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Abstract

Simplicial complexes store in discrete form key information on a topological
space, and have been used in mathematics to introduce combinatorial and
discrete tools in geometry and topology. They represent a topological space as
a collection of ‘simple elements’ (such as vertices, edges, triangles, tetrahedra,
and more general simplices) that are glued to each other in a structured manner.
In the last 20 years, they have been a basic tool in computer visualization and
topological data analysis. Topological data analysis has been used mainly as
a qualitative method, the problem being the lack of proper tools to perform
effective statistical analysis. Coming from well established techniques in random
graph theory, the first models for random simplicial complexes have been
introduced in recent years, none of which though can be used effectively in a
quantitative analysis of data. We introduce a random model which fixes the
size distribution of facets and can be successfully used as a null model. Another
challenge is to successfully identify a simplicial complex which can correctly
encode the topological space from which the initial data set is sampled from.
The most common solution is to build nesting simplicial complexes, and study
the evolution of their features. A recent study uncovered that the problem
can reside in making wrong assumption on the space of data. We propose a
categorical reasoning which enlightens the cause leading to these misconceptions.
The construction of the appropriate simplicial complex is not the only obstacle
one faces when applying topological methods to real data. Available algorithms
for homological features extraction have a memory and time complexity which
scales exponentially on the number of simplices, making these techniques not
suitable for the analysis of ‘big data’. We propose a quantum algorithm which
is able to track in logaritmic time the evolution of a quantum version of well
known homogical features along a filtration of simplicial complexes.
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Introduction
[...]a theory that does not lead to the solution of
concrete and interesting problems is not worth having.
Conversely, any really deep problem tends to stimulate
the development of theory for its solution.

Sir Michael Atiyah, Advice to a Young Mathematician

Throughout history, mathematics has been providing a language capable of

making difficult problems understandable and manageable, and for these reasons

it has become an efficient source of concepts and tools constituing the backbone

of all scientific disciplines. Moreover abstract concepts from logic, algebra,

and geometry have found new concrete use with the advent of the computer

and the birth of programming. In this thesis we are going to focus on the

application to computer science of one of the most versatile algebraic tools

of the last centuries: the simplicial complex. Simplicial complexes were first

introduced in 1895 by Poincaré in his seminal work "Analysis Situs" [87] as a

simplicial decomposition (triangulation) of a manifold, and they are now not

only a fundamental construction in combinatorial topology, but also the secret

behind every 3D rendering and image recognition software [59, 90].

Simplicial complexes are elementary objects built from such simple polyhedra

as points, line segments, triangles, tetrahedra, and their higher dimensional

analogues glued together along their faces. Since the late 1800s they have

been used to store in discrete form key information on a topological space and
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to transform complicated topological problems into more familiar algebraic

ones with the introduction of simplicial homology (we refer to Aleksandrov [2]

for a beautiful account on the birth of combinatorial topology). Their use in

computer science has changed drastically with the advent of Topological Data

Analysis [41–43, 38, 21, 19, 20], which uses techniques from computational and

algebraic topology to extract information from high-dimension, incomplete and

noisy data-sets.

In this work we are going to focus on the theory (chapter 3), practice (chapter

2) and algorithms (chapter 4) of the application of simplicial complexes to

data analysis. For each aspect, we are going to introduce original results and

insights which are able to shade light on underdeveloped applications for TDA,

and further advance the available tool set.

Outline of the thesis

The main intuition of TDA is that data is sampled from a topological space,

and the shape of this space is important to better understand the data. To

study the shape of the underlying space of data, TDA methods aim to construct

a simplicial complex or a filtration of simplicial complexes from the original

data, which encodes information on the shape of the underlying space. In

Chapter 1 we define the concept of a simplicial complex, and introduce the

basic mathematical constructions of simplicial complexes. We then proceed to

survey the most suitable methods of construction, distinguishing if the data

set can be considered sampled from a metric, or a non-metric space. These

topological tools allow for a new type of explorative analysis of data which is

able to reveal structures that were unobtainable through other approaches. The
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field of topological data analysis has been growing rapidly in the last fifteen

years, and its applications have led to discoveries in various fields: genomics

[76, 83], sensor analysis [31, 30, 29, 47], brain connectomics [48, 49], fMRI data

[84, 65], network science [85, 86], just to name a few.

With the increasing popularity of topological analysis it has become nec-

essary to build sounder statistical foundations. Therefore, the first original

contribution in this thesis is to develop a null model1 of simplicial complexes

capable of differentiating between meaningful results and random noise. In re-

cent years, researchers have introduced the first proposals for random simplicial

complexes coming from well established techniques in random graph theory:

the Erdös-Renyi random graph model [61, 67, 55, 62, 56, 57, 27], preferential

attachment [13–15], the exponential random graph model [96], configuration

model [28, 94]. Even though these models are good for theoretical studies, they

present some shortcomings when used as null models of real data sets, which

we present extensively in chapter 1 before introducing in chapter 2 the first

original contribution of this thesis: the simplicial configuration model.

The simplicial configuration model builds on the work by Courtney and

Bianconi [28] where the authors introduced a configuration model for simplicial

complexes, which uses the intuition that the one-mode projection of a bipartite

graph can be encoded as a simplicial complex. In their paper, Courtney

and Bianconi analyzed in detail the ensemble of the configuration model for

simplicial complexes with constant facet size. Our contribution generalizes

their approach to general simplicial complexes. Moreover, we show how our
1In this context, by null model we mean an instance of a random simplicial complex which

matches the original complex in some of its structural properties.
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random generative model can be used successfully as a null model for the size

distribution of maximal facets in a general simplicial complex.

It is easy to see how the analysis we just introduced are significative if and

only if we can safely assume that the starting simplicial complex successfully

incorporates the features of the dataset. However, there is seldom a way to un-

equivocally test whether a simplicial complex correctly encodes the topological

space from which the initial data set is sampled from. For this reason, the most

common approach is to build nesting simplicial complexes from the data set,

and study the evolution of their features across the filtration [42, 43, 38, 19].

This technique is known as persistent homology, and in recent years has become

one of the prominent tools in TDA.

Following the example of many researchers [17], that in recent years worked

on using category theory to build a stronger foundation for topological data

analysis and highlighten its faults, in chapter 3 we start exploring the concept of

persistence, and prove the adjuctions and categorical equivalences that dictate

the relationships between the categories involved in topological data analysis

(topological spaces, graphs, simplicial complexes) [78]. We show how these

results dissuade from using the intrinsic metric of graphs (shortest path length

metric) for constructing simplicial complexes, backing the empirical results in

[86].

In the last chapter of this thesis, we dive into the computational problems

that might arise when applying these methods to real data. In fact, the

construction of an appropriate simplicial complex is not the only obstacle one

faces when applying topological methods to real data. Available algorithms

for homological features extraction have a memory and time complexity which
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scales exponentially on the number of simplices, making these techniques

not suitable for the analysis of ’big data’. With an eye to this problem, we

formulated an approach based on quantum computation [81]. Expanding on a

method by Lloyd et al. [63], we propose a quantum algorithm which is able

to track in logarithmic time the evolution of a quantum version of well known

homological features along a filtration of simplicial complexes.



Chapter 1

Simplicial Complexes in Data

Analysis

In this chapter we introduce some basic notions from classical algebraic topology

that are widely used in topological data analysis. We define the most common

types of simplicial complexes (sec. 1.1), and how to construct them from data

(sec. 1.2). Finally in section 1.3 we give a thorough introduction to existing

models for random simplicial complexes.

Unless otherwise stated, we consider to be working on a field k, that we sup-

pose to be algebraically closed. Moreover, we suppose all the algebras to be

associative and all the modules to be left module if not otherwise specified.
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1.1 Abstract simplicial complex

Simplicial complexes are one of the most intuitive concepts in mathematics.

They are built from such simple polyhedra as points, line segments, triangles,

tetrahedra, and their higher dimensional analogues glued together along their

faces. Even if their intuition is very geometric, they can easily be generalized

to abstract mathematical objects. An abstract simplicial complex X is a

collection of finite sets such that for every σ ∈ X then for all τ ⊆ σ, τ ∈ X.

The sets in X are called simplices, the dimension of a simplex σ ∈ X is

dim(σ) = card(σ)− 1; the dimension of X is the maximum dimension of the

simplices it contains.

The proper subsets of a simplex are called its faces and, if τ is a proper face

of σ, then σ is a proper coface of τ . A facet is any simplex in a simplicial

complex that is not a face of any other simplex. A simplicial complex is called

pure if all its facets have the same dimension. The vertex set of X is the union

of all the simplices it contains, V = ∪σ∈Xσ.

Examples of abstract simplicial complexes

We now introduce some concepts related to simplicial complexes which will be

useful in the future chapters.

Subcomplex A subcomplex X ′ of X is an abstract simplicial complex such

that the vertex set of X ′ is contained in the vertex set of X, and, for every

simplex σ in X ′, σ belongs to X as well. An important type of subcomplex is

the k-skeleton X(k) of a simplicial complex X which contains all the simplices
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of dimension at most k in X, X(k) = {σ| dimσ ≤ k}. In particular, the 1-

skeleton of a simplicial complex can be considered as an undirected graph,

since it contains only 1-simplices (edges) and 0-simplices (vertices); from this

moment onward we will then refer to X(1) as the underlying graph of X. It

is easy to see how the 1-simplices and 0-simplices contained in any simplex in

X, form cliques (complete subgraphs) in X(1). Beware that the opposite it is

not necessary true, that is, a clique in the underlying graph of X is not always

a representation of a simplex in X. The simplicial complexes for which this

property is verified are called flag complexes.

Clique complex It is easy to see how to use this definition to construct flag

complexes from graphs. Given a graph G, the clique complex Cl(G) is the

simplicial complex whose simplices are all the cliques contained in G. A set

of vertices S ∈ V (G) of a graph is said to be independent, if for all v, w ∈ S

the edge (v, w) /∈ E(G). It is easy to see that the independent sets of G are

the cliques in the graph complement of G, i.e. the graph that has the same

vertices as G and all the edges (v, w) such that (v, w) /∈ G. The independent

complex Ind(G) of a graph G is the clique complex of the graph complement

of G.

Simplicial complex subdivisions The simplicial complexes we introduced

above are used in practice to describe the structural composition of the original

simplicial complex. There might be the need in practice to construct a simplicial

complex which has the same geometry and topology of the original one, but

with a finer resolution. That is, a simplicial complex which contains all the

simplices of the original one. A simple example of such a construction is the
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stellar subdivision. Let σ be a simplex of X, the stellar subdivision of

X at σ is the abstract simplicial complex SdX(σ), where the set of vertices

V (SdX(σ)) = V (X)∪ σ̂ where σ̂ is the new vertex indexed by σ. If σ is already

a vertex we have that σ̂ = σ and no new vertex is introduced. Every simplex

that does not contain σ as a subset is still a simplex in SdX(σ). Otherwise, if

a simplex τ in X contains σ as a subset then η ∪ {σ̂} ∈ SdX(σ), where η is the

difference as sets between τ and σ.

The stellar subdivision is a construction which acts locally on the simplices

that contain σ. A global construction of a finer complex is the barycentric

subdivision. The barycentric subdivision of X is an abstract simplicial

complex Bd(X), where the set of vertices in Bd(X) is indexed by the non

empty simplices in X, and

Bd(X) = {{σ1, . . . , σt}|σ1 ⊃ · · · ⊃ σt, σi ∈ X, t ≥ 1} ∪ {∅} (1.1.1)

It is easy to observe that Bd(X) is a flag complex.

Fig. 1.1 Baricentric subdivision of a 2-simplex.

A typical application of this refinement process is in 3D imagining, when

trying to increase the level of details in a picture. It can be proved that
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taking the barycentric subdivision can be accomplished by a sequence of stellar

subdivisions, which are performed locally and thus provide a computationally

more economic construction.

Order Complex A partial ordered set, or poset, is a set P endowed with a

binary relation ≤ which is reflexive (for all a ∈ P , a ≤ a), antisymmetric (for

all a, b ∈ P , if a ≤ b and b ≤ a then a = b), and transitive (for all a, b, c ∈ P ,if

a ≤ b and b ≤ c then a ≤ c). An abstract simplicial complex X can then be

considered a poset, since the inclusion of simplices is a partial order relation on

X. One can also construct a simplicial complex from any poset P , considering

as simplices all finite chains (i.e. finite totally ordered subsets) of P . The

simplicial complex defined in this way is called order complex of P . To better

clarify the concept, we give some examples of order complexes:

1. The order complex of a totally ordered set A is a simplex ∆(A).

2. Let n ∈ N and let Bn be the set of all subsets of n partially ordered by

inclusion. One can see that the order complex ∆(Bn) is isomorphic to

the barycentric subdivision of an (n− 1)-simplex.

3. An abstract simplicial complex X can then be considered a poset, since

the inclusion of simplices is a partial order relation on X. Then, the

barycentric subdivision of X is the order complex of X considered as a

poset.

In chapter 3 we will go in more detail on the key role the order complex plays

when analysing data with topological methods.
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1.2 Constructing Simplicial Complexes from data

There are two main applications for simplicial complexes in data analysis: the

representation of relations, and the discretization of data spaces. In the former,

representing relational data, the vertices of the complex are the data points

and a k−simplex represents a relation between the k + 1 vertices it contains.

In this application, the structure of the simplicial complex comes directly from

the dataset itself. In the latter, objects are a topological discretization of the

underlying space of data, that is, an object that is topological equivalent to

the space from which we sampled the data.

In this section we will show some common simplicial complexes constructed

from point clouds, distinguishing the cases in which the dataset is supposed to

be sampled from a metric space and those in which it is not.

Before going on with the explanation, we introduce the nerve of an open

cover, a construction at the core of the techniques we are going to describe in

this section. Let X be a paracompact topological space, that is a topological

space in which to every open cover U one can associate a new cover V of X with

a locally finite index set, such that every set in V is contained in some set in U .

To each open cover U = {Uα}α∈A of X, we can associate an abstract simplicial

complex N (U) called the nerve of U . The simplicial complex is constructed

in the following way: there is a vertex vα for each open set Uα in cover. A set

of k + 1 vertices spans a k-simplex whenever the k + 1 corresponding open

sets Uα have non empty intersection. Obviously the simplicial complex thus

constructed is determined by the chosen cover.



12 Simplicial Complexes in Data Analysis

The following theorem gives the motivation for which the nerve is such a

common tool for constructing simplicial complexes from data. Under appro-

priate hypothesis, the nerve of and open cover has the same homotopy as the

underlying topological space, that is, intuitively, it has the same "shape".

Theorem 1.2.1 (Nerve Theorem,[Hatcher, §4G.3]). Let X be a topological

space and U = {Uα}α∈A a countable open cover of X.

If, for every ∅ ≠ S ⊆ A, ∩s∈SUs is contractible or empty then N(U) is

homotopically equivalent to X.

1.2.1 Metric case

In applications it is quite common to work with large sets of points sampled

from a metric space X. For example, to scan surfaces in 3D one uses time-of-

flight cameras which compute the nearest point on the surface from the sensor

position along a given direction. A 3D scan may then be composed by a very

large set of points corresponding to different directions from the sensor and

different sensor positions.

In this section we will consider the data points as sampled from a metric

space (X,m), where m is a metric, bestowed with the standard topology where

the base B is made of open balls of radius ε centered in v ∈ X, B = {Bε(v)|ε ∈

R+, v ∈ X} where Bε(v) = {u ∈ X|m(u, v) < ε}.

Čech Complex The Čech Complex is the nerve of an open covering of the

data set where the open sets are open balls Bε(v) of radius ε centred in v ∈ X.

If we denote V as the set of v ∈ X such that Bε(v) ∈ U then we can write

X = ∪v∈VBε(v). The simplicial complex we obtain through this covering
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Fig. 1.2 A vizualization of the relation between Čech and Vietoris Rips at different
scales described by proposition 1.2.2.

is called Čech complex Č(V, ε). More concretely, the vertices of the Čech

complex are the points in V and k+1 points spans a k-simplex if all the ε-balls

centred in them have non-empty intersection. Since open balls are contractible,

from Theorem 1.2.1 follows that the Čech complex captures the topology of

the covering.

It is important to notice though that the resulting shape of the covering, and

thus that of the Čech complex, depends on the choice of the radius of the open

balls that form the covering. When the parameter is very small, smaller than

the minimum distance between the points, the corresponding Čech complex

is only composed by the points of V . Conversely, when the parameter value

is larger than the cloud diameter the corresponding complex contains all the

possible subsets of V . The supposition here is that for a parameter ε̄ the open

cover of the dataset is also and open cover of the space X underlying the data

satisfying 1.2.1. Finding the optimal radius ε for which this happens is very

difficult. In recent years, new methods in topological data analysis have been

introduced to avoid taking this decision, which we will look at in detail in

Chapter 3.
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Vietoris-Rips complex The Čech complex is a very good discretization of

the space X, but it is rarely used in practice because it is computationally

heavy to construct. This is due to the fact that its construction requires the

computation of 2|A| intersections, where | A | is the number of open sets in the

considered cover, which is equal to the number of vertices. Even though the

computational complexity can be reduced with clever algorithms, the process

is still a very expensive one. This is why less precise but more computational

efficient simplicial complexes were introduced.

The Vietoris-Rips complex is popular in topological analysis thanks to the

ease of its construction in every dimension. It is not a nerve as the other

previously presented complexes, but it is the clique complex of a particular

graph. Let X be a metric space with metric d, a Vietoris-Rips complex

V R(X, ε) is the simplicial complex which has as vertex set X and such that

{x0, . . . , xk} spans a k-simplex if and only if d(xi, xj) ≤ ε for all 0 ≤ (i− j) ≤ k.

Proposition 1.2.2 ([60]). Let X be a metric space with metric d, the following

inclusions are satisfied :

Č(X, ε) ⊆ V R(X, 2ε) ⊆ Č(C, 2ε) (1.2.1)

This proposition justifies the use of the Vietoris-Rips complex as a good-

enough substitute of the Čech Complex. Applying this technique solves the

computational problems, since it only requires to check if the distances are

below a certain threshold for each pair of data points, and there are
(
n
2

)
such

matchings.
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Witness complexes The methods introduced above produce simplicial com-

plexes whose vertex set has the same size as the underlying set of point cloud

data. When working with big data sets, these constructions produce simplicial

complexes which are untreatable. In 2004 De Silva and Carlsson, using ideas

motivated by the usual Delaunay complex in Euclidean space, introduced a

new method [29], the witness complex, which produces topologically equivalent

simplicial complexes with a smaller vertex set.

Let X be a metric space, ε > 0 a parameter and lets suppose we have a

finite subset L ⊆ X that we denote as landmark set. For every x ∈ X let mx

be the minimum distance between x and the set L, we shall define the strong

witness complex as the complex W s(X,L, ε) which has as vertex set L and

{l0, . . . , lk} spans a k simplex if and only if there exists x ∈ X (called witness)

such that d(x, li) ≤ mx + ε ∀i.

This definition is too constraining creating a very small set of strong

witnesses, in order to obtain a finer simplicial complex a weaker version of this

construction was introduced. Let X be a topological space, point set L ⊆ X,

Λ = {l0, . . . , lk} finite subset of L. Then x ∈ X is called a weak witness for

Λ, if for all i = 0, . . . , k, d(x, l) ≥ d(x, li) for all l ∈ L\Λ. Moreover for ε ≥ 0

we will say that x is an ε-weak witness for Λ if d(x, l) + ε ≥ d(x, li) for all

i = 0, . . . , k and l ∈ L\Λ.

We can now construct the weak witness complex Ww(X,L, ε) and we

will say that Λ = {l0, . . . , lk} spans a k-simplex if and only if Λ and all its faces

have a weakness ε. This complex depends on the choice of the landmark set.

There is no preferred way to choose an optimal landmark set. It is common

practice to work with different set of landmarks and see if the results are
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replicable. It is however one of the most popular constructions when working

with large data sets since it contains a less simplices than the Vietoris-Rips

complex, but it is as reliable in approximating the topology of the space.

1.2.2 Non-metric case

Depending on the data set we are working on, it is not always straight forward

to know what metric the underlying space has, or whether a metric exists at

all. In applications, we rarely have the certainty that the underlying space

is a metric space. This is the reason why we introduce now two methods

for constructing simplicial complexes which do not require the existence of a

metric.

Dowker Complex The Dowker complex was first introduced in [24] and

named after C. H. Dowker [34] who compared two simplicial complexes con-

structed from a binary relation. It is defined as follows: let L,W be two sets

and Λ : L×W → R be a function. For a ∈ R consider the simplicial complex

Dow(Λ, a) with vertex set L and simplices σ determined by:

∃ w ∈ W such that Λ(l, w) ≤ a for all l ∈ σ (1.2.2)

Remark 1.2.2.1. The simplicial complexes introduced in Subsection 1.2.1 can all

be considered as examples of Dowker Complex where as function Λ is considered

the metric of the metric space to which the data belongs to, and the sets L,W

are chosen accordingly.
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Remark 1.2.2.2. The Dowker complex can be seen as the nerve of the covering

U = {Ul}l∈L where Ul = {w ∈ W |Λ(l, w) ≤ a} [24].

Chazal et al. show in [24] that Dowker’s theorem implies that for every

a ∈ R, Dow(Λ, a) and Dow(ΛT , a) have the same homotopy type, where

ΛT : W × L; (w, l) 7→ Λ(l, w). On the stability of Dowker complexes we refer

the reader to [24].

Mapper Algorithm Mapper was first introduced by Singh, Mémoli, and

Carlsson in [89, 88] as part of an algorithm for 3D Object Recognition. Since

then it has become one of the most used topological analysis method, and it is

at the core of all the software products developed by Ayasdi (www.ayasdi.com).

Mapper is a computational method for extracting simplicial complexes from

high-dimensional data sets, it does so combining the notion of the nerve complex

with a partial clustering of the data guided by a set of functions. The power

of this method comes from the fact that is not dependent on any particular

clustering algorithm. Let X and Y be two topological spaces, f : X → Y be a

continuous map. Consider a covering U = {Uα}α∈A be a finite open cover of Y .

The Mapper construction arising from these data is defined to be the nerve

simplicial complex of the pullback cover: M(U , f) = N ({f−1(Uα)}). This

construction is quite general. It encompasses both the Reeb graph and merge

trees at once [89]. In the past year a number of theoretical improvements have

been achieved: the stability of the mapper was proved in late 2015 [22], and a

multiscale version was introduced early this year [32].

www.ayasdi.com
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1.3 Random simplicial complexes

Leveraging the constructions introduced in the previous section, topological

analysis can give qualitative information about data sets, which is not readily

available by other means. In classic data analysis, the information gathered

from explorative methods is used to develop hypotheses and tests that can

interpret these data in a more rigorous manner. This step is usually achieved

through the construction of random models able to model a specific feature

of the data, that can be used to construct characteristic null hypothesis. In

recent years, many researchers have tried developing such a random model

for simplicial complexes and develop a statistical framework in the context of

topological data analysis [55–57, 15, 13, 14, 28, 67, 61, 62, 22, 32].

In this section we review the existing models of random simplicial complexes.

All these models use ideas from random graph theory, but do this coming from

two different perspectives which we divide as generative or descriptive.

Generative models are algorithms which describe how to generate a network

using some probabilistic rules for connecting the nodes. These models are

also called growing network models, because the algorithm can be devided

in steps in which a node or an edge is added to the existing network. The

simplest and most studied example is the Erdös-Rényi random graph(ER), or

standard random graph: given n nodes, edges are added to the graph with

probability p. Another prominent example is the preferential attachment model:

a node is added to the graph at time t and connected to one of the existing

nodes with a probability dependent on the node degree. These ER models are

the inspiration for the two categories of random simplicial complexes model
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which we will describe in section 1.3.1. Generative models can help understand

the fundamental organizing principles behind real networks and explain their

qualitative behaviour, because they provide a mechanistic rule to build the

network.

A descriptive model is explicitly defined as an ensemble (G,Pθ), where G is

a set of graphs and Pθ is the joint probability distribution on G parametrized

by a vector of parameters θ, inferred from the observed network data. Any

generative model gives rise to an ensemble (G,P), where G is the set of all the

graphs the model can generate, and P is the probability distribution on G; it is

usually very difficult to find a closed-form expression for it, and so the ensemble

is then sampled using the network generating algorithm. A descriptive model

gives a closed-form expression for Pθ which can be used for further statistical

inference. The most studied descriptive model in the network science commu-

nity is the exponential random graph, or p⋆ model. In 1.3.2 we will describe the

only descriptive model available for the study of simplicial complexes, the ERSC.

1.3.1 Generative models

Standard random models

We define as standard random models, the random simplicial complex which

tried to extend to higher dimension the concepts behind the Erdös-Rényi graph,

also known as the standard random graph model; these includes the random

d-complexes by Linial and Meshulam [62, 61, 67], the random clique comple by

Kahle [57, 56, 55], and the multi-parameter model by Costa and Farber [27].
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Random d-complexes Linial and Meshulam initiated the topological study

of random simplicial complexes in [61], introducing a method to construct

random pure simplicial complexes of dimension 2. Each random simplicial

complex constructed with the model has a complete graph of size n as underlying

graph. Then each of the possible 2-simplices is included independently with

probability p.

The Linial-Meshulam model can be generalized to d-dimensional pure

simplicial complexes [67]. In this model, they start with the simplicial complex

that has the complete graph as underlying graph, and every d-clique is a facet of

the simplicial complex, then d-cofaces are added independently with probability

p.

Random clique complexes By random clique complexes we intend the

study of clique complexes constructed from random graphs. This kind of

approach has been very popular in recent years [55–57]. The most common

random graph used as 1-skeleton is the Erdös-Rényi graph, first introduced

in [55]. This approach improves on the Linial-Meshulam model, since the

simplicial complex generated this way has no constriction on the dimension

of its facet. However, using clique complexes to model real-world relational

data can be misleading, as it is not always true that a k-clique in a network

represents a k-order relation in the data set. Moreover, the randomness of the

simplicial complex is induced completely from the underlying graph, the Erdös-

Rényi random graph, whose degree distribution is well approximated by the

Poisson distribution, which is very unlikely to come across in real networks [73].

These facts make this model a good theoretical tool, but not very interesting

in practice.
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Multi-parameter random simplicial complex There is a natural multi-

parameter model which generalizes all of the models discussed so far which

was first studied in [27]. For every every d = 1, ... let pi ∈ [0, 1] ⊂ R. Then

define the multi-parameter random complex as follows. Start with n vertices.

Insert every edge with probability p1, producing an Erdös-Renyi random graph

G(n, p1). Then for every 3-clique in the graph, insert a 2-face with probability

p2, and so on.

This random model is more general and more flexible than the ones intro-

duced above, since in general it does not produce neither a clique, nor a pure

simplicial complex. Moreover, it is easy to see that the previous models can

be interpreted as particular cases of the multi-parameter model. However, the

randomness of this model is induced by the underlying Erdös-Renyi graph.

Therefore, as for the case of random clique complex, the resulting degree distri-

bution is still unrealistic, making this model unsuitable for modeling real-world

simplicial complexes.

Preferential attachment models

The are a lot of networks that have a scale-free structure. In the late 1990s

there was a lot of studies in understanding why. An undirect explanation is that

scale-free networks are very robust to link/node deletion. The Barabasi-Albert

model [3], inspired from preferential attachment, is the first model able to

reproduce this characteristic in random networks.

As in the previous paragraph, we call preferential attachment models those

models which use the concept of preferential attachment to generate random

simplicial complexes. These models were first introduced in [93] and then
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extended and used by Bianconi and Rahmede to describe the evolution of

quantum network states [13–15].

Bianconi-Rahmede model The Bianconi-Rahmede model is a grow-

ing model which constructs pure simplicial complexes of dimension d adding

simplices of dimension d to (d− 1)-simplex already in the complex. The sim-

plicial complex thus created displays non-trivial geometric properties which

were studied rigorously in [13]. In the paper, the authors introduce the notion

of saturated simplex as a simplex of dimension d − 1 which is face of m

d-simplices, where m is a parameter of the network which can be either a

natural number or infinite. In the latter case no (d − 1)-simplex can ever

become saturated.

In [15] Bianconi and Rahmede introduce the concept of generalized degree

of a δ-simplex σ in a simplicial complex X, kδ(σ) is the number of co-faces of δ

of dimension d.

The growing process is initialized at time t = 1 from a simplicial complex

containing only one d-simplex. At each time a d-simplex is added to an

unsaturated (d − 1)-simplex σ in the simplicial complex with probability pσ

given by:

pσ =
aσξσ(1 + nσ)

Z
(1.3.1)

where aσ = 1 if σ is a (d− 1)-simplex already in the complex, and 0 otherwise;

ξσ = 1 if σ in unsaturated, and 0 otherwise; nσ = kδ(σ) − 1. The linking

probability depends on nσ, unsaturated simplices with a higher number of

co-faces or that are closer to becoming saturated are more likely to be selected
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than the others. In the simplicial complexes produced this way, the number of

facets scales as the number of nodes.

Bianconi-Rahmede model with flavor In [15] the authors proposed an

extension to the Bianconi-Rahmede model were they introduced the flavor

variable s = 1, 0,−1 of the model.

As before the process is initialized at time t = 1 simplicial complex is

formed by a single d-simplex. At time t > 1 d-simplex is added to an existing

(d− 1)-simplex σ in the simplicial complex with probability pσ given by:

p[s]σ =
(1 + s nσ)

Z [s](t)
(1.3.2)

where Z(t) is the normalization factor at time t.

This model generates discrete manifolds with s = −1, because p[−1]
σ ≥ 0 and

therefore nσ = 0, 1, this implies that we can glue a new simplex only to faces

that has degree 0. The model generates more general simplicial complexes for

the other two flavors. For s = 0, p[0]σ = 1
Z[0](t)

where Z [0](t) is the number of

d-simplices at step t, this will produce a uniform attachment model. For s = 1,

1 + nµ = kd,d−1(µ), i.e. the generalized degree of the face, therefore producing

a preferential attachment according to the generalized degree. For further

information on this process and on the study of the associated generalized

degree distributions, we advice reading [15].

Bianconi-Rahmede model with link energy In [13] the authors intro-

duce an extension to the BR model inspire by the Bianconi-Barabasi model [12]

which allows for a weight or energy influencing the evolution of the network.
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They assign to each node i an energy wi. The energy of the node is assigned

when the node is first added to the complex from a distribution g(w), and does

not change during the evolution of the network. An energy ϵσ is assigned to

each (d− 1)-face of the simplicial complex given by the sum of the energy of

the nodes that belong to σ.

ϵσ =
∑
i∈σ

wi (1.3.3)

The process is defined as for the BR model with flavor, at time t = 1 simplicial

complex is formed by a single d-simplex. At time t > 1 d-simplex is added

to an existing (d− 1)-simplex σ in the simplicial complex with probability pσ

given by:

pσ =
e−βϵσ(1 + nσ)

Z
(1.3.4)

Following the approach on networks in [12, 58, 71, 72], each network evolution

can be considered as a possible quantum network state. In [14] the authors

showed, for the case of discrete manifolds s = −1, that the average of the

generalized degrees of the δ-faces with energy ϵ follows different statistics (Fermi-

Dirac, Boltzmann or Bose-Einstein statistics) depending on the dimensionality

δ of the faces and on the dimensionality d of the simplicial complex.

Even though this model has a more realistic generalized degree distribution,

it generates only pure simplicial complexes, which can be sometimes limiting.

For example in the case of a collaboration data set, where each paper can

be described by a simplex and its authors as vertices, restricting one-self to

only d-dimensional simplices would mean to limit one-self to only paper with 3

authors. We will now introduce a more general model for random simplicial

complexes.
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1.3.2 Descriptive models

Exponential random simplicial complexes

Exponential random simplicial complexes are a generalization of exponential

random graph models first introduced in [96].

Exponential random graph Let Gn be the set of graphs with n nodes,

x1, . . . , xr be functions on Gn called the graph observables. Let x̄1, . . . , x̄r be

the values of the observables for a network of interest Ḡ ∈ Gn.

Pθ(G) =
expHθ(G)

Z(θ)
with Hθ(G) =

r∑
i=1

θixi(G) (1.3.5)

Hθ(G) is the hamiltonian of the graph, and Z(θ) the partition function (the

normalization function), and θ = (θi, . . . , θr) is a vector of model parameters

which satisfy: x̄i = −∂ln Z
∂θi

.

Exponential random simplicial complexes Let Cn be the set of all sim-

plicial complexes on n vertices which can be represented as a tensor product:

Cn =
n⊗

d=1

ad (1.3.6)

where ad is a boolean symmetric tensor of order d with zeros on all its diago-

nals. These condition requires that ai1,...,id is constant for any permutation of

subindices i. The only requirement on ⊗n
d=1ad is the following compatibility

conditions with Cn:

aid = 1 ⇒ bid =
d∏

k=1

a
ik̂d
= 1 (1.3.7)
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where ik̂d is the (d− 1)-long multi-index obtained from id by omitting index ik.

For a simplicial complex C ∈ Cn the previous condition define ad as what Zuev

et al. call an adjacency tensor, where aid = 1 if {id} ∈ C and zero otherwise.

Let S ⊂ Cn a subset of Cn, {x1, . . . , xr} a set of real valued functions on S,

and {x̂1, . . . , x̂r} a set of real numbers. An exponential random simplicial

complex (S, {xi}, {x̂i}) is a maximum-entropy ensemble that requires the

observables xi to have expected values x̂i in the ensemble, i.e. a pair (S,P),

where P is the probability distribution that maximizes the entropy S(P) =

−
∑

C∈S P(C)lnP(C), and such that:

EP[xi] =
∑
CS

xi(C) P(C) = x̂i (1.3.8a)

∑
C∈S

P(C) = 1 (1.3.8b)

This model has as special cases the models introduced before in this chapter.

Even if the formalism for ERSC is well developed, its application to the pro-

duction of general simplicial complexes with statistically independent simplices

appears to be intractable. For a thorough discussion on the matter and a more

detailed introduction to the model please refer to [96].

Conclusions

In this chapter we introduced the concept of abstract simplicial complex. After a

brief presentation on the most common simplicial complexes in mathematics, we

illustrated how to successfully approximate the topology of the space underlying

a data set using simplicial complexes. According to the nature of the space, we

defined different methods available for the construction of simplicial complexes
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from different data sets. In the last section we focused on random simplicial

complexes and their importance to fully develop a topological analysis of data.

We showed how the models currently available either restrict themselves to

construct particular kind of simplicial complexes (pure complexes [62, 61, 13–

15], clique complexes [55]), or their application to general simplicial complexes

is intractable [96], or generates structures [27] difficult to encounter in reality.

None the less, the need for a functional null model for simplicial complexes

has become more pressing in recent years. To fill this gap, in the next chapter we

introduce a new random generative model which constructs simplicial complexes

with fixed size distribution. The simplicial configuration model generalizes

the configuration models for simplicial complexes by Courtney and Bianconi

Courtney and Bianconi [28], and we will show empirically that it can be used

successfully to model real world simplicial complexes.



Chapter 2

Simplicial Configuration Model

2.1 Configuration model for pure simplicial com-

plexes

As seen in the previous chapter, one of the reasons why the Erdös-Renyi

graph generates unrealistic graphs is the degree distribution which is Poisson

distributed when the graph is sparse. The preferential-attachment produces

graphs with a scale-free degree distribution which is power law distributed.

While it has been shown many times how degree distributions in real world

networks are scale-free, the same cannot be said for real-world simplicial

complexes and their generalized degree sequences. For this reason Courtney

and Bianconi [28] , using the configuration model, developed a method which

could generate a simplicial complex with a fixed general degree sequence.

Configuration model The configuration model [69, 11] is a generative model

that creates a random graph with a fixed degree sequence, that is, the exact
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degree of each vertex in the graph is fixed. This implies that the number

of nodes n and the number of edges in the network m = 1
2

∑
i ki are fixed.

Suppose to have n vertices with fixed degrees ki for i = 1, . . . , n, the random

graph is constructed in the following way. Each vertex i is provided with ki

edge ’stubs’, there are therefore
∑

i ki = 2 m stubs. Uniformly at random two

stubs are chosen and an edge is created connecting the two of them, until no

free stubs are left in the graph. The end result is a graph whose every vertex

has the desired degree. The model thus generates a matching between stubs.

Each matching can be created with equal probability.

The issue with this model is that the created graph might contain multiple

edges or self-loops, or both. Indeed nothing in the generative process prevents

two stubs from the same vertex to be paired together, or a pairing of stubs to

be chosen more than once. The average number of self-edges and multiedges

in the configuration model is a constant as the number of vertices increases,

which means that their density tends to zero in the large size limit, we refer

the interested reader to Newman [73, §13.2] for a more detailed introduction to

the model.

We are now going to introduce the concepts of bipartite graph and show

how simplicial complexes can be encoded as "one-mode" projections of bipartite

graphs.

Bipartite graph A graph is called bipartite if its vertex set can be partitioned

into two disjoint sets F, V such that no two vertices within the same set are

adjacent in the graph. Some important properties to recognize if a graph is

bipartite In many cases, bipartite graphs are actually studied by projecting them
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down onto one set of vertices or the other, called “one-mode” projections.

In such a projection, two nodes are considered connected if they are second

neighbours in the bipartite graph. This construction simplifies the study of

the relationships involved in the data, at the cost of discarding some of the

information contained in the original bipartite graph. First, each neighbourhood

of a node that is removed during the projection forms a clique in the new

graph, but the projection graph does not hold any information on which node

it represents. Second, it is not always true that a clique in the projection graph

is representing a node that was removed from the original bipartite graph.

To retain this information we can associate to every "one-mode" projection a

simplicial complex.

(c)(b)(a)

Fig. 2.1 We can see how projecting the bipartite graph in figure (a), we obtain the
simplicial complex in figure (b). This is not a flag complex since the 3-clique [4, 5, 6]
is not a simplex of the complex. In figure (c) we can see the clique complex of the
underlying graph.

Theorem 2.1.1. Let G be a bipartite graph with vertex sets {F, V }, GV its

one-mode projections onto the vertex set V . Then it exists a simplicial complex

Σ whose underlying graph is GV .

Proof. Each neighbourhood of a node that is removed during the projection

forms a clique in the new graph, each removed node can be represented as

a simplex. The one-mode projection can be seen as substituting one set of



2.1 Configuration model for pure simplicial complexes 31

vertices with the simplices that each of them spans, constructing a simplicial

complex.

Note that this process does not necessary produce a flag complex since

there can be cliques in the one-mode projection whose vertices are not the

neighbourhood of a removed vertex, as it is shown in the example in Figure

2.1. Moreover, this process can be inverted, i.e. any simplicial complex can be

seen as the one-mode projection of a bipartite graph.

Theorem 2.1.2. For every simplicial complex Σ exists a bipartite graph G

such that one of its two one-mode projections GV is the underlying graph of Σ.

Moreover, the facet size sequence of Σ is equal to the degree sequence of F .

Proof. Consider a graph G with vertex set V ∪ F where V is the vertex set of

Σ and cardinality of F is equal to the number of facets in Σ. For each facet

σ ∈ Σ, σ = [v0, . . . , vk], we associate to it a node fσ ∈ F , and connect fσ to

the nodes v0, . . . , vk. By construction the projection of G onto the vertex set

V will give the desired graph.

Courtney-Bianconi model Courtney and Bianconi [28] introduced a con-

figuration model for pure simplicial complexes generalizing the approach on

hypergraphs introduced by [45]. Their algorithm generates a pure d-simplicial

complex with fixed generalized degree sequence {kr}r≤N , where kr = kd,0(r)

is the number of d-simplices incident on node r, and F = 1
d+1

∑N
r=1 kr is the

number of d-simplices or facets of the pure complex (Figure 2.2). The main idea

behind their approach is to introduce a set of F auxiliary nodes representing

the d-faces of the simplicial complex as seen in the proof of Theorem 2.1.2.
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Fig. 2.2 A simple example of the construction of a simplicial complex according to
the Courtney-Bianconi model. Each auxiliary node has the same number of stubs
which are randomly matched with the stubs in the original node set. One can then
obtain a regular simplicial complex by projecting the resulting bipartite graph onto
the original node set.

Their algorithm then proceeds defining a configuration model for bipartite

graphs as follows:

1. kr stubs are placed on each node r = 1, . . . , V , and d+1 stubs are placed

in each auxiliary node µ = 1, . . . , F . At this step each stub is unmatched.

2. a set of d+1 unmatched random stubs of the nodes is chosen with uniform

probability. Without loss of generality we assume that the stubs belong

to the set of nodes (r0, . . . , rd).

3. if the nodes (r0, . . . , rd) are all distinct, and no auxiliary node µ is matched

with the same set of nodes, then with uniform probability an unmatched

auxiliary node µ̄ is chosen and matched with the nodes (r0, . . . , rd).

Otherwise the process is re-initialized.

4. if all stubs are matched, then a simplicial complex is constructed projecting

the auxiliary nodes onto the original node set.

The rejection procedure step executed at step 3 of the algorithm guarantees that

there are no spurious correlations in the structure of the simplicial complex.
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In [28] the authors treated in detail the configuration model and the canoni-

cal ensemble of simplicial complexes, following the approach used on exponential

random simplicial complexes, computing analytically the entropy of the ensem-

bles [96]. We refer the reader to [28] for a more detailed study of the statistical

mechanics feature of these ensembles.

2.2 Simplicial configuration model

In this section we introduce the simplicial configuration model (SCM) as

the maximally random ensemble that generates simplicial complexes with a

fixed sequence of maximal clique sizes s⃗ = {si}i=1,..,F and nodes total degrees

d⃗ = {di}i=1,..,N ; by a node total degree we mean the number of maximal cliques

that contain that node.

We now show that the random bipartite ensemble of [75] can be re-

interpreted as generating simplicial complexes with high probability when

N → ∞. The general idea is to generate a bipartite graph with a vertex set

F ∪ V where F = {f1, ..., fF} represents the set of maximal cliques (or facets)

and where V = {v1, ..., vN} represents the vertex set of the simplicial complex.

We then assign stubs (half-edges) to each face and vertex according to s⃗ and d⃗.

A random matching of the stubs can then be often interpreted as a simplicial

complex. That is, it will contain multi-edges with vanishing probability. By

multi-edge, we mean that there is two edges or more connecting a node-vertex

vi ∈ V to a node-face fj ∈ F . Moreover it is not always true that the facets size

distribution of the generated simplicial complex is the same as the initial degree
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distribution f⃗ . That is, it will contain fully contained neighbourhoods with

vanishing probability, once some amendment to the construction procedure are

applied. By fully contained neighbourhoods, we mean that the neighbourhood

N (fi) of a node-face fi is completely included in the neighbourhood N (fj) of

node-face fj.

The stub matching scheme can be implemented as follows:

1.a Generate a list of length m =
∑N

i=1 di where vi appears di times, for each

i = 1, .., V ;

1.b Generate a list of length m =
∑F

i=1 si where fi appears si times, for each

i = 1, .., F ;

2 Generate two random permutations, Xv and Xf , of each list;

3 Connect Xv
i to Xf

i for i = 1, ...,m;

4 If both the inclusion and multi edges constraints are satisfied, accept the

graph, otherwise go back to step 2.

The resulting bipartite graph G(V ,F ;E) is then interpreted as a simplicial

complex: The neighbours N (fi) of fi are the vertices that form the maximal

simplex fi, for each i, or equivalently, the neighbours N (vi) of vertex vi are the

facets in which node vi appears.

2.2.1 Correctness of the model

We will now show that with high probability the simplicial complex constructed

by our model has facet size distribution s⃗, and total degree d⃗.
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We will start proving that with high probability, the simplicial complex will

not contain multi-edges following the work by Newman on the configuration

model of bipartite graphs [74]. This is a standard calculation that will serve to

illustrate the principles that we will apply in the more involved analysis of the

next sections.

Theorem 2.2.1. The simplicial complex constructed with the simplicial con-

figuration model will not contain multi-edges.

Proof. The probability that there exist an edge (fi, vj) in E is

Pr[(fi, vj) ∈ E] =
sidj
m

, (2.2.1)

since there is a uniform probability dj/m of finding vertex vj at any position

in Xv, and there is si occurrences of fi in Xf . More generally, there is a

probability

Pr[(fi, vj) ∈ E|(fi, vj)ℓ ∈ E] =
(si − ℓ)(dj − ℓ)

m− ℓ
, ℓ < min{si, dj} (2.2.2)

of having the edge (fi, vj) ∈ E, provided that is has been already observed ℓ

times. The probability that (fi, vj) appears ℓ times in E is therefore

Pr[(fi, vj)
ℓ ∈ E] =

ℓ−1∏
λ=0

Pr[(fi, vj) ∈ E|(fi, vj)λ ∈ E] (2.2.3)

For instance for ℓ = 2,

Pr[(fi, vj)
2 ∈ E] =

si(si − 1) dj(dj − 1)

m(m− 1)
(2.2.4)
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meaning that the probability that any edge appears two times is

Pr[∃ ℓ = 2 ∀(i, j)] =
F∑
i=1

N∑
j=1

Pr[(fi, vj)
2 ∈ E] =

∑
i,j

si(si − 1) dj(dj − 1)

m(m− 1)
=

=
(E[s2]− E[s])(E[d2]− E[d])

(m− 1)
.

(2.2.5)

This goes to zero as 1/m with m → ∞. Since the ensemble is sparse in the

infinite limit (fixed average degrees as N → ∞), N must scale linearly in m.

The probability above there goes to zero as 1/N with N → ∞. Moreover, since

Pr[(fi, vj)
ℓ+1 ∈ E] ≤ Pr[(fi, vj)

ℓ ∈ E] (from Equation (2.2.3)), then triple (or

quadruple, etc.) edges are even less likely than double edges, and will vanish

at least as rapidly as them.

For the constructed simplicial complex to have facet size distribution s⃗.

This means that the cliques corresponding to the facet-nodes, in the one-mode

projection onto the vertex set V , must not be contained into one another. We

show now that with high probability this will not happen.

Lemma 2.2.2. The probability of inclusion between two facets of dimension 2

in a random configuration goes to zero with m→ ∞.

Proof. The probability of constructing a k−size simplex σk = [v1, . . . , vk] is

Pr[{fσ, v1), . . . , (fσ, vk)} ∈ E] =
k!
∏k

i=1 di
m(m− 1) . . . (m− k)

(2.2.6)
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From the calculation above we can compute the probability that 2 different

facets of size 2 are connected to the same nodes.

Pr[{fa, vi), (fa, vj)} ∈ E] =
2 di(dj)

m(m− 1)
(2.2.7)

Pr[{fb, vi), (fb, vj)} ∈ E|{fa, vi), (fa, vj)} ∈ E] =
2 (di − 1)(dj − 1)

(m− 2)(m− 3)
(2.2.8)

The probability that b will be included in a is the following:

Pr[b ⊆ a] =
∑
i,j

4 di(di − 1)dj(dj − 1)

m(m− 1)(m− 2)(m− 3)

=
4

m(m− 1)(m− 2)(m− 3)

(
1

2
[
∑
i

di(di − 1)][
∑
j

dj(dj − 1)]−
∑
i

d2i (di − 1)2

)

=
4

m(m− 1)(m− 2)(m− 3)

(
1

2
(E[d2]− E[d])2 − E[(d2 − d)2]

)
(2.2.9)

This goes to zero as m−4 with m → ∞. This probability upper bounds the

probability of inclusion in a random configuration, which then will also go to

zero with m→ ∞.

Theorem 2.2.3. For every σ, τ maximal simplices of size sσ, sτ respectively,

with sσ ≤ sτ ; we have that

Pr[σ ⊆ τ ] (2.2.10)

goes to zero as m→ ∞.

Proof. it follows from the lemma above.
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2.2.2 Empirical results

Sampling the from SCM

The generalized line-graph representation of simplicial complexes will be the

most useful for discussing the sampling algorithm. In this representation, one

associates a vertex vi ∈ V to each vertex of the complex, as well as a vertex

fj ∈ F to each of its maximal facets; an edge connects vi and fj if vi ∈ fj . Each

vi in this line-graph has degree di (the number of facets in which it partakes),

and each vertex representing a facet has degree si (the facet’s size). To each of

these degrees, one may associate labeled stubs, i.e., distinguishable half-edges

stemming from the associated node. We have defined the support of the SCM

as any simplicial matching of these labeled stubs, i.e., a matching that yields no

multiple memberships of a node to a facet, and no inclusion (a facet containing

all the vertices of another facet). For incidence degree and size sequences of

finite, a random matching of stubs will often contain at least one inclusion or

multiple memberships. An efficient sampler is thus necessary to avoid these

culprit. We now show how to sample efficiently from this support with the

Metropolis-Hasting algorithm.

Metropolis-Hasting algorithm

The Metropolis-Hasting allows the construction of an ergodic Markov chain

over the support of the SCM. One can therefore sample from this chain at

regular interval in lieu of sampling constructing random instances of the model

from scratch. To ensure ergodicity, a move from a matching X to another
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matching X ′ must be accepted with probability

a = min

{
1,
g(X → X ′)

g(X ′ → X)

P(X ′; d⃗, s⃗)

P(X; d⃗, s⃗)

}
(2.2.11)

where g(X → X ′) is the probability of proposing a move from matching X to

matching X ′, and P(X; d⃗, s⃗) is the likelihood of matching X under the SCM of

degree and size sequences d⃗ and s⃗.

Our proposal distribution is the following: We pick two random edges from

the set of m edges, say, (vi, fj) and (vk, fℓ) and replace them by edges (vi, fℓ)

and (vk, fj). However, if the matching leads to a non-simplicial configuration,

then we give this particular proposal a probability of zero. This means that

g(X → X ′) =
1

L(X)
, (2.2.12)

where L(X) is the number of “legal” configuration in the neighborhood of

matching X. Thus, a random move will always be accepted with probability

1, and this move consists of reconnecting two stubs such that the resulting

configuration is simplicial. The resulting chain is, again, ergodic by construction.

It is somewhat costly to verify that a matching is simplicial as a whole.

One must check that no pair of facet is included, and even clever comparison

method will have complexity of the order of O(f). It is, however, much simpler

to check that a move does indeed lead to a simplicial matching, provided that

the base matching is itself simplicial. Indeed, the new matching will only differ

in two places, such that one only has to check the facets in which vertices vi

and vj are involved. More specifically, if vertex vi is disconnected from facet fk

and reconnected to facet fℓ (and vj to fk), then one needs to check that none
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of the di facets {f(vi)} of vi will lead to an inclusion of fℓ. If |fℓ| ≥ |f(vi)|,

then an inclusion will occur if

f(vi)− fℓ = {vi} , (2.2.13)

where the minus sign denotes the set difference.

If |fℓ| ≤ |f(vi)|, then an inclusion will occur if

fℓ − f(vi) = {vj} . (2.2.14)

A similar condition obviously holds for the facets of vj. Since computing the

set difference is a linear operation, the condition is testable in O(E[d]E[s]) time,

which is much more efficient, especially in sparse complexes.

The data sets

We applied the simplicial configuration model to the randomization of two data

sets depicting the corporate leaderships in Chicago [5], and in Minneapolis-

St.Paul [44].

The first example data set we consider is the affiliation data set of corporate

directors from 1962 in the Chicago area studied by Barnes and Burkett [5].

This data set contains the affiliation between 24 companies and 20 people in a

leadership position in those companies. To construct the simplicial complex we

considered as vertices the companies and each facet represents a person in a

leadership position in the companies represented by the vertices.
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As another example, we considered the affiliation data set of club and board

memberships of corporate executive officers studied by Galaskiewicz [44] as

part of his research on the urban grants economy in Minneapolis-St.Paul. We

followed the approach adopted by Faust [39] and focused on a subset of 26

CEOs and 15 clubs/boards from Galaskiewicz’s data. We then constructed

a second simplicial complex in as done for the Barnes-Burkett data set. The

simplicial complexes from these data sets are represented in figure 2.3.

Chicago

John Hancock Mutual

Container Corp of America

Art Institute of ChicagoInland Steel

Northwestern University

Commercial

Sears Roebuck & Co

International Harvester

Museum of Science & Industry

Chase Manhattan Bank
Equitable Life Assurance

University of Chicago

Continental Il.t Nat. Bank & Trust

Armour & Co

Caterpillar Tractor Co

Links

Century

Borg-Warner Corp
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Commonwealth Edison Co
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Barnes-Burkett Corporate Leadership
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Galaskiewicz Corporate Leadership

Fig. 2.3 Visualization of the simplicial complex generated from the Barnes-Burkett
data set (left), and the Galaskiewicz data set (right). Each simplex (in gray) represents
a person in a leadership position in the companies represented by the vertices of the
complex.

To further study the structure of the simplicial complexes we constructed

from data, we computed its homological cycles. We will introduce in detail

the concept of homology in the next chapter (sec. 3.3). We will give now a

practical idea of the concept.
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Homology of dimension k is a functor that assigns to each simplicial complex

a vector space Hk. The generating elements of the vector space Hk are called

the homological k-cycles. In low dimensions the homological cycles can be

interpreted easily as particular features of the simplicial complex: the 0-cycles

represent the connected components, the 1-cycles are cordless cycles not closed

by triangles, the 2-cycles are voids closed by a triangle tessellation. These

structure can be meaningful in understanding particular features of a data

set. These assumptions can then be validated comparing it with the empirical

probability distribution of the ensemble generated by our model.

For each constructed simplicial complex we computed its homological cycles

(javaPlex library [91]). In Figure 2.4 we show the 1 and 2 dimensional cycles

of the simplicial complex constructed from the Barnes-Burkett data sets. The

1-dimensional cycle can be interpreted a set of institutions or corporations for

which corporate interlock is not as tightly bound as in the rest of the data set.

the only two universities in the data set are present in this cycle. Furthermore,

we detected three 2-dimensional cycles in the simplicial complexes. These voids

can be interpreted as a set of institutions or corporations for which there is no

single person in a leadership position in all of them. It is interesting to notice

that these voids are connected to each other through and edge or a triangular

face, as shown in figure 2.4.

To validate these results we sampled the ensemble generated by the simplicial

configuration model with facet size and incidence degree sequences fixed by

the Barnes-Burkett, and the Galaskiewicz data sets. We sampled the two

ensembles with the algorithm described above, and computed the homology of

each sampled simplicial complex.
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Commonwealth Edison Co
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Barnes-Burkett Corporate Leadership

Commonwealth Edison Co
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Fig. 2.4 Visualization of the 1-dimensional cycle (in green) and of the 2-dimensional
cycles (in red) of the simplicial complex generated from the Barnes-Burkett Corporate
Leadership data set.

In figure 2.5 we show the sampling distribution of the number of cycles

in a simplicial complex, called Betti number, for the two ensembles. We can

see that in both cases the probability to generate a simplicial complex with

only one connected component is 1, which might depend on the small sizes

of the data sets we considered. Moreover, we can notice how unlikely is the

emergence of 1 and 2- dimensional cycles in the configuration generated from

the Barne-Burkett data set, validating our findings. On the other hand, from

the sampling distribution obtained on the Garlaskewicz data’s ensemble we can

deduce that the absence of homology in the real simplicial complex is quite

probable. Meaning that, in this case, homology might not be the best tool to

analyse the data.
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Fig. 2.5 Sampling distribution for the Betti number (dimensions 0,1, and 2) of two
different ensembles of simplicial complexes generated with the simplicial configuration
model. On the left, the ensemble with fixed size distribution and incidence degree
distribution from the Barnes-Burkett Corporate Leadership data set, whose real Betti
numbers are β0 = 1, β1 = 1, β2 = 3. On the right, the ensemble with fixed size
distribution and incidence degree distribution from the Galaskiewicz data set, whose
real Betti numbers are β0 = 1, β1 = 0, β2 = 0.

2.3 Generating random simplicial complexes

The simplicial configuration model can be used to generate random simplicial

complexes with fixed size and incidence degree picked randomly. For the results

shown in the previous section to hold, some constraints have to enforced to at

least one of the randomly chosen sequences. Here we introduce the constraint

necessary to be satisfied by the incidence degree distribution d⃗, given a facet

size sequence s⃗. From these constraints one can easily deduce the inverse case,

when given an incidence degree distribution, one wants to randomly match a

facet size sequence.

2.3.1 Constraints on the sequences

This ensemble will be defined as long as the sequences d⃗ and s⃗ satisfy a number

of constraints, analogous to that of [75].
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First we are introducing a number of constraints that ensure that the

sequences are compatible with each other, that is for the matching of stubs to

be possible the nodes V and the nodes F must have the same number of stubs.

That is, if the sequences d⃗ and s⃗ are specified directly, they must verify the

following equation:
F∑
i=1

si =
N∑
i=1

di . (2.3.1)

Alternatively, if s⃗ and d⃗ are drawn from distributions Ps and Pd of expectations

E[s] and E[d] , then we must have

FE[s] = NE[d] , (2.3.2)

which can also be written as

αE[s] = (1− α)E[d] , (2.3.3)

if we define the degrees to faces ratio α = F/(N + F ). This ensures that

sequences drawn from Ps and Pd will be compatible, on average.

Now we are going to introduce a number of constraints depending on the

nature of the sequences, that is, the fact that the node-facets must be maximal

for inclusion in the resulting simplicial complex.

Proposition 2.3.1 (Maximum number of vertices). For any given size sequence

s⃗, the degree sequence d⃗ which allows the maximal number of vertices Vmax

in the simplicial complex is the one where di = 1 for all i = 1, . . . , Vmax, and

Vmax = m.

Up to isomorphisms, the only allowed configuration will be a simplicial complex
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with F connected components, one per maximal simplex. The Betti number of

the generate simplicial complex will be β0 = F , and βk = 0 for all k > 0.

Proof. Obvious.

Lemma 2.3.2. If the size sequence s⃗ = {s} has only one element, then the

only configuration allowed is an s− 1-simplex, and d⃗ = {di = 1|i = 1, . . . , s}.

Proposition 2.3.3 (Minimum number of vertices). For any given size sequence

s⃗ with F > 1. The minimal number of vertices Vmin that can be in a simpli-

cial complex with that specific facet size sequence, must satisfy the following

inequalities:

max(s⃗) + 1 ≤ Vmin ≤ max(s⃗) + F − 1 (2.3.4)

Proof. We will prove the inequalities separately.

• Vmin ≤ max(s⃗) + F − 1. First, we need to prove that for every size

sequence s⃗, there always exists a simplicial complex with max(s⃗) + F

vertices with size sequence s⃗.

Let s⃗ be a size sequence, and V = w ∪ f a vertex set where card(w) =

max(s⃗)− 1 and card(w) = F . For every facet σ of size k, card(σ ∩ w) =

k − 1 and there exists a unique fσ ∈ f such that fσ ∈ σ and fσ /∈ τ ,

where τ is any facet in the simplicial complex not in σ.

Finally, we need to prove that there exists a size sequence s⃗, for which

max(s⃗)+F is the minimum number of vertices one would need to construct

a simplicial complex with size sequence s⃗. The equality is verified when

si = k for all i = 1, . . . , F with F > k.
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• Vmin ≥ max(s⃗) + 1. We notice first that the configuration model needs

to have enough vertices to construct the facet of maximal size.

Vmin ≥ max(s⃗) (2.3.5)

Since F > 1, there are at least two facet-nodes σ, τ with sizes sσ ≥

sτ = max(s⃗). If V = max(s⃗), this would imply that σ ⊆ τ against the

hypothesis of maximality under inclusion of facets. Therefore, there must

exist a vertex v̄ /∈ τ such that v̄ /∈ σ, which gives us a new lower boundary

for Vmin:

Vmin ≥ max(s⃗) + 1 (2.3.6)

The equality is going to be verified only for those sequences s⃗ = {sk for k =

1, . . . , F} such that a set of max(s⃗) elements can have F − 1 non over-

lapping sets of sizes {sk − 1| for k = 1, . . . , F and sk ̸= max(s⃗)}. For the

other cases Vmin can be computed solving the set of equation 2.3.7.

Let nk =
∑

i δsi=k be the number of facets of size k. The equality is

verified under the following condition:

max(s⃗) ≥
∑

k ̸=max(s⃗)

xk (2.3.7)

where xk = min{x|
(

x
k−1

)
≥ nk} that is, the minimum number of vertices

that have at least nk subsets of cardinality k− 1. The simplicial complex

satisfying 2.3.7, will have max(s⃗) which form the facet of maximal size

τ and a vertex v̂ /∈ τ . For every facet σ ̸= τ of size k, v̂ ∈ σ and

card(σ ∩ τ) = k − 1.
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Proposition 2.3.4 (maximal degree constraints). There can be at most min(s⃗)−

1 vertices with degree F .

Proof. If there were min(s⃗) with degree F , this would imply that there were

min(s⃗) in common with all facets. Then the maximality of facets of size min(s⃗)

would not be verified anymore.

Corollary 2.3.5. If min(s⃗) = 1 then max d⃗ < F .

Proof. Follows from Theorem 2.3.4.

Remark 2.3.5.1. It is useful to notice that 1-cliques can only be maximal if

they contain a single, disconnected vertex. This implies that we must have at

least the same number vertices of degree one as maximal 1-cliques. It implies

that the sequences must satisfy the following inequality:

F∑
i=1

siδsi,1 ≤
N∑
i=1

diδdi,1 . (2.3.8)

Therefore they can be matched beforehand. Therefore, without loss of generality

we can assume that :

min(s⃗) > 1 . (2.3.9)

These results enable us to construct random sequences which are simplicial,

and justify the use of the simplicial configuration model as a random simplicial

complexes generator. Moreover, these results can be used to facilitate the

execution of the algorithm introduced in 2.2, performing the following simplifi-

cation to the input sequences we can avoid the cases that force only one type
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of matching, i.e. where max(d) < F and min(s) > 1. Theorem 2.3.4 and and

remark 2.3.5.1 imply that these additional steps are not going to compromise

the ensemble. Therefore, we can suppose the following step to be run before

the SCM on the input sequences.

1. Connect all facet-nodes of degree 1 with random chosen vertices with

degree 1. Remove the respective elements from the sequences s⃗, and d⃗.

2. Connect all vertices with degree F with all the facets. Remove the

respective elements from d⃗, and for every element removed in d⃗, and

correct the number of stubs in s⃗.

3. If there are facet-nodes of degree 1 in the updated s⃗, repeat the procedure

from 1. Otherwise proceed with the algorithm.

2.4 Future work

In the previous sections, we introduced the Simplicial Configuration Model and

proved its correctness. We tested our model on real datasets and we showed

empirically how it can be used to validate the existence of homological cycles.

Homology is an important tool in topoological data analysis since it can discern

the shape of the data set. For this reason, it would be useful to be able to

account for the probability of occurance of homological cycles in the ensemble.

Regrettably the algebraic nature of the definition of homological cycles, make

any analytical computation of their number quite ardous. Therefore, we decided

to work on extracting an upper boundary on the number of 1-dimensional

homological cycles in the ensamble. To achieve this we intend to compute the
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probability to have N cordless cycles in the simplicial complexes generated in

the ensemble. We introduce now some preliminary results we obtained on this

project.

2.4.1 Existence of cordless cycles

A cordless cycle of length 2ℓ in the bipartite graph is going to be a representative

of a cycle of length ℓ in the simplicial complex. The probability P(cℓ) of having

a cycle c of length ℓ in the simplicial complex is equal to the probability to

have a cordless cycle of length 2ℓ in the bipartite graph. This probability is

given by P(cℓ) = P(len(c) = 2ℓ)∪ P(c has no chords), the probability to have a

.

The probability to have a cycle c is the probability that each node in the

cycle is connected to only two others in c:

P(len(c) = 2ℓ) =
ℓ∏

i=1

di(di − 1)
ℓ∏

k=1

sk(sk − 1)

(
(m− 2ℓ)!

m!

)2

(2.4.1)

The probability that a cycle does not have a chord is equal to the probability

that the remaining d − 2 stubs of a node (chosen with probability p(d)) are

connected with d− 2 stubs randomly chosen from all the nodes not in c, and

same goes for the nodes of type s, which gives:

P(c has no chords|len(c) = 2ℓ) =

=

[(
m− σd
σs − 2l

)(
m− 2l

σs − 2l

)−1
][(

m− σs
σd − 2l

)(
m− 2l

σd − 2l

)−1
] (2.4.2)

where σs =
∑ℓ

k=1 sk, and σd =
∑ℓ

i=1 di.
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Therefore the final probability is:

P(cℓ) = P(len(c) = 2ℓ|c has no chords) =

=
∑
I,K

ℓ∏
i=1

di(di − 1)
ℓ∏

k=1

sk(sk − 1)

[
(m− σs)!(m− σd)!

m!(m− σs − σd + 2ℓ)!

]2 (2.4.3)

If m >> σs and m >> σd then, using Stirling approximation, the probability

scales as
(

e4 d2 s2

m4

)ℓ
for m→ ∞.

We are now able to derive the probability for a simplicial complex in the

ensemble to have a cordless cycle of length l. We believe this is a promising

result, and we intend to further develop this study to give a more complete

description of the occurrence of cordless cycles in the ensemble.

In the next chapter we are going to study in details the relationships

between the different categories involved in the topological analysis of weighted

networks. We are then going to use our results to give correct guidelines for

the construction of appropriate simplicial complexes.



Chapter 3

Weighted graphs and P-Persistent

homology

In the previous chapters we focused on how simplicial complexes can prop-

erly represent the shape of data, but, as we noted in Section 1.2, most of

the techniques available for the construction of simplicial complex are highly

dependent on the choice of one, or more parameters (e.g. the ball radius in the

Vietoris-Rips complexes). In order to study how the parameter choice influences

the shape of the simplicial complexes, Edelsbrunner et al. [38], Cagliari et al.

[18], Carlsson [19] independently introduced the concept of P -persistence.

In this chapter we use the abstract framework of category theory to get

a closer look at the key ideas behind P -persistent homology expanding on

the work by Bubenik and Scott [17], Chazal et al. [23] in order to obtain a

clear understanding of the mathematical structure behind the observation done

in Petri et al. [86] that embedding a weighted network into a metric space
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generally obfuscates most of its interesting structures, which become evident

when one focuses on the weighted connectivity structures without enforcing a

metric.

Our aim is to discover an equivalence of categories which highlights the

correct approach to apply topological methods to weighted networks. In section

3.1 we introduce the categories involved in this process (topological spaces,

simplicial complexes, and graphs) and how they relate to one another. By

the end of this section the reader will have a categorical view, summarized

in diagram 3.1.4, of how the information of underlying topological spaces is

encoded in simplicial complexes and graphs.

S π //

O◦π

55P ≃ T 0
f

O // F ∼=

k1

<<
G

Cl
{{

(3.1.4)

In section 3.2 we define the categories that are the main focus of our research:

the category of weighted graphs GP , and that of P -persistent graphs GP . We

then prove the equivalence between the sub-categories of weighted graphs

whose morphisms preserve the poset structure of the weights GP , and that of

one-critical P -persistent graphs GP
1 .

Furthermore, we show that there exist adjoint functors that describe the

relation between the sub-categories involved in the equivalence and the other

sup-categories.

Finally in the last section we introduce the concept of homology and use

the equivalence found in the previous section to give an explanation of the

observations done by Petri et al. in [86].
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3.1 Basic Notions

A category consists of a collections of objects and a collection of morphisms.

Every morphism has a source object and a target object. If f is a morphism

with x as its source and y as its target, we write f : x→ y. In a category, we

can compose two morphisms f : x → y, and g : y → z in order to obtain a

third morphism of the category f ◦ g : x → z. In a category composition is

an associative operation and satisfies the left and right unit laws. Moreover,

source and target are respected by composition and by the identities.

A functor is a mapping between categories which associates to each object

x in C an object F (x) in D, and to each morphism in C a morphism in D such

that the following conditions hold:

F (idx) = idF (x) (3.1.1a)

F (g ◦ f) = F (g) ◦ F (f)F (g ◦ f) = F (g) ◦ F (f) (3.1.1b)

for every object x in C, for all morphisms f : x→ y g : y → z in C.

3.1.1 The category of topological spaces

We start with a few considerations on finite topological spaces i.e. topological

spaces with a finite number of elements, which we imagine to be given as some

sampling taken from a dataset. Finiteness is not a constraint for our purposes,

since every application will have a finite data space.

Finite topological spaces form a subcategory, denoted by Tf , of the category

T of topological spaces and continuous maps.
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A T0 space is a topological space such that for any two different points

x and y there is an open set which contains one of these points and not the

other. Two such points will be called topologically distinguishable. It is clear

that this property is highly desirable in order to be able to extract meaningful

information from a topological space.

In this paper we will denote by T 0
f the category of finite T0−spaces.

From here on when we write topological space we will intend finite topological

space if not elsewhere stated.

It may happen that a space we are working with is not T0, but this difficulty

is easily overcome as shown by the following known proposition:

Proposition 3.1.1 ( [4, §1.3]). Let X be a finite space not T0. Let X/ ∼ be

the Kolmogorov quotient of X defined by x ∼ y if it does not exists an open set

which contains one of these points and not the other. Then, X/ ∼ is T0 and

the quotient map q : X → x0 is a homotopy equivalence.

The Kolmogorov quotient X → X/ ∼ induces a functor from the category of

topological spaces to the category of T0−spaces.

Since homology is defined up to weak homotopy equivalence, the Kolmogorov

quotient allows us to restrict our analysis from general topological spaces to

T0−spaces without any loss of information.

Finite T0−spaces are posets

A partially ordered set, or poset, is a pair P = (P,≤), where P is a set and ≤

is an order relation on it, i.e. a reflexive, antisymmetric, and transitive relation

on P. Posets form a category, denoted by P, where morphisms are the order
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preserving functions. We will restrict ourselves to study only to finite posets,

since in real applications we will always be working with finite sets.

Every poset P is a category on its own, where the objects are the elements

of P , and there is a (unique) morphism x → y if and only if x ≤ y, for all

x, y ∈ P.

Theorem 3.1.2. There is an isomorphism of categories:

T 0
f
∼= P

Proof. Let X ∈ T 0
f , for x ∈ X let Ux be the intersection of all the closed sets

in X that contain x. Then we can give in X an order relation in the following

way:

x ≤ y ↔ Ux ⊆ Uy (3.1.2)

Since X is T0 this relation is a partial order. In this way we have a correspon-

dence X 7→ (X,≤) which induces a functor T 0
f → P .

On the other end, a poset P ∈ P is also a topological space via the Alexandrov

topology. In this topology the closed sets are the lower sets: Γ ⊂ P such

that ∀x, y ∈ P with x ∈ Γ and y ≤ x implies that y ∈ Γ. A poset endowed

with this topology satisfies the T0 condition. The assignment of this topology

on P induces a functor P → T 0
f which is left and right inverse of the previous

one, that is:

T 0
f
∼= P (3.1.3)

We refer the reader to [4, Ch. 1] for details.



3.1 Basic Notions 57

From now on, we will identify any X ∈ Tf with the poset associated to its

Kolmogorov quotient i.e., by abuse of notation, we will write

X = (X,≤) = (X/ ∼,≤)

where ≤ is the order relation given in (3.1.2).

3.1.2 The category of simplicial complexes

Let us consider now abstract simplicial complexes, introduced in Chapter

1. Simplicial complexes form a category, S, where a morphism of simplicial

complex is called simplicial map and is given by a map on vertices such that

the image of a face is again a face. We are going to remind some well known

relations between simplicial complexes, topological spaces and posets which

will be useful to have a general idea of what are the categorical relation that

we exploit when we analyse data through simplicial complexes.

Proposition 3.1.3. There exists a functor O : P → S which associates to

every poset P a simplicial complex, called the order complex.

Proof. For every P ∈ P we can construct a simplicial complex as follows:

[x0, . . . , xk] ∈ O(P ) if and only if x0 < x1 < · · · < xk, for all xj ∈ P .

O(P ) is called the order complex of P .

Every simplicial complex can be made into a topological space by considering

it a poset, i.e. Γ ⊆ Σ is closed if and only if Γ is a simplicial complex. This

gives a functor π : S → P ≃ T 0
f by π(Σ) = (Σ,⊆) the poset with elements the
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simplices in Σ and as partial order the inclusion of simplices.

Given a simplicial complex Σ we write O(Σ) := O(π(Σ)). The simplicial

complex O(Σ) is the barycentric subdivision of Σ.

By abuse of notation we will also write O(X) := O(X/ ∼,≤) for all X ∈ Tf

via the isomorphism in Theorem 3.1.2.

It is well known that Σ and O(Σ), endowed with the Alexandrov topology,

are weakly homotopy equivalent. We refer the interested reader to [4] for further

details.

3.1.3 The categories of graphs

A reflexive graph is a pair G = (V,E), where V is a finite set whose elements

are called vertices, and has an edge (v, v), called self-loop, for every vertex

v ∈ V , specifically the set E is composed by E = ∆V×V ∪ E ′ with E ′ ⊆(
V
2

)
. Equivalently, reflexive graphs can be seen as one dimensional simplicial

complexes identifying self-loops and vertices with 0-simplices and edges with

1-simplices. We will denote by G the category with objects reflexive graphs

and morphisms the simplicial maps defined via the given identification with

one dimensional simplicial complexes.

It should be clear that G is isomorphic to the full subcategory of S whose

objects are the one dimensional simplicial complexes. Moreover, it is useful to

notice that the null graph G∅ = (∅, ∅) is an object in G, since graphs in G are

defined as G = (V,E).
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Given a graph G ∈ G there is a covariant functor, Cl : G → S, called the

clique functor given by [v0, . . . , vk] ∈ Cl(G) if and only if (vi, vj) ∈ E for all

0 ≤ i ̸= j ≤ k.. This functor is well defined because (v, v) 7→ [v], for all v ∈ V.

Viceversa there is a functor k1 : S → G where, given a simplicial complex

Σ, k1(Σ) is the (reflexive) graph corresponding to the 1−skeleton of Σ.

It is important to notice that in general Σ ̸= Cl(k1(Σ)). For example, if

we consider the simplicial complex Σ = {[a], [b], [c], [a, b], [a, c], [b, c]}, the clique

complex of its underlying graph is Cl(k1(Σ)) = Σ ∪ {[a, b, c]}.

Following this formalism, we can redefine a flag complex as a simplicial

complex Σ for which Σ = Cl(k1(Σ)). Flag complexes form a subcategory of S

denoted by F .

Remark 3.1.3.1. It is easy to see that the order complex O(X) is a flag complex

for all X ∈ Tf . In particular this implies that, for all Σ ∈ S, the barycentric

subdivision O(Σ) is a flag complex.

Proposition 3.1.4. The functors Cl : G → F and k1|F : F → G give an

isomorphism G ≃ F .

Proof. Obvious.

Summarizing:

S π //

O◦π

55P ≃ T 0
f

O // F ∼=

k1

<<
G

Cl
{{

(3.1.4)
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3.2 P -weighted graphs and P -persistent objects:

equivalences and adjunctions

Let P ∈ P be a poset and G = (V,E) ∈ G a (reflexive) graph, let us denote

by G ∈ S the corresponding one dimensional simplicial complex. A P −

weighted graph is a pair (G,ω), where ω : (G,⊆) → P is a morphism of posets,

that is a function G→ P continuous in the Alexandrov topology. We define

as GP the category of P−weighted graphs, having objects P−weighted

graphs and whose morphisms α : (G,ω) → (H, θ) are induced by a simplicial

map ρ : G → H, such that α(Gv) ⊆ Hv, where, for any v ∈ P , Gv = {x ∈

G |ω(x) ≤ v}.

Following [19, Section 2.3], we introduce a P -persistent object in A as

a functor φ : P → A, where P be a poset and A an arbitrary category. P -

persistent objects in A with their natural transformations form a category,

which we will denote, as usual, by AP . Given two categories A and B, to

any functor ϕ : A → B it corresponds a functor AP → BP . It is given by

φ ∈ AP 7→ ϕ ◦ φ. It will be denoted by ϕP .

We define two functors that relate to each other the category of weighted

graphs GP and that of P -persistence weighted graphs GP .

Proposition 3.2.1. For all P ∈ P , there is a functor ΦP : GP → GP .

Proof. Let (G,ω) ∈ GP . From the definition of Gv we have that Gu ⊆ Gv for

every u ≤ v.

We can associate to (G,ω) ∈ GP a P−persistent object in φG ∈ GP , namely

φG(v) = Gv with the inclusions maps φG(u ≤ v) : Gu ↪→ Gv for all v ∈ P ,
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u ∈ Pv. It is easy to check that the correspondence (G,ω) → φG is natural in

G. Therefore ΦP is a functor between the two categories.

Proposition 3.2.2. For all P ∈ P there exists a functor ΨP : GP → GP .

Proof. Choose φ ∈ GP , and, for every v ∈ P , set φv := φ(v) ∈ G.

Let ωφ :
∐

v∈P φv → P be given by ωφ|φv = v. It is easy to check that

the correspondence φ 7→ (
∐

v∈P φv, ω
φ) is natural in φ, thus giving a functor

ΨP : GP → GP .

3.2.1 Equivalence

Let ḠP be the subcategory of GP with the same objects, and morphisms the

maps α : (C, ω) → (D,ω′) such that for every x ∈ G, ω′(α(x)) = ω(x). We set

Φ̄P as the restriction of ΦP to ḠP .

Remark 3.2.2.1. It is useful to notice that, actually, ΨP : GP → ḠP . Since

ΨP (φ) ∈ Ob(GP ) = Ob(ḠP ) for all φ ∈ GP , we just show that ΨP (µ) preserves

weights for every µ : φ → τ ∈ GP . Indeed from the definition of the weights

ωφ, ωτ we have that (ωφ)−1(u) = φu then ΨP (µ)(φu) ⊆ τu = (ωτ )−1(u).

Let GP
ι be the subcategory of GP whose objects are φ ∈ GP such that the

morphisms φ(u ≤ v) : φ(u) → φ(v) are inclusions.

We set Ψι
P as the restriction of ΨP to GP

ι .

Following Carlsson and Zomorodian [20] we introduce the concept of one

critical P−persistent object. Let φ ∈ GP
ι . φ is said to be one-critical if for all

v ∈ P , for all (x, y) ∈ Eφ(a)

∃! mxy = min{u ∈ P |φuv(x, y) = (x, y)} (3.2.1)
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The one-critical P -persistent objects form a subcategory of GP
ι , which will be

denoted by GP
1 . We set Ψ1

P as the restriction of ΦP to GP
1 .

Remark 3.2.2.2. It is useful to notice that ΦP : GP → GP
1 . Indeed consider

(G,ω) ∈ GP . By definition of ΦP , it is clear that φG ∈ GP
1 , with mxy = ω(x, y).

Theorem 3.2.3. The categories GP
1 and ḠP are equivalent.

Proof. It is a well known fact in category theory that a functor is an equivalence

if and only if it is full, faithful and essentially surjective. To prove the equivalence

of category we then need to verify that ΦP has these three properties.

Consider (G,ω), (H, θ) ∈ ḠP , and α ∈ homḠP
((G,ω), (H, θ)). The functor

ΦP is essentially surjective if it is surjective on objects up to isomorphism.

Let φ ∈ GP
1 , then we can construct (G,ω) ∈ ḠP by G :=

⋃
a∈P φ(a) and

ω((x, y)) = mxy (see 3.2.1). It follows that ΦP ((G,ω)) is such that, for all

u ∈ P, one has φG(u) = {x ∈ G| ω(x) ≤ u} =
⋃

a∈P ;a≤u φ(a)
∼= φ(u) by

definition of φ.

The functor ΦP is full if the map

ΦP ((G,ω), (H, θ)) : homḠP
((G,ω), (H, θ)) → homGP

1
(φG, φH)

is surjective for all (G,ω), (H, θ) ∈ ḠP .

Consider a morphism ρ : φG → φH in GP
1 . Let α : EG → EH be given

by α((x, y)) = ρω(x,y)(x, y), for every (x, y) ∈ EG. Then α is a morphism

(G,ω) → (H, θ) in ḠP , because from ρω(x,y) : φG(ω(x, y)) → φH(ω(x, y)) we

have that θ(α((x, y))) = ω(x, y). It is clear that ΦP (α) is ρ by the definitions

of ΦP and α.
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As last step, we prove that ΦP is said faithful, i.e. that the map

ΦP ((G,ω), (H, θ)) : homḠP
((G,ω), (H, θ)) → homGP

1
(φG, φH)

is injective for all (G,ω), (H, θ) ∈ ḠP .

Consider α, β ∈ homḠP
((G,ω), (H, θ)) such that Φ(α) = Φ(β). This means that

Φ(α)v = Φ(β)v for all v ∈ P , but this implies that α|Gv = β|Gv for all v ∈ P ,

then α = β.

3.2.2 Adjunctions

Beside the equivalence in Th.3.2.3, there are also some results on the relation-

ships between the other categories involved.

Theorem 3.2.4. Φ̄P is left adjoint of ΨP , that is

homḠP
((X,ω),ΨP (φ)) ∼= homGP (Φ̄P ((X,ω)), φ)

Proof. Let π : (X,ω) → (
∐

P Xu, ω
φX ) given by π(x) = (x, ω(x)) ∈ Xω(x), for

every x ∈ (X,ω). This map is well defined and is actually a morphism in the

category ḠP since ωφX (π(x)) = ωφX ( (x, ω(x)) ) = ω(x).

To prove the assumption we will show that, for every α ∈ homḠP
((X,ω),ΨP (φ)),

there is a unique morphism in GP , ᾱ : Φ̄P ((X,ω)) → φ such that the following

diagram commutes

(X,ω) π //

α

��

ΨP (Φ̄P ((X,ω)))

ΨP (ᾱ)ww

ΨP (φ)

(3.2.2)
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Let α ∈ homḠP
((X,ω), (

∐
P φ(u), ω

φ)), then α will be such that ωφ(α(x)) =

ω(x), for every x ∈ (X,ω). By construction of ωφ, we will have that α(x) ∈

φ(ω(x)), and, with a little abuse of notation, we will write α : x 7→ (α(x), ω(x)).

Let ᾱ : Φ̄P ((X,ω)) → φ be the morphism in GP defined through ᾱ|Xu :

Xu → φ(u) with ᾱ|Xu(x) = φω(x)u(α(x), ω(x)), where φω(x)u = φ(ω(x) ≤ u) :

φ(ω(x)) → φ(u).

We still have to show that diagram 3.2.2 commutes, i.e. ΨP (ᾱ) ◦ π = α.

Let x be an element of (X,ω) with weight ω(x), then π(x) = (x, ω(x)) ∈ Xω(x),

so ᾱ(π(x)) = φω(x)ω(x)(α(x), ω(x)) = (α(x), ω(x)). It follows that the diagram

commutes and this proves the adjuction.

There is another adjunction.

Theorem 3.2.5. Ψι
P is left adjoint of ΦP .

In order to prove this theorem we need some technical lemmata.

Lemma 3.2.6. There is a natural transformation ϵ : Ψι
PΦP −→ 1GP

.

Proof. Consider (G,ω) ∈ GP , then

GP
ΦP // GP

ι

Ψι
P // GP

(G,ω) � // {Gv} � // (
∐

v∈P Gv, ω
φG)

(3.2.3)
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Define now ε(G,ω) as follows:

ε(G,ω) : (
∐

v∈P Gv, ω
φG) −→ (G,ω)

(x, u) 7→ x
(3.2.4)

This map is well defined since ωφG((x, u)) = u ≥ ω(x) = ω(ε(G,ω)(x, u)).

Consider now (F, τ), and α : (G,ω) → (F, τ) in GP , trivially the following

diagram commutes:

(G,ω)
Ψι

P ◦ΦP
//

α

��

(
∐
v∈P

Gv, ω
φG)

ε(G,ω)
//

Ψι
P (ΦP (α))

��

(G,ω)

α

��

(F, τ)
Ψι

P ◦ΦP

// (
∐
v∈P

Fv, ω
φF ) ε(F,τ)

// (F, τ)

(3.2.5)

ε is the natural transformation we were searching for.

Lemma 3.2.7. There is a natural trasformation η : Ψι
PΦP −→ 1GP

ι
.

Proof. Consider φ ∈ GP
ι , Φ ◦Ψ(φ) = (

∐
u≤v ϕ(u),⊆).

GP
ι

Ψι
P // GP

ΦP // GP
ι

{φ(v),⊆}v∈P � // (
∐

v∈P φ(v), ω
φ) � // {

∐
u≤v φ(u),⊆}

(3.2.6)

Define now ηφ as follows:

ηφ : φ(v) →
∐

u≤v φ(u)

x 7→ (x, v)
(3.2.7)
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Consider now θ, and α : φ→ θ in GP
ι , the following diagram commutes:

φ(v)
ηφ
//

αv

��

∐
u≤v

φ(u)

∐
αu

��

θ(v)
ηθ //
∐
u≤v

θ(u)

(3.2.8)

where for every (x,w) ∈
∐

u≤v φ(u),
∐
αu((x,w)) = (α(x), w).

η is the natural transformation we were searching for.

Proof of Theorem 3.2.5. We prove the unit-counit adjunction, with ε and η

the natural transformations defined in Lemma 3.2.6, and 3.2.7.

To prove the adjunction we verify that the following compositions are the

identity transformation of the respective categories.

ΦP

idGP

OO

ηΦ
// ΦPΨ

ι
PΦP

Φε // ΦP Ψι
P

idGP
ι

OO

Ψη
// Ψι

PΦPΨ
ι
P

εΨ // Ψι
P (3.2.9)

which means that for each (G,ω) in GP and each φ in GP ,

1Ψι
P (φ) = εΨι

P (φ) ◦Ψι
P (ηφ) (3.2.10)

1ΦP ((G,ω)) = ΦP (ε(G,ω)) ◦ ηΦP ((G,ω)) (3.2.11)
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We start by verifying equation 3.2.10. Let φ ∈ GP
ι , we know that ηφ : φ −→

ΦP ◦Ψι
P (φ) is a natural transformation defined for every v ∈ P by

ηφ(v) : φ(v) −→ ΦP (Ψ
ι
P (φ))(v) =

∐
u≤v φ(u)

x 7→ (x, v)
(3.2.12)

Then

Ψι
P (ηφ) : Ψ

ι
P (φ) → (

∐
v∈P

ΦP (Ψ
ι
P (φ))(v), ω

ΦPΨι
P (φ)) = (

∐
v∈P

∐
u≤v

φ(u), ωΦPΨι
P (φ)),

where ωΦPΨι
P (φ)|∐

u≤v φ(u) = v. From the definition of ε we gave in Lemma 3.2.6,

we deduce that

εΨι
P (φ) : Ψ

ι
P ◦ ΦP (Ψ

ι
P (φ)) −→ Ψι

P (φ).

One has that Ψι
P ◦ΦP (Ψ

ι
P (φ)) is the weighted graph (

∐
v∈P

Ψι
P (φ)v , ω

ΦPΨι
P (φ)),

where Ψι
P (φ)v = {x ∈ Ψι

P (φ)|ωφ(x) ≤ v} =
∐
u≤v

φ(u), and ωΦPΨι
P (φ)|∐

u≤v φ(u) =

v.
εΨι

P (φ) : (
∐
v∈P

∐
u≤v

φ(u), ωΦPΨι
P (φ)) −→ Ψι

P (φ)

((x, u), v) 7→ (x, u)

(3.2.13)

where Ψι
P (φ) = (

∐
v∈P

φ(v), ωφ), with ωφ|φ(v) = v.

Then εΨι
P (φ) ◦Ψι

P (ηφ) = 1Ψι
P (φ) as the following shows:

(
∐
v∈P

φ(v), ωφ)
Ψ(ηφ)−−−→ (

∐
v∈P

∐
u≤v

φ(u), ωΦPΨι
P (φ))

εΨι
P

(φ)

−−−−→ (
∐
v∈P

φ(v), ωφ)

(x, v) 7→ ((x, v), v) 7→ (x, v)

(3.2.14)
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We verify now identity 3.2.11. Consider (G,ω) ∈ GP , we have that

ηΦP ((G,ω)) : ΦP ((G,ω)) → ΦP ◦Ψι
P (Φ((G,ω)))

where ΦP ((G,ω))(v) = Gv, with Gv = {x ∈ G|ω(x) ≤ v}. For every v ∈ P , we

find that ηΦP ((G,ω)) is determined by:

ηΦP ((G,ω))(v) : Gv −→
∐
u≤v

Gu

x 7→ (x, v)

(3.2.15)

Considering that ε(G,ω) : (
∐
v∈P

Gv, ω
φG) 7→ (G,ω), where ωφG|Gv = v. We

have that ΦP (ε(G,ω)) is defined for every v ∈ P :

ΦP (ε(G,ω))(v) : ΦP (Ψ
ι
P ◦ ΦP ((G,ω)))(v) −→ ΦP ((G,ω))(v) (3.2.16)

where

ΦP (Ψ
ι
P ◦ΦP ((G,ω)))(v) = {(x, u) ∈

∐
v∈P

Gv s.t. ωφG((x, u)) = u ≤ v} =
∐
u≤v

Gu

and ΦP ((G,ω))(v) = Gv. This gives the following natural transformation:

Gv

ηΦP ((G,ω))(v)−−−−−−−→
∐
u≤v

Gu

ΦP (ε(G,ω))(v)−−−−−−−−→ Gv

x 7→ (x, v) 7→ x

(3.2.17)

which proves that ΦP (ε(G,ω)) ◦ ηΦP ((G,ω)) = 1ΦP ((G,ω)).
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3.3 Application to homology: multi-persistent

homology

Algebraic topology constructs appropriate algebraic objects to apply on topo-

logical spaces in order to discern their properties. Homology theory does so by

introducing functors from the category of topological spaces (or some related

category) and continuous maps to the category of modules over a commutative

base ring, such that these modules are topological invariants.

In this section we will show how homology is affected by the results we

found in the previous section. To do so, we will first introduce homology over

simplicial complexes, which are our main setting, and we will then proceed to

define it over general topological spaces.

Simplicial homology

Fixed a field k, in the following, by vector space we intend a k−vector space.

Given a simplicial complex Σ of dimension d, for 0 ≤ n ≤ d consider the vector

spaces Cn := Cn(Σ) with basis the set of n-faces in Σ. Elements in Cn are

called n-chains.

The linear maps sending a n-face to the alternate sum of it’s (n− 1)-faces

are called boundaries and share the property ∂n−1 ◦ ∂n = 0.
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∂n : Cn −→ Cn−1

[p0, . . . , pn] →
n∑

i=0

(−1)i[p0, . . . , pi−1, pi+1, . . . , pn].

The subspace ker ∂n of Cn is called the vector space of n-cycles and denoted

by Zn := Zn(Σ). The subspace Im ∂n+1 of Cn, is called the vector space of

n-boundaries and denoted by Bn := Bn(Σ).

Remark 3.3.0.1. From ∂n−1 ◦ ∂n = 0 it follows that Bn ⊆ Zn for all n.

The n−th simplicial homology space of Σ, with coefficients in k, is the

vector space Hn := Hn(Σ) := Zn/Bn. We denote by βn := βn(Σ) the rank of

Hn : it is usually called the n-th Betti number of Σ.

The first Betti numbers of Σ have an easy intuitive meaning: the 0-th Betti

number is the number of connected components of Σ, the first Betti number is

the number of two dimensional (poligonal) holes, the third Betti number is the

number of three dimensional holes (convex polyhedron).

Remark 3.3.0.2. It easy to check that Cn,Zn,Bn and, therefore, Hn are all

functors S → Vectk, where Vectk denotes the category of vector spaces and

linear mappings.

There is plenty of literature on homology and in particular on simplicial

homology, we refer the interested reader to [70]. In particular, one can easily

prove the following proposition.

Proposition 3.3.1. The functors Hi are invariants by homeomorphism and

homotopy type.
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Let G ∈ G be a graph. We now define as the homology space of G,

Hi(G) := Hi(Cl(G))

.

Proposition 3.3.2. Let Σ be a simplicial complex. Then, there exists a graph

G ∈ G such that Hi(Σ) = Hi(G).

Proof. The proof is a consequence of Remark 3.1.3 and 3.1.3.1. It is sufficient

to consider as G = k1(O(π(Σ))), the 1-skeleton of the barycentric subdivision

of Σ, which is a flag complex.

Singular homology

Simplicial homology has an analogous for general topological spaces, namely

singular homology, whose definition and properties we briefly recall now.

Although we confine ourselves into the category of finite topological spaces, the

following definition remains valid for arbitrary topological spaces. We address

the interested reader to [Hatcher, 70] for a thorough treatise on these topics.

Let X ∈ Tf be a topological space, the chain spaces Cn are in this case

replaced by the vector spaces CS
n freely generated by the set of all continuous

functions from the geometric realization of the standard n-simplex ∆n to X.

(CS
n , ∂

S
n ) is a chain complex whose boundaries are defined in the following way.

Let σ be a generator of Cn, i.e. a continuous function from ∆n → X. Then
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the boundary homomorphism ∂Sn can be constructed in the following way:

∂Sn (σ) =
n∑
i

σ|[v0,...,vi−1,vi+1,...,vn]

where σ|[v0,...,vi−1,vi+1,...,vn] is the restriction of σ to [v0, . . . , vi−1, vi+1, . . . , vn]. It

is easy to verify that ∂Sn ◦ ∂Sn+1 = 0, thus we can define the homology spaces

as we did for simplicial homology. We will denote the ith singular homology

space by HS
i (X). For general nonsense it is easy to check that HS

i gives a

functor Tf → Vectk.

Theorem 3.3.3 ([Hatcher, Theorem 2.27]). For any simplicial complex Σ, the

singular homology groups are isomorphic to the simplicial homology groups.

∀i ∈ N HS
i (Σ)

∼= Hi(Σ)

Let X, Y ∈ Tf , and let πn(X, x) denote the homotopy group of the space

X at base point x ∈ X.

A map f : X → Y is a weak homotopy equivalence if the following

conditions are verified:

1. f induces an isomorphism of the connected components of X and Y

Π0(f) : Π0(X) → Π0(Y )

2. for all x ∈ X, and n ≥ 1 is an isomorphism on the homotopy groups

πn(f) : πn(X, x) → πn(Y, f(x))
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There is the following result.

Theorem 3.3.4 (McCord, [66]). Let X ∈ Tf with X/ ∼ its Kolmogorov

quotient, then O(X/ ∼) ∈ F is weak homotopy equivalent to X.

We refer the interested reader to [4, Ch. 1.4]. In view of this result it makes

sense to set O(X) := O(X/ ∼) for all X ∈ Tf .

We bring together these new definitions on homology, with the one intro-

duced in 3.1 and summarized in diagram 3.1.4. From theorem 3.3.3 and 3.3.4

we deduce that HS
i (X) ∼= Hi(O(X)) for all X ∈ Tf . Moreover, since O(X) is

a flag complex Hi(O(X)) = Hi(Cl(k1(O(X)))), that is the graph homology of

the graph which is the 1-skeleton of O(X). Thus we can restrict ourselves to

the study of the graph homology of k1(O(X)). We can then sum up these

information in the folliwng commutative diagram:

Tf
// T 0

f

HS
i //

O
��

Vectk

F
k1 //

oo

Cl

Hi

<<

G

Hi

OO
(3.3.1)

The main objective in topological data analysis is to compute the singular

homology of the finite topological space underlying our data. If the data

that is available to us is a weighted graph, if we suppose it to be the graph

underlying the order complex of the unknown space, from the previous diagram

we can deduce that computing the simplicial homology of its clique complex is

equivalent to computing the singular homology of the underlying space.
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P -persistence homology

Although these observations are interesting per se, they become much more

significant if we consider not only the homological structure of a data space

but also its P -persistent properties.

Let τ ∈ T P
f , the composition HS

i ◦ τ ∈ VectPk will be called the ith P -

persistent homology of τ ∈ T P
f .

Taking in consideration the concepts defined in the previous section, we have

the following result which states that for any P -persistent finite topological

space, there is a one-critical P -persistent graph having the same P -persistent

homology.

Proposition 3.3.5. Let τ ∈ T P
f , then there is θ ∈ GP

1 such that

HS
i ◦ τ ∼= Hi ◦ Cl ◦ θ (3.3.2)

as functors.

Proof. The commutativity of diagram 3.3.1 implies that the following diagram

is commutative:

T P
f

// (T 0
f )

P
(HS

i )
P

//

(k1◦O)P

��

VectPk

GP
(Hi◦Cl)P

::
(3.3.3)

Therefore the statement holds with θ = k1 ◦ O ◦ τ.
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The above result implies that P -persistent singular homology of finite spaces

can be computed as P -persistent homology of graphs, and translates into the

following existence theorem.

Theorem 3.3.6. Let τ ∈ T P
f be a P -filtration of topological spaces such that

τab : Xa → Xb is injective for all a, b ∈ P with a ≤ b,

Then exists a weighted graph (G,ω) ∈ ḠP such that HS
i ◦ τ ∼= Hi(Cl(ΦP (G,ω))).

Proof. It follows from Prop.3.3.5 and Th.3.2.3.

3.3.1 Considerations on topological strata

In [86] the authors adopted different techniques to build filtrations of simplicial

complexes from weighted networks. We are going to focus on two of these that

are qualitatively different: a metrical, and a non-metrical filtration. The metri-

cal filtration was obtained constructing a sequence of Vietoris-Rips complexes

by studying the change in the overlap of ϵ-neighbourhoods of vertices while

varying their radius ϵ, considering as metric of the underlying space the inverse-

weighted shortest path. The non-metrical one relied instead on associating

clique complexes to a series of binary networks obtained from a progressively

less restrictive thresholding on the edge weights. The comparison highlighted

a clear difference between the diagrams of the two filtrations: in the metric

case, most generators had short persistence and were thus distributed along

the diagonal; in the non-metric, generators displayed a range of persistences,

including some very large ones, and thus poitned to the presence of interesting

heterogeneities in the network structure which were not noticeable via the

metric filtration.
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This result can be reinterpreted in the light of Theorem 3.3.6. To do so, we

need to define the two filtrations in terms of category theory.

Let R denote, as usual, the set of real numbers, which in this setting is con-

sidered as a (totally) ordered set via its usual ordering. Let us consider a

(finite) metric space X = (X, d) where d : X ×X → R. There is a weighted

graph (GX , ωd) associated to X, namely its distance graph, which is the com-

plete graph on the (vertex) set X, whose edges are weighted by the distance

between their extrema. The Vietoris-Rips filtration associated to X is then

Cl(ΦR(GX , ωd)). It should be clear that ΦR(GX , ωd) ∈ GR
inc.

Let us consider now a weighted graph (G,w) having weights in R. We can

bestow the set of vertices V of G with various distances induced by the weights

and graph structure. One classic example is the weighted shortest path metric,

that is d̃(x, y) = min{
∑

(u,v)∈pw(u, v)}p where p is a path between the vertices

x and y. As we have just explained above, associated to (V, d̃) there is then

an element of GR
inc, namely (GV , ωd̃). After this step one can compose with the

clique functor and with the homology functor to obtain persistent homology.

The metric filtration introduced in [86] was computed in this way and can be

written in categorical form as Cl(ΦR(GV , ωd̃)), while the non-metric filtration is

Cl(ΦR(G,w)). Theorem 3.3.6 tells us that, while it is possible to reconstruct the

original data structure from the non-metrical filtration, this is not possible when

we obfuscate the data by adopting a metrical lens, confirming the empirical

results found in [85] and the validity of that approach, which also finds further

empirical support in [86] and [84].
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3.3.2 Conclusions

In this chapter we proved the categorical equivalence between a subcategory of

weighted graphs and that of corresponding P -persistent objects. Moreover, we

showed how these results influence topological data analysis in the construction

of suitable filtrations of simplicial complexes, which are able to encode the

correct persistent homology. Finally we also showed how these results give

a formal window into why it can be unwise to use metric tools to construct

simplicial complexes when datasets are not necessary sampled from a metric

space.

In the next chapter we are going to look into the physical limitations of

computing persistent homology. Expanding on the work of Lloyd et al. [63],

we will provide a solution using quantum computation.



Chapter 4

Quantum algorithm for persistent

homology

In the previous chapters we have seen how topological methods for the analysis

of data require the construction and storage of a simplicial complex when

computing topological features. The application of these techniques to large

simplicial complexes is still limited since the most efficient classical algorithms

for estimating topological invariants for persistent homology such as Betti

numbers scale as O(mϵ) ∼ O(m3), where m is the number of simplices in the

simplicial complex [6–9, 25, 26, 40, 95, 68, 10].

The difficulty of the implementation comes from the fact that most con-

struction methods build a filtration of simplicial complexes where every element

is nested into an n-simplex, where n is the number of data points in the data

set. In this case the number of simplices in the complex is m = 2n, which

implies that the algorithm for computing Betti numbers scales exponentially in

the number of points of the data set.
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Recently S. Lloyd, S. Garnone, and P. Zanardi solved this problem introduc-

ing a quantum machine learning algorithm for performing topological analysis

(QTA) of large datasets [63], which leverages the improved parallelism of quan-

tum computation to provide an exponential speedup over the corresponding

classical algorithms. The QTA algorithm encodes the simplicial complex and its

elements into quantum mechanical states, and later it identifies the topological

invariants by performing linear operation on those states. The algorithm then

yields at each step ϵ of the filtration an estimate of the Betti number for all

orders, to accuracy δ in time O(n5/δ). Even though the quantum framework

introduced in the paper is constructed to include the entire filtration of simpli-

cial complexes, the algorithm proposed in [63] limits itself to the computation

of homological features at each step of the filtration.

In this chapter we improve on QTA algorithm providing new insight which

takes in consideration the evolving topology of the simplicial complex. To

achieve this, we study in depth the homology maps induced by the filtration

of simplicial complexes in order to track the progression of the Betti numbers,

together with their relation to the combinatorial laplacian. This new mathe-

matical insight that enables tracking the evolution of topological features along

a filtration of simplicial complexes.

Our method, though not very practical in a classical framework, can be

used to yield a more informative topological invariant, which takes into account

the effects of the simplicial complex growth through the filtration.

The algorithms given here are related to quantum matrix inversion algo-

rithms [51, 64, 1]. The original matrix inversion algorithm yielded as solution a

quantum state, and left open the question of how to extract useful information
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from that state [51]. The algorithms yield as output not quantum states but

rather topological invariants and do so in time exponentially faster than the best

existing classical algorithms. In section (sec. 4.1) we will present the concept

of persistent homology, and provide the necessary mathematical background

for the quantum algorithm. We will then give a way to encode the information

about simplicial complexes in a quantum state (sec. 4.2), and introduce the

algorithm (sec. 4.3).

4.1 Persistent Homology

Let us consider a filtration of simplicial complexes, that is a family of simplicial

complexes {Xϵ}ϵ such that X0 = ∅ ⊂ X1 ⊂ · · · ⊂ Xm = X. A filtration of

simplicial complexes induces injective morphism between the corresponding

chain complexes by inclusion of the canonical bases:

0 · · · ↪→ Cϵ
•(X

ϵ, F ) ↪→ Cϵ+1
• (Xϵ+1, F ) ↪→ . . . Cm

• = C•(X,F ) (4.1.1)

where every f : Cϵ−1
• (Xϵ−1, F ) ↪→ Cϵ

•(X
ϵ, F ) is a family of maps {f ϵ

k : Cϵ
k(X

ϵ, F ) →

Cϵ+1
k (Xϵ+1, F )}k that commute with the boundary maps of the chain complexes

introduced in 3.3, that is, f ϵ
k−1 ◦ ∂ϵk = ∂ϵ+1

k ◦ f ϵ
k. The boundary maps satisfy

∂∗k−1 ◦ ∂∗k = 0 for all k ∈ Z, this implies that B∗
k = Im(∂∗k(C

∗
k+1) ⊆ Z∗

k =

Ker(∂∗k(C
∗
k), which justifies the following definition.

Definition 4.1.1. The kth-persistent homology group of X for the interval

(b, d), for b < d in the filtration, is given by:

Hb,d
k (X,F ) =

Zb
k(X)

Bd
k(X) ∩ Zb

k(X)
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The dimension of the persistent homology group is called persistence Betti

number βb,d
k = dim(Hb,d

k (X,F )). The kth Betti number can be interpreted as

the number of k-dimensional cycles that are in the simplicial complex at scale

b of the filtration and that become boundaries in the simplicial complex at step

d > b. The Betti number is a topological invariant that is able to characterize

the topology of the simplicial complex in a very clear and intuitive way. This

is why it has become a very important tool in Topological Data Analysis [19].

In chapter 1 we introduced some techniques to contruct simplicial complexes

from data sets. In particular some of these methods, like the Vietoris-Rips

complex, are dependent on the choice of one parameter. In the case of the

Vietoris-Rips complex, the parameter is the radius ϵ of the balls. As the radius

increases, the method creates nested simplicial complexes as can be seen in fig.

4.1. For a detailed account on persistent homology and its application, we refer

the interest reader to [37].

4.1.1 Expliciting homology maps

We will now study how to better describe algebraically the evolution of persistent

homology of a simplicial complex through different scales of the filtration.

Let C(X,F ) be a chain complex of the simplicial complex X = (V,Σ).

Then the kth combinatorial laplacian Lk : Ck −→ Ck is defined as follows:

Lk = ∂∗k∂k + ∂k+1∂
∗
k+1 (4.1.2)

where ∂k : Ck → Ck−1 is the boundary map ∂∗k : Ck−1 → Ck is the coboundary

map.
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Fig. 4.1 Vietoris Rips complex at different scales. Each facet of the complex is colored
according to their dimension. It is easy to see how, as the balls’ radius increases, the
Vietoris-Rips construction method creates a sequence of nested simplicial complexes.

The graph Laplacian was generalized to simplicial complexes by Eckmann

[36], who formulated and proved the discrete version of the Hodge theorem.

We will now enunciate this and other well known results, which introduce a

connection between the combinatorial Laplacian and the study of homology.

Proposition 4.1.2 (Hodge [53]). Let C(X,F ) be given then Ck, for all k ∈ Z

decomposes as

Ck = ker(Lk)⊕ Im(∂k+1)⊕ Im(∂∗k).

Moreover Zk = ker(Lk)⊕ Im(∂k+1).

Theorem 4.1.3 (Eckmann [36]). NLet C(X,F ) be a chain complex. Then

ker(Lk) and Hk(X) are isomorphic.

Therefore, as a consequence of Theorem 4.1.3, when computing the kth-

homology group we can restrict ourselves to compute the kernel of the combi-
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natorial laplacian of order k, as it wwas done in the QTA algorithm proposed

in [63]. To use this method also for persistent homology groups one must

explicitly give the morphism induced by the inclusion maps of the filtration

F : Ck(X
ϵ) ↪→ Ck(X

ϵ+1).

It is useful to notice that there exists a quotient map (surjective and open)

Qϵ
k : Zϵ

k → Zϵ
k/B

ϵ
k = Hϵ

k. Moreover from proposition 4.1.2 we know that

ker(Lϵ
k) ⊆ Zϵ

k. Therefore we can redefine our problem as wanting to find an

explicit description of Φ : ker(Lϵ
k) → ker(Lϵ+1

k ) such that the following diagram

commutes.

Zϵ
k
� �

F |Zϵ
k //

����

Zϵ+1
k

����

ker(Lϵ
k)

EE

Φ // ker(Lϵ+1
k )

(4.1.3)

Let us consider now γ ∈ ker(Lϵ
k). Since ker(Lϵ

k) ⊂ Zϵ
k then F (γ) ∈ Zϵ+1

k .

Therefore F (γ) can be decomposed as γ′ + b with γ′ ∈ ker(Lϵ+1
k ), b ∈ Im(∂ϵ+1

k+1).

Then F (γ) will belong to the equivalence class γ′ ∈ Hϵ+1
k . Finally we have that:

Φ : ker(Lϵ
k)

F |Zϵ
k

↪−−→ Zϵ+1
k = ker(Lϵ+1

k )⊕ Im(∂ϵ+1
k+1)

P−→ ker(Lϵ+1
k ) (4.1.4)

where P is the projection of Zϵ+1
k onto the kernel of the laplacian ker(Lϵ+1

k ).

The morphism Φ is not surjective nor injective anymore, since an element in

ker(Lϵ
k) can become a boundary later in the filtration, and new elements added

to the simplicial complex can create cycles that were not present before, thus

increasing the dimension of the kernel of the Laplacian.

The same process can be extended for steps ϵ, ℓ in the filtration with ϵ < ℓ. In
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this case Φ will be:

Φ : ker(Lϵ
k)
� �
F |Zϵ

k // Zϵ+1
k
� �
F |

Zϵ+1
k // · · · � �

F |
Zℓ−1
k // Zℓ

k
P // // ker(Lℓ

k) (4.1.5)

In the following sections we will illustrate how to use this new result to further

develop the QTA algorithm.

4.2 Quantum construction of a simplicial com-

plex

4.2.1 Quantum notation

Before describing how to construct the appropriate quantum states needed for

our aims, we will give some basic notations and principles which are well used

in quantum mechanics and quantum computation. Quantum states are defined

in an Hilbert space, that is, a finite-dimensional complex vector space Cn with

an inner product ⟨., .⟩. A vector in Cn is called a ket vector and is denoted as:

|x⟩ =


x1
...

xn

 for xi ∈ C (4.2.1)

while a vector in the dual space Cn∗ is called a bra vector ⟨α| = (a1, . . . , an),

where ai ∈ C. The inner product of |x⟩ and ⟨α| is ⟨α|x⟩ =
∑n

i=1 aixi. This inner

product naturally introduces a correspondence between |x⟩ = (x1, . . . , xn)
T and

⟨x| = (x∗1, . . . , x
∗
n), then the norm is defined as || |x⟩ || =

√
⟨x|x⟩. The tensor
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product of two vectors |x⟩ and |y⟩ is given by:

|x⟩ ⊗ |y⟩ = (x1y1, ..., x1yq, x2y1, ..., x2yq, ..., xpy1, ...xpyq)
T (4.2.2)

The tensor product |x⟩⊗|y⟩ is often abbreviated as |x⟩ |y⟩. If two states |ψ1⟩ and

|ψ2⟩ are physical states of the system, their linear superposition c1 |ψ1⟩+ c2 |ψ1⟩

is also a possible state of the same system (superposition principle), with ck ∈ C

and
∑2

i=1 |ck|2 = 1.

We cannot say definitely in which state a quantum system is in, in other

words the system might be in the state |ψi⟩ with a probability pi. Such a

system is said to be in a mixed state, while a system whose vector is uniquely

specified is in a pure state, i.e. pi = 1 for some i and pj = 0 for j ̸= i.

Let us introduce the density matrix by ρ =
∑N

i=1 pi |ψi⟩ ⟨ψi|. A density

matrix is a positive-semidefinite Hermitian operator with tr(ρ) = 1 because∑
ρi = 1. Then a pure state |ψ⟩ is a special case in which the corresponding

density matrix is the projection operator onto the state, ρ = |ψi⟩ ⟨ψi|. At the

other extreme a maximally mixed state is the quantum state representing a

totally uniform mixture of states in the quantum system.

For the reader interested to an introduction to quantum computing from

a linear algebra point of view we recommend the overview by Nakahara and

Ohmi [72], Nakahara [71].

4.2.2 Simplex quantum state

Big quantum data analysis works by mapping each data point −→v (a d-dimensional

vector over complex numbers) to a quantum state |v⟩ ∈ Cd, and the entire



86 Quantum algorithm for persistent homology

dataset to a quantum state 1√
n

∑
j |j⟩ |vj⟩ ∈ Cn × Cd where n is the number of

elements in the dataset. When mapping simplicial complexes we have as input

a set of points V of cardinality n, with
(
n
2

)
distances or weights between the

points, that is {wij = wji ∈ F |i, j ∈ V } where F is a totally ordered set.

Following what has been done by Lloyd et al. [63], we introduce now

the quantum framework that encodes the filtration of simplicial complexes

X = {Xϵ}ϵ, where Xϵ is the Vietoris-Rips complex constructed from the data

with parameter ϵ ∈ F .

Each simplex σk = [v0, . . . , vk] ∈ X is encoded as a quantum state over n-

qubit |σk⟩ := |010 . . . 001⟩ ∈ C2n the 1s in |σk⟩ are at the positions corresponding

to the vertices vi ∈ σk.

Denote by Wk the
(

n
k+1

)
-dimensional Hilbert space corresponding to all

possible k-simplices in a simplicial complex with n vertices. Let Cϵ
k be the

subspace of C2n spanned by |σk⟩ where σk ∈ Xϵ
k, the set of k-simplices in Xϵ.

The full k-simplex space at scale ϵ is defined to be Cϵ = ⊕kC
ϵ
k. In order to

construct the simplicial complexes Xϵ at each scale, we need to evaluate the

distances between points which correspond to the application of a projector

P ϵ
k := 1√

|Sϵ
k|

∑
σk∈Sϵ

k
|σk⟩ ⟨σk| onto Cϵ

k, where Sϵ
k is the set of k-dimensional

simplices at scale ϵ.

The k-simplex state at scale ϵ, |ψ⟩ϵk can be constructed using Grover’s

algorithm (a quantum search algorithm) [50], that is is a quantum algorithm

that finds with high probability the unique input to a black box function

that produces a particular output value, using just O(
√
N) evaluations of the

function, where N is the size of the function’s domain. In our case the function

used to implement Grover’s algorithm is the membership function f ϵ
k(|σk⟩) = 1
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if σk ∈ Sϵ
k. The multi-solution version of Grover’s algorithm then allows us to

construct the uniform superposition of the quantum states corresponding to

the k-simplices at step ϵ of the filtration.

|ψ⟩ϵk :=
1√
|Sϵ

k|

∑
σk∈Sϵ

k

|σk⟩ (4.2.3)

The construction of the k-simplex state via Grover’s algorithm takes time

O

(
n2√
(ςϵk)

)
, where ςϵk =

|Sϵ
k|

( n
k+1)

=
dimCϵ

k

dimWk
, that is the fraction of simplices that are

actually in the complex at scale ϵ. When this fraction is too small the procedure

will fail to find the simplices, if only an exponentially small set of possible

k-simplices actually lie in the simplicial complex, then the quantum search

will fail to find them. Therefore following [63], we fix an accuracy parameter

ς so that at each scale ϵ the algorithm will find k-simplices when ςϵk > ς, and

estimate the number of k-simplices to accuracy ςϵk ± ς. Then, as ϵ increases,

more simplices will be in the simplicial complex, making the quantum search

more likely to succeed at different dimensions k. For ϵ larger than the maximum

distance between vectors, all possible simplices will be in the complex (see fig.

4.1).

In a quantum computation there is no way to deterministically put bits

in a specific prescribed state unless one is given access to bits whose original

state is known in advance. Such bits which are known in advance to be in the

state are called ancilla bits. Then through opportune ancillas we are able to

introduce the state ρϵk = 1
|Sϵ

k|
∑

σk∈Sϵ
k
|σk⟩ ⟨σk|, which is the state of the uniform

mixture of all k-simplices states in the complex at grouping scale ϵ (see method

section in [63] for a detailed construction of this state).
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4.3 Quantum algorithm for persistent homology

We have now a quantum state representing each simplicial complex Xϵ in the

filtration, we can introduce the tools described in [63] which use quantum

information processing to analyse the topological properties of the simplicial

complexes. We can identify the Hilbert space Cϵ
k with the k-chain group

(introduced in sec. 4.1) then, as we did in the classic case, we can define the

boundary map by mapping each k-simplex state to a sum of (k − 1)-simplex

states in the following way:

∂k |σk⟩ =
∑
i

(−1)i |σk(i)⟩ (4.3.1)

where σk(i) is the (k − 1)-simplex obtained by σk omitting the ith vertex. The

boundary operator so defined acts on the space of all simplices Wk, it can be

restricted to Cϵ
k by projecting onto it, and we will denote it by ∂ϵk = ∂kP

ϵ
k . The

Dirac operator Bϵ is constructed as:

Bϵ =



0 ∂ϵ1 0

∂ϵ1
∗ 0 ∂ϵ2 . . .

0 ∂ϵ2
∗ 0

. . . . . .

0 ∂ϵn−1 0

. . . ∂ϵn−1
∗ 0 ∂ϵn

0 ∂ϵn
∗ 0



(4.3.2)
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(Bϵ)2 =



∂ϵ1∂
ϵ
1
∗ 0

0 ∂ϵ1
∗∂ϵ1 + ∂ϵ2∂

ϵ
2
∗ . . .

. . . . . .

. . . ∂ϵn−1
∗∂ϵn−1 + ∂ϵn∂

ϵ
n
∗ 0

0 ∂ϵn
∗∂ϵn


(4.3.3)

(Bϵ)2 is a block matrix with all the kth-combinatorial Laplacian in the diagonal.

It is useful to notice that ker(Bϵ) = ker((Bϵ)2) then this latter is equal

to ⊕k ker(L
ϵ
k); as a consequence of Theorem 4.1.3 finding Betti numbers in

all dimension is equivalent to computing the dimension of the kernel of the

combinatorial Laplacian, which can be done by identifying the singular values

and singular vectors of the Dirac operator ker(Bϵ) ∼= ⊕kHk(X
ϵ).

The QPA decomposes |ρϵ⟩ into the eigenvectors of the Laplacian

|ρϵ⟩ = 1√
M

∑
k

αk

M−1∑
j=0

|j⟩ (λk)j |χk⟩ =
1√
M

∑
k

αk |χk⟩
M−1∑
j=0

eiwkj |j⟩ (4.3.4)

, where M is the number of index qubits used to store the state ρϵ, |χk⟩ are

the eigenvectors of Bϵ, λk are the corresponding eigenvalues, and αj = ⟨χj|ρϵ⟩.

Only the eigenvalues related to the biggest eigenspaces will register as non-zero

in the decomposition 4.3.4 [64] A quantum fast Fourier trasform performed on

the M index qubits will reveal the phases wk and thereby the eigenvalues λk.

Qne is then able to obtain each eigenvalue with probability |αk|2. We define as

quantum Betti number qϵ as the magnitude αk corresponding to the eigenvalue

λk = 0.
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We can now construct the full decomposition of the simplicial complex Xϵ

in terms of eigenvectors and eigenvalues of the combinatorial Laplacian at each

scale ϵ. The aim of our work is to be able to monitor the evolution of the

quantum betti number qϵk through the filtration. That is, to be able to check

at step ℓ > ϵ if the decomposition of ρϵk as linear combination of eigenvectors

of Lℓ
k still contains non-zero coefficient associated with the zero eigenvalue.

The algorithm we introduced above takes as input the uniform mixture ρϵk

and the Dirac operator Bϵ = ⊕∂kP ϵ
k and it returns the quantum Betti number

at step qϵk. If we apply the same algorithm to the input ρϵk and the Dirac

operator Bℓ = ⊕∂kP ℓ
k , we will obtain the magnitude of the eigenvalue zero in

the decomposition of ρϵk into the eigenvectors of Bℓ, that is the probability that

performing a measurement on Bℓ from ρϵk yields zero.

This application is mathematically justified by the theoretical results we

obtained in sec.4.1. With some abuse of notation we can identify our modifi-

cation of the quantum algorithm with F |Cϵ,ℓBϵ where F |Cϵ,ℓ : Cϵ ↪→ Cℓ is the

inclusion of the space Cϵ into Cℓ.

What we obtain is therefore the probability that the state describing the

k-simplices at step ϵ can collapse into a state representing an homological cycle

of the simplicial complex at step ℓ. We denote this persistent quantum Betti

number by qϵ,ℓk .

Conclusions

In this chapter we extended the existing quantum machine learning methods

for topological analysis to track Betti numbers along a filtration of simplicial
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complexes yielding a description analogous to that introduced by Ghrist [46]

for the classical case. This result can be achieved by tracking the evolution of

the eigenspaces of the combinatorial laplacian through the filtration.

In the future, we intend to use the same insight explained in this chapter

to track not only the appearance and disappearance of cycles (barcode [46]),

but also the evolution of the components of the shortest representative of

each homological cycle. Applying the quantum phase algorithm to the the

Hermitian matrix Bϵ, starting from |sk⟩ where sk is a k-simplex in the complex

at scale ϵ. We obtain a decomposition of |sk⟩ according to the eigenvectors

of Bϵ, we can then collapse onto the one corresponding to the null eigenvalue.

Repeating this procedure for all simplexes sk we can hen reconstruct the

harmonic representative of the homological cycles (eigenvector of the zero

eigenvalue of the laplacian). Analogously as we did for the Betti numbers,

we can repeat the process for Bϵ+∆ starting from each |sk⟩ k-simplex in the

harmonic cycle found at scale ϵ. In this case we will obtain a decomposition

of |sk⟩ according to the eigenvectors of Bϵ+∆. Repeating the process for all

simplexes sk in the harmonic cycle will allow us to record the evolution of

the cycle representative throughout the entire filtration, and to track not

only the topology, but also the evolving geometry of the simplicial complexes.

Even though this method would only give an approximation, this kind of

analysis is still not obtainable through classic methods due to its computational

complexity.

The method we just described gives an exponential speedup over the best

classical algorithms for topological data analysis. Classical algorithms for

finding the eigenvalues and eigenvectors of the combinatorial laplacian ∆k
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and their dimension take
(
n
k

)2 ∼ O(22n) computational steps using Gaussian

elimination [35, 33]. On a quantum computer the quantum phase algorithm can

project the simplex states |ψ⟩ϵk onto the eigenspace of the Dirac operator Bϵ

and find the corresponding eigenvalues to accuracy δ in time O( n5

δ
√
ς
), where ς is

the accuracy we chose to construct our simplex state. The algorithm identifies

the dimension of eigenspaces in time O( n5

δ
√
ςηi

), where ηi is the dimension of the

ith eigenspace divided by the cardinality of the k-simplex space |Sϵ
k|. Given the

insight this method provides on the structure of the combinatorial laplacians,

we believe this algorithm could be put into use to study other algebraic and

combinatorial problems in topological data analysis.



Conclusions

Simplicial complexes have been used since the late 1800s to transform compli-

cated topological problems into more familiar algebraic ones. With the advent

of computers, their ability to store in discrete form geometric and topologi-

cal information, has made them a key tool in image recognition and, more

recently, in data analysis to successfully approximate the topology of the space

underlying a data set.

In this thesis we examine the role of simplicial complexes in data analysis,

and, to enhance the versatility of this approach, we tackle the shortcomings

of this application from three different perspectives: practical, theoretical and

algorithmic. Our contribution in this account is threefold: we build and test a

tool which can validate the significance of the structural features of simplicial

complexes, we advance our understanding of the applicability of a simplicial

approach to weighted graphs, and lastly we provide a new point of view on

persistence theory, providing a quantum tool which can track the evolution of

single features along a filtration of nested simplicial complexes.

Our first contribution, the simplicial configuration model, can be readily used

in practice. The SCM can generate any kind of simplicial complex. Moreover,

its ability to fix either, or both, degree and size distributions make the simplicial
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configuration model an invaluable method to study real world data sets, by

randomizing their structure while fixing their key features. This property of the

method is also one of its limitations. Extracting the facet size distribution can

be quite costly, when real data does not represent high-dimensional relations

and does not implicitly contain the information.

Unlike the SCM, the other original results presented in this thesis are not

directly applicable. In fact, the categorical equivalences and adjunctions pre-

sented here, give only a detailed description of the categorical relations between

weighted graphs and P -persistent objects, and the quantum contribution can

only be theoretical, since large scale quantum computers have yet to be built.

Nevertheless, these results are of great importance to topological data analysis,

as they aid in the construction of suitable filtrations of simplicial complexes,

and open the field to unexplored approaches to the computation of persistent

homology.

Several questions remain to be addressed. On the basis of the findings

presented in this thesis, further research on the development of persistent

homological tools would be of great interest. In particular, in our future

research on the simplicial configuration model, we intend to concentrate on the

homological aspects of the ensemble, and in expanding the model to the weighted

case. Moreover, it would be interesting to use our quantum results to track

not only the appearance and disappearance of cycles, but also the evolution of

the components of the shortest representative of each homological cycle along

the filtration. Even though this method would only give an approximation,

this kind of analysis is still impractical through classic methods due to its

computational complexity.
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In conclusion, simplicial complexes are a very promising tool in data anal-

ysis and can open new prospects in analyzing high-order data without loss

of information. The topological data analysis has become a useful tool for

uncovering qualitative features in data which cannot be recovered in other way.

The results presented in this thesis will open new possibilities to the application

of topological tool for statistical, quantum, and network science application.
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Computational complexity

In this we briefly list the computational cost for performing the different

algorithms and methods introduced in this thesis. For a more thorough study

on the matter we refer the reader to [77, 54, 89].

Building Simplicial Complexes

The Čech complex construction requires the computation of 2|A| intersections,

where | A | is the number of open sets in the considered cover, which is equal

to the number of vertices. The Vietoris-Rips complex is popular in topological

analysis thanks to the ease of its construction in every dimension. It is not a

nerve as the other previously presented complexes, but it is the clique complex

of a particular graph. The Dowker complex construction highly depends on

the number of points chosen for the landmark set.
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Construction method Computational Complexity
Čech Complex O(2n)
Vietoris-Rips Complex O(

(
n
2

)
+ nk)

Witness Complex/Dowker Complex O(2|L|)
Mapper C ∗O(

∏
i(fi − 1))

Table 1 Summary of the computational complexity for each method to construct
simplicial complexes where: n is the number of points in the data set, k is the
dimension of the Vietoris-Rips complex, | L | is the number of points in the landmark
set, C is the computational complexity related to the chosen clustering method, and
fi is the number of bins for the ith filter.

Classical and quantum computation of persistent

homology

Classical algorithms for computing the kth simplicial homology of a complex Σ

relies on the reduction of the kth boundary matrix which takes at most O(n3
k)

operations, where nk is the dimension of the k-chain space, i.e. the number of

simplices of dimension k in Σ [35, 33]. On a quantum computer the quantum

phase algorithm can project the simplex states |ψ⟩ϵk onto the eigenspace of the

Dirac operator Bϵ and find the corresponding eigenvalues to accuracy δ in time

O( n5

δ
√
ς
), where ς is the accuracy we chose to construct our simplex state. The

algorithm identifies the dimension of eigenspaces in time O( n5

δ
√
ςηi

), where ηi is

the dimension of the ith eigenspace divided by the k-simplex space |Sϵ
k|.
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