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Simple Countermeasures to Mitigate the

Effect of Pollution Attack in Network Coding

Based Peer-to-Peer Live Streaming

Attilio Fiandrotti, Member, IEEE, Rossano Gaeta, and Marco Grangetto, Senior Member, IEEE,

Abstract

Network coding based peer-to-peer streaming represents an effective solution to aggregate user capacities

and to increase system throughput in live multimedia streaming. Nonetheless, such systems are vulnerable to

pollution attacks where a handful of malicious peers can disrupt the communication by transmitting just a

few bogus packets which are then recombined and relayed by unaware honest nodes, further spreading the

pollution over the network. Whereas previous research focused on malicious nodes identification schemes and

pollution-resilient coding, in this paper we show pollution countermeasures which make a standard network

coding scheme resilient to pollution attacks. Thanks to a simple yet effective analytical model of a reference

node collecting packets by malicious and honest neighbors, we demonstrate that i) packets received earlier are

less likely to be polluted and ii) short generations increase the likelihood to recover a clean generation. Therefore,

we propose a recombination scheme where nodes draw packets to be recombined according to their age in the

input queue, paired with a decoding scheme able to detect the reception of polluted packets early in the decoding

process and short generations. The effectiveness of our approach is experimentally evaluated in a real system

we developed and deployed on hundreds to thousands peers. Experimental evidence shows that, thanks to our

simple countermeasures, the effect of a pollution attack is almost canceled and the video quality experienced by

the peers is comparable to pre-attack levels.

Index Terms

Network coding, peer to peer, pollution attack, measurements, continuity index

I. INTRODUCTION

Peer-to-peer (P2P) video streaming represents a mature area of research with several successful examples to

date [1], [2]. The combination of P2P and Network Coding (NC) has recently received a great deal of attention

from the research community as an effective mechanism to aggregate user capacities and to increase system

throughput [3], [4], [5]. In NC-based architectures, the content is organized in independently decodable data

units (chunks or generations) and each chunk is further partitioned in k blocks. The network nodes create linear

combinations of suck blocks and produce coded packets that are transmitted to the network. The packets can

be spread in the overlay network using a push approach, where at each transmission opportunity a new coded

packet is generated by a peer and forwarded to a neighbor. On the receiver side, a chunk can be decoded as

soon as enough coded packets have been collected by solving the system of linear equations corresponding to

the collected packets.
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Nonetheless, network coding systems are affected by a major Achille’s heel: they are vulnerable to attacks

carried out by nodes that spread bogus data over the network with teh goal of disrupting the communication.

These actions are commonly known as pollution attacks [6], [7] and the attackers are termed as malicious

nodes.

Several issues need to be addressed to design effective solutions to pollution attack and the most part of the

approaches proposed in the literature propose a two-steps approach. First, some pollution detection mechanism

is introduced to allow honest peers to detect an ongoing pollution attack and, if possible, the source thereof.

Second, a proper reaction (e.g., blacklisting) is undertaken after the presence or the source of the attack has

been identified [8], [9], [10], [11], [12]. Both pollution detection and in particular malicious nodes identification

can be very complex tasks involving high computational and/or communication overhead.

Our contribution

The key goal of this work is to exploit the degrees of freedom available in standard random NC to design a

media streaming architecture that is inherently resilient to pollution attacks. By comparison, most of the related

literature focuses either on identification and isolation of the malicious nodes or on designing ad-hoc data

verification techniques as discussed in Section VII. To this end, the contributions of this work are manifold:

• The main contribution is a novel packet recombination strategy where the nodes draw the packets to

recombine among those in the input buffers with a probability that grows with the age of the packet in

the buffer. Our recombination scheme dramatically reduces the probability that an honest node transmits a

polluted packet, which is further lowered by dividing the media stream in short generations. By comparison,

in traditional NC every packets are drawn for recombination with identical probability and the media stream

is subdivided in long generation to maximize the code efficiency. To put up with the somewhat lower code

efficiency of our recombination policy, we propose a simple heuristic which restores the code efficiency

to almost pre-attack levels and improves the overall network utilization efficiency.

• Our findings are supported by an analytic model which enables to understand how pollution propagates in a

random NC push-based P2P system as a function of parameters such as generation size and time. Namely,

we show that the probability that a node forwards a polluted packet to downstream peers is not constant,

rather it grows with time, which justifies out age-based packet drawing policy. Also, we show that the

probability that a node recovers a clean generation depends on the generation size, i.e. short generations

are more likely to enable successful generation recovery. While our model relies on some simplifying

assumptions, yet it represents an adequate solution to qualitatively describe the packet collection activity

of a reference peer whose packets providers can be either malicious or honest.

• Next, we present a probabilistic pollution detection mechanism which enables a node to autonomously

detect the presence of polluted packets in its input buffer even if the node has not yet recovered the

generation and without the need of external keys or hashing functions. We experimentally show that our

pollution detection scheme enables a node to detect pollution attacks earlier than a deterministic scheme

which relies on an external verification server, further throttling the propagation of pollution through the

network.
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• Finally, the performance of our resilient-by-design pollution avoidance scheme is throughly evaluated on

a real, full-fledged, NC-based P2P video streaming protocol [13], [14] by streaming a live video sequence

to one thousand peers. Thanks to our realistic testbed, we are able to assess not only the reduction in the

propagated pollution entailed by our strategy, but also the effect thereof on the video quality as perceived

by the user in terms of continuity index, i.e., the fraction of video frames correctly recovered.

The rest of this paper is organized as follows: in Section II we overview the basics of multicast video

distribution with binary random network coding (NC); next in Section III we illustrate a simple pollution

attack model and we analytically study the propagation of the polluted packets through the network due to the

recombinations at the nodes, showing that packets received early by the nodes are less likely to be polluted

and small generations increase the probability to recover clean generations at the nodes. In Section IV the

techniques that we propose to combat pollution are presented, namely an algebraic detection mechanism based

on Gaussian Elimination and a pollution resistant NC coding strategy that recombines with higher probability

those packets that are less likely to be polluted. In Section V we overview ToroStream, a push-based protocol

for P2P video distribution via NC that we use for experimenting with our algorithms with thousands of nodes

in the following Section VI. The paper ends with Section VIII drawing our conclusions and future research.

Finally please note that, to easy the reader, we collect in Tab. I all the key notation used throughout the paper.

NC parameters

k, k′ Generation size, num. pkts required to decode (k′ ≥ k)

xi i-th data block

Fi = (yi, gi) Coded packets (payload, encoding vector)

c = (c1, . . . cR) Recombination vector

pr Prob. each packet in input buffer is drawn for recombination

mr Minimum rank to start recombining

ǫc, Code overhead, ǫc = (k′ − k)/k

Attack model

N ; Nh,Nm Tot. num. of nodes; Num. of honest, malicious nodes

ppoll Pollution probability of malicious nodes

rp Number of polluted packets received (rp ≤ k′)

ǫp, Pollution overhead, ǫp = rp/k

Analytical mode parameters

n Number of uploaders to reference node

x Number of malicious uploaders to reference node

P2P and experimental settings

Bv Test video bitrate

Ct Generation duration

tb Buffering time

Ns Maximum allowed neighborhood size

Bs, Bp Server, peer nodes bandwidth

TABLE I

KEY NOTATION USED IN THE PAPER.
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II. BACKGROUND

In this section we first overview a typical push-based NC scheme in an unstructured mesh network detailing

the operations at the network nodes. Next, we describe a sample pollution attack model based on the injection

of bogus coded packets into the network and we exemplify the spreading of the pollution through the network

nodes.

A. Media Streaming with Network Coding

The source node holds a media content which is to be distributed to a set of cooperating nodes which we

assume are arranged into an unstructured, non-acyclic, mesh network and operate according to a random-push

model. The video is subdivided in chunks of data called generations that are independently encoded and decoded

at the network nodes so to achieve finite playback delay. Each generation x is further subdivided into k blocks

of symbols (x1, ..., xk) (simply “blocks” in the following) of identical size, where k is the generation size.

Whereas a typical video sequence is subdivided in a large number of generations, for the sake of simplicity in

the following we assume that the video sequence is composed by just one generation. Periodically, each node

in the network including the source is given a transmission opportunity: i.e., it is allowed to transmit one packet

to the network. Initially, only the source owns the original video content and distributes it to the other nodes

transmitting encoded packets as follows. Let vector gi = (gi,1, ..., gi,k), gi,j ∈ GF (2) be the encoding vector

associated to the i-th coded packet, where gi,j is selected such that P{gi,j = 1} = 1
2 ∀i. The source produces

a random linear combination on the original blocks as yi =
∑k

j=1 gi,jxj , where the sum operator represents the

bit-wise XOR operator and yi is the i-th encoded payload. The node forwards the encoded packet Fi = (yi, gi),

that contains the encoded payload yi along with the corresponding encoding vector gi, to another node drawn

at random in the network.

The nodes of the network receive encoded packets, store them in an input buffer and transmit random linear

combinations thereof as follows at every transmission opportunity. Let us assume that a node has received

r packets (F1, ..., Fr): the node is allowed to transmits a linear combination of the payloads of the received

packets; the m-th recombined packet is computed as yrm =
∑r

j=1 cm,jyj , where cm,j ∈ GF (2) and P{cm,j =

1} = pr = 1
2 , i.e. each received packet is recombined with equal probability. It turns out that the corresponding

m-th encoding vectors is grm =
∑r

j=1 cm,jgj . The result of the recombination is novel packet F r
m(yrm, g

r
m)

which is transmitted to the outgoing link of the node. The recombinations at the nodes increase the likelihood

that the transmitted packet is linearly independent from all the packets previously collected by the receiver,

thus increasing the network goodput. Each time a node receives a packet that is linearly independent from the

previously received packets we say that the packet is innovative. We call the number of linearly independent

packets received at any time by a node for the generation as the rank of the generation at the node: once the

rank is equal to k, we say that the generation has full rank. At this point, the node solves the system of linear

equations corresponding to the received packets (e.g., via Gaussian elimination) and recovers the generation,

i.e. the original video content.

In practical NC applications, a receiver must however typically collect k′ > k packets because not all received

packets are innovative due to the random combinations and forwarding. The penalty ǫ = k′−k
k

is usually termed
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Fig. 1. Toy network with a source and N=5 nodes where Nh=4 are honest and Nm=1 (N3) is malicious. The generation is composed

of k=4 blocks and the nodes input buffers are represented at various decoding stages (polluted packets are represented in dark gray).

as code overhead and corresponds to the ratio of network bandwidth wasted transmitting non innovative, hence

useless, packets .

B. Pollution Attack Model

Let us assume that the overlay of network nodes is composed by one source node and N peer nodes, where

Nh nodes are of the honest type and Nm are of the malicious type (Nh + Nm = N , where Nm << Nh)

as depicted in Figure 1. Honest nodes recombine the received packets as described in the previous section to

allow as many other nodes as possible to recover the generation. Malicious nodes disguise themselves among

the honest ones and attempt to disrupt the video communication by randomly transmitting bogus coded data

to the other network nodes. At each transmission opportunity, the malicious node draws a random variable

ψ ∈ {0, 1} with uniform probability so that P{ψ = 1} = ppoll. If ψ = 0, the malicious node simply behaves as

a honest one. Otherwise if ψ = 1, the node generates a random encoding vector, a random encoded payload and

transmits the packet to the network node: in this case, we say that the transmitted packet is polluted. Network

nodes store the received packets in an input buffer without knowing if the packet is polluted or not, as shown

in Figure 1. Whenever a transmission opportunity arises for a honest node, if any of the rp polluted packets

in its input buffer is drawn for recombination, then the transmitted packet is polluted too and bogus data is

propagated to the other network nodes.

In a scenario involving pollution attacks, we define as pollution overhead the ratio ǫp =
rp
k

of network bandwidth

wasted transmitting packets that are polluted, hence useless. Along with the previously defined code overhead,

the pollution overhead will be used in this work to evaluate resources exploitation efficiency. In the example

of Figure 1, node N3 is malicious and has transmitted one polluted packet to N4, which will not be able

to correctly recover the generation. Then, N4 draws the polluted packet for recombination and transmits one

packet to N1: at this point also the input buffer of N1 is polluted and the node will not be able to correctly

recover the generation.

III. POLLUTION EFFECTS MODEL

In this section, we develop a simple analytical model to describe the behavior of a sample reference node

that collects packets from a set of uploaders and combines them to forward a new packet to downstream
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Fig. 2. Modeled scenario, where a reference node (middle of the picture, gray) receives packets from a set of uploaders, and transmits

recombinations thereof to downstream nodes (malicious nodes are depicted in black).

nodes. We show that the probability to correctly recover a generation increases with small generations, whereas

the probability of forwarding a recombined polluted packet to downstream peers grows with time: these key

observations are the basis to devise our proposed pollution-resilient packet recombination scheme proposed in

Sect. IV-B. Please note that we do not claim our model yields accurate predictions on the effect of pollution

attacks on a real system. Indeed, the model is developed under several simplifying assumptions such as i) it

describes the behavior of a randomly chosen (reference) peer in the overlay network; ii) assumes that the overlay

topology is an unstructured mesh where nodes all lay at the same hierarchical level iii) packets transmission

happen at discrete time slots termed as a rounds; iv) during a round each uploader of the reference peer delivers a

coded block. Nevertheless, the model includes all significant issues that determine the effect of polluting packets

(and the effect of recombining polluted packets) before transmitting them to downstream peers as qualitatively

(and, in part, quantitatively) experimentally verified later on.

A. Modeling the Pollution Effects

To develop our model we consider a sample reference node that receives encoded packets from n uploaders

nodes and forwards linear combinations thereof to other downstream nodes as illustrated in Figure 2 (the

reference node is depicted in gray). We assume that x out of n uploaders are malicious and purposely transmit

bogus data as described in Sect. II-B. To simplify the model derivation, we assume that time is discretized in

rounds; during one round each of the n uploaders delivers one packet to the reference node and the reference

node transmits one packet to one of the downstream nodes.

For the sake of simplicity, we assume that all packets received by a node are innovative and the number of

rounds required to recover the generation is equal to ⌈ k
n
⌉+1. The number of packets received by the reference

node during the i-th round (1 ≤ i ≤ ⌈ k
n
⌉+ 1) is denoted as R(i): under our assumptions R(i) increases by n

at each round, hence R(i) = i · n.

We denote as Pp(i, x, b) the probability that b out of the n packets received at the i-th round are polluted
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when x out of n uploaders are malicious. It is easy to show that this probability follows a binomial distribution,

i.e.,

Pp(i, x, b) =

(

ix

b

)

pbpoll(1− ppoll)
ix−b.

Please note that since in one round each uploader delivers exactly one packet, the maximum number of polluted

packets that our reference node can collect is equal to ix.

During the i-th round, the reference node draws at random a subset of the R(i) packets contained in its

input buffer and combines them to generate a new packet to forward to downstream nodes. We compute the

probability that the packet recombined by the reference node during the i-th round is polluted as

Prp(i, x) = 1−
ix
∑

b=0

Pp(i, x, b)(1− pr)
b. (1)

that is, one minus the probability the recombined packet is not polluted (this probability is computed as the

probability that none of the polluted packets received by the reference node has been selected for recombination).

We also assume the overlay network does not change with time and it is randomly built. Under these

assumptions, we describe the probability that x out of n uploaders are malicious as an hyper-geometric

distribution, i.e.,

Pmn(N,Nm, n, x) =

(

Nm

x

)(

N−Nm

n−x

)

(

N
n

) , (2)

We can thus compute the probability that the packet recombined by the reference node during the i-th round

is polluted as a weighted sum of(1), where the weights are the probabilities that x out of n uploaders are

malicious, i.e.,

Pgp(i,N,Nm, n) =

n
∑

x=1

Pmn(N,Nm, n, x)Prp(i, x).

Therefore, the probability that the reference node does not draw for recombination one of the polluted packets

in its input buffer during any of the ⌈ k
n
⌉+ 1 rounds required to recover the generation is equal to

Pfclean(k,N,Nm, n) =

⌈ k
n
⌉+1
∏

i=1

1− Pgp(i,N,Nm, n). (3)

Finally, the probability that the reference node is able to recover a generation whose payload is not polluted

is equal to

Prclean(k,N,Nm, n) =

n
∑

x=0

Pmn(N,Nm, n, x)Pp(⌈
k

n
⌉+ 1, x, 0). (4)

The first observation we make is based on Figure 3, which shows the probability that the packet recombined

by the reference node during the i-th round is polluted (Pgp) as a function of the time (i.e., the round index

i) for a simple scenario like the one depicted in Figure 2 with N = 1000 nodes and Nm = 50 malicious

nodes, where each packet in the input buffer is recombined with probability pr = 0.5 and the probability that

a malicious nodes transmits a polluted packet is equal to ppoll = 0.1. We observe that the reference node

forwards a polluted packet to its downstream peers with a probability that increases with time: that is, packets

forwarded later to downstream nodes are more likely to be polluted. Therefore, downstream peers should draw

for recombination each packet received by the reference node with a probability that is directly proportional

with the age of the packet in the buffer (i.e., packets received earlier should be drawn for recombination with

higher probability) rather than drawing each packet with identical probability pr.
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Fig. 3. Probability that the packet transmitted by the reference node during the i-th round is polluted (Pgp) as a function of time (k=100).

The second observation is that Equations (3) and (4) both depend on one system parameter that can be

controlled: the generation size k. Figure 4 shows that small generations increase the probability to recover a

clean generation and the probability of forwarding clean packets to downstream nodes. Indeed, small generations

reduce the overall number of rounds required to recover a generation (please remind that the number of rounds

required by the reference node to recover the generation was assumed to be equal to ⌈ k
n
⌉ + 1 rounds). The

definition of Pfclean is a product of probabilities, hence the lower the number of factors the higher the final

results. As for Prclean, we note that ∀x, Pp(⌈
k
n
⌉+ 1, x, 0) = (1− ppoll)

(⌈ k
n
⌉+1)x that is a decreasing function

of the first argument that is equal to the overall number of rounds. Short generations bring other advantages,

such as reducing the computational complexity of recovering the coded payload [14] and enabling low-delay

communications by reducing the minimum required buffering time [15], whereas a failure to timely recover a

generation entails the loss of fewer video frames. Note that, short generations also decrease the probability that

received packets are innovative and may negatively affect the code overhead ǫ. However, as we experimentally

demonstrate later on, small generations help reducing the pollution overhead to the point where the total network

overhead is lower than for large generations. Also, in Sec. IV-B we propose a simple heuristic that keeps the

code overhead under control by constraining the nodes to wait that a generation has reached a minimum rank

before they start to recombine and relay the received packets.

Concluding, the analysis of the results produced by our model suggest that:

• packets received earlier by a node are less likely to be polluted than the following ones;

• the probability that a generation can be correctly recovered increases as the generation size k decreases;

• the probability that a node transmits a polluted recombined packet decreases as the generation size k

decreases.

Such findings represent the cornerstones of the pollution-resilient NC architecture described in the following
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section.

IV. PROPOSED ALGORITHMS

In this section, we first describe a pollution detection scheme designed around On-the-Fly Gaussian elim-

ination [16] that allows a node to spot the presence of a polluted packet in the input buffer even before the

generation is recovered. Next, we present a packet recombination scheme that minimizes the likelihood that

the packet transmitted by a node is polluted by exploiting the knowledge unveiled by the model proposed in

Sect. III-A.

A. Pollution Detection and Decoding

A basic feature of a pollution resilient NC P2P streaming application is the capability to detect that bogus

data are being spread by unknown malicious peers. Fortunately, we can exploit the NC decoding procedure,

along with the fact that every node is likely to get some redundant (non innovative) packets from its neighbors,

to obtain a pollution detection mechanism at generation-level. In other words, the algorithm described in the

following paragraph allows every node to detect if a generation that is being decoded is under attack, albeit it

cannot trace the pollution source. We point out that that no ancillary data or infrastructure for verification are

required and pollution detection is operated on the fly using only the received coded packets. The algorithm

operates in two stages, detection and decoding, that are detailed and described each in pseudo-code below.

The detection stage serves the purpose of revealing the presence of a polluted packet among those received

by the node and detect whether received packets are innovative or not. The detection stage is formalized as

Algorithm 1 and it is executed every time a new packet Fi = (yi, gi) is received by the node. In the following

to avoid cluttering the notation we will drop the packet index using notation F = (y, g) to refer a generic
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received packets. Each time a node receives a packet, a copy of it is also stored in an input buffer for further

recombination as described later on in this section. The NC decoding process [16] can be represented as a

solution to a system of k linear equations GX = Y , where G is a k × k upper-triangular matrix that stores

(linear combinations of) the encoding vectors of the received packets, Y is the k × 1 vector that stores the

corresponding encoded payloads y and X is the k × 1 vector that contains the symbols xi to recover, which

are initially unknown. In the following, we use the notation Gi to indicate the i-th row of G and we use the

notation Gi,j to indicate the element of G at row i, column j. When all the elements of Gi and Yi are equal

to zero, we say that the the i-th row of G and the i-th element are empty and we write Gi = ∅. Let s be

the index of the leading one of g, i.e. the first non-zero element of g such that gi = 0 ∀i < s: the maximum

number of iterations of the while cycle at line 2 of the algorithm is equal to s. Depending on whether Gs = ∅,

the algorithm operates as follows. If Gs is empty, g is inserted in the s-th row of G, y is inserted in the

s-th position of Y and the algorithm ends reporting an innovative packet was received (line 6). Otherwise, a

comparison between Gs and g is performed. If g = Gs, the received packet P (g, y) and the pair (Gs, Ys) are

expected to represent the same combination of the input symbols, thus the encoded payloads should match as

well, i.e. it should be y = Ys. This event occurs every time the packet being processed is linearly dependent on

the ones received previously and it is likely to happen due to random coding, recombination and forwarding

that imply the collection of k′ > k coded packets to complete decoding. Therefore using the non innovative

packet, a sanity check is performed comparing y with Ys: if they differ, then one or more packets received

so far in the corresponding generation must be polluted and the algorithm returns reporting the presence of at

least one polluted packet in the input buffer (line 9). Otherwise, if payloads are identical, packet F is likely to

be correct but it is not helpful to recover the generation, so it is discarded and the algorithm returns reporting

the received packet is not innovative (line 11). If otherwise g 6= Gs, the algorithm performs a bitwise XOR

between g and Gs and between y and Ys (line 12): such XOR has the effect to set to zero the s-th element

of the encoding vector, i.e. it sets gs = 0, and the while cycle iterates unless any of the previously described

termination is verified or gi = 0, ∀i.

The second stage, recovery, is executed when the rank of G is equal to k, i.e. after k linearly independent

packets have been received. Recovering the generation simply entails transforming the upper-triangular matrix G

as arranged during the detection stage to diagonal form by means of standard backward-substitution. Algorithm 1

can be invoked each time a packet is received at the node, either before or after the generation has been decoded

(due to the nature of push networks, nodes are likely to receive encoded packets also after they have recovered

the generation). In the following, we call early packets received before the generation has been recovered;

conversely, we call late packets received afterwards. If the algorithm is invoked to process early packets, we

say that we have a case of early pollution detection; otherwise, if the algorithm is invoked to process late

packets, we talk about late pollution detection. In this latter case, late packets are exploited to double check

whether any of the packets received so far was polluted. Note that when Algorithm 1 returns a detected pollution

flag, it is up to the node to decide how to exploit such information, for example during packet recombinations

as described below.
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Algorithm 1 Pollution detection with Gaussian elimination

1: receive F = (y, g).

2: while true do

3: s← position of leading one of g.

4: if Gs = ∅ then

5: Gs ← g ; Ys ← y

6: end

7: else

8: if g = Gs then

9: if y 6= Ys then

10: pollution detected; end;

11: else

12: useless packet; end

13: end if

14: else

15: g ← g ⊕Gs; y ← y ⊕ Ys

16: end if

17: end if

18: end while

B. Packet Recombination at the Network Nodes

In this section we propose a packet recombination scheme that aims at reducing the probability that a

packet forwarded by a node is polluted by exploiting the finding that packets received earlier are less likely

to be polluted. Let us assume that a node has received r packets at the moment it is granted a transmission

opportunity, and such packets are stored in a FIFO buffer as {F1, . . . , Fi, . . . , Fr}, so that Fi was received

prior to packet Fi+1. Each i-th packet is drawn for recombination according to packet recombination probability

pr(i, θ) that now we let depend on the packet index i; in particular, we propose to use the following truncated

negative exponential density function

pr(i, θ, α) =
iα

∑θ

j=1 j
α
, (5)

where α is the parameter of the exponential and θ is the cutoff parameter.

Now, the recombination vector c = (c1, . . . cr), ci ∈ {0, 1} defined in Sect. II, is obtained by throwing ci as

ci =







1 if pr(i, θ, α) < ρ

0 otherwise

where ρ ∈ [0, 1] is drawn with uniform probability. The encoding vector of the recombined packet is then

computed as gr =
∑r

i=1 cig
i, whereas the corresponding payload is computed as yr =

∑r

i=1 ciy
i and finally

packet F r = (yr, gr) can be forwarded to the neighbors. Note that while the proposed scheme exploits the
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finding that packets received earlier are less likely to be polluted, we do not advocate that it globally minimizes

the probability to transmit a polluted packet and we leave further improvements for future works.

Note that changing the recombination probability from a completely random one (pr = 1/2) to the time

dependent function pr(i, θ) may impair the coding overhead ǫc defined in Sect. II. In fact, drawing for

recombination elder packets with higher probability limits the set of received packets that are recombined,

decreasing the probability to create innovative packets. To counter act this issue, we impose a minimum number

of linearly independent packets mr that a node must have received for a generation before it is allowed to

start forward linear combinations thereof. At any time mr is equal to the rank of matrix G in Algorithm 1 and

allows us to put a lower bound on the cardinality of the set of packets used to generate novel recombinations.

V. THE TOROSTREAM P2P PROTOCOL

In this section we overview the key aspects of ToroStream, a P2P protocol for live video streaming with NC

that we use to evaluate our algorithms for pollution-resilient NC; a detailed description of the protocol can be

found in our previous works [13], [14], from which we borrow the terminology. Whereas in this work we use

ToroStream to evaluate our proposed algorithms, in principle our algorithms can be applied to any NC-based

P2P push or pull protocol.

A. Topology Setup and Management

Peer nodes are arranged into an unstructured, non-acyclic, mesh to minimize the topology management effort

and increase the resilience to network failures. A central tracker keeps track of all the nodes in the network:

whenever a node wants to join the network, it contacts the tracker which replies to the node with a list of

nodes already in the network drawn at random. After a handshake, two nodes become neighbors and start to

periodically exchange keepalive messages: if a node does not receive keepalive messages from a neighbors for

too long, the neighborhood relationship is terminated with an appropriate message. The maximum size of the

neighborhood of a node is upper bounded by Ns so to maintain the network topology sparse and to minimize

the related signaling and management overhead. Also, periodically each node drops at random one or more

nodes from its neighborhood to refresh the network topology.

B. Signaling Protocol

The server subdivides the video stream, which we assume encoded at constant bit rate Bv, into a sequence of

independently recoverable generations of identical playout duration Ct and approximately the same number k

of blocks of size Cs each. Every Ct seconds, the server parses one generation of video from a video bitstream,

subdivides the generation in k blocks of symbols where the exact k depends on the actual size of the video unit1

and distributes random linear combinations thereof to all its neighbors. The generation currently distributed by

the server is called the server position in the following. When a node joins the network, buffers tb seconds of

video first, which correspond to tb/Ct generations, before playing out the generation with the earliest playout

1In motion compensated hybrid video coding a simple way to recognize independently playable coding unit is always defined, and

constitutes the so called group of pictures (GOP).
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deadline in the stream. The generation currently reproduced at the node is called here the node playback position;

generations encompassed between the server position (included) and the playout position of a node (excluded)

form the decoding region of the node. Each node lets know its neighbors which generation within its own

decoding region have already been recovered and which have not to its neighbors appending to all transmitted

packets a vector of tb/Ct bits known as decoding map which represents the decoding status of the generation

within the node decoding region.

C. Packet Scheduling and Pollution Avoidance Policy

The server and the nodes distribute encoded packets with a random-push mechanism under a limited output

bandwidth constraint as follows. The server is allocated a maximum output bandwidth Bs: periodically, the

server transmits a random linear combination of the blocks that compose the generation at the server position in

the stream, where the transmission period is given by Bs/Ct. The network nodes receive encoded packets which

are processed for pollution detection and decoded as described in the the previous section and implemented as

follows. Each time a node receives a packet, it stores a copy thereof in a separate input buffer for each generation

in its decoding region. Next, the packet is processed for pollution detection with Algorithm 1: if the algorithm

detects pollution, the corresponding generation is flagged as polluted. The node keeps track of the status of

each generation within its own decoding region with a vector of tb/Ct bits called pollution vector, where each

position of the vector is equal to one if any of the packets received for that generation was detected as polluted,

0 otherwise. The pollution vector also drives the packet recombination mechanism of the network nodes as

below. At each transmission opportunity, a node draws at random a node among its neighbors, checks the last

decoding map received by that neighbor and performs a binary AND operation between the neighbor decoding

map and its own pollution vector. If all elements of the resulting vector are equal to 0, no generation is suitable

for transmission either because at least one of the packets in the corresponding input buffer is polluted at the

node or because the neighbor has already recovered the generation. Otherwise, the node draws the generation

suitable for recombination that is closer to the decoding deadline and recombines the received packet in the

corresponding input buffer according to the algorithm described in the previous section and transmits the packet.

VI. EXPERIMENTS

In this section, we evaluate the pollution detection and packet recombination schemes proposed in Section IV

thorogh the random-push P2P protocol described in the previous section using a 64-cores server equipped with

128 GB of memory which hosts thousands of peers enbaling packet losses free experimentsing. We consider a

network of N = 1000 nodes with Nh=980 honest nodes and Nm=20 malicious nodes, where the neighborhood of

each node is restricted to Ns = 25 nodes. A 300 seconds test sequence encoded at Cv = 500 kbit/s is distributed

by a source node whose output bandwidth is equal to Bs = 20 Mbit/s, whereas the output bandwidth of the peer

nodes is constrained to Bp = 750 kbit/s. Peers implement the pollution detections scheme described in Section

IV: whenever a polluted packet is detected, the node stops transmitting packets for such generation to avoid

further spreading the pollution. All nodes enter the network at the same time (t = 0 s) and leave the network at

the same time t = 300 s. Malicious nodes randomly alter the payload of each transmitted packet as described

in Section II-B and with probability ppoll during the interval [90, 210] s (attack interval), whereas they behave
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as honest nodes, i.e. packets are altered with probability ppoll=0 for the rest of the experiment. A generation is

considered correctly recovered by a peer node if the node could timely recover the generation (i.e., if the node

could receive at least k independent packets) prior to its playout deadline and none of the received packets is

actually polluted. The quality of the video delivered to a node is measured in terms of Continuity Index (CI),

which is defined as the fraction of generations that could be correctly recovered prior to the respective playout

deadlines.

A. Verifying the Pollution Model

First, we verify the pollution model proposed in II-B by sampling the actual distribution of malicious nodes

among a node neighborhood. We experiment in the above described scenario with N=1000 nodes, where each

node has a neighborhood composed of n=25 other peers. Figure 5 shows the expected and actual distribution

of the probability that x out of n uploaders are malicious for different neighborhood sizes Nm ∈ [10, 30, 50]

nodes are of the malicious type. We clearly see that probability that x out of n nodes are malicious follows an

hyper-geometric distribution, as modeled in Eq. 2.
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Fig. 5. Probability that x out of n nodes are malicious for Nm = 10 (left), 30 (center), 50 (right) nodes.

B. Effect of pollution attack on video quality

Then, we study the effect of a pollution attack for the reference NC architecture described in Section II,

where the peers recombine each received packet with probability pr = 1
2 , malicious nodes alter the payload of

transmitted packets with probability ppoll=0.01 during the attack interval and the video stream is subdivided

in generations of k=50 blocks. In this setup, the amount of packets purposely polluted by the malicious nodes

amounts to about 0.02% of the packets exchanged in the network. Figure 6 shows the CI over time (each point

in the graph corresponds to one generation). During the time interval [0, 90) no polluted packets are injected

in the network by the malicious nodes and so the CI is equal to 1, i.e. all nodes decode the video without

interruptions. At time t=90 s, the 20 malicious nodes start injecting polluted packets for the following 120

seconds: during this interval, the CI drops from 1 to about 0.1.Finally, at time t=210 s, malicious nodes cease

transmitting polluted packets and the average CI rises again to 1 for the remaining 90 seconds of the experiment.

The CI averaged over the whole streaming session is equal to 0.628, whereas the average CI during the attack
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interval is equal to 0.111, i.e. about 9 generations out of ten cannot be correctly recovered due to the pollution

attack. A few malicious nodes are able to completely disrupt the communication by randomly altering less than

1% of the overall network traffic, showing the need for countermeasures to pollution attacks.
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Fig. 6. The video quality at the nodes drops in the 90∼210 s interval due to the polluted packets transmitted by the malicious nodes.

C. Effect of pollution detection scheme

First, we explore the effect of the pollution detection scheme on the probability that a honest node transmits

a polluted packet further spreading the pollution in the network. For this experiment, we consider the same

reference packet recombination scheme as in the previous experiment and two different schemes for pollution

detection. The first scheme, OFG, is our scheme described in Section IV-A where we exploit the OFG algorithm

to verify if received packets are polluted even before the generation has not been recovered yet. The second

scheme, Checksum, is an ideal strategy where the node recovers a generation, computes a checksum thereof and

compares it with a reference checksum stored on a trusted server with unlimited bandwidth and zero latency.

Whenever pollution is detected for one generation, the nodes drop all received packets and stop relaying packets

for that generation.

Figure 7 shows the probability Ptp that the i-th packet transmitted by a node is polluted. The checksum scheme

guarantees that a pollution attack is always detected at the moment a generation is recovered; however nodes

must first recover the generation and only afterwards stop relaying polluted packets. Conversely, our scheme

provides no guarantee that a pollution attack is detected, however it can potentially detect pollution attacks and

stop relying polluted packets earlier on. Therefore, our OFG-based pollution detection is more effective that a

checksum server-based reference in reducing the probability to relay polluted packets, plus nodes do not need

to rely on a centralized checksum server with all the related issues.

Moreover, we see that Ptp is not constant, instead it grows over time with i as predicted by our model and as

shown in Figure 3, proving the qualitative correctness of the findings yield by our time-slotted model.

This experiment shows that our OFG-based pollution detection scheme reduces the probability that an honest

node relays a polluted packet, thus in all following experiments the nodes always implement our OFG-based

pollution detection strategy.



16

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

P
tp

i-th transmitted packet

Checksum-based detection
OFG detection (Proposed)

Fig. 7. Probability Ptp that the i-th packet transmitted by a node is polluted for different pollution detection strategies.

D. Effect of packet recombination strategy

Next, we study the probability that a node receives a polluted packet as a function of the packet recombination

strategy at the nodes. The first recombination scheme we consider is the same Reference strategy used in previous

experiments. The second scheme, Proposed, is our recombination scheme described in Section IV, where each

i-th packet in the input buffer is drawn for recombination with a probability pr(i, θ) that increases with the

packet position i in the buffer, i.e. with its age, as in Equation 5 (in our experiments, we set α = 1). Unless

stated in the following we use the proposed recombination algorithm with mr = 1, i.e. we do not put a constraint

on the rank of the decoding matrix G. Figure 8 shows the probability Ptp that the i-th packet transmitted by

a node is polluted. With the reference packet recombination strategy, the probability that a node transmits a

polluted packet quickly soars to about 0.8, i.e. almost 80% of the packets in the network are polluted by the

time the generation is recovered. Note that malicious nodes alter only about 0.02% of the overall number of

packets transmitted in the network, that is the reference strategy is responsible for an increase in the pollution

rate of about 3 orders of magnitude. Conversely, our proposed recombination scheme enables a Ptp (about

0.12%) which is two orders of magnitude lower than the reference scheme as packets received earlier, which

are less likely to be polluted, are more likely to be drawn for recombination.

E. Effect of generation size

Next, in Figure 9 we evaluate the joint effect of the packet recombinations scheme and generation size k on

the probability that an honest node transmits a polluted packet Ptp and on the CI and the relationship between

the two. Independently from the considered recombination algorithm, small k yield lower Ptp and thus higher

CI as expected from Equation 4. However, just reducing k is not sufficient to set off the pollution effects, and

our packet recombination strategy is the key element in achieving near-optimal video quality. This experiments
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clearly demonstrates the relationship between the probability that a node transmits a polluted packet and the

probability that the node is able to recover the generation. In the following experiments, we experiment with

the pollution attack model to assess the resilience of our scheme to an increased activity of the the malicious

nodes.
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Fig. 9. Probability to transmit a polluted packet and corresponding video quality as a function of generation size k for different packet

recombination schemes.

F. Effect of packet pollution probability

Figure 10 shows the CI as a function of the probability ppoll that a packet transmitted by a malicious node is

and for different packet recombination schemes and generation sizes k ∈ {25, 50} (in all previous experiments

we had ppoll = 0.01). As ppoll increases, the CI drops to zero for the reference scheme, independently from
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k (the larger k, the sharper the drop however). Conversely, with our recombination scheme the video quality

degrades gracefully despite a tenfold increase in the number of polluted packets transmitted to the network by the

malicious nodes. As expected, best video quality is achieved when the proposed scheme is paired with smaller

generations, albeit the largest contribution to pollution resilience is given by the our packet recombination

algorithm.
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Fig. 10. Video quality as a function of malicious nodes packet pollution probability for different packet recombination schemes and values

of generation size k.

G. Effect of number of malicious nodes

In Figure 11, we investigate the relationship between video quality and number of malicious nodes Nm

present in the network. As Nm increases, the video quality drops to zero with the reference scheme, and

reducing the generation size from k = 50 to k = 25 only marginally improves the performance. Conversely,

our proposed scheme allows a graceful degradation of the video quality as the number of malicious nodes

in the network increases; moreover, small generations further improve the video quality. Since the previous

experiments confirm that the proposed recombination scheme paired with small generations yields best video

quality, in the following we mainly focus on such combination of experimental parameters.

H. Video Quality vs. Network Overhead Tradeoff

Having shown that our proposed recombination scheme (with the help of small generations) sets off a

pollution attack effect to the point where the video can be recovered almost seamless, now we focus on the

impact of the recombination scheme and generation size on the network overhead. We recall that we define as

code overhead ǫc the ratio of network bandwidth wasted transmitting non innovative packets; also the pollution
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Fig. 11. Video quality as a function of the number of malicious nodes in the network for different packet recombination schemes and

values of generation size k.

overhead ǫp was defined as the ration of network bandwidth wasted transmitting polluted packets: the sum

thereof is the total overhead, i.e. the overall ratio of wasted network bandwidth. Figure 12 shows, from left

to right, the code, pollution and total overhead for three generation sizes k and our packet recombination

strategies plus the reference scheme. As expected, short generations yield higher code overhead, regardless of

the recombination scheme (left figure). However, short generations help reducing the pollution overhead, plus

our recombination scheme almost nullifies the pollution overhead as the central figure shows. Therefore, as the

right figure demonstrates, our proposed strategy yields a total overhead that is not higher than the corresponding

overhead for the reference strategy even when generations are short, albeit it yields huge improvements in terms

of video quality.

Next, we investigate the video quality vs network overhead tradeoff as a function of two parameters of our

packet recombination strategy. In previous experiments, network nodes were allowed to start forwarding linear

combinations of the received packets as soon as at least one packet was in the input buffer, i.e. mr = 1: we now

experiment with mr=2, i.e. nodes are allowed to transmit packets for a generation only if at least two linearly

independent packets were received. Moreover, in the previous experiments the α parameters in Eq. 5 which

controls the number of recombined packets for our proposed strategy was set to 1.0, i.e. we had α=1.0: we

now explore how the α parameter affects the performance of our scheme. Figure 13 shows the tradeoff between

continuity index and total overhead, for the case k=25 and for the case mr=1 (top) and mr=2 (bottom).

As previously seen, the reference strategy yields the largest pollution overhead, resulting in large total overhead

and poor CI. As α decreases from 1 to 0.5, more packets are recombined, thus the probability to recombine

innovative packets increases and the code overhead drops while the CI is only marginally affected. By comparing
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the top and bottom figures, we see that if nodes wait to receive a few independent packet before starting to relay,

the code overhead drops independently form the considered recombination strategy. In detail, this experiments

shows that by controlling the α and mr parameters, we can further boost the performance of our strategy to

achieve nearly optimal video quality and half the network overhead of the reference scheme.

VII. RELATED WORKS

As already pointed out in Sect. I, to the best of our knowledge the present paper is the first to face the

P2P pollution problem from a novel point of view, namely building a NC based P2P streaming application

intrinsically resilient to the attack. Therefore, the goal here has been to mitigate as far as possible the effect

of pollution, by leveraging on innovative use of the the NC decoder for pollution detection and by designing

a novel pollution resistant recombination strategy.

Many research studies have proposed techniques to defend peer-to-peer streaming systems from pollution

attacks following different strategies aiming at identifying malicious peers in order to remove them from the

network. Clearly, such approaches are potentially the best solution to the the pollution problem; nonetheless,

malicious uploaders identification is very complex issue in random push NC based applications and the proposed

techniques are usually limited by the number of polluters they can face or in terms of added computational

complexity and/or communication overhead. In the following we provide a quick review of the related studies

limited to the area of network coding.

Several efforts have been devoted to devise on-the-fly verification techniques carried out by participants [17],

[18], [19], [20], [21], [22], [23]. These works are based on either cryptographic or algebraic approaches. The

major drawback of these elegant methods is the high computational costs for verification and the communication

overhead due to pre-distribution of verification information. Pre-distribution of verification keys is particularly

critical in case of live streaming where novel data are being forwarded at a high rate. Error correction is another

approach to deal with pollution attacks in network coding based peer-to-peer streaming [24], [25], [26]; these

methods introduce coding redundancy to allow receivers to correct errors but their effectiveness depends on the

amount of corrupted information.
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Fig. 13. Tradeoff between video quality and network overhead for mr=1 (top) and mr=2 (bottom). For the proposed recombination

strategies, three α values are considered (default in previous experiments is α = 1).

In [9] a fully distributed detection algorithm based on a stochastic approach is presented. The technique

uses intersection operations to progressively isolate malicious peers in the set of neighbors of a peer. The

main drawback of the approach is that it works only under the (unrealistic) assumption that the neighbors

remain the same and that each chunk is obtained by a randomly chosen subset thereof. In [11], [12] malicious

nodes identification is treated as an statistical inference problem relaying on control information termed check

created by peers upon completing decoding of every chunk. Also in this case the additional communication and

computational costs are needed. Moreover, as in all statistical approaches the identification may fail leading to

expungement of honest peers.

Finally, it is worth noticing that all previous approaches are exposed to the so called sybil attack, where

malicious nodes try to escape identification by changing their identity at a pace higher than the identification

mechanism rate.

In the area of P2P file sharing, the injection of bogus data by untrusted peers has been traditionally tackled

using data authentication. In particular, a security hash,e.g. SHA1, can be computed for each data block in order

to recognize malicious modifications on the receiver side. Such approach must rely on a trusted infrastructure
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and protocol to distribute hashes to all peers in the network. Indeed, if the hashes distribution is not secure,

malicious nodes can recompute and update the hash of a modified data to hide out. Whilst being a viable

approach for pull-based file sharing application such as BitTorrent, data hashing can not extended to video

streaming where real time computation and distribution of the verification data cannot be easily guaranteed.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed simple countermeasures for mitigating the effects of pollution attacks in NC-

based video streaming. First, we model the diffusion of the polluted packets through the network due to the

recombinations at the nodes: our analysis suggest that packets received earleier by a node are less likely to be

polluted, while the chances that node recovers a clean generation decrease with the generation size. On the basis

of such findings, we devise a packet recombination scheme where packets are drawn with a probability that

grows with the packet age in the nodes input queues. Our experiments with P2P video streaming shows that, in

a traditional NC context, a handful of malicious nodes can completely disrupt the video quality just by injecting

a few polluted packets in the network. Conversely, our proposed packet recombination algorithm, paired with

small generations, makes the communication significantly robust to the activity of malicious nodes, which need

to inject many more polluted packets in the network before the video quality strats to drop. Our experiments also

suggest that increased malicious nodes activity is the premise for devising effective mechanisms for detecting

the malicious nodes and isolating them from the network, which we leave as future work.
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