme can be adopted, defining
the polar wave number k as the small parameter �20,21�. It
should be noted that by using such a long-wave expansion,
the x-scale length of the perturbations is comparable to the
x-scale length of the base flow. Indeed, we only consider the
intermediate and far wake sections, where the flow slowly
evolves in the longitudinal direction. Thus the near wake is
not taken into account. In synthesis, the scale of the interme-
diate wake is of the order x0101, and the scale of the long
perturbative waves is �=2� /k101 ,102.

Two spatial scales, a short one, y, and a long one,
Y =ky, are defined. For the temporal dynamics, three
temporal scales, the fast one, t, and the slow ones, �=kt
and T=k2t, can be identified. The perturbation quantities

�v̂ , �̂ , �̂y� are now function of y ,Y , t ,� ,T, expressed as �̂

= �̂�y ,Y , t ,� ,T ;k ,� ,
i�, and similarly for v̂ and �̂y, and can
be expanded as

v̂ = v̂0 + kv̂1 + k2v̂2 + ¯ ,

�̂ = �̂0 + k�̂1 + k2�̂2 + ¯ ,

�̂y = �̂y0 + k�̂y1 + k2�̂y2 + ¯ . �17�

Initial conditions at order O�1� are defined as in the full
linear problem, while at higher orders �O�k� ,O�k2� , . . .� are
equal to zero. Boundary conditions remain as stated in the
full linear problem. Substituting relations �17� in the full lin-
ear system �Eqs. �14�–�16��, the following ordered hierarchy
of equations, expressed up to O�k�, result and are the follow-
ing:

�i� Order O�1�;

�2v̂0

�y2 + 
i
2v̂0 = �̂0, �18�

��̂0

�t
− G0�̂0 − H0v̂0 = 0, �19�

��̂y0

�t
− L0�̂y0 = 0. �20�

�ii� Order O�k�;

�2v̂1

�y2 + 
i
2v̂1 = − 2

�2v̂0

�y � Y
+ 2i cos���
iv̂0 + �̂1, �21�

��̂1

�t
− G0�̂1 − H0v̂1 = −

��̂0

��
+ G1�̂0 + H1v̂0 + K1�̂y0,

�22�
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FIG. 4. �Color online� The wave spatial evolution in the x di-
rection for k=
r=0.05 and 
i=0.1,0.01,0.001.
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��̂y1

�t
− L0�̂y1 = −

��̂y0

��
+ L1�̂y0 + M1v̂0. �23�

Operators G0=G0�y ;x0 ,� ,
i ,Re� as well as H0 and L0
are functions of the short scale y only. Operators G1
=G1�y ,Y ;x0 ,� ,
i ,Re� as well as H1, K1, L1, and M1 are
function of both the short scale y as well as the long scale Y.
These operators are explicitly given in Appendix B.

A comment concerning the role of 
i is needed. Equations
�10�–�15� above are obtained for the case where 
i�0. It can
be observed �see Appendix B� that if 
i=0, the O�1� opera-
tors H0, L0 �but also the O�k� operators H1, L1, M1, and N1�
are singular. It is possible to verify that if 
i=0 the distur-
bances initially imposed remain constant as time passes and
reach, in the end, an asymptotic condition of marginal stabil-
ity. This fact is deduced by considering Eq. �18�. For 
i=0,
the homogeneous solution assumes the expression v̂0h=c1
+c2y. Since the perturbation velocity field has to vanish in

the free stream, c1=0 and c2=0. Thus v̂0 and therefore �̂0

vanish as well. This means that, in Eq. �19�,
��̂0

�t =0 so that

there is no temporal evolution for �̂0. Since the transversal

vorticity �̂y0 is initially taken as zero, then in Eq. �20�,
��̂y0

�t
=0, and thus, also for the transversal vorticity, there is no
temporal evolution. The complete problem is defined for 
i
=0 and, for this value of 
i, it does not necessarily show a
condition of marginal stability �e.g., see Fig. 6 in the follow-
ing�. However, it is possible to see that the multiscaling limit
for 
i→0 well approximates the complete problem: cf. Figs.
5 and 6. When 
i=0, the multiscaling presents a discontinu-
ity since it has a right limit different from the value shown at

i=0.

Order O�1� is the more important approximation of the
perturbative analysis and its formal expression is simplified
with respect to the complete problem. Numerically, the com-
plete linear system was also integrated. Since the results rel-
evant to the complete problem are in very good agreement
with the results of the first-order analysis, in the present
work, attention is focused on the resolution of the multiscal-
ing at order O�1�. It should be noted that at this order only
the short spatial scale y is of relevance.

In the following, a summary of the most significant tran-
sient behavior and asymptotic fate of three-dimensional per-
turbations is presented to highlight the agreement between

solutions of multiscaling at order O�1� and full linear prob-
lem. Results will be principally focused on parameters such
as the spatial damping rate, the polar wave number value �to
check the validity of the approximation�, the angle of obliq-
uity and the symmetry of the three-dimensional disturbance.

To measure the transient growth the concepts of kinetic-
energy density e�t ;k ,� ,
i�

e�t;k,�,
i� =
1

2

1

2yd
�

−yd

+yd

�	û	2 + 	v̂	2 + 	ŵ	2�dy

=
1

2

1

2yd

1

	k2 + 2ik cos���
i − 
i
2	

	 �
−yd

+yd �
 � v̂
�y

2

+ 	k2 + 2ik cos���
i

− 
i
2		v̂	2 + 	�̂y	2�dy , �24�

and normalized amplification factor G�t ;k ,� ,
i�,

G�t;k,�,
i� =
e�t;k,�,
i�

e�t = 0;k,�,
i�
, �25�

are introduced for both multiscale O�1� quantities

�v̂0 , �̂0 , �̂y0� and full problem quantities �v̂ , �̂ , �̂y�.
In Eq. �16�, the limits �yd define the spatial extension of

the numerical domain. The value yd is defined so that the
numerical solutions are insensitive to further extensions of
the computational domain size. Here, in the limit of long
waves, the size of the spatial domain 2yd assumes values in
the range between 30 and 100 external flow scale D. The
total kinetic energy can be obtained by integrating the energy
density over all k and �.

To evaluate the asymptotic behavior we introduce the
temporal growth rate r defined as

r�t;k,�,
i� =
log	e�t;
,��	

2t
, t � 0. �26�

The temporal growth rate r is not defined for t=0. This quan-
tity has, in fact, a precise physical meaning asymptotically in
time. Moreover, for both multiscale and the full problem
solutions, the angular frequency �pulsation� � of the pertur-
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FIG. 5. Effects of the spatial damping rate 
i. �a� The amplifi-
cation factor G and �b� the temporal growth rate r as function of
time. Comparison between multiscale O�1� �thick curves� and full
problem �thin curves�. Re=50, k=0.03, �=� /4, x0=12, asymmet-
ric initial condition, and 
i=0.04,0.4.
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bation can be introduced by defining a local, in space and
time, time phase � of the complex wave,

v̂�y,t;
,�,Re� = At�y ;
,�,Re�ei��t�, �27�

and then computing the time derivative of the phase pertur-
bation �,

��y,t;k,�,
i� =
d��y,t;k,�,
i�

dt
. �28�

Since � is defined as the phase variation in time of the per-
turbative wave, it is reasonable to expect constant values of
frequency, once the asymptotic state is reached.

III. RESULTS

Computations to evaluate the long time asymptotics are
made by integrating the equations forward in time beyond
the transient until the temporal growth rate r, defined in
relation �26�, asymptotes to a constant value �dr /dt��
�12,22�.

Figure 5 presents an interesting phenomenon that is ob-
served for general long perturbations �either transversal or
oblique or longitudinal� by changing the value of the spatial
damping 
i. For instance, in the case shown in this figure,
which is relevant to a long oblique asymmetric wave, the
variation in the order of magnitude of 
i from 0.04 to 0.4
highly enhances the amplification in time, with a temporal
growth rate that becomes nearly three times larger. This
means that perturbations that are spatially confined are more
amplified in time. It can also be noted that the agreement
between multiscale O�1� �thick curves� and full problem
�thin curves� remains very good when changing the order of
magnitude of the spatial damping.

The influence of the perturbation symmetry on the early
time behavior is shown in Fig. 6 �a logarithmic scale is used
on the ordinate of part �a� of the figure�. It can be noted
that the symmetric initial condition leads—in the transient
behavior—to a faster temporal growth than the asymmetric
one, although both configurations are approaching the same
asymptotic unstable state. Indeed, the transient in the asym-
metric case is lasting longer than t102, where in the sym-
metric case is lasting t101. The agreement between multi-
scale to O�1� and the full problem is very good for both
asymmetric and symmetric conditions. This is true both for

the early transient as well as the ultimate fate. It should
be noted the discontinuous behavior shown at t100 by
the temporal growth rate of the asymmetric transversal
��=� /2� wave.

The effect of differing orders of magnitude for the polar
wave number k is highlighted in Fig. 7. Three orders are
considered, namely k=0.1,0.01,0.001. As expected, for
smaller values of the polar wave number the agreement be-
tween multiscale O�1� and full problem is improving �the
multiscale O�1� solution practically coincides with that of
the full problem for k=0.001�. It is interesting to note in the
interval between zero and 40 base flow time scales, the pres-
ence of a temporal oscillation characterized by a period of
about ten time scales. The transient thus presents a further
time scale beyond its proper global one which, in this case, is
lasting 100 units.

The limit for a zero spatial decay, i.e., 
i→0, was con-
sidered in different situations �see Fig. 8� transients of an
orthogonal long wave perturbation and �Fig. 9� time asymp-
totics of an oblique long wave perturbation. In Fig. 8, the
thick curves represent the full problem solution with 
i=0,
while the thin curves are the multiscale O�1� results with 
i
values going to zero. The right limit of the multiscale O�1�
solution for 
i→0 is finite and is closely reaching the full
problem solution. As can be observed, the curves with
smaller spatial decay rates are approaching the thick curve
from above. This behavior holds in the early transient and in
the asymptotic state. It should be noted that, in this particular
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case �Re=50, �=� /2, x0=10, asymmetric initial condition,
k=0.04�, the complete problem at 
i=0 has a temporal
growth rate close to zero and thus is in a near state of mar-
ginal stability. But, as previously remarked �cf. Sec. II�, this
is not a general behavior for the complete problem. However,
it is true that the limiting behaviors for 
i→0 of the multi-
scaling and of the complete problem are very close. And, as
the case shown in Fig. 6 confirms that, if a difference exists,
this will be located just at 
i=0. This means that the right
limit of the multiscaling for 
i=0 correctly approximates the
complete problem, but this limit value is not always equal to
the value at 
i=0 �where the multiscaling yields marginal
stability, i.e., r=0, G=1, and �=0�. It can be concluded that,
in any case, the true limit of the complete problem can be
obtained by extrapolating the multiscaling results.

It is noted that, in Fig. 8, for asymmetric and transversal
initial conditions with a nonvanishing spatial decay, a dis-
continuity in the temporal growth rate can again be observed
at t100, see also Fig. 3.

The comparison between the long waves temporal asymp-
totics of the full problem and its multiscaling version is
shown in Fig. 9. To consider a situation where the multiscal-
ing applies the polar wave number k is fixed to the value
0.01, while the decay in space 
i of the longitudinal wave is
in the range �0,0.6�. Multiscale to O�1� results �squares and
dots� are in excellent agreement, for symmetric and asym-
metric initial inputs, with full problem data �circles and tri-
angles�. Note that the agreement improves for increasing val-
ues of 
i. A minimum of the perturbation energy �in terms of
r� is found around 
i=0.2–0.3 and a similar behavior is
shown by the angular frequency �.

IV. CONCLUSIONS

Different transient configurations have been observed by
changing the spatial damping rate, the symmetry of the per-
turbation, and its polar wave number �the magnitude, in or-
der to check the method accuracy, and the angle of obliq-
uity�. Since the results relevant to the complete problem are
in very good agreement with the results of the first-order
analysis, in the present work attention was focused on the
resolution of the multiscaling at order O�1� only.

Two main results can be noted. First, the perturbation
symmetry influences the transient. In particular, asymmetric
transversal perturbations show a different kind of transient
which includes an initial decay �first few time scales� and
then a growth that abruptly changes its time derivative after
about 100 time scales. A sequence of such a kind of discon-
tinuities can be envisaged up to where the growth rate of the
corresponding symmetric perturbation is met. Second, the
spatial decay substantially affects the transient. For example,
in the case of asymmetric perturbations, it is observed that
high spatial damping makes the initial temporal decay inter-
val shorter and, at the same time, greatly increases the tem-
poral growth rate.

Multiscale data have been compared with full problem
results in the asymptotic temporal limit. As far as small wave
numbers are concerned, the agreement is very good for both
symmetric and asymmetric initial conditions as arbitrarily
expressed in terms of elements of the trigonometrical
Schauder basis for the L2 space.

Lastly, it is noted that the amplification factor of transver-
sal perturbations never presents the trend—a growth fol-
lowed by a long damping—usually observed in waves with
wave number of order one or less. Asymptotically unstable
configurations in time have always been observed here in the
limit of long waves.

APPENDIX A: BASE FLOW COEFFICIENTS

Here we detail the coefficients, �i�y ;x0 ,Re� and
�i�y ;x0 ,Re�, of the asymptotic expansion representing the
intermediate and far base flow. This approximation is homo-
geneous in the x and z directions and parametrized through
the downstream station x0 and the Reynolds number Re.

1. Zero order: i=0

�0 = C0, �A1�

�0 = 0, �A2�

with C0=1.

2. First order: i=1

�1 = − AC1e−Re y2/�4x0�, �A3�

�1 = 0, �A4�

with C1=1.

3. Second order: i=2

�2 = −
1

2
A2e−Re y2/�4x0��C2 1F1�−

1

2
,
1

2
;
Re y2

4x0
�

+ e−Re y2/�4x0� +
1

2

y
�x0

�� Re erf�1

2
�Re

x0
y�� ,

�A5�

�2 = −
A

2

y
�x0

e−Re y2/�4x0� �A6�

with C2=−2.758 33+0.212 37 Re−0.003 53 Re2

+0.000 02 Re3.

4. Third order: i=3

�3 = A3e−Re y2/�4x0��2 − Re
y2

x0
��1

2
C3 − Re F3�x0,y�� ,

�A7�
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�3 = −
A2

2 �C2�−
1

2

1
�x0

	 �
0

y �e−Re�2/�4x0�
1F1�−

1

2
,
1

2
;
Re�2

4x0
��d�

−
1

2

y
�x0

e−Rey2/�4x0�
1F1�−

1

2
,
1

2
;
Rey2

4x0
��

−
1

2

y
�x0

e−Re y2/�2x0� −� �

2 Re
erf�� Re

2x0
y�

+ �1

2
� �

Re
−

��Re

4

y2

x0
�e−Re y2/�4x0� erf�1

2
�Re

x0
y�� ,

�A8�

with C3=−2.266 05+0.157 52 Re−0.002 65 Re2

+0.000 01 Re3.
Coefficient A is related to the drag coefficient CD �A

= 1
4 �Re /��1/2cD�Re��, 1F1 is the confluent hypergeometric

function, Hrn−1���=Hn−1� 1
2Re1/2 ��, where Hn are Hermite

polynomials and

Fn��� =� eRe/2�2

Hrn−1
2 ���

Gn���d� , �A9�

Gn��� = A−n� Mn���Hrn−1���d� , �A10�

where �=y /�x0.

APPENDIX B: ORDINARY DIFFERENTIAL OPERATORS
OF THE INITIAL-VALUE PROBLEM

In this appendix we list the ordinary differential operators
of the full linear system and, up to order O�k�, of the multi-
scale system. The coefficients inside these operators are
the quantities computed in x0 that are associated to the
spatial derivatives of the vorticity and velocity of the base
flow �U= �U�y ;x0 ,Re� ,V�y ;x0 ,Re���. In particular, �z= � �V

�x
− �U

�y � 	x=x0
is the mean vorticity in the spanwise direction, and

the coefficients a, b, c, d, and e are equal to

a =
 ��z

�x



x=x0

, b =
 �2�z

�x2 

x=x0

, c�y� =
 �2�z

�x � y



x=x0

, d =
 �U

�x



x=x0

, e =
 �V

�x



x=x0

.

1. Full linear problem

G = − i�k cos��� + i
i�U − V
�

�y
+

1

Re
� �2

�y2 − k2 + 
i
2 − 2ik cos���
i� , �B1�

H = −
i�k cos��� + i
i�

k2 + 2ik cos���
i − 
i
2b

�

�y
− c�y� − i�k cos��� + i
i�

��z

�y
+

k2 cos2��� + 2ik cos���
i − 
i
2 − k2 sin2���

k2 + 2ik cos���
i − 
i
2

	 a
�

�y
+ k2 sin2���

�V

�y
+ �k2 cos2��� + 2ik cos���
i − 
i

2�d −
k2 cos2��� + 2ik cos���
i − 
i

2

k2 + 2ik cos���
i − 
i
2 d

�2

�y2

−
k2 sin2���

k2 + 2ik cos���
i − 
i
2

�V

�y

�2

�y2 − i�k cos��� + i
i�e
�

�y
+

i�k cos��� + i
i�
k2 + 2ik cos���
i − 
i

2e
�3

�y3 , �B2�

K = +
k sin���

k2 + 2ik cos���
i − 
i
2b − ik sin���e − 2

�k cos��� + i
i�k sin���
k2 + 2ik cos���
i − 
i

2 a +
�k cos��� + i
i�k sin���
k2 + 2ik cos���
i − 
i

2 d
�

�y

−
�k cos��� + i
i�k sin���
k2 + 2ik cos���
i − 
i

2

�V

�y

�

�y
− i

k sin���
k2 + 2ik cos���
i − 
i

2e
�2

�y2 , �B3�

L = − i�k cos��� + i
i�U − V
�

�y
+

1

Re
� �2

�y2 − k2 + 
i
2 − 2ik cos���
i� − d +

i�k cos��� + i
i�
k2 + 2ik cos���
i − 
i

2e
�

�y
, �B4�

M = − ik sin���
�U

�y
+

ik sin���
k2 + 2ik cos���
i − 
i

2e
�2

�y2 . �B5�
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2. Order O(1)

G0 = 
iU − V
�

�y
+

1

Re
� �2

�y2 + 
i
2� , �B6�

H0 = a
�

�y
−

1


i
b

�

�y
+ 
i

��z

�y
− c�y� − d�
i

2 +
�2

�y2�
+

1


i
�
i

2 �

�y
+

�3

�y3� , �B7�

L0 = 
iU − V
�

�y
+

1

Re
� �2

�y2 + 
i
2� − d +

1


i
e

�

�y
. �B8�

3. Order O(k)

G1 = − i cos���U − V
�

�Y
+

1

Re
�2

�2

�y � Y
− 2i cos���
i� ,

�B9�

H1 = a
�

�Y
−

1


i
b

�

�Y
+ −

i


i
2cos���b

�

�y
− i cos���

��z

�y

− 2
�2

�y � Y
d + 2i
i cos���d +

3


i

�3

�y2 � Y
e + 
ie

�

�Y

+
i


i
2cos���e

�3

�y3 − i cos���e
�

�y
,

K1 =
2


i
sin���a −

i


i
2sin���b + − i sin���e�1 −

1


i
2

�2

�y2� ,

�B10�

L1 = − i cos���U − V
�

�Y
+

1

Re
�2

�2

�y � Y
− 2i cos���
i�

+
1


i
e� �

�Y
+

i


i
cos���

�

�y
� ,

M1 = − i sin���
�U

�y
−

i


i
2sin���e

�2

�y2 . �B11�
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