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Curl-constrained Gradient Estimation for Image
Recovery from Highly Incomplete Spectral Data

Chiara Ravazzi, Member, IEEE, Giulio Coluccia, Member, IEEE, and Enrico Magli, Fellow, IEEE

Abstract—In this paper, we introduce new gradient-based
methods for image recovery from a small collection of spectral
coefficients of the Fourier transform, which is of particular
interest for several scanning technologies, such as magnetic
resonance imaging.

Since gradients of a medical image are much more sparse
or compressible than the corresponding image, classical `1-
minimization methods have been used to recover these relative
differences. The image values can then be obtained by integration
algorithms imposing boundary constraints.

Compared to classical gradient recovery methods, we propose
two new techniques that improve reconstruction. First, we cast
the gradient recovery problem as a compressed sensing problem
taking into account that the curl of the gradient field should be
zero. Second, inspired by the emerging field of signal processing
on graphs, we formulate the gradient recovery problem as an
inverse problem on graphs. Iteratively reweighted `1 recovery
methods are proposed to recover these relative differences and
the structure of the similarity graph. Once the gradient field is
estimated, the image is recovered from the compressed Fourier
measurements using least squares estimation.

Numerical experiments shows that the proposed approach
outperforms the state-of-the-art image recovery methods.

Keywords—Compressed sensing, Fourier transform, Sparse re-
covery, Spectral graph theory, Total variation.

I. INTRODUCTION

The recovery of an image from Fourier measurements plays
a very important role in several scanning technologies, such as
magnetic resonance imaging (MRI, [1]) and synthetic aperture
radar [2]. In this context, one would like to reduce the
scan time and acquire the smallest number of measurements
allowing recovery with the highest quality.

Compressed sensing [3] has emerged in the last few years
as a valuable approach to reduce the amount of spectral data
needed for reconstruction. Indeed, CS has been shown to
effectively recover signals from a limited number of samples
by taking advantage of the sparse nature of such signals in
a certain domain. The method can be extended to several
scenarios and higher dimensions. For example, it can be shown
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that, under certain conditions on the number of measurements,
a piecewise constant image can be recovered from incomplete
frequency samples by minimizing total variation (TV, [4]).
Given these encouraging results, much effort has been spent
in literature to design solvers for TV minimization (such as as
`1-magic [5], TwIST [6], [7], NESTA [8], [9], TVAL3 [10],
[11], RecPF [12] and so on).

Although TV minimization allows a significant reduction
in the number of measurements needed for reconstruction,
reconstructed images often suffer from undesirable artifacts
and image details tend to be over-smoothed. Moreover, this
method does not fully exploit the sparsity in the gradient of
an image. In [13], starting from the observation that Fourier
coefficients of the gradient can be obtained from the diag-
onal transformation of the Fourier transform of the original
image, a new algorithm for image reconstruction, labelled as
GradientRec–Diff, has been proposed. In a nutshell, given the
set of spectral data, the horizontal and vertical differences are
retrieved from compressed measurements; the image is then
recovered using an integration method. As shown in [13],
GradientRec–Diff shows better performance than RecPF, at the
price of higher complexity, for low undersampling regimes.
However, when the number of measurements is very small,
RecPF achieves better reconstruction error.

To overcome these drawbacks, in this paper we propose a
new gradient based method for image recovery. In particular,
we propose two new strategies for gradient recovery, namely,
Curl-constrained Gradient Estimation (CCGE) and iteratively
reweighted `1-CCGE. In the first approach, we cast the gra-
dient recovery problem as a compressed sensing problem
enforcing both the sparsity and the directional continuity in the
image gradient domain. Indeed, given incomplete information
or presence of noise, the reconstructed gradient field by
GradientRec–Diff might be not conservative and, consequently,
non-integrable. In the proposed method we enforce that the
integral along any closed curve should be equal to zero, as
it allows to obtain a more accurate estimation of the image
gradient and, consequently, a better image reconstruction qual-
ity, as we will show in the following sections. In the second
method, inspired by the emerging field of signal processing
on graphs, the gradient recovery problem is formulated as an
inverse problem on graphs. More precisely, a graph is defined
on the data units of the image: each unit is associated to a
graph node and an edge is drawn according to the similarity
between the image values. Iteratively reweighted `1 recovery
methods are proposed to retrieve the relative differences and
to infer the structure of the similarity graph. Once the gradient
field is estimated, the image is recovered using least squares
estimation.
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Numerical experiments show that the proposed approach
outperforms the state-of-the-art image recovery methods in
terms of relative error in several scenarios. More precisely,
in absence of noise the proposed CCGE algorithms achieve
perfect reconstruction with the lowest number of samples. We
show that they are also robust against noise, outperforming
classical TV minimization for sparse recovery in terms of
accuracy for high signal-to-noise ratios. Finally, tests on real
MRI images show improved reconstruction for several sam-
pling patterns.

A. Outline of the paper

The paper is organized as follows. The general image
recovery problem from incomplete Fourier measurements and
classical algorithms based on CS are introduced in Section II.
In Section III the proposed algorithms for gradient estimation
are presented and the relations to the state of the art are
discussed. Section III-B describes the proposed image recon-
struction method from the estimated gradient field. Section IV
collects several numerical experiments and some concluding
remarks (Section V) complete the paper. We conclude this
section with some notations and preliminary definitions.

B. General notation

Throughout this paper, we use the following notation. Let
N,R,C be the set of natural, real, and complex numbers,
respectively. Given N ∈ N, we define the set of integers
[N ] = {0, 1, . . . , N − 1}. The imaginary part of the unit is
denoted by j =

√
−1.

We denote column vectors with small letters, and matrices
with capital letters. Given a matrix X ∈ Rm×n, each entry is
denoted with Xi,` or X(i, `), depending on the convenience.
X> denotes its transpose, XH its hermitian and X† its Moore-
Penrose pseudo-inverse. X+ is the matrix whose entries are
X+
i,` = 1/Xi,` with the convention that 1/0 = 0 . x = vec(X)

denotes the column vector obtained by stacking the columns
of X on top of each other, while X = vec−1(x) denotes the
inverse operation. A = diag(a) denotes the square diagonal
matrix with a on its diagonal. The elementwise product of
matrices A and B is denoted by A � B . The Kronecker
product of matrices A and B is denoted by A ⊗ B . Let
∇X = (∇xX,∇yX) ∈ Rm×n×2 be the discrete gradient
operator:

(∇xX)i,` = Xi,` −Xi−1,`

(∇yX)i,` = Xi,` −Xi,`−1.

Given a vector field (F1, F2) the curl is defined as

curl(F1, F2) = ∇yF1 −∇xF2.

The discrete TV operator and the TV semi-norm of X are
defined as follows

(TV(X))i,` =
√
|(∇xX)i,`|2 + |(∇yX)i,`|2

‖X‖TV = ‖TV(X))‖1,

where

‖X‖p =

 m∑
i=1

m∑
j=1

|Xi,`|p
1/p

and

‖X‖0 =

m∑
i=1

m∑
j=1

|Xi,`|0

with the convention that 00 = 0. We say that X is k-sparse in
the gradient domain if ‖∇X‖0 = k.

A directed graph is a pair G = (V, E), where V is the set
of nodes and E ⊆ V × V is the set of edges. We say that
G = (V, E) is an undirected graph if (u, v) ∈ E implies that
(v, u) is also an edge in E . A path in a graph is a sequence
of edges which connects a sequence of vertices. In a directed
graph G, two vertices u and v are called connected if there
exists a path from u to v. A graph is said to be connected
if every pair of vertices in the graph is connected. A directed
graph G is called strongly connected if there is a path from
each vertex in the graph to every other vertex.

II. IMAGE RECOVERY FROM SPECTRAL DATA

Let F ∈ Rm×n be an image and denote N = mn. Each
pixel of the image can be identified by a pair of indexes
(ux, uy) ∈ [m] × [n] corresponding to the row and to the
column. Let F : Rm×n → Cm×n be the bidimensional DFT
of F :

[F(F )]ω =
1√
N

∑
ux∈[m]

∑
uy∈[n]

F (ux, uy)e−2πj(ωxux/n+ωyuy/m).

Defined a set of M << N frequencies

Ω = {ω(k) = (ω(k)
x , ω(k)

y ) : k ∈ {1, . . . ,M}},

our aim is to recover the image F from partial frequency
information [F(F )]Ω, affected by bounded noise. More pre-
cisely, we are interested in image recovery starting from partial
observations of the form

y = FΩ(F ) + η (1)

with ‖η‖2 = ε.
Since CS has been shown to effectively recover signals

from a limited number of samples by taking advantage of the
sparse nature of such signals in a certain domain, this approach
has been extended to the reconstruction of approximately
piecewise constant images [4]. The literature proposes a huge
number of solvers based on this intuition. We distinguish two
categories: Image recovery based on total variation minimiza-
tion and Gradient-based image recovery. We summarize these
approaches in the remaining section.
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A. Total variation minimization
Classical CS recovery solves this problem assuming that

natural images are sparse in a certain domain, such as DCT,
wavelets, shearlets, and so on. Particular attention has been
devoted to TV recovery methods [4], [1], [3]. They explore the
prior knowledge that medical images are sparse in the gradient
domain [4]. More precisely, TV problem is defined as follows:

F̂TV = arg min
X∈Rm×n

‖X‖TV s.t. ‖FΩ(X)− y‖2 ≤ ε. (2)

In absence of noise (i.e. ε = 0 in (1)) and if the image
is piecewise constant, theoretical guarantees for perfect recon-
struction are proven (see [4, Theorem 1.5]). More precisely, if
F is a k-sparse image in the gradient domain and Ω is chosen
uniformly at random with M = O(k log4N), then the solution
to (2) is unique and is equal to F with probability larger than
1−O(N−M ).

Several algorithms have been proposed in literature to solve
(2), as `1-magic [5], TwIST [6], [7], NESTA [8], [9], and
TVAL3 [10], [11], to mention just a few. Among them, TVAL3
is faster compared to the other TV solvers. A new algorithm for
reconstruction of images from partial Fourier measurements,
known as RecPF, has been proposed in [12]. This method,
based on a fast alternating direction method, achieves the best
CS recovery results, outperforming TwIST and OS [14]. It
attempts to solve the following relaxed problem

min
1

2
‖FΩ(F )− y‖2 + γ‖ΨF‖1 + λ‖F‖TV, (3)

where λ and γ are regularization parameters and Ψ a sparsi-
fying basis.

B. Gradient-based image recovery
Despite high CS effectiveness in image reconstruction, TV

minimization based methods do not exploit the sparsity that
is revealed in the gradient of an image. Indeed, as shown
in [13], the absolute magnitude of the gradients, both in the
horizontal and vertical directions, decay much faster than the
TV coefficients.

Starting from this observation, in [13] a different approach
to the recovery problem is proposed. Given the set of Fourier
measurements of an image, the following steps are performed:
i) a diagonal transformation to obtain the Fourier measure-
ments of the horizontal and vertical gradients, ii) a gradient
estimation from incomplete Fourier measurements, and iii) an
image reconstruction from estimated gradient field. The steps
of this procedure, called GradientRec–Diff, are described in
detail as follows.

1) Diagonal transformation: Simple computations show
that the Fourier measurements of ∇xF and ∇yF can be
obtained by a diagonal transformation of the Fourier transform
of the original image. More specifically,

[F(∇xF )]ω = (1− e−2πjωx/N )[FΩ(F )]ω (4)

[F(∇yF )]ω = (1− e−2πjωy/N )[FΩ(F )]ω (5)

where ω ∈ Ω.

Taking into account the presence of noise in model (1) we
consider the following observations

yx = Λxy = FΩ(∇xF ) + ηx (6)
yx = Λxy = FΩ(∇yF ) + ηy (7)

where

Λx = diag(1− e−2πjωx/N ) (8)

Λy = diag(1− e−2πjωy/N ), (9)

and ‖ηx‖2 = ‖Λxη‖2 = εx, ‖ηy‖2 = ‖Λyη‖2 = εy .
2) Gradient estimation: Once the Fourier measurements of

the gradients are computed, ∇xF and ∇yF are estimated
exploiting sparsity and using convex optimization methods:

Ĝx = arg min
Gx∈Rm×n

‖Gx‖1 s.t. ‖FΩ(Gx)− yx‖2 ≤ εx (10)

Ĝy = arg min
Gy∈Rm×n

‖Gy‖1 s.t. ‖FΩ(Gy)− yy‖2 ≤ εx (11)

The advantage of this method is that the gradients of the
image can be computed independently. Moreover, different CS
recovery algorithms can be used for edge reconstruction, such
as OMP [15], CoSaMP [16], `p-minimization methods with
p < 1 [17], iteratively reweighted `1-minimization algorithms
[18].

3) Image reconstruction: Once approximations to the hor-
izontal and vertical gradient are obtained, the image should
be recovered using an integration method. However, given
the incomplete information or the presence of noise, the
estimated gradient field might be not conservative making it
non-integrable. Indeed, if the integral along any closed curve is
not equal to zero, the reconstruction method should depend on
the path of integration. Several methods have been proposed
in literature to enforce the integrability [13], [19].

We discuss here the integration method based on affine
transformation using diffusion tensor [20]. The performance
of this method does not depend on the type of sampling and
enforces integrability using the information contained in the
curl of non-integrable estimated gradient field. More precisely,
using a Least Squares (LS) approach for image reconstruction
requires to solve the following minimization problem:

min
X∈Rm×n

‖∇xX − Ĝx‖22 + ‖∇yX − Ĝy‖22
s.t. curl(∇xX,∇yX) = 0

(12)

When curl(Ĝx, Ĝy) is non-zero, the problem yields a linear
system that is under-determined, with more unknowns than
the number of equations. To overcome this issue, the number
of unknowns is reduced assuming that the gradient values with
lowest curl are error free. Then, imposing Neumann boundary
conditions, the solution is unique.

III. PROPOSED APPROACH

In this section we propose a new method for image recovery.
We aim at reducing as much as possible the number of
measurements required for a satisfactory recovery. We propose
several solutions to this problem. Our approach falls under
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Diagonal transformation
↓

Gradient estimation
↓

Image reconstruction.

the second category, i.e. gradient based methods for image
recovery, since it follows the same flow of reconstruction:

In the Diagonal transformation step, the measurements of
the gradient are obtained as explained in point 1) of Section
II.B. The differences with respect to GradientRec–Diff lie in
the Gradient estimation step and in Image reconstruction step.
We explain the rationale in the following.

A. Gradient estimation
We propose now two methods for Gradient estimation. The

first approach is based on the observation that the gradient
is overdetermined gradient and its estimation can not be
contraint-free. In the second method, using the same obser-
vation, we formulate the image recovery problem as a con-
strained inverse problem on graphs and propose an iteratively
reweighted `1 recovery algorithm to recover the gradient and
the structure of the similarity graph.

1) Curl-constrained gradient estimation (CCGE): When the
number of measurements is very small, the gradient estimation
obtained via BP or BPDN (10), (11) is affected by errors.
Consequently, the estimated gradient field is necessarily not
conservative and these errors are not spread uniformly through-
out the gradient field but concentrated around the edges of the
image. As a consequence, these errors affect also the image
recovery.

Our algorithm is based on the following observation. The
gradient of an image F ∈ Rm×n is described by 2mn pixels.
In this sense, the gradient is over-determined and the values of
the gradient must be constrained. It should be verified that the
gradient of an image is a conservative vector field and satisfies

curl(∇xF,∇yF ) = ∇y∇xF −∇x∇yF = 0.

In the light of the above observation, besides (6) and (7), we
take into account that the curl of the reconstructed gradient
field should be zero.

In absence of noise, denoted the unknown gradient of an
image (Gx, Gy) this fact yields the solution of the following
optimization problem:

arg min
Gx,Gy∈Rm×n

‖Gx‖1 + ‖Gy‖1

s.t.

{ FΩ(Gx) = yx
FΩ(Gy) = yy

curl(Gx, Gy) = 0
, (13)

or, in case of noisy measurements,

arg min
Gx,Gy∈Rm×n

‖Gx‖1 + ‖Gy‖1 s.t.∥∥∥∥[yxyy
]
−
[
FΩ(Gx)
FΩ(Gy)

]∥∥∥∥2

+ ‖curl(Gx, Gy)‖2 ≤ ε2x + ε2y . (14)

In our experiments we will use a modified version of algo-
rithms SPGL1 [21], [22] and CoSaMP [16] to solve (13) and
(14), taking into account the additional constraint on the curl.
It should be mentioned that other CS recovery algorithms with
the additional constraint on the curl can be used for edge
reconstruction, such as OMP [15].

2) Iteratively reweighted `1-CCGE with Gaussian weights:
We now formulate the image recovery problem using graph
theory. Let F ∈ Rm×n be an image with N = mn. Each
pixel of the image is labeled with a vertex u ∈ V and
can be identified by a pair of indexes (ux, uy) ∈ [m] × [n]
corresponding to the row and to the column. We consider the
signal f , defined on the set of vertices f : V → R with the
vector f ∈ RN , where the u-th entry represents the image
value at the vertex fu = F (ux, uy).

The gradients are represented as the edges E ⊆ V × V of
an oriented graph G = (V, E). Each node u belonging to the
interior of the image (i.e., not on its boundary) has four edges,
connecting it to nodes in north, south, east, and west directions.
Therefore, the resulting graph is a grid. The orientation of the
edge e connecting nodes u and v is conventionally assumed
(u, v) with u < v. The graph topology is encoded in the
incidence matrix A ∈ {0,±1}E×V defined by

Aew =


+1 if e enters vertex w
−1 if e leaves vertex w
0 if w is not a vertex of e

(15)

for every e ∈ E and w ∈ V . We denote

g =

[
gx
gy

]
=

[
Ax
Ay

]
f = Af

where Ax and Ay are the incidence matrices corresponding
to the horizontal and vertical directions, respectively, and
gx = vec(∇xF ) and gy = vec(∇yF ). In absence of noise,
the CCGE problem in (13) becomes

arg min
gx,gy∈Rmn

‖gx‖1 + ‖gy‖1

s.t.

{
yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
, (16)

or, in presence of noise,

arg min
gx,gy∈Rm×n

‖gx‖1 + ‖gy‖1 s.t.∥∥∥∥[yxyy
]
−
[
FΩ(gx)
FΩ(gy)

]∥∥∥∥2

+ ‖Aygx −Axgy‖2 ≤ ε2x + ε2y . (17)

In the following paragraph we introduce a new iterative
reweighted `1 method based on weighting according to the
similarity among pixels.

In order to obtain high quality CS reconstruction, we modify
the CCGE problem using both local smoothness and nonlocal
self-similarity. Starting from an initial guess of the gradient,
the idea is to use the current estimation of the gradient in
order to detect the elements that are most likely to be in the
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gradient support. Then, a better estimation of the signal is
obtained solving the optimization problem by replacing the `1-
norm with the weighted one in order to avoid penalizing the
elements that are most likely to be nonzero. More precisely,
we consider the following weighted `1-problem

arg min
gx,gy∈RV

∑
i∈V

w ([gx]i) |[gx]i|+ w ([gy]i) |[gy]i|

s.t.

{
yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
, (18)

where
w(x) = e−

x2

2θ2

is the Gaussian kernel weighting function. The weight function
is defined in such a way w(x) ∈ (0, 1] is decreasing in x and is
vanishing to zero if x→∞. On the other side, if x→ 0 then
w(x) → 1. This choice of weights has been shown effective
in graph signal processing to capture the geometric structure
of the underlying images, to compress and to denoise images
[23].

It should be noted that this non-convex optimization prob-
lem is quite difficult to solve directly due to the non-
differentiability and non-linearity. In this section, the iteratively
reweighted `1-CCGE algorithm is developed to solve (18). We
initialize g

(0)
x = g

(0)
y = 0, then at each iteration t ∈ N we

compute

w(t)
x = e−

(g(t)x )
2

2θ2 , w(t)
y = e−

(g(t)y )
2

2θ2

g(t+1) = arg min
gx,gy∈RV

∑
i∈V

w(t)
x |[gx]i|+ w(t)

y |[gy]i|

s.t.

{
yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
.

(19)

In our experiments we will use a modified version of algorithm
IRL1 [18] to solve (18), taking into account the additional
constraint on the curl and the weights update in (19). It
should be mentioned that other CS recovery algorithms with
the additional constraint on the curl can be used for edge
reconstruction, such as OMP [15].

B. Image reconstruction

We let ĝ ∈ RE be the vector collecting the estimated gradient
field and denote

ĝ = Af + ξ,

where ξ is the error obtained on the gradient estimation.
Assuming that the error ξ is distributed as Gaussian noise,

we take a least-squares approach for estimating the signal f
starting from measurements ĝ. That is, we define the following
unconstrained quadratic optimization problem

min
x∈RN

1

2
‖Ax− ĝ‖22. (20)

It should be noticed that, being A1 = 0, the solution is
not unique. The set of solutions of (20) is described in the
following well-known lemma [24].

Lemma 1 (LS estimator). Let the graph G be connected and
let LG := A>A denote the Laplacian of the graph. The
following facts hold:

1) x is a solution to (20) if and only if A>Ax = A>ĝ;
2) there exists a unique minimizer of (20) x̂ls with mini-

mum ‖x̂ls‖2;
3) f̂ ls = L†GA

>ĝ.

Further useful properties are the following.

Proposition 1 (Moments of LS estimator). For the LS estima-
tor, it holds true that

E[f̂ ls] =
(
I − 1

N
11>

)
f

E[(f̂ ls − E[f ls])(f̂ ls − E[f̂ ls])H] = L†G

It should be noted that determining the signal f̃ from relative
measurements is only possible up to an additive constant. This
ambiguity can be avoided by taking

f̃ = f̂ ls +
1

N
11>f

Moreover, if 0 ∈ Ω the second term is equal to y(0)/
√
N

leading to

f̃ = f̂ ls +
y(0)√
N
1.

These preliminary results yield the following theorem, whose
proof can be easily obtained.

Theorem 1. Let ĝ ∈ RE be the estimated gradient field and
assume that 0 ∈ Ω, U eigenvectors of the Laplacian of the
square grid, and D the diagonal matrix of corresponding
eigenvalues. Then

f̃ = UD†U>A>ĝ +
y(0)√
N
.

The N = mn eigenvalues of the Laplacian of the square grid
graph (contained in the diagonal of D) and the corresponding
eigenvectors (collected as columns of U ) can be evaluated
according to the following lemma

Lemma 2. The eigenvalues of the Laplacian of the square
grid graph are

4 sin2
( πs

2m

)
+ 4 sin2

(
πl

2n

)
, (21)

with s ∈ [m] and ` ∈ [n] . The corresponding eigenvectors are

us ⊗ u`

where

us(i) = cos

(
π`

m
(i+ 1/2)

)
u`(i) = cos

(
π`

n
(i+ 1/2)

)
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It should be noticed that the eigenvectors of this matrix are
exactly the DCT Type II basis vectors (see [25]). Hence, the
procedure to recover the image from the estimated gradient
field can be efficiently implemented via the bidimensional
DCT: given ĝ, first A>ĝ is resized to match the size of the
image; then the direct and inverse DCT are performed as stated
in the following corollary.

Corollary 1. Let ĝ ∈ RE be the estimated gradient field and
assume that 0 ∈ Ω, Λ the eigenvalues of the Laplacian of the
square grid. Then

f̃ = IDCT2

[
(Λ+)�DCT2

[
vec−1(A>ĝ)

]]
+
y(0)√
N

, (22)

where Λs,` is given in (21).

IV. NUMERICAL RESULTS

In this section we test the following algorithms:
� `1-CCGE–LS (i.e., the algorithm recovering the gradient

of the image as in Section III-A2 and reconstructing the
image using (22));

� CoSaMP-CCGE–LS (i.e., the algorithm recovering the
gradient of the image solving (13) using CoSaMP and
reconstructing the image using (22));

� GradientRec–Diff [13], described in detail in Sec-
tion II-B, which first separately estimates the gradient
on rows and the gradient on columns, then reconstructs
the image from its gradient using an integration method
based on diffusion tensors [26];

� RecPF [12], a fast and efficient method for the min-
imization of the Total Variation of the reconstruction
from incomplete Fourier measurements (3).

We report, as benchmark, the reconstruction results of an
Oracle device, whose behavior is similar to the `1-CCGE–LS
algorithm, with the difference that the Oracle reconstructs in a
single step using the optimum weights since it knows perfectly
the values of the image gradient. More precisely, it solves (18)
with

w(vec(∇F )i) = e−
vec(∇F )2i

2θ2

In this sense, the performance of the Oracle provides the best
performance achievable by `1-CCGE–LS.

We analyze the algorithms under different conditions. In
the first set of experiments, described in Section IV-A, we
use as test image the 64 × 64 Shepp–Logan phantom in a
noiseless scenario, for different values of the compression ratio
L = M/N . In the second set of experiments, described in
Section IV-B, we fix the compression ratio L and reconstruct
the same test image from noisy measurements, for different
values of the noise standard deviation σ. In the third set of
tests, described in Section IV-C, we test the reconstruction
algorithms using actual MRI images. We point out here that
all the MRI images used to simulate and compare the proposed
algorithms with the state of the art come from real acquisitions
made by medical devices on human brains, ankles and knees.

For each set of experiments, three different undersampling
patterns, depicted in Figure 1, are used, namely, a radial

(a) (b) (c)

Fig. 1. 64×64 sampling patterns for given Compression Ratio L. (a) Radial
pattern with L = 0.17. (b) Uniform pattern with L = 0.15. (c) Variable
density pattern with L = 0.15.

sampling pattern, a uniformly-distributed sampling pattern and
a variable-density sampling pattern. For a thorough analysis of
the pros and cons of each sampling pattern, see [3] and [27].

The performance of the algorithms have been evaluated both
in term of relative error

‖f − f̃‖2
‖f‖2

, (23)

where f̃ is the estimated image and f is the true image, and
in terms of execution time of the algorithm, in seconds.

For the algorithms requiring the `1 norm minimization,
i.e., the proposed `1-CCGE–LS and GradientRec–Diff, SPGL1
[21], [22] is used to solve the Basis Pursuit problem in the
noiseless case and the Basis Pursuit Denoising in the noisy
case. Finally, it has to be remarked that a failure in the
reconstruction, i.e., a solver giving a Not-a-Number (NaN)
as output, is treated as the algorithm returned a totally black
image (all 0s), corresponding to a relative error of 1.

A. Noiseless acquisitions
This section reports the reconstruction results of the 64×64

Shepp–Logan phantom, in a noiseless setting. The compression
ratios L = M/N ranges from 0.01 to 0.4. 3 iterations of the `1-
CCGE–LS algorithm have been run, while for RecPF we fixed
the parameters γ and λ of (3) to 0 and 10−10, respectively.

Figure 2 shows the results for the radial sampling pattern
of Figure 1a. It can be noticed that the proposed CCGE–LS
algorithms are the ones showing the best performance, with
almost perfect reconstruction for L ≥ 0.17. RecPF reaches
its optimum performance for L ≥ 0.2 while GradientRec–
Diff performs better than RecPF for L > 0.27, confirming the
behavior obtained in [13]. There is a performance gap between
the Oracle and the CCGE–LS.

As for the execution times, the fastest algorithm is RecPF,
even if the proposed CoSaMP-CCGE–LS shows really close
performance. The `1-CCGE–LS is the slowest due to the
iterative procedure, while GradientRec–Diff has slightly faster
performance, especially for high values of L.

Figure 3 visually shows the reconstruction results for L =
0.17, as well as the visual representation of the reconstruction
error. It can be shown that the reconstruction obtained by
the proposed CCGE–LS algorithms are almost perfect, with
a relative error of 10−7. RecPF shows an acceptable recon-
struction quality (10−2), even if some edge-related artifacts
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Fig. 2. Phantom 64× 64. Radial sampling. (a) Reconstruction relative error
(b) Reconstruction time vs. Compression Ratio.

can be noticed. On the other hand, the reconstruction quality
of GradientRec–Diff is significantly worse for L = 0.17.

For uniformly distributed sampling pattern (Figure 1b) the
results are shown in Figure 4. The results correspond to the
average of 50 tests with different realizations of the sampling
pattern. Here, it can be noticed that the `1-CCGE–LS algorithm
is the one performing best, with almost-perfect reconstruction
for L ≥ 0.14. As already pointed out, the oracle estimation
simply assumes to know the optimal weights in the gradient
estimation problem and it clearly represents a performance
benchmark to compare against. In Figure 2 (a) and Figure
4 we can appreciate that the gap between the proposed
method (`1-CCGE–LS) and the oracle is very small, suggesting
that the proposed method has already achieved the limits of
gradient based MRI image recovery.. The CoSaMP-CCGE–
LS performs slightly worse, with perfect reconstruction for
L ≥ 0.19, while GradientRec–Diff performs as in the radial
sampling case, achieving its best result for L ≥ 0.28. On
the contrary, RecPF seems to suffer the uniformly distributed
sampling pattern and could not reconstruct the signal. This will
be confirmed in the next sections and is probabily due to the

lack of samples corresponding to low frequencies.
Finally, we show in Figure 5 the results for the variable

density sampling pattern, depicted in Figure 1c. The results
correspond to the average of 50 tests with different realiza-
tions of the sampling pattern. Again, the proposed CCGE–LS
algorithms are the ones performing best, showing perfect re-
construction for L ≥ 0.15, even if for L ≥ 0.29 GradientRec–
Diff performs slightly better than CoSaMP-CCGE–LS, while
RecPF reaches its best performance for L ≥ 0.17 even if
with a higher error floor. As for the execution times, the same
comments given for the radial pattern apply to the random
uniform and variable density pattern.

To wrap up, these results show that the proposed CCGE–LS
algorithms are the ones with best performance, both in terms
of reconstruction error and execution time, and are the least
sensitive to the sampling pattern. The additional constraint
imposed to the reconstruction of the gradient represents a
significant improvement in performance with respect to the
GradientRec–Diff algorithm, with a slight loss in terms of
execution time, in the case the iterative procedure is adopted
(as is in `1-CCGE–LS). A good compromise is represented
by RecPF, which however skips the estimation of the gradi-
ent, which may be required for other purposes than image
reconstruction, and is highly sensitive to the sampling pattern,
requiring it to concentrate the sampling in correspondence of
the low frequencies.

B. Noisy acquisitions
In this section, we test the performance of the reconstruction

from noisy measurements. The undersampled partial Fourier
acquisitions are affected by AWGN noise with zero mean and
standard deviation σ. For fairness, we test the performance
at a compression ratio of L = 0.4. Indeed, according to the
results of previous section, this value is high enough for all
the algorithms to show acceptable quality.

The noise standard deviation σ ranges from 0.01 to 0.1. 5
iterations of the `1-CCGE–LS algorithm have been run, while
for RecPF we fixed the parameters γ and λ of (3) to 0 and
σ2, respectively. The results correspond to the average of 50
tests with different realizations of the noise and the sampling
pattern (of the noise only, for radial sampling).

Figure 6 shows the results obtained with radial sampling. It
can be noticed that, while GradientRec–Diff shows the worst
performance, the proposed CCGE–LS algorithms perform best
than RecPF, especially for higher noise variance. When the
noise variance is low, RecPF performs slightly better, even if
the gap is small with respect to CoSaMP-CCGE–LS.

Figure 7 reports the results obtained with uniformly
distributed sampling. In this case, neither RecPF nor
GradientRec–Diff are able to reconstruct the signal, while the
proposed CCGE–LS algorithms reconstruct the signal with
acceptable performance.

Finally, using a variable density sampling pattern, the re-
sults are similar to the ones obtained with a radial scheme.
Figure 8 reports the obtained performance. While on one hand
GradientRec–Diff shows the worst performance, RecPF seems
to have slightly better performance than our proposed CCGE–
LS for high signal-to-noise ratios. On the other hand, when
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Fig. 3. Phantom 64× 64. Radial sampling. Compression Ratio L = 0.17. Top line: image reconstruction. Bottom line: error image. (a) Original. (b) and (g)
GradientRec–Diff. Relative Error: 3.02. (c) and (h) RecPF. Relative Error: 3.75 ·10−2. (d) and (i) `1-CCGE–LS. Relative Error: 2.89 ·10−7. (e) and (j) Oracle.
Relative Error: 2.89 · 10−7. (f) and (k) CoSaMP-CCGE–LS. Relative Error: 6.24 · 10−7.
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Fig. 4. Phantom 64 × 64. Uniform sampling. Reconstruction relative error
vs. Compression Ratio.
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Fig. 5. Phantom 64×64. Variable density sampling. Reconstruction relative
error vs. Compression Ratio.
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Fig. 6. Phantom 64 × 64. Radial sampling. Compression ratio L = 0.4.
Reconstruction relative error vs. noise standard deviation σ.
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Fig. 7. Phantom 64 × 64. Uniform sampling. Compression ratio L = 0.4.
Reconstruction relative error vs. noise standard deviation σ.
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Fig. 8. Phantom 64 × 64. Variable density sampling. Compression ratio
L = 0.4. Reconstruction relative error vs. noise standard deviation σ.

σ > 0.03 the proposed CCGE–LS algorithms perform better
than the competing schemes.

For what concerns the execution times, the fastest algorithms
are RecPF and GradientRec–Diff with executions times under
1 second. It took between 1 and 10 seconds to `1-CCGE–LS to
complete the reconstruction - with 5 iterations of the algorithm
- while it took more than 10 seconds to CoSaMP-CCGE–LS
to reconstruct the image.

C. MRI acquisitions
In this section we describe the results obtained from partial

Fourier sampling of 512 × 512 MRI images of a brain, a
knee, and an ankle. The Fourier acquisitions of the images
have been then undersampled using the radial pattern, the
uniformly distributed pattern and the variable density pattern.
The compression ratio is set to L = 0.4.

Table I reports the reconstruction results in terms of re-
construction relative error (23). A NaN denotes a failure in
the reconstruction algorithm. Figures 9, 10 and 11 show the
reconstruction results for the Brain image. Figures 12, 13, and
14 show the reconstruction results for the Knee image. Finally,
Figures 15, 16, and 17 show the reconstruction results for the
Ankle image. All the figures show a visual representation of
the reconstruction error along with the reconstructed image.

From the results depicted in the figures and summarized in
Table I, it can be noticed that
� the GradientRec–Diff algorithm always performs worse

than RecPF and the proposed CCGE–LS algorithm;
� for the uniformly distributed sampling pattern, the pro-

posed CCGE–LS algorithm is the only reliable algorithm
providing satisfactory reconstruction quality;

� for the Brain image, the Total Variation minimization
performed by RecPF seems to work better than com-
peting algorithms, except for the uniformly distributed
sampling pattern;

� for the Knee image, the proposed algorithm works better
than RecPF for the radial and uniformly distributed sam-
pling patterns, but RecPF has slightly better performance
for the variable density sampling;

� for the Ankle image the proposed CCGE–LS algorithm
works better for each tested sampling pattern;

� the difference between the proposed CCGE–LS algo-
rithm and its Oracle version is always unnoticeable for
the radial and variable density patterns, but is more sig-
nificant (about one order of magnitude) for the uniformly
distributed sampling pattern. This means that in that case
the initial gradient estimation the CCGE-LS algorithm
relies on is less accurate and hence the bigger gap;

� finally, it can be noticed that the CoSaMP-CCGE–LS
version of the proposed algorithm performs worse than
the `1-CCGE–LS counterpart. This is probably due to
the suboptimality of greedy algorithms like CoSaMP,
which for such complex images tends to be significant
and would require more iterations to obtain comparable
performance.

V. CONCLUDING REMARKS

Since gradients of images are often much more sparse or
compressible than the corresponding image, combination of
CS algorithms and integration methods have been used for
image recovery from spectral data. However these methods
offer significant improvement in reconstruction quality and ro-
bustness over leading TV minimization only for high sampling
ratio.

We have proposed new gradient based image recovery
algorithms which combine constrained CS algorithms using
curl information of gradient field with spectral graph filtering.
Through extensive simulation, we have shown that the pro-
posed algorithms outperform the state of the art also for small
sampling ratio and for various sampling scenarios.
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Fig. 10. Brain. Uniform sampling. Compression Ratio L = 0.4. Top line: image reconstruction. Bottom line: error image. (a) Original. (e) Sampling pattern. (b)
and (f) `1-CCGE–LS. Relative Error: 1.38 · 10−1. (c) and (g) Oracle. Relative Error: 1.38 · 10−1. (d) and (h) CoSaMP-CCGE–LS. Relative Error: 2.25 · 10−1.
GradientRec–Diff and RecPF output a NaN.
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pattern. (b) and (g) RecPF. Relative Error: 6.66 · 10−3. (c) and (h) `1-CCGE–LS. Relative Error: 7.42 · 10−3. (d) and (i) Oracle. Relative Error: 7.41 · 10−3.
(e) and (j) CoSaMP-CCGE–LS. Relative Error: 1.31 · 10−1. GradientRec–Diff output a NaN.
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Fig. 12. Knee. Radial sampling. Compression Ratio L = 0.4. Top line: image reconstruction. Bottom line: error image. (a) Original. (g) Sampling pattern. (b)
and (h) GradientRec–Diff. Relative Error: 9.88 · 10−2. (c) and (i) RecPF. Relative Error: 4.36 · 10−3. (d) and (j) `1-CCGE–LS. Relative Error: 3.86 · 10−3.
(e) and (k) Oracle. Relative Error: 3.85 · 10−3. (f) and (l) CoSaMP-CCGE–LS. Relative Error: 2.39 · 10−1.
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Fig. 15. Ankle. Radial sampling. Compression Ratio L = 0.4. Top line: image reconstruction. Bottom line: error image. (a) Original. (g) Sampling pattern. (b)
and (h) GradientRec–Diff. Relative Error: 1.32 · 10−2. (c) and (i) RecPF. Relative Error: 3.73 · 10−3. (d) and (j) `1-CCGE–LS. Relative Error: 3.67 · 10−3.
(e) and (k) Oracle. Relative Error: 1.39 · 10−3. (f) and (l) CoSaMP-CCGE–LS. Relative Error: 2.49 · 10−1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 16. Ankle. Uniform sampling. Compression Ratio L = 0.4. Top line: image reconstruction. Bottom line: error image. (a) Original. (f) Sampling pattern.
(b) and (g) GradientRec–Diff. Relative Error: 5.51 ·10−1. (c) and (h) `1-CCGE–LS. Relative Error: 2.07 ·10−1. (d) and (i) Oracle. Relative Error: 1.24 ·10−2.
(e) and (j) CoSaMP-CCGE–LS. Relative Error: 3.19 · 10−1. RecPF output a NaN.
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Fig. 17. Ankle. Variable density sampling. Compression Ratio L = 0.4. Top line: image reconstruction. Bottom line: error image. (a) Original. (g) Sampling
pattern. (b) and (h) GradientRec–Diff. Relative Error: 3.69 · 10−2. (c) and (i) RecPF. Relative Error: 2.78 · 10−3. (d) and (j) `1-CCGE–LS. Relative Error:
2.39 · 10−3. (e) and (k) Oracle. Relative Error: 1.02 · 10−3. (f) and (l) CoSaMP-CCGE–LS. Relative Error: 2.58 · 10−1.
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