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Abstract—3D gait analysis comprises the study of kinematics 

in the sagittal, coronal, and transverse planes. The transverse 

plane measurements are usually less used and generally show the 

lowest reliability. Nevertheless, the knee and ankle joint center 

trajectories, in the transverse plane, provide new parameters that 

may be important in clinical gait analysis. The aim of this study is 

to analyze the test-retest variability of these parameters. Gait 

measurements were performed using H-Gait, a wearable system 

based on magnetic and inertial sensors. A normal weight and an 

overweight subject were recruited and were asked to walk at 

their preferred speed for 6 trials. For both of them, the angle 

between the right and left knee and ankle joint center trajectories 

were analyzed. Overall, results showed a standard deviation 

across trials always lower than 2°. This small standard deviation 

was found also in the overweight subject, for whom it is usually 

challenging to obtain reliable gait measurements. In addition, a 

greater knee angle between the right and left joint center 

trajectories was found in the overweight subject compared to the 

normal weight. The promising results of this study suggest that 

the new parameters introduced might be suitable to assess gait of 

subjects with different anthropometric characteristics. 
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I.  INTRODUCTION  

Walking is defined as the movement determined by a 
pattern of cyclic motor activity of lower limbs that allows the 
forward propulsion of the center of gravity of the human body.  
During gait, the body weight is alternately transferred to a 
single leg so the contralateral lower limb can advance [1]. Gait 
analysis measures and describes the quantities that 
characterize this cyclic motor activity. Since a qualitative 
analysis of human gait achieved by visual inspection does not 

provide objective and reproducible results, quantitative gait 
analysis is used in clinics to identify deviations from normal 
gait [2]. Quantitative gait parameters are divided into spatio-
temporal and kinematic. Spatio-temporal parameters (i.e. 
walking speed, cadence, and step length) are obtained from 
gait events. Kinematic parameters provide information on 
linear and angular displacements of lower body segments 
(tight, shank, and foot) and joints (hip, knee, and ankle). The 
determination of cycle-to-cycle spatio-temporal parameters 
and kinematic curves is clinically relevant since the 
parameters variability has been associated with increased fall 
risk, frequent geriatric syndromes, post-stroke patients [3], 
progression of Parkinson’s disease or other gait related 
pathologies. For an accurate gait assessment, the used 
technologies should allow the subject to have a natural gait 
pattern and to walk for many consecutive gait cycles [4]. 

To perform gait analysis, optical and non-optical systems 
are used. Optical systems are based on a set of markers and 
cameras to reconstruct 3D motion. Non-optical systems are 
divided in: non-wearable, such as force platforms, and 
wearable, such as electromechanical systems (foot-switches 
and electrogoniometers) and magnetic and inertial 
measurement units. To some degree, optical systems and force 
platforms present the same drawback: gait analysis has to be 
limited to a laboratory setting and to a small acquisition 
volume. A wider work space is required to collect a 
considerable number of consecutive strides for cycle-to-cycle 
measurements. For this reason, it is difficult to use them in 
daily life or in non-traditional environments [5]. Other 
techniques such as wearable sensors have been developed [6]. 
In the clinical setting, wearable systems based on electro-
goniometers and foot-switches are appreciated for their high 
accuracy [7]. However, with these systems, the measurement 



of joint kinematics is limited to a single plane, usually the 
sagittal one.  

Wearable magnetic and inertial measurements unit 
(MIMUs), due to their limited weight and size represent a 
recent solution to monitor daily life [8],[9]. MIMUs usually 
consist of three-axis accelerometers, gyroscopes, and magnetic 
sensors, measuring the sum of gravitational and linear 
accelerations, angular velocities, and local magnetic field 
vector components, with respect to a Cartesian reference 
system fixed with the MIMU. Orientation and position in 3D 
space can be calculated by sensor fusion algorithms [10],[11]. 
The algorithm most used implements the extended Kalman 
filter [12]. The Kalman filter uses a series of measurements 
observed over time, containing statistical noise and other 
inaccuracies, and calculates variable estimates that are more 
precise compared to those based on a single measurement. 

Although kinematics in the sagittal plane provides the 
most reliable information [13], it is only partial. Indeed, 3D 
intersegment moments are of great interest [14]. As an 
example, hip abduction moments are critical in maintaining 
balance and are assessed in the frontal plane [15]. 
Furthermore, the knee and ankle joint center trajectories are 
useful in characterizing the gait of healthy subjects and 
patients affected by osteoarthritis and are studied in the 
transverse plane [16]. Moreover, it would be interesting to 
evaluate if kinematics in other planes than the sagittal one can 
provide useful information for an early detection of specific 
pathologies (i.e. osteoarthritis, varo-valgus knee). 

In clinical gait analysis, it is important to have reliable 
measurements for subjects with a wide variety of 
anthropometric characteristics. For this reason, when using 
wearable sensors, also overweight people should be included 
in the analysis. For overweight subjects, it may be more 
challenging to acquire gait measurements due to specific 
technical difficulties related to excess body mass and soft 
tissue artifacts. 

The aim of this experimental study is to evaluate the test-
retest reliability of the joint center trajectory angle, in the 
transverse plane, for both knee and ankle, using the MIMUs 
system H-Gait. To this purpose, a normal weight and an 
overweight subject were tested with a wearable system based 
on inertial sensors (H-Gait), during 6 gait trials. 

II. MATERIALS AND METHODS 

A. Participants  

One normal weight (NW) and one overweight (OW) 
young male subject with body mass index (BMI) of 21.2 and 
30.4 kg/m

2
 respectively, were involved in this study. 

Anthropometric data of the two volunteers who participated in 
this study are reported in Table I. 

 

 

 

 

TABLE I.  ANTHROPOMETRIC DATA FOR THE TWO SUBJECTS 

Anthropometric data 
Subject#1

(NW) 

Subject#2

(OW) 

Age (years) 26 22 

Weight (kg) 71 91 

Height (m) 1.83 1.73 

BMI (kg/m2) 21.2 30.4 

Tight length (cm) 44.5 32.0 

Shank length (cm) 43.0 39.5 

Distance between the great trochanters (cm) 37.0 39.0 

B. H-Gait system 

The H-Gait system was used in this work to acquire gait 
signals. This system consists of seven MIMUs (TSDN121, 
ATR Promotions, Japan). Each MIMU sensor is composed of 
tri-axial accelerometer, gyroscope, and magnetometer. The 
sensors were fixed to the subject as described previously in 
[10]: 1 sensor on the pelvis (posterior center point between the 
left and right iliac crest), 2 sensors on the thighs (the center of 
the quadriceps laterally), 2 sensors on the shanks (anterior side 
of the tibia bone) (Fig. 1A). These locations were chosen to 
minimize the effects of soft tissue movement. In addition, two 
sensors were fixed on the feet medially (Fig. 1B) [17]. In this 
position, sensors undergo less relative movements with respect 
to the foot, because of a better fixation and reduced soft tissue 
artifacts [17]. 

 Measurement range of the MIMU sensor was set to ±4 G 
for the accelerometers and ±500 dps for the gyroscopes. A 
sampling rate of 100 Hz was chosen for both. Acceleration 
and angular velocity were collected in real time and sent to a 
laptop via Bluetooth.  

C. Gait experiment 

Experiments were conducted indoors. First, 10 reflective 

markers were placed on the subject on both left and right side 

(great trochanter, medial and lateral epicondyle of femur, 

medial and lateral malleolus). Three pictures of the subject 

were taken from the front and the two lateral sides for the 

anatomical calibration [17].  

Then, the subject was prepared for the test: MIMU sensors 

on the pelvis and on the lower limbs were fixed by elastic 

Velcro, while the two on the feet were fixed by adhesive tape. 

Five seconds of signal were recorded with the subject in 

standing and sitting position (with outstretched legs) to obtain 

information on the initial position of the sensors with respect 

to gravity (static calibration).  

Combining static and anatomical calibration the roto-

translation matrix between the MIMU sensors and the body 

segments coordinate system was established [10].  

Each subject was requested to walk along a 14 m straight 

path, at his self-selected speed. Six consecutive gait trials were 

performed. The subject walked along the path, at the end he 

turned to change the direction and stopped in a standing 

position for a few seconds before he started to walk in the 



 

Fig. 1. Position of the unit sensors on the lower limbs. A. Sensors 

location for the pelvis (center point between the left and right iliac crest), 
thighs (the center of the quadriceps laterally), shanks (anterior side of the 

tibia bone. B. Sensors location for the feet (medially). 

opposite direction. Each gait trial consisted of 8/9 gait cycles, 

with a total of 53 gait cycles for the normal weight subject and 

54 for the overweight subject. 

D. Transverse plane measurements  

Gait analysis data collected with H-Gait system were 

evaluated in all the three planes. In particular trajectory of the 

center joints were considered in the sagittal, frontal, and 

transverse planes [10],[18],[19]. Similarly to what was 

presented in [16], the joint center trajectory in the transverse 

plane was calculated for both knee and ankle joint, bilaterally. 

Then, the approximation line [16] of each mean trajectory was 

estimated. Finally, the angle between the left and right 

approximation lines was calculated for both knee (θk) and 

ankle (θa) joint trajectories.  

In addition, conventional gait spatio-temporal parameters 

such as walking speed, cadence, and step length were 

assessed. To estimate cadence and step length, the average 

values of left and right gait cycles were considered. 

III. RESULTS 

Fig. 2 shows the knee (top panel) and ankle (bottom panel) 
joint center trajectories, in the transverse plane, for the two 
subjects. The approximation lines are also reported for each 
joint center trajectory. The walking direction is indicated by 
the arrow on the left. 

 Table II reports the transverse plane angles θk and θa, 
measured in each gait trial, for the two subjects. For each 
subject, the mean value and standard deviation (SD) across the 
6 trials are also reported. 

Table III reports the average and SD for spatio-temporal 
parameters (walking speed, cadence, and step length) across 
the 6 trials, for the two subjects. 

Table III reports the average and SD for spatio-temporal 
parameters (walking speed, cadence, and step length) across 
the 6 trials, for the two subjects. 

TABLE II.  TRANSVERSE PLANE PARAMETERS FOR THE TWO 

SUBJECTS 

Transverse Plane Angles 
Subject#1 

(NW) 

Subject#2 

(OW) 

θk: angle between right and left knee 

joint center trajectory (°) 
  

   Trial #1 11.0 38.0 

   Trial #2 13.7 36.1 

   Trial #3 13.0 34.4 

   Trial #4 12.0 35.4 

   Trial #5 12.3 39.2 

   Trial #6 11.2 35.8 

Mean  SD 12.2  1.0 36.5  1.8 

   

θa: angle between right and left ankle 

joint center trajectory (°) 
  

   Trial #1 7.6 9.1 

   Trial #2 8.6 11.4 

   Trial #3 7.7 10.0 

   Trial #4 9.1 9.2 

   Trial #5 9.2 10.7 

   Trial #6 9.0 10.3 

Mean  SD 8.5  0.7 10.1  0.9 

TABLE III.  SPATIO-TEMPORAL PARAMETERS FOR THE TWO 

SUBJECTS 

Spatio-Temporal Parameters 
Subject#1 

(NW) 

Subject#2 

(OW) 

Walking speed (m/s) 0.97  0.01 1.03  0.01 

Cadence (cycle/min) 46.9  0.7  55.1  0.3 

Step length (cm) 55.1  8.0 50.2  2.1 

IV. DISCUSSION 

 In this work we analyzed the test-retest reliability of the 
knee and ankle joint center trajectory angles, in the transverse 
planes, comparing 6 consecutive gait trials. The experimental 
protocol adopted consider two sources of variability: intra-
subject variability (due to differences in gait stride along the 6 
walking) and the variability due to possible inertial sensors 
residual drift effects [20]. On the other hand, other sources of 
variability, such as those related to sensors re-positioning or 
inter-operator variability, were not considered. 



 Literature recognizes that kinematic measurements in the 
transverse plane generally show the lowest reliability [13]. 
Nevertheless, we found that the standard deviation across the 
6 trials, for the knee and ankle angles, was always lower than 
2°. In particular, for the θk angle, the standard deviations were 

1.0° for the normal weight subject and 1.8° for the overweight 
one. For the θa angle, the standard deviations were 0.7° and 
0.9°, for the normal weight and the overweight subject, 
respectively. These absolute errors are low enough to be 
compatible with clinical gait analysis. 

 
 

Fig. 2. Knee (top panel) and ankle (bottom panel) joint center trajectories for the normoweight and overweight subjects. The blue lines represent the 

trajectories of the right side, while the red lines represent those of the left side. The medial part of the trajectories corresponds to the stance phase, while the 
lateral part to the swing phase. Approximation lines of the trajectories are drawn in black. The walking direction is represented by the arrow on the left side 

of the picture. 

 



 In motion analysis, subcutaneous adipose tissue makes the 
kinematic measurements particularly challenging in 
overweight individuals [21]. Nevertheless, our study showed 
an acceptable repeatability also for the overweight subject. 
This suggests that the chosen sensor positioning (location and 
fixation) was suitable also in presence of excess adipose 
tissue. 

 We found that the knee angle θk is definitely higher in the 

overweight subject (36.5°  1.8°) with respect to the normal 

weight subject (12.2°  1.0°). Indeed, the knee approximation 

lines are more parallel to each other for the normal weight 

subject than for the overweight subject. The area of the knee 

and ankle joint center trajectories for the overweight subject 

are greater than for the normal weight subject, especially in 

the middle of the stance and swing phase. These differences in 

knee and ankle joints kinematics could be explained by a 

higher thighs girth that probably forces the overweight subject 

to have a different gait biomechanics. An altered gait 

biomechanics together with increased load in weight-bearing 

joints (hip and knee) can be a factor in osteoarthritis 

development for overweight and obese people [22],[23]. 

However, to verify this assumption, further analyses 

comparing normal weight and overweight subjects have to be 

performed. In addition, abduction/adduction of hip, 

varus/valgus rotation of the knee, and plantar/dorsal flexion of 

the ankle joints should be considered to explain this 

phenomenon.  

 Concerning spatio-temporal parameters, the literature 

reports that overweight and obese subjects have lower 

preferred walking speed and shorter step length when 

compared to non-obese individuals [24],[25]. However, the 

overweight subject that we analyzed showed a comparable 

preferred speed with respect to the normal weight subject. 

This allows the proper comparison of the kinematic patterns of 

the two subjects that could otherwise be biased by a different 

walking speed. According to the literature, a shorter step 

length was found for the overweight subject compared to the 

normal weight. This shorter step length can also be seen in the 

transverse plane in the knee and ankle joint center trajectories, 

which are shorter in the walking direction for the overweight 

subject (Fig. 2, top panel). 

 A limitation of the study is that the investigation was 
performed only on two subjects (one normal weight and one 
overweight). A wider sample size should be considered to 
confirm our findings on the kinematic test-retest reliability and 
on gait biomechanics differences. 

V. CONCLUSION 

 Although transverse plane measurements are usually 
affected by large errors, in this study we found small SDs for 
the angles between the left and right joint center trajectories, 
both for the knee and the ankle joints. These small SDs were 
found not only in a normal weight subject, but also in an 
overweight subject, for whom it is usually challenging to 
obtain reliable gait measurements. In addition, the higher knee 
angle between the left and right joint center trajectories in the 

overweight subject compared to the normal weight subject 
suggests a difference in gait biomechanics, which could be 
due to a greater tight girth and/or a different load distribution 
in the weight-bearing joints.  
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