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A B S T R A C T

This paper brings a discussion on the current state-of-the-art in criticality assessment in an international
context. It analyzes the status of resource criticality concepts and their calculation methods. The current practice
often exhibits a common two-axis assessment framework but the way the two axes are further operationalized
shows heterogeneous approaches. Apart from the two-axis as key element of criticality assessment, the scope of
the materials, the role of substitution, the delineation of the supply chain and data, and indicator selection are
addressed as key elements. The abovementioned criticality assessment practice is approached in function of the
upcoming international debate on criticality. The paper tackles the role of criticality assessment in the context of
the sustainability assessment toolbox and it proposes a clear distinction between criticality assessment and
resilience to criticality. The insights offered in the paper may feed the international discussion in the
identification of elements that may be harmonized and elements that may be better left open in function of
the particular application.

1. Introduction

The criticality concept for raw materials has seen a growing interest
in the last decade, with the majority of studies carried out in Europe
and the United States (Erdmann and Graedel, 2011; Buijs et al., 2012;
Sonnemann et al., 2015; Graedel and Reck, 2016). Much of the work
deals with metals and metalloids. However, non-food and non-energy
bio-based raw materials have also been included, e.g., by the assess-
ments of the European Commission (EC, 2010, 2014) and recently
even water (Sonderegger et al., 2015). Criticality as concept for raw
materials has been interpreted differently. Erdmann and Graedel
(2011) state that “raw material criticality seeks to capture both the
supply risks on the one hand and the vulnerability of a system to a
potential supply disruption on the other”. Looking across the different
approaches, the largest divergence seems in the definition of the
economic system (both geographically and user-specifically) for which
a stable and secure supply of raw materials is to be assured. Here, the
economic systems to protect ranges from a single corporation (Duclos
et al., 2010), to a sector or a few selected technologies of strategic
importance (sector-specific criticality assessment) (Moss et al., 2013a ,
2013b; USDOE, 2010, 2011), to entire national/regional economies
(economy-wide criticality assessment) (EC, 2010, 2014; NRC, 2008;

Graedel et al., 2015; BGS, 2012; Achzet et al., 2011; Coulomb et al.,
2015; NSTC, 2016; Skirrow et al., 2013), and the world (global
criticality assessment) (Graedel et al., 2015). Furthermore, the number
of materials covered in criticality assessments ranges in scope from a
single element (Rosenau-Tornow et al., 2009), to less than 5 metals
belonging to the same geological family (Nassar et al., 2012; 2015a, ,
2015) or used in similar end-use applications (Nuss et al., 2014;
Harper et al., 2015b), to more than sixty raw materials, embracing and
tying to encompass a large and diverse number of non-fuel, non-food
mineral and biotic raw materials (EC, 2010, 2014). While the materials
of interest are determined by the goal and scope of the assessment, we
note that a desirable aspect of criticality determinations includes the
applicability of the methodology to a wide range of materials (Graedel
and Reck, 2016).

Criticality assessments have been around for a while, e.g. the term
“critical and strategic material” has been in use in the US since 1939 as
part of the original stockpile legislation and further reported in the
1950–1980s (Charles River Associates, 1982; Committee on the
Technical Aspects of Critical and Strategic Materials, 1977; Paley
et al., 1952). But the current approaches of criticality assessment in
the last decade and the growing international attention lack an
international forum that specifically intends to converge the criticality
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praxis, as is taking place for other assessment tools, e.g. Life Cycle
Assessment (LCA) with activities by UNEP (United Nations
Environmental Program), SETAC (Society of Environmental
Toxicology and Chemistry), and ISO (International Organization for
Standardization). The goal of this paper is to provide some perspective
on the current state of practice in order to determine where there is
convergence and divergence in criticality assessment methods. This
paper may in the long-run serve as input to the international scene to
discuss if international convergence to a uniform methodology is
feasible and, if so, to identify which aspects may be harmonized and
which may better be left open in function of the particular application.

In the next section convergence and divergence on the various
aspects of the generally practiced two-axis approach are discussed.
Subsequently, both axes (i.e. risk or likelihood of supply disruption and
economic importance or vulnerability to disruptions) are discussed
where there are clearly different practices in elaboration and quanti-
fication. In the subsequent section, some particular attributes (e.g.
scope of materials covered, the role of substitution and recycling, the
modeling of the supply chain, and indicators and data) are discussed.
Finally, some considerations on future directions in the international
context are presented. The positioning of criticality assessment in the
sustainability assessment toolbox is also discussed. Equally the paper
addresses the distinction between criticality calculations of raw mate-
rials for a certain entity and the way the entity is able to respond to this
criticality, i.e., its resilience.

2. The criticality concept and the predominant two-axis
approach

2.1. More convergence than divergence: a concept with two axes

A review of recent international approaches reveals a general
consensus that criticality is comprised of two main dimensions
(Fig. 1): supply risk, graphically represented on a horizontal axis, and
the impact of or vulnerability/exposure to that supply risk, graphically
represented on the vertical axis. While there is general consensus on
the intentions of the supply risk dimension, there are notable differ-
ences in its underlying components and computation among the
various approaches. In contrast, there is little consensus regarding
the vertical axis aside from the overall theme of attempting to quantify
the impact or vulnerability that may arise from the supply risk. Indeed,
the variations in the vertical axis highlight the general differences in
intentions and the targeted beneficiaries or scope of the various
approaches. Some studies, like those of the European Commission
(EC, 2010, 2014), examine the potential economic impact on a region
(i.e., the European Union) or the vulnerability of a specific country
(NRC, 2008; Graedel et al., 2015; BGS, 2012). Others examine the
impact of specific sectors (Moss et al., 2013; USDOE, 2010, 2011) or a
specific company (Duclos et al., 2010). In general, however, the
different interpretations typically tend to quantify the potential impact
that supply disruption may have on the system under study. Glöser
et al. (2015) bring the two approaches mathematically together based
on the reasoning that raw material criticality equals the product of
supply risk and vulnerability, but at the same time also that it is the
result of the multiplication of likelihood of supply disruptions and
economic consequences. Roelich et al. (2014) take a similar, albeit
more dynamic approach, by suggesting that material criticality is the
product of supply disruption potential and exposure to disruption.

2.2. Convergence and divergence: the two axes approach as a basis
for quantifying criticality

The two dimensions are typically kept separate, a reflection of the
idea that the two dimensions are independent. A raw material is thus
only considered critical if it is found to have both a high supply risk (x-
axis) and a high importance/vulnerability (y-axis). The aggregation of

the criticality axes into one single criticality indicator is seldom done. A
notable exception is Graedel et al. (2012) who use a criticality vector
magnitude (i.e., the distance from the origin to a metal's location in
criticality space) as the basis for aggregation. Based on classical risk
assessment, Glöser et al. (2015) also explored some potential paths for
providing a single criticality indicator by multiplying the two factors
resulting in convex contour lines in the two dimensional plot and by
defining the vector length resulting in concave contour lines. However,
there are multiple ways to combine the two axes; in case the criticality
is defined as an abstraction of classical risk assessment, i.e., a simple
multiplication of the two axes, one ends up with convex contour lines –
see Paley et al. (1952) for a further discussion.

A remarkable divergence in approach on levels of criticality is to be
mentioned. The quantification of criticality often leads to a relative
ranking of raw materials along the scale and, eventually, a categoriza-
tion of the raw materials as being either critical or not. In the 2014 The
EC study (EC, 2010, 2014), for example, twenty raw materials are
considered to be critical: Antimony, Beryllium, Borates, Chromium,
Cobalt, Coking coal, Fluorspar, Gallium, Germanium, Indium,
Magnesite, Magnesium, Natural Graphite, Niobium, Platinum Group
Metals (PGMs), heavy Rare Earth Elements (REEs), light REEs, Silicon
metal, and Tungsten. From an overview of criticality studies, Erdmann
and Graedel (2011) distinguish three levels of criticality for all
materials where sufficient studies are available. In the highest level of
criticality, Scandium, Yttrium, Niobium, Tungsten, PGMs (Ru, Rh, Pt)
and REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) are
listed. The methods used to perform this categorization are often
somewhat arbitrary, which draws criticism and concern regarding the
raw materials close to the thresholds. One exception is the recent
criticality methodology presented by the U.S. President's National
Science and Technology Council, which uses a hierarchical cluster
analysis as the basis for the categorization of the raw materials as
critical or not. Graedel and Reck (2016) emphasize that criticality is
rather a matter of degree, not a state of being. Presenting criticality as a
state of being has clearly the advantage of easier communication to a
broader audience. Apart from the (absolute) degree, important is that
criticality calculations lead to a relative ranking: certain raw materials
are “less secure” and/or “more important” than others.

2.3. Mostly divergence: the role of environmental issues

Some studies include environmental issues into the assessment of
criticality, but there is very little consensus regarding the purpose and
method used for its inclusion (Achzet and Helbig, 2013). In certain
assessments (EC, 2010) environmental issues are considered to be an
extension of issues related to ensuring supply and is thus included as a
component in the supply risk dimensions (e.g., using the environ-
mental performance index at country-level; www.epi.yale.edu). Despite
the relevance of environmental impacts as an issue in the sustainable
supply of materials, it is questionable if it is inherent to criticality either
as an immediate supply risk factor or in terms of immediate (economic)
importance.

Fig. 1. Illustration of the two main dimensions in the assessment of the criticality of
materials.
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Therefore, in other assessments (Graedel et al., 2012) environ-
mental issues are viewed as a separate issue that should be considered
during the material selection process that is separate from supply risk
and is thus given an independent third axis, thereby moving from a
two-dimensions criticality matrix into a three-dimensional plot
(Graedel et al., 2015, 2012). Such assessment typically rely on data
and information from life cycle assessment literature (Nuss and
Eckelman, 2014). Given that life cycle impact assessment often
includes an abiotic resource depletion metric, such indicators are
removed to avoid double-counting (Nassar et al., 2015).

3. Holistic vision on risk or likelihood for supply disruption
factors: essential for the international debate

As noted by Erdmann and Graedel (2011), supply disruptions may
stem from governmental interventions, market imbalances or physical
disruptions of the supply chain, all in addition to absolute abundance.
The supplier country concentration is generally included in most if not
all criticality calculations, typically measured using the Herfindahl-
Hirschmann Index (HHI). HHI is usually further complemented with
country-level indicators that reflect the political stability and govern-
ance of the respective producing countries (e.g. the World Governance
Index (WGI)), attractiveness toward mining investments (Policy
Perception Index (PPI), previously known as the Policy Potential
Index), levels of human development (Human Development Index),
and others. Undoubtedly, many more phenomena could be mentioned
that complement the abovementioned supply risk factors and indica-
tors: the practiced methods are very diverse in bringing in social,
physical, technological, geological, economic, or market components.
Some methodologies report so-called additional supply risk influences,
i.e., influences that are considered to play a role in supply disruption
but which are not incorporated in the calculation. As an example, the
EC identified eight influences in this context, e.g., by-product dynamics
and land competition (EC, 2014).

The many supply disruption factors and indicators may stem from
different viewpoints on supply disruption or from a lack of a holistic
vision on it. A careful holistic analysis of all kinds of supply risk factors
may facilitate the international debate and may help in underpinning a
common view that advances the operationalization of the risk or
likelihood of supply disruption axis.

Even though not all supply risk factors might be equally influential
in determining criticality, as this strongly depends on different
stakeholders’ perspectives and the scope of the overall study, it can
help to structure such risk factors in terms of their nature: we thus
propose the TERP concept. Very different natures of factors that
potentially determine the risk or likelihood of supply disruption can
indeed be identified along the supply chains. They are structured into
four types following Fig. 2, according to a TERP structure (see also the
Appendix for a more detailed discussion):

• Technical, physical and geological factors;

• Economic, market and strategic factors;

• Regulatory and social factors;

• Political stability and governance factors.

.
We acknowledge that several risk factors are interlinked and,

therefore, might fit into more than one category. We also emphasize
that this TERP structure does focus on risk factors as such and does not
comprise factors that mitigate risk: (1) Substitution by other primary
materials: substitution by other raw materials can mitigate the
criticality of some raw materials thereby reducing the economic
importance and/or supply risk for the industrial sectors; (2)
Substitution by secondary raw materials through recycling: certain
levels of recycling rates can be seen as a factor that reduces the
economic importance and/or supply risk of certain primary raw

materials. Several of the elements shown in Fig. 2 are already (partly)
integrated into existing criticality frameworks, while others would need
to be examined/developed in context of available data and policy
needs. While a systematic examination of each element against existing
studies and data is outside the scope of the current paper, we
recommend such an examination for the future.

4. A better understanding and characterization of the
economic importance or vulnerability to disruptions

Raw materials are a fundamental input in economic systems, thus
strategically important. This is generally acknowledged, though some-
times given low priority in national / regional policy, as for decades few
doubted the availability of secure and inexpensive supply from inter-
national markets. This perception is generally changing, and govern-
ments, as well as end-users in industry, are now generally more
interested in gaining a better understanding of the role of raw materials
in supply chains and their flow across economic systems. For example,
material flow accounting and analysis constitutes a description of the
economy in physical units (Brunner and Rechberger, 2004;
EUROSTAT, 2013; OECD, 2008a, 2008b) and can be applied to
express material supply chains (BIO by Deloitte, 2015). Furthermore,
physical input-output tables (Weisz and Duchin, 2006) can help to
better understand the detailed flow of metals and materials across
economic sectors (Chen et al., 2016; Ohno et al., 2016).

The role and economic importance of raw materials is quite
challenging to measure, and the approaches and methods are very
diverse. There is very low international consensus in this area, but
some common ground can be extracted and formulated as follows: high
economic importance means that the raw material is fundamental in
industry sectors to create added value and jobs, which are lost in case
the raw material is not available and adequate substitutes cannot be
used instead. Essentially, the importance of a material is intertwined
with lack of substitutes. An additional element in the determination of
high economic importance may be the in-use stocks. However, the
objectives and scope can dramatically change the perspective and
therefore the characterization. For instance, in the recent research at
the United States Critical Materials Institute, the scope is a selection of
metals used in low carbon energy technologies and the objective is to
secure adequate supply in order to reach given levels of CO2 abatement.
For this reason, the capacity of a technology and related metals to reach

Fig. 2. The TERP framework to structure supply risk factors. Supply risk factors are
organized into four different groups of risk factors according to their nature: risk factors
of physical/technical/geological nature (3 factors); of economic/strategic/market nature
(7 factors); regulatory/social nature (5 factors); and of political stability/governance
nature (2 factors).
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the abatement targeted is one of the key elements in the assessment of
economic importance. In that case, the wording “importance to clean
energy” is used instead of “economic importance”. In other cases
“Impact of supply restrictions” or “Vulnerability to supply restrictions”
is used for the same criticality axis.

Quantitative characterization of economic importance remains a
challenge. As an illustration, some studies (e.g. EC, 2010 and 2014)
completely disregard the size, in terms of tonnage, and the market
value of the raw materials supply, measuring the economic importance
downstream only, via allocating the share of end-uses to mega-sectors.
The consequence is that even specialty metals with very tiny supply, but
which serve strategically important high added value industry sectors,
can have extremely high economic importance. This calls for better
mapping of physical flows of a wide range of materials in national
economies. A recent Japanese study (Daisuke, 2015) combines the
value of the raw materials supply and the added value downstream,
using the added value downstream to position the raw material in the
two axes criticality diagram and the value of the commodity supply to
visually represent the market scale.

An interesting study (Bastein and Rietveld, 2015) used a combina-
tion of trade data and economic Input/Output (IO) modeling to obtain
a detailed picture of raw materials use in the Dutch economy. Recent
work has also started discussing the importance of a better under-
standing of supply chain structure in the determination of crucial
supply chain actors (e.g., economic sectors) and bottlenecks using tools
of complex network analysis (Nuss et al., 2016). This approach may
become more relevant as better data on the supply chains of materials
becomes available in the future.

Two main groups of criticality studies can be categorized as those
that are economy-wide and those that are sector-specific. In addition,
corporate and global criticality studies exist. Economy-wide criticality
studies embrace whole national or regional economic systems (EC,
2010, 2014; NRC, 2008; Graedel et al., 2015; BGS, 2012; Achzet et al.,
2011; Coulomb et al., 2015; NSTC, 2016), thus the raw materials in
scope rapidly expand in number and diversity of supply chains, which
increase the difficulty of the analysis. In case of economy-wide
criticality assessments, the use of added value of industry sectors is a
possible measure of the economic importance of raw materials. In this
approach, the economic importance of raw materials is not related to
the quantity or the economic value of commodities, but rather to the
added value downstream, which would be lost in case supply is not
adequate and no adequate substitutes are available. In any case, when
an economy-wide criticality study is performed, it is extremely complex
to find reliable and representative data about where the raw materials
are used, because some are used nearly everywhere (e.g. some
industrial minerals), and thus, not surprisingly, the results are some-
times controversial.

Sector-specific criticality studies target selected technologies and/or
selected end-uses (Moss et al., 2013; USDOE, 2010, 2011), which are
considered of strategic importance. In this way, the number of raw
materials in scope is drastically reduced and the role of the raw
material in providing its envisaged function (e.g., reducing carbon
emissions from energy generation) is easier to determine. Measuring
the economic importance, or the vulnerability to supply disruptions, is
still carried out in different ways, and not without uncertainties, but
with a clearer objective in mind.

It seems unlikely that some common methodology can be found for
both economy-wide and sector-specific criticality assessments
(although the methodology proposed by Graedel et al. (2015) provides
a corporate, national, and global methodology using the same overall
structure and assessment framework). In sector-specific criticality
assessment, the specificity itself of the study could be an obstacle for
convergence in methodology. As economy-wide criticality assessment
is concerned, a crucial point is the definition of the sub-sectors where
raw materials are used, the related added value and linkage criteria.
Physical Input/output models can help to indicate the economic sectors

where raw materials are being used and support the visualization of
inter-linkages in economic systems (Chen et al., 2016; Ohno et al.,
2016; Nuss et al., 2016). Examples include aluminum use in the US
economy (Chen et al., 2016; Nuss et al., 2016) and the flows of several
alloying elements (manganese, chromium, nickel, molybdenum, nio-
bium, vanadium, tungsten, and cobalt) in the US economy (Ohno et al.,
2016). However, the calculation of physical I/O tables may only be
feasible for a subset of materials (for which separate economic sectors
exist in I/O tables, or can be introduced via further sector disaggrega-
tion) and only if the resolution of the corresponding monetary I/O
table is sufficiently high. Therefore we note that, while physical I/O
approximations can offer some complementary insights to today's
criticality assessments, they also have several limitations and might
lead to misinterpretation if not carefully framed.

5. A number of elements essential for advancing criticality
on the international scene

The analysis of the current interpretation and operationalization of
criticality reveals different levels of divergence. The two-axis backbone
and the respective axes in the above sections have to be addressed in
the international debate, but there are many more elements to be
involved in the discussion. In this context, we focus on the scope of the
materials, the role of substitution, a coherent modeling of the supply
chain, and data and indicator selection.

5.1. Scoping the materials

Criticality studies evaluate a range of materials for certain economic
entities but different resource assets are studied: sometimes ‘minerals’
(Buijs et al., 2012), sometimes ‘non-fuel minerals’ (Erdmann and
Graedel, 2011), sometimes ‘metals’ (Graedel et al., 2015); sometimes
‘raw materials’ (Glöser et al., 2015), but also ‘resources’ (Sonnemann
et al., 2015). This significant divergence stems from different view-
points and interests and differences of the value chain among different
materials, but also from a lack of commonly applied definitions in the
value chains, and in particular on a lack of common vision as to what
stage in the value chain should be the anchor for criticality analysis.
Recently, Dewulf et al. (2015a) proposed a common stage to anchor the
point of the ‘raw materials’ stage in all kind of supply chains, ending up
with a set of 85 raw materials, next to a set of 30 primary energy
carriers. It offers a frame to scope the range of materials under study:
only those derived from stocks and deposits, or also those from
biobased production. In conclusion, the scoping of the materials will
remain heterogeneous as criticality is an assessment tool that serves
different bodies with their particular range of materials and their
specific scale of analysis.

5.2. The role of substitution and recycling

Most criticality approaches have the intention to account for
substitution and recycling but the implementation into the calculations
diverge. With respect to substitution, the 2014 EC methodology (EC,
2014) considers it as a factor that mitigates supply risk, totally different
from the approach adopted by Graedel et al. (2015) where substitut-
ability is factored into the vulnerability axis (Graedel et al., 2012).
There may be arguments to justify the role of (lack of) substitutability
in the two axes. Equally, the 2014 EC methodology (EC, 2014)
considers sourcing from secondary resources also as a supply risk
mitigation factor for supply risk disruption, mathematically in a same
way as substitution. This is different from Graedel et al. (2012) where
both primary and secondary (recycled) sources are considered in the
calculation of supply risk and metal recycling rates incorporated into
the depletion time model (to determine the amount of time it would
take to deplete currently known geological stocks at the current rate of
demand).
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5.3. Modeling of the supply chain

For economy-wide criticality assessments, the modeling of the
supply chain may be based on generic production data, i.e., starting
from the worldwide production data to picture a generic country
concentration pattern. Alternatively, the modeling may start from the
economic system under study and model its specific supply, which may
be different in terms of geographical spread from the aforementioned
approach. Both modeling approaches may have pros and cons: the first
one may be more robust and feasible from data point of view; the
second may be more representative for the specific country or region
under study. Eventually, a mixed approach could be developed. The
two modeling approaches are illustrated in Fig. 3, showing the
difference in the NRC-US (2008) (NRC, 2008) (US-specific) and the
European Union (worldwide) approach (EC, 2014).

5.4. Data and indicator selection

From interactions with many specialists, it is obvious that data are a
constraint in criticality calculations. Some indicators are well accepted;
although sometimes controversial, and very far from being representa-
tive of the minerals industries; and generally used as they are provided
by well-established bodies (e.g., the World Governance Index (WGI) or
the Policy Perception Index (PPI)). On the contrary, other information
is less specific, e.g., on sourcing from waste-as-resource (e.g., with
generic data from Graedel et al. (2011)). In case criticality intends to
integrate further supply disruption phenomena identified in the TERP
framework, then data availability and specificity might be one of the
main challenges.

The modeling of the supply chain is for sure also key in data
selection as the supply chain comprises many stages beyond the
mining, e.g., beneficiation, concentrating, smelter, refining. Attention
has to be paid to differences in the supply concentration in these
different steps. This is illustrated in the EC 2014 study for some raw
materials, e.g., manganese where contributions at the mining stage
from Australia and China are almost equal, but where China over-
whelms all countries at the refining stage (EC, 2014). Criticality studies
typically focus on the mining stage at least as far the studies are
transparent. Using data from the U.S. Geological Survey, Graedel et al.
(2015) do, however, use production at multiple stage, where data are
available. It is questionable if they capture the key step in terms of
likelihood of disruption. In any case, criticality calculations should be
transparent on what stages they rely on in the ‘primary production’. A
step further would be to calculate a country concentration based on all
involved stages in the supply chain of the raw material under study, or
at least pointing to the weakest step in the chain (bottleneck).

For some supply disruption or economic importance elements,
characterization and quantification is poorly generally accepted and
available. A typical example is the characterization of the decrease in
quantity and quality of feedstock. The quantification of the decrease

typically done in function of the ‘Area of Protection Natural Resources’
(change in cost or energy, extraction rates to reserves ratios, decline in
ore quality) (Dewulf et al., 2015b) is heavily debated. Additionally,
involving new specific factors in critical analysis should be well thought
if they may be brought along with rather overarching and aggregating
indicators that capture several factors at the same time. An example is
the combination of WGI with HHI in the EC methodology that covers
factors from political stability/governance, regulatory/social, econom-
ic/strategic/market nature at the same time. If these aggregated factors
need to be combined with more specific factors like on decrease in
quality of feedstock, the role and weight of the different indicators
needs careful attention.

6. Elements for the future international debate

6.1. The criticality assessment method itself

With the current development of criticality assessment, it may be
timely to bring together the international criticality assessment com-
munity on a more systematic base. Initiatives at the international level
may stimulate a better common understanding and interpretation of
criticality, e.g. by setting globally accepted definitions (e.g. common
understanding and definition of the two main dimensions of criticality)
or common approach and mapping of supply risk factors). First
initiatives may be mentioned: criticality has been discussed on inter-
national events (e.g. World Resources Forum in Davos, 2015) or at
governmental level (e.g. trilateral workshops US-EU-Japan). However,
these are just first initiatives and an international body that facilitates
or manages the debate is not (yet) in place.

Definitely, the debate should concentrate on the abovementioned
elements of criticality assessment methodology. It may investigate
where there should be convergence and consensus and where there
may be room left for flexibility. At least it should help in better
addressing a better common understanding by setting definitions, by
specification of goals and scope (economic entity, materials …), by
listing particular attributes (transparency on data sources, review
process …) ….

6.2. The criticality assessment in the sustainability assessment
toolbox

Apart from the elaboration of criticality assessment itself, the
international community should reflect on the positioning and the
delineation of criticality. Resource criticality assessments help in
understanding the sustainability of a certain economy and hence the
welfare and wellbeing of the involved population. It is evident that it is
a key instrument in sustainable management of resources for mankind.
But sustainability is multifaceted exemplified by the 3 P approach:
people, profit and planet. Resource criticality does not deal with
economics solely; the TERP concept shows factors beyond economics

Fig. 3. Differences in modeling the supply chain of manganese with its country concentration, either starting from worldwide production of the raw material, or starting from a supply to
a specific economic system.
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as such. On the other hand, it must be acknowledged that other
sustainability assessment tools for resources are in place and that the
positioning and range of scope of criticality and the other tools need to
be critically analyzed in terms of overlaps and gaps. One approach
could be an integration of criticality factors in Life Cycle Assessment
that has historically an environmental emphasis, hence allowing
coverage of environmental and economic aspects of resource and
material supply and use. A recent example is provided by
Sonnemann et al. (2015).

Alternatively, a more profound and conceptual approach for a
proper role of resource criticality evaluation may be at stake, as
exemplified by Dewulf et al. (2015a). In their analysis for an integrated
sustainability management for raw materials, they rely on different
quantitative frameworks, mainly ecosystem services, classical life cycle
assessment (LCA), social LCA, and resource criticality assessment.
From the analysis, they identify a consistent set of ten specific
sustainability concerns for raw materials, where three stem from the
criticality framework. The paper leaves the open question if this
integrated framework should lead to one single assessment tool, or if
rather the existing toolbox should stay a diverse set of tools. Even in the
latter case, it is worth to reflect on the role of resource criticality in
terms of its role and functionality in the toolbox.

6.3. From criticality analysis to resilience

Criticality calculations point to supply disruptions that economic
systems may undergo with severe consequences. What the methods so
far do not offer systematically is insight on how an economic system
responds to disruptions and how it is able to mitigate or absorb them.
In Fig. 4, we introduce the concept of resilience using outcomes from a
recent paper by Sprecher et al. (2015). Within this broader view,
resilience could be seen as a third factor in criticality screening, or
additional step in terms of further analysis and response. This proposal
could overcome the fuzziness of having recent/current versus future-
oriented elements in the criticality calculation. Indeed, criticality
calculations can be either based on recent past/current characteristics
(e.g. recycling rates, substitution) or characteristics reflecting future-
potential or resilience (e.g. potential to increase the recycling rate,
substitutability). The former approach intrinsically does not reflect
resilience in the future, the latter may do. By proposing a clear split in
between criticality calculations based on recent past/current character-
istics and resilience that can be based on future potential character-
istics, we may come not only to a better common interpretation of
criticality but also reduce the level of uncertainty in the calculation.

According to Sprecher et al. (2015), resilience can be defined as the
capacity of a system to tolerate disruptions while retaining its structure
and function. In case of criticality of raw materials, it reflects how well
the system is able to deal with supply disruptions. Resistance, rapidity
and flexibility are considered as the cornerstones of resilience. In the
work of Roelich et al. (2014), this is somehow captured by the
‘susceptibility’ component which includes, among other things, the
Global Innovation Index that aims to quantify how well a country can

adopt to a supply disruption by innovation. Relying on the study of the
rare earth crisis (Sprecher et al., 2015), Sprecher et al. identify the
following ways to mitigate supply disruptions:

• Increasing the diversity of supply: new primary production and
recycling, among others;

• Feedback loops through price mechanism;

• Material substitution and improved material properties;

• Stockpiling.

It is noteworthy that the authors see substitution and recycling
rather as factors in the mitigation of supply disruptions; but nor as
supply risk factors nor having a role in the vulnerability/economic
importance.

Rosenau-Tornow et al. (2009) combined past and future trends for
supply risk, hence combining criticality and response – resilience. For
the latter, they relied on factors like exploration budgets, planned
investments and demand trends.

In conclusion, criticality assessment could take advantage of an
international forum to identify common ground for approaches,
calculation methods and required data, and indicators for criticality
assessment. Simultaneously, such an international forum could define
what aspects of the assessment may be left flexible, as criticality
assessments cover different purposes with a varied coverage of raw
materials, and different audiences. Equally, it would be welcome to
reflect on positioning criticality in the broader sustainability debate of
raw materials supply.

Appendix A

Discussion of the 17 supply risk factors of the TERP concept

Technical, physical, and geological factors
As a first type of supply risk factors, technical, physical and

geological supply risk factors are identified. They reflect potential
limitations in the physical supply of raw materials in any form, e.g.,
geological issues related to natural resources that are essential to
produce primary resources, or technical problems in the production of
secondary raw materials from end-of-life products. The latter element
is valid in case secondary sourcing is in scope, at least for raw materials
that can be sourced from waste.

Detailing the physical/technical/geological factors, three specific
risk factors are recognized:

• Decrease in quality of feedstock. The decrease in quality, e.g.,
decreasing ore grade, or mineral deposit depth, or mineralogical
complexity, for primary production, or decreasing content of pre-
cious metals in electronic waste for secondary production, are
geological/technical issues that may lead to increased product and
recovery costs thus making the material potentially less economic-
ally available.

• Insufficient supply of auxiliaries. Apart from a high-quality feed-
stock, the availability of auxiliaries, e.g., water, energy, labor, capital
and logistical infrastructure (rail, trucks, highways, ports, etc.) is
technically essential to ensure the supply.

• Lack of elasticity of the production capacity. Installations to produce
primary or secondary raw materials are usually large installations
with often high level of inertness, beyond the flexibility for which
they have been designed, i.e., the adaptiveness or readiness to meet
(changing) demand can be considered as a technical supply risk
factor.

The abovementioned issues are not generally included in criticality
assessments.Fig. 4. Resilience as a way to respond to criticality?.
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Economic, strategic and market supply risk factors
Secondly, risk factors of economic, strategic, and market nature are

identified. Under this type, seven specific supply risk factors are listed:

• Concentration of supplier countries. As current supply may come
from a limited number of countries in the current economic market,
this high level of concentration intrinsically increases the likelihood
and risk for supply disruption.

• Concentration of supplying companies. Similarly to countries, a
concentration of production within a limited number of companies
may lead to an increased supply risk, though of a different type and
potential consequences in respect to the concentration of supplier
countries.

• Economic land use competition. As supply of especially primary raw
materials requires access to natural deposits, access to these
terrestrial deposits can be threatened by economic land use compe-
tition, e.g., for urbanization or agricultural developments.

• By-production dynamics. As the supply of some raw materials is
largely dependent on the co-mined or co-produced byproducts and
their economics, changing market conditions of one raw material
can affect the economic profitability of another one.

• Unstable market/prices/demand. As the supply is fully dependent
on a certain market demand, instabilities in the demand can be seen
as a potential supply risk factor, resulting in high price volatility and
hence rather low willingness to engage in a risky business. As an
example, projected low future demand for REEs is a major source of
concern when talking about investments in non-Chinese primary
supply.

• Resource nationalism strategies of supplying countries. For strategic
reasons, producing countries can stimulate domestic down-stream
sectors disfavoring export to raw material dependent countries
(example Indonesia).

• Embargo/trade barriers. For reasons of different nature, embargos
or trade barriers can significantly impact the market situation and
lead to supply risk for importing countries.

Analyzing the current practice, country concentration has already
been widely incorporated into criticality studies. By-production dy-
namics is sometimes integrated as well, allocating additional level of
risk for a by-product. The latter might be valid in many cases, but there
may be also by-products that are today not fully recovered (e.g., gallium
from bauxite with currently only 10% of alumina producers extracting
gallium) and that may result in sufficient additional supply in case of
shortages, but under the condition that processing facilities are adapted
in the due time. Other factors here are not quantified in current
methods, but are considered qualitatively, e.g., land use competition by
the EU criticality study (Chapman et al., 2013). Trade barriers, and to
the extreme export bans, may have become more relevant these days,
as the number of export restrictions have drastically increased since
2005 (OECD, 2014).

Regulatory and social factors
Thirdly, supply risk factors of regulatory and social nature are

identified:

• Land use regulation. National and international land use regulation
for nature conservation are often perceived by the industry as an
additional (domestic) supply risk.

• Social Acceptance. Supply disruption due to lack of social acceptance
can be a substantial supply risk factor, e.g., interference with social
values of the local communities.

• Human and environmental disasters. Immediate impacts onto the
local community and environment, e.g., catastrophes during opera-
tions, can lead to supply disruptions. Essentially, the impacts are
rather of an immediate and local nature, i.e., human and environ-
mental disasters, not the longer-term impacts that are modeled for

example through classical life cycle assessment.

• Regulation on ethical sourcing. Due to international agreements to
limit sourcing of raw materials from specific areas with political
instability, unrest, conflicts and/or civil war, supply of specific raw
materials may undergo supply disruption risk.

• Lack of waste-as-resource policy. As waste can be an important
source of secondary raw materials, the framework offered by
authorities should facilitate their supply. In case policies are not
sufficient, (secondary) raw materials may stay within the urban mine
(e.g., storage of electronics in households), or in mining waste
deposits, or may leak through illegal exports. Import estimates to
the countries supposed to be the major recipients of e-waste exports
from the OECD globally suggests that ∼5000 kt may have been
imported annually to these non-OECD countries alone, which
represents ∼23% of the amounts of e-waste generated domestically
within the OECD (Breivik et al., 2014).

The abovementioned supply risks are often acknowledged, but
seldom adequately addressed in the criticality calculation methods
with specific quantitative indicators. Nevertheless, social acceptance is
considered as an important item by the mining sector (Prno and
Slocombe, 2012). In the mining sector, local communities have
emerged as particularly important governance actors. Conventional
approaches to mineral development no longer suffice for these com-
munities, which have demanded a greater share of benefits and
increased involvement in decision making. These trends have been
spurred by the growth of the sustainable development paradigm and
governance shifts that have increasingly transferred governing author-
ity towards non-state actors. Accordingly, there is now widespread
recognition that mineral developers need to gain a ‘social license to
operate’ (SLO) from local communities in order to avoid potentially
costly conflict and exposure to social risks.

Whereas the assessment has been largely developed with primary
sourcing in mind, the sourcing from waste becomes more and more
prominent in an industrial ecology and circular economy context. This
secondary sourcing is dealt with in criticality differently; in the Yale
methodology recycling is covered by a depletion time model; in the EC
methodology, recycling is considered as a mitigation factor for supply
risk of primary sources.

Political stability and governance factors
A last type of supply risk factors is to be highlighted, i.e., political

stability and governance supply risk factors:

• Country stability and governance. Lack of sufficient political stability
and governance in countries where a major part of the materials are
sourced from can lead to risk of supply disruption.

• Corporate stability and governance. Similar to the country level,
supply risk due to insufficient corporate stability and governance of
major players in the supply chain can affect the supply of raw
materials. SLO is also connected to this aspect.

While this fourth group of supply risk factors is generally acknowl-
edged in criticality calculations, only country stability and governance
are usually incorporated. This is often due to a lack of company-level
data for the minor metals.
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