
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Personal Cloud Storage Benchmarks and Comparison / Bocchi, Enrico; Drago, Idilio; Mellia, Marco. - In: IEEE
TRANSACTIONS ON CLOUD COMPUTING. - ISSN 2168-7161. - STAMPA. - 5:4(2017), pp. 751-764.
[10.1109/TCC.2015.2427191]

Original

Personal Cloud Storage Benchmarks and Comparison

Publisher:

Published
DOI:10.1109/TCC.2015.2427191

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2603583 since: 2017-12-06T18:50:34Z

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

Personal Cloud Storage

Benchmarks and Comparison
Enrico Bocchi, Idilio Drago, Marco Mellia

Abstract—The large amount of space offered by personal
cloud storage services (e.g., Dropbox and OneDrive), together
with the possibility of synchronizing devices seamlessly, keep
attracting customers to the cloud. Despite the high public interest,
little information about system design and actual implications
on performance is available when selecting a cloud storage
service. Systematic benchmarks to assist in comparing services
and understanding the effects of design choices are still lacking.

This paper proposes a methodology to understand and bench-
mark personal cloud storage services. Our methodology unveils
their architecture and capabilities. Moreover, by means of re-
peatable and customizable tests, it allows the measurement of
performance metrics under different workloads. The effectiveness
of the methodology is shown in a case study in which 11 services
are compared under the same conditions. Our case study reveals
interesting differences in design choices. Their implications are
assessed in a series of benchmarks. Results show no clear winner,
with all services having potential for improving performance. In
some scenarios, the synchronization of the same files can take 20
times longer. In other cases, we observe a wastage of twice as
much network capacity, questioning the design of some services.
Our methodology and results are thus useful both as benchmarks
and as guidelines for system design.

Index Terms—Cloud Storage; Measurements; Performance

I. INTRODUCTION

Personal cloud storage services are data-intensive applica-

tions on the Internet [1] that allow users to synchronize files

with servers in the cloud and among different devices. They

are also a popular means for distributed and collaborative

work, with files being automatically shared and synchronized

among users, thus posing additional near real-time constraints.

More and more people are attracted by these services, saving

personal files, synchronizing devices and sharing content with

great simplicity. The high public success has pushed dozens

of providers to the cloud storage market. New players have to

compete against established ones, such as Dropbox and Box,

as well as against giants like Apple, Google and Microsoft,

which offer large amount of storage space for cheaper and

cheaper prices [2]. While the high competition for customers

continues to decrease the cost per GB [3], other important

aspects, such as synchronization performance and Quality of

Experience (QoE), are mostly unknown given the proprietary

design of most services. As such, selecting the service that

suits the specific needs of a user has become a non-trivial

task. In competing for customers in the crowded market, it is

to be expected that performance and QoE will be as important

as price to attract customers in a near future.

The authors are with Politecnico di Torino, Italy (email: first-
name.lastname@polito.it). This research has been funded by the European
Union under the FP7 Grant n. 318627 (Integrated Project “mPlane”).

Both users migrating files to the cloud and new providers

that need to compete with the big players would greatly benefit

from knowing how different design choices impact cloud

storage performance. However, despite the high public interest,

little work [4], [5], [6] has been done to compare cloud

storage design and performance. In particular, a systematic

methodology as well as public benchmarks that could assist

in understanding the effects of design choices are still lacking.

This paper proposes a methodology to study personal cloud

storage services. We build upon our previous work [7], and

design a benchmarking environment that allows to run realistic

and repeatable tests. Our methodology helps to unveil cloud

storage architectures, generate realistic workloads, and observe

performance metrics under different scenarios and over time.

The effectiveness of the methodology is verified in a case

study involving 11 services, including 9 popular personal cloud

storage providers, and 2 private cloud installations. Overall, we

present results covering more than 3 months of measurements.

Our case study targets two major goals. Firstly, it sheds

light on how providers tackle the problem of synchronizing

people’s files, revealing differences on client software, capa-

bilities, synchronization protocols and data center placement

policies. Secondly, we evaluate how such choices impact end

user performance. To this end, we perform a large series of

experiments using different workloads. Taking the perspective

of customers connected from a single location in Europe, we

contrast the measured performance against the characteristics

of each service, thus highlighting the consequences of several

design choices for both users and the Internet. Our contribu-

tions can be summarized as follows:

• We introduce a methodology (Sect. II) that helps to deter-

mine client capabilities and data center locations as well as to

benchmark cloud storage. Workloads are generated at run-time

and performance metrics are obtained without instrumenting

proprietary clients;

• We document how different providers implement cloud

storage services, focusing on client capabilities (Sect. III) and

system design (Sect. IV);

• We highlight how design choices affect performance by

means of a series of benchmarks (Sect. V). Major findings of

this case study are summarized in the following.

To the best of our knowledge, we are the first to introduce

a methodology to characterize and understand implications of

personal cloud storage design. This paper extends our prelimi-

nary work presented in [7]. We complement our methodology

to cover the complete synchronization cycle, where a client

first uploads content to the cloud, which is then spread to

2

other devices and users. We extend the evaluation to cover

11 services, including two private installations. Long-term

measurements are presented and discussed. We contrast a vast

range of design choices under new perspectives and highlight

their implications to both users and the network.

A. Major Findings and Implications

The application of our methodology in a case study leads

to lessons to the design of cloud storage services:

• We notice aggressive choices regarding the design of

control protocols to notify users about updates and to carry

modifications to storage servers. Such choices lead to band-

width wastage that might be significant for both busy servers

and users in limited capacity scenarios.

• When comparing different services, there is no clear

winner: performance depends on the workload (e.g., few large

files versus lots of small files), distance to data centers and

implemented capabilities.

• A lightweight client that reacts fast to changes is key to

good performance with small and medium workloads – e.g.,

in collaborative editing scenarios. Indeed, we find that several

services waste more than 50% of the time being idle before

processing our workloads.

• Advanced clients are essential when complex workloads

are manipulated. The advantages of having a small distance

to data centers – e.g., local deployments or worldwide data

centers – are canceled if simplistic clients are used.

While some measurements we present might change based

on the test location, we pinpoint general facts that are indepen-

dent from it. Our methodology is an important step towards

the definition of open and flexible ways to benchmark cloud

storage. It can help end users to compare alternatives and take

informed decisions considering QoE metrics. Our methodol-

ogy can also help engineers and researchers to develop new

cloud storage services taking resource utilization into account.

To this end, we offer the developed tools as a contribution to

the community, aiming to foster further investigations on cloud

storage design and performance.1

II. METHODOLOGY

This section describes our methodology to study cloud

storage services. The methodology is developed around a

testbed that allows us to run specific benchmarks. First, we aim

at (i) testing client capabilities, and (ii) highlighting protocol

design choices and data center placement decisions. Then,

the testbed is used to measure the implications of those two

aspects on performance under different workloads.

A. Goals

In the design of our methodology, we follow the traditional

black-box testing approach. We consider an application-under-

test that is run in a controlled environment, where we can

impose an input sequence while recording the external behav-

ior of the system. We instrument a testbed in which one or

1Available at http://www.simpleweb.org/wiki/Cloud benchmarks

Cloud storage

provider

Test Computer 1

(uploads)

Test Computer 2

(downloads)

FTP server

App-under-test

App-under-test

2: Upload files

3: Synchronize

Testing application

0: Parameters
1: Send files

4: Statistics

Fig. 1: Testbed and workflow of the benchmarks.

more test computers run the desired application-under-test. A

testing application generates a pre-defined workload, i.e., it

creates specific file(s) that the cloud storage service should

synchronize among the test computers. At the same time, the

testbed passively collects the traffic exchanged in the network

to obtain a trace of the execution.

We assume to have control neither on the application-under-

test nor on the network. We want tests to be repeatable and

automatically performed, both to save time and to obtain

average estimations. Moreover, since we target the comparison

of tens of different services, we need the whole testing

methodology to be able to run without constant supervision,

post-processing and analyzing recorded traces automatically.

B. Testbed and Tools

Fig. 1 depicts our testbed. Its core component is the testing

application that orchestrates experiments and records network

traffic. Two or more test computers run the application-under-

test. For simplicity, we consider only two test computers here,

although our methodology is generic and supports multiple

clients as well. Our testing application receives benchmark-

ing parameters describing the sequence of operations to be

performed (step 0 in Fig. 1). Then, the testing application

acts remotely on Test Computer 1 (step 1) by means of a

FTP server, generating workloads in the form of file batches.

Once the application-under-test detects that files have changed,

it starts to synchronize them to the cloud (step 2). The

application-under-test running on Test Computer 2 detects

modifications and downloads the new content (step 3). Ex-

changed traffic is recorded during all steps and processed to

compute performance metrics (step 4).

We setup the testbed using a single Linux server. The server

controls the experiments by running the testing application,

and hosts two virtual machines2 that run the test comput-

ers (Windows 7 Enterprise). Both test computers have their

network interfaces connected to a virtual network, while the

Linux server is instrumented to act as a router and provide

Internet connectivity to the virtual network. This setup allows

the server to easily observe traffic exchanged with the test

computers. The Linux server is connected via a 1 Gbps

Ethernet card to the Politecnico di Torino campus network,

in which Internet connectivity is offered by a 10 Gbps link.

2We tested also physical machines without noticing any difference in
results. However, care must be taken in calibrating the virtual environment –
e.g., to avoid network shaping parameters, dimensioning the host server etc.

http://www.simpleweb.org/wiki/Cloud_benchmarks

3

Workload Upload Starts Upload EndsDownload Starts Download Ends

Time
Start up Upload Phase (Test Computer 1)

Propagation Download Phase (Test Computer 2)

Fig. 2: Typical synchronization cycle in a personal cloud storage service.

C. Client Capabilities and Storage Protocols

We first study protocols used to communicate with the

cloud. A manual inspection on packet traces reveals that

most cloud storage services adopt HTTPS – i.e., they encrypt

payload. Only in few cases, some control information is ex-

changed by means of non-encrypted protocols such as HTTP.

This is commendable given the privacy issues that could arise

from transporting user files without encryption. However, the

adoption of encrypted protocols complicates the understanding

of the operations performed by the application-under-test.

Next, we aim at understanding whether services implement

any advanced capabilities to manipulate files on the cloud.

In particular, previous work [1] showed that storage services

can implement client capabilities to optimize network usage

and speed up transfers. These capabilities include (i) chunking

– i.e., splitting large files into a maximum size data unit;

(ii) bundling – i.e., the transmission of multiple small files as a

single object; (iii) deduplication – i.e., avoiding re-transmitting

content already available on servers; (iv) delta encoding – i.e.,

transmitting only modified portions of files; (v) compression

– i.e., compressing files before transmission; and (vi) P2P

synchronization – i.e., exchange files among devices without

involving storage servers.

For each case, a test has been designed to observe if the

given capability is implemented. We describe these tests in

Sect. III. Intuitively, our testing application generates specific

file batches that would benefit from the availability of a

capability. The exchanged traffic is analyzed to observe if these

benefits are present. Finally, we note that these experiments

only need to be executed when a new client version of a cloud

storage service is released.

D. Data Center Locations

The data center locations and data center ownership are im-

portant aspects of cloud storage services, having both legal and

performance implications. To identify how services operate,

we leverage the IP address and hostname of servers contacted

by an application-under-test when (i) it is started; (ii) files are

manipulated; and (iii) it is in idle state.

In cloud services, different IP addresses can be returned

when querying the DNS. Load-balancing techniques are often

in place to split the workload based on the client location [8].

Following an approach similar to [9], we resolve all hostnames

using more than 2,000 open DNS resolvers spread around the

world. The list of resolvers has been manually compiled from

various sources and covers more than 100 countries and 500

ISPs. This methodology allows us to create a list of server IP

addresses used by a cloud storage provider.

Once the list of IP addresses is obtained, we use the whois

service to verify their ownership, i.e., the name of the company

owning the IP addresses. Next, we look for the geographic

location of servers. Since popular geolocation databases have

serious limitations regarding cloud providers [10], we rely on

a hybrid methodology that makes use of (i) informative strings

(i.e., International Airport Codes) revealed in the hostname or

by reverse DNS lookups; (ii) the shortest RTT (Round Trip

Time) to PlanetLab nodes [11]; and (iii) active traceroute

to spot the closest well-known location of a router. Previous

work [8], [12] indicates that these methods provide an esti-

mation with about a hundred of kilometers of precision. Since

we aim at a coarse reference of the location from where cloud

providers operate (e.g., at country level), this estimation is

sufficient for our goals.

E. Benchmarking Performance

After knowing design choices of services, we use our

testbed to check their influence on performance. We engineer

a methodology to calculate metrics related to typical phases

of the synchronization cycle as depicted in Fig. 2.

A workload is generated by the testing application based

on a benchmark definition. A variable number of files with

different content and size is created and manipulated, e.g., text

files composed of random words from a dictionary, images

with random pixels or random binary files. In addition, a

percentage of file replicas can be specified to test how the

service reacts when synchronizing repetitive content.

Performance metrics are calculated. Fig. 2 depicts the

typical steps while synchronizing a file batch. We calculate:

(i) The duration of the silent period before Test Computer 1

reacts to a new workload (i.e., start up); (ii) the duration and

the amount of traffic while Test Computer 1 uploads files;

(iii) the delay between the start of the upload and the download

(i.e., propagation time); and (iv) the duration and the amount

of traffic while files are downloaded from Test Computer 2.

Each phase is marked with a timestamp identified from

network events based on the (previously learned) behavior of

each application-under-test. Since most cloud storage services

are proprietary and use encrypted protocols, determining such

events from network traces is challenging. We learn the typical

behavior of each service by means of controlled experiments

and manual inspection, following a typical trial-and-check pro-

cess. Once significant events are identified and validated, they

are coded in (application-specific) post-processing scripts.3 We

refrain from providing implementation details for the sake of

brevity and refer interested readers to our tool set for more

information on how we post-process the traces.

3Determining such events automatically would require algorithms to learn
the typical behavior of services.

4

TABLE I: Considered cloud storage services. The list includes

11 services, among which 2 are run privately.

Service Version

Public

Box 4.0.5101
Cloud Drive (Amazon) 2.4.2013.3290
Copy (Barracuda) 1.45.0363
Dropbox 2.8.4
Google Drive 1.16.7009.9618
hubiC (OVH.com) 1.2.4.79
Mega 1.0.5
OneDrive (Microsoft) 17.3.1166.0618
Wuala (LaCie) Olympus

Private
Horizon (VMware) 1.5.0-12211212
ownCloud 1.5.2

F. Storage Services Under Test

Compared to [7], we extend the list of services under study

to 11, all being the latest version at the time of writing. We

restrict our analysis to native clients, since this is the largely

preferred means to use cloud storage services [1].

Tab. I lists the considered services. These include (i) popular

players (e.g., Dropbox, Google Drive, Microsoft OneDrive,

Amazon Cloud Drive); (ii) services with a strong presence

in Europe, whose data centers are close to our testbed loca-

tion (e.g., hubiC, Wuala and Mega); and (iii) private cloud

services that are run in our institution (i.e., ownCloud and

Horizon). Such variety allows us to compare the impact of

multiple protocol design choices, client capabilities and data

center placement policies on cloud storage performance. We

only consider services offering free storage space, and those

operating in a cloud infrastructure. Therefore, services such as

SugarSync and BitTorrent Sync are not evaluated.

Finally, we note that Wuala is the only service that claims

to encrypt files on the local computer before transferring them

to the cloud. This can have extra processing costs and impair

performances, as we will check in coming sections.

III. CAPABILITIES

We first evaluate which capabilities are implemented by

different services. Findings are then summarized in Tab. II.

A. Bundling

When a batch of files is transferred, files could be bundled,

so that transmission latency and control overhead are reduced.

Our experiment to check how services handle batches of files

consists of 3 file sets of 1 MB: (i) 1 file of 1 MB; (ii) 10 files

of 100 kB; and (iii) 100 files of 10 kB. We then estimate the

number of upload and download operations.

These experiments reveal three design trends. Results are

in Fig. 3, in which different plots are shown for uploads

and downloads.4 A first group of services (Box, Cloud Drive,

Google Drive and Mega) opens several TCP connections when

submitting multiple files. Notice in Fig. 3a how the number

of TCP connections opened by Box and Google Drive is

exactly the same as the number of files. Compare to Dropbox,

which instead uses only few TCP connections to transfer

multiple files. The first is a strong indication that the service

4Some services are omitted from plots in this section to help visualization.

 1

 10

 100

1x1MB 10x100kB 100x10kB

T
C

P
 C

o
n
n
ec

ti
o
n
s

Upload

Dropbox
Google Drive

Cloud Drive
Box

Mega

 1

 10

 100

1x1MB 10x100kB 100x10kB

T
C

P
 C

o
n
n
ec

ti
o
n
s

Download

(a) Number of TCP connections

 1

 10

 100

 1000

1x1MB 10x100kB 100x10kB

P
S

H
 m

es
sa

g
es

Upload

OneDrive
ownCloud

Horizon
Wuala

hubiC

 1

 10

 100

 1000

1x1MB 10x100kB 100x10kB

P
S

H
 m

es
sa

g
es

Download

(b) Number of PSH-delimited messages

Fig. 3: Bundling capability. Note the logarithm y-axes.

is managing each file in a separate transaction. Notice that

when several connections are used, the traffic overhead can be

significant, owing to TCP and TLS/SSL negotiations.

Mega and Cloud Drive sometimes group files into fewer

TCP connections (see download plot). This is also the case

for other services – i.e., Copy, Horizon, hubiC, OneDrive,

ownCloud and Wuala. However, they submit files in separate

transactions. Fig. 3b illustrates this design, which can be in-

ferred from the bursts of packets delimited by TCP segments in

which the application-under-test sets the PSH flag – hereafter

called PSH-delimited messages. Notice how the number of

PSH-delimited messages is proportional to the number of files

in each file set. This suggests that each file is transferred

as a separate entity, and no bundle is created. Timestamps

of TCP PSH-delimited messages indicate that transactions

are serialized in most cases, although some services (e.g.,

OneDrive) try to overcome this limitation by using concurrent

transfers. Sect. V will show that services lacking bundling

and performing transactions sequentially suffer performance

penalties when the RTT is large and several small files have

to be exchanged.

Finally, among the 11 tested services, only Dropbox is

confirmed to implement a file-bundling strategy [1].

B. Chunking

Large files can be either monolithically transmitted to the

cloud or chunked into smaller pieces. Chunking is advanta-

geous because it simplifies recovery in case of failures: Partial

submission becomes easier to be implemented, benefiting both

users connected to slow networks, and those having operations

interrupted by temporary network disconnections.

5

 0

 1

 2

 3

 4

 5

 1 3 5 7 9 11 13 15

T
C

P
 C

o
n
n
ec

ti
o
n
s

File size (MB)

Upload

Dropbox
Google Drive

 0

 1

 2

 3

 4

 5

 1 3 5 7 9 11 13 15

T
C

P
 C

o
n
n
ec

ti
o
n
s

File size (MB)

Download

(a) Number of TCP connections

 0

 5

 10

 15

 20

 1 3 5 7 9 11 13 15

P
S

H
 m

es
sa

g
es

File size (MB)

Upload

OneDrive
Mega

ownCloud
Horizon

Wuala

 0

 5

 10

 15

 20

 1 3 5 7 9 11 13 15

P
S

H
 m

es
sa

g
es

File size (MB)

Download

(b) Number of PSH-delimited messages

Fig. 4: Chunking capability.

As in the previous experiment, by monitoring the number

of TCP connections and PSH-delimited messages during the

synchronization of files of known size, we determine whether

chunks are created and transmitted in different transactions.

Our methodology reveals a variety of chunking strategies,

some of which are illustrated in Fig. 4. Top plots (Fig. 4a)

show that Dropbox and Google Drive implement chunking

and rely on different TCP connections to submit individual

chunks. In fact, Google Drive uses 8 MB chunks, while

Dropbox uses 4 MB chunks – notice the changes in the

number of TCP connections as file sizes pass multiples of

those quantities. Surprisingly, Google Drive relies on chunking

only for downloading content.

A second group of services reuses TCP connections, but the

number of PSH-delimited messages allows us to conclude that

files are also split into chunks. Fig. 4b suggests that ownCloud

chunks content at 10 MB boundaries when uploading, Copy

uses 5 MB chunks, OneDrive and Wuala use 4 MB chunks,

and Mega chunks at less than 1 MB. Looking at the Fig. 4b

bottom-right plot (download), we observe that OneDrive and

Horizon use different policies for each direction. Horizon, for

instance, uses chunks smaller than 1 MB only when uploading,

but no chunking when downloading. Finally, remaining ser-

vices do not seem to implement chunking, since no difference

is noticed when file sizes are varied (not shown in Fig. 4).

C. Compression

We next verify whether data is compressed before a transfer.

Compression could, in general, reduce traffic and storage

requirements at the expense of local processing time. We

check the compression capability by contrasting the number

of Bytes observed in the network with the original bench-

mark size when submitting highly compressible text files –

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.4 0.7 1.0

U
p
lo

ad
 (

M
B

)

File size (MB)

Dropbox
Google Drive

OneDrive

Cloud Drive
Box

Copy

Mega
ownCloud

Horizon

Wuala
hubiC

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.4 0.7 1.0

D
o
w

n
lo

ad
 (

M
B

)

File size (MB)

Fig. 5: Bytes exchanged during the test with compressible files.

sizes from 100 kB to 1 MB. Fig. 5 reveals that Dropbox

and Google Drive compress data before transmission, with

the latter implementing a more efficient scheme – i.e., less

network traffic is measured when compared to the original file

size. ownCloud compresses content only when downloading,

whereas all remaining services send files as they are created.

Naturally, compression is advantageous only for some file

types. It has a negligible or negative impact when already com-

pressed files are going to be transmitted. A possible approach

would be to verify the file format before trying to compress

it – e.g., by checking file extensions or by looking for magic

numbers in file headers. We check whether ownCloud, Google

Drive and Dropbox implement smart policies by creating fake

JPEG files – i.e., files with JPEG extension and JPEG headers,

but actually filled with text that can be compressed. Results

reveal that Google Drive and ownCloud identify JPEG content

and avoid compression. Dropbox instead compresses all files

independently of content and extensions. Hence, in case of

true JPEG files, resources are wasted.

D. Client-Side Deduplication

Server data deduplication eliminates replicas on the storage

server. Client-side deduplication instead extends the benefits

to clients and the network: In case a file is already present on

servers, replicas in the client can be identified to save upload

capacity. This can be accomplished by calculating a file digest

using the file content (e.g., SHA256 is used by Dropbox [13]).

The digest is sent to servers prior to submitting the complete

file. Servers then check whether the digest is already stored in

the system and skip the upload of repeated content.

To check whether client-side deduplication is implemented,

we design the following experiment: (i) A file with random

content is created in an arbitrary folder – since this is the

first copy of the file, the full content must be transferred in

the network; (ii) the same random content is used to create a

replica with a different name in a second folder – assuming

hashes are used to identify replicas, only meta-data should be

transferred, and not the complete file again; (iii) the original

file is copied to a third folder – this step tests whether file

names or any other information besides content hashes are

checked to identify replicas in different folders; (iv) after all

copies are deleted, the file is placed back to its original folder

– this step determines whether deduplication still works after

all copies of a file are deleted from local folders.

6

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.4 0.7 1.0

U
p
lo

ad
 (

M
B

)

File size (MB)

Dropbox
Google Drive

OneDrive

Cloud Drive
Box

Copy

Mega
ownCloud

Horizon

Wuala
hubiC

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.4 0.7 1.0

D
o
w

n
lo

ad
 (

M
B

)

File size (MB)

(a) Append content

2

4

6

8

10

1 4 7 10

U
p
lo

ad
 (

M
B

)

File size (MB)

Dropbox
Google Drive

OneDrive

Cloud Drive
Box

Copy

Mega
ownCloud

Wuala

hubiC

2

4

6

8

10

1 4 7 10

D
o
w

n
lo

ad
 (

M
B

)

File size (MB)

(b) Insert content at a random position

Fig. 6: Delta encoding tests. Note the differences in x-axes.

Results show three clear design choices. A first group of

services (Box, Cloud Drive, Google Drive, hubiC, OneDrive

and ownCloud) ignores deduplication opportunities and always

submit the content, even if files are available at both the

client and the server side. In contrast, a second group of

services (Copy, Dropbox and Wuala) implements deduplica-

tion. Services in this group identify copies even after they are

deleted and later restored. This avoids re-uploading the files

in case they are restored in the local folder. In the case of

Wuala, deduplication is compatible with local encryption – i.e.,

two identical files generate two identical encrypted versions.

Finally, Mega and Horizon partially implement deduplication.

Horizon keeps deleted files in a “trash bin” and restores files

from it in step 4 of our experiment. Mega, in turn, identifies

replicas only when they are added in a single batch.

It is also interesting to note that Dropbox used to implement

inter-user deduplication. This technique allows a user to skip

submitting files that are already stored by any other user. How-

ever, this scheme has been shown to leak information about

content stored in the service [13]. By manually performing

experiments with different users, we conclude that none of

the services implement inter-user deduplication anymore.

E. Delta Encoding

Delta encoding calculates the difference among file revi-

sions, allowing the transmission of only the modified por-

tions. Indeed, delta encoding provides similar benefits as the

combination of chunking and deduplication, but with a finer

granularity. It may have a positive impact on performance

when files are frequently changed – e.g., when people perform

collaborative/iterative work. On the other hand, the storage of

static content is not affected by this feature.

To verify which services deploy delta encoding, a sequence

of changes is generated on a file such that only a portion of

content differs between iterations. Three cases are considered:

New data added (i) at the end; (ii) at the beginning; or (iii) at

a random position within the file. This allows us to check

whether any rolling hash mechanisms [14] are implemented.

In all cases, the modified file replaces its old copy.

Fig. 6a shows the number of Bytes uploaded at each step of

the experiment when data are appended to the file. File sizes

have been chosen up to 1 MB, and 100 kB are appended at

each iteration. We see that only Dropbox implements delta

encoding – e.g., the volume of uploaded data in Fig. 6a

corresponds to the actual part that has been modified.

Side effects of chunking, however, might increase the sent

traffic in certain circumstances. Consider the results in Fig. 6b.

In this case, files of up to 10 MB are generated, and 1 MB of

content is added at a random position within the file. Focusing

on Dropbox again, observe that the amount of traffic increases

when files are bigger than the Dropbox 4 MB-long chunk.

This happens because the additional 1 MB can affect more

than 1 chunk at once. For instance, adding 1 MB somewhere

before the boundary of the first chunk would shift all data in

the following chunks too. As such, the volume of data to be

transmitted is larger than the new content.

Finally, we can see the trade-off of having either delta

encoding or chunking/deduplication in Fig. 6b. While only

Dropbox implements delta encoding, we can see that chunking

and deduplication allow Wuala and Copy to upload only those

chunks that are actually affected by the addition of content at a

random position. Notice how the number of Bytes exchanged

by Wuala and Copy shows sudden drops in Fig. 6b when files

are larger than the respective chunk sizes (4 MB and 5 MB).

Yet, a major portion of files is uploaded again.

F. P2P Synchronization

Devices hosting common files could be synchronized with-

out retrieving every content from the cloud, thus saving

both network and server resources. Dropbox is known [1]

for implementing a LAN Sync Protocol that allows devices,

possibly from different users, to exchange content using P2P

communication when clients are connected to the same LAN.

To check which services implement P2P synchronization,

we perform the following steps. We first manually verify

each service GUI searching for explicit parameters related to

P2P synchronization. This manual inspection reveals that both

Copy and Dropbox offer such capability.

We then configure those services to perform P2P synchro-

nization and modify our testbed to put both test computers in

the same LAN. We let the testing application submit work-

loads composed of single binary files of different sizes. By

monitoring the traffic going to Test Computer 2 (downloads),

we observe that only Dropbox and Copy indeed skip the

download of content from the cloud, retrieving files from Test

Computer 1. Other services, instead, always download the files

from central servers, even if files are available locally at Test

Computer 1, thus wasting Internet bandwidth.

7

TABLE II: Summary of the capabilities implemented in each service.

Service Bundling1,2 Chunking2 Compression Deduplication Delta Encoding P2P Sync

Box no (mc) no never no no no

Cloud Drive no (up mc, down mt) no never no no no

Copy no (mt) 5 MB never yes no yes

Dropbox yes 4 MB always yes yes yes

Google Drive no (mc) 8 MB (down only) smart no no no

hubiC no (mt) no never no no no

Mega no (mc) 1 MB never partially no no

OneDrive no (mt) up 4 MB, down 1 MB never no no no

Wuala no (mt) 4 MB never yes no no

ownCloud no (mt) no smart / down only no no no

Horizon no (mt) 1 MB (up only) never partially no no

1 mc: one or multiple TCP connections per file; mt: one or multiple application layer transactions per file.
2 up and down refer to the upload and the download experiments, respectively.

G. Summary

Tab. II summarizes the capabilities of each service. It shows

(i) whether bundling is implemented, or whether multiple

TCP connections or multiple application layer transactions

are used to submit files; (ii) the chunking strategy used to

handle large files, including chunking thresholds; (iii) whether

content is compressed always, never, only when downloading,

or based on file formats (i.e., smart); (iv) whether the service

implements deduplication, completely or partially; (v) whether

the service implements delta encoding; and (vi) whether P2P

synchronization is available. We can see that Dropbox is the

most sophisticated service from the point of view of features to

enhance synchronization speed. Other services have a mixed

design, implementing a subset of capabilities. Finally, we see

also very simple client designs (e.g., Box and hubiC), in which

no capabilities are present.

IV. SYSTEM DESIGN

Next, we want to understand how services are implemented

in terms of protocols and data center placement. In particular,

we check the network fingerprint of each service when in idle

state and whether services use a centralized or a distributed

data center topology. Findings are summarized in Tab. III.

A. Protocols and Overhead

The traffic of the analyzed services can be roughly classified

into two main groups: control and data storage. Regarding

control, servers perform three major tasks: authentication, file

meta-data control, and notification of file changes. As men-

tioned in Sect. II, all services exchange traffic using HTTPS,

with the exceptions of ownCloud and Dropbox notification

protocols that rely on plain HTTP. Interestingly, some Wuala

storage operations also use plain HTTP, since users’ privacy

has already been secured by local encryption.

We notice relevant differences among the services during

login and idle phases. Fig. 7 reports the cumulative number

of Bytes exchanged in a 40 min interval after starting the

services and without synchronizing any files. For improving

visualization, we report only services that exchange more than

90 kB on the interval. Two main considerations hold. Firstly,

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40

C
u

m
u

la
ti

v
e

tr
af

fi
c

(k
B

)

Time (min)

OneDrive
Cloud Drive

Copy
ownCloud

Horizon
hubiC

Fig. 7: Background traffic generated by services in idle state.

the services authenticate the user and check if any content has

to be updated. Note how Cloud Drive exchanges about 300 kB

with remote servers. Coming next, we can see that OneDrive

requires about 150 kB in total, 4 times more than others. This

happens because the service contacts many Microsoft servers

during login. Other services produce a negligible amount of

traffic at start up, thus reinforcing the weaknesses in Cloud

Drive and OneDrive start up protocols.

Secondly, once login is complete, services may keep ex-

changing data with the cloud. The majority of services main-

tains an open TCP connection with servers, in which file

changes are announced. In general, we observe silent protocols

that seldom exchange any data in the network – i.e., changes

are notified by clients or servers as they occur via the open

connection, and keep-alive messages are exchanged periodi-

cally only to guarantee that the notification channel remains

open. Copy, Dropbox and Box poll servers every 60 s, resulting

in a bandwidth usage of less than 200 b/s. Similarly, Google

Drive, OneDrive and Wuala present negligible background

traffic, but they pool servers at 30 s, 45 s and 5 min,

respectively. Mega keeps a notification connection always open

without exchanging any keep-alive messages at the application

layer. It instead renews the notification connection after 10 min

or more, thus putting almost no load in the network.

Other services, on the contrary, have noticeable traffic when

idle. Fig. 7 shows that both Cloud Drive and hubiC generate

more than 0.7 kb/s. Horizon and ownCloud are even less

8

TABLE III: Summary of system design choices of each service.

Service Topology Data Center Location Pooling Interval Background Traffic

Mega Partly distributed Europe/Oceania N/A < 0.01 kb/s

Google Drive Distributed Worldwide 30 s 0.03 kb/s

Wuala Centralized Europe 5 min 0.05 kb/s

OneDrive Partly distributed U.S./Asia 45 s 0.05 kb/s

Dropbox Centralized U.S. 60 s 0.10 kb/s

Copy Centralized U.S. 60 s 0.12 kb/s

Box Centralized U.S. 60 s 0.16 kb/s

Cloud Drive Partly distributed U.S./Europe 5 min 0.72 kb/s

hubiC Centralized Europe 60 s 0.76 kb/s2

Horizon N/A1 N/A 60 s 1.04 kb/s

ownCloud N/A N/A 30 s 1.24 kb/s

1 N/A: Not applicable.
2 hubiC figures vary considerably as more files are added – e.g., it reaches 12 kb/s when 87 MB distributed in 462 files are synchronized.

efficient: They produce 1.04 kb/s and 1.24 kb/s, respectively.

Although apparently small, such background traffic might be

problematic for users with limited traffic subscriptions and

also for providers. For instance, 10 million users connected

simultaneously to hubiC or Cloud Drive generate around

8 Gbps even if no activity in the services is performed. Google

Drive would consume less than 0.5 Gbps.

Finally, we notice a clear problem in the notification pro-

tocol of hubiC. Its background traffic is proportional to the

number of files in the service. For example, hubiC creates a

constant stream of around 12 kb/s when 87 MB (462 files)

are put in its folders during our experiments. These findings

illustrate the relevance of designing notification protocols in

cloud storage services. Even if each of such notifications may

by relatively small when compared to user files, poor design

choices can result in high costs to users and servers.

B. Data Center Topology

Apart from our local installations (i.e., Horizon and

ownCloud), our methodology reveals that providers follow

three major approaches in terms of data center placement.

A first group of services operates from a single region,

relying on few data centers. Box and Copy are both centralized

in the U.S., operating from San Jose and Detroit areas,

respectively. Dropbox manages own servers also in the San

Jose area. These servers are however in charge of control tasks

only. All Dropbox users worldwide are directed to Amazon’s

data centers in Northern Virginia when storing data. Other

two services are instead centralized in Europe, with hubiC

operating from Northern France, and Wuala using two third-

party locations, one in Northern France, and a second one in

the Nuremberg area, Germany.

A second group of providers deploys a partly-distributed

topology, in which a few data centers are spread in key

places in the world. Mega relies on third-party data centers in

New Zealand and Germany. Cloud Drive uses Amazon’s data

centers in Ireland, Northern Virginia and Oregon. OneDrive

takes advantage of Microsoft’s data centers in the Seattle area

(U.S. West Cost) and Southern Virginia (U.S. East Cost). We

have identified IP addresses located in Ireland and Singapore

as well, which seem to handle OneDrive control traffic, but no

data storage. In general, traffic from our testbed is directed to

the closest data center of each provider, as expected.

Finally, Google Drive is the only service with a fully

distributed topology. Several edge nodes can be identified

worldwide, and clients are redirected to the (possibly) nearest

edge node based on DNS load-balancing. TCP connections are

terminated at Google’s edge node, and the traffic is then routed

to actual data centers using Google’s private network. We have

identified more than 30 edge nodes spread in 6 continents. The

advantages of such topology are twofold: (i) RTT between

clients and servers is sensibly reduced, allowing for faster

transfers over short-lived TCP flows; and (ii) storage traffic

is offloaded from the public Internet.

C. Summary

Tab. III summarizes the design characteristics evaluated

in this section. Services are sorted according to background

traffic. We can see that Mega wins in this aspect: It implements

the most efficient notification protocol and relies on data

centers in different continents. On the other extreme, we see

that hubiC and Cloud Drive produce noticeable background

traffic, which might be a problem not only for users but

also for servers if the number of on-line users becomes high.

Finally, we observe that only major players besides Mega (i.e.,

Microsoft, Google and Amazon) rely on global data center

placement. Performance implications are discussed in Sect. V.

V. BENCHMARKS

We now evaluate the design choices by presenting a series

of benchmarks. Sect. V-A describes the used workloads.

Sect. V-B highlights the determining factors to the overall

synchronization time, further detailed in Sects. V-C, V-D,

and V-E. Sect. V-F provides an overview of traffic overhead.

Sect. V-G evaluates how the metrics vary in a long-term

measurement campaign. Findings are summarizes in Tab. V.

A. Workloads

We rely on previous work [1], [15], [16] that presents

characterization of Dropbox usage to design benchmarks that

reproduce realistic workloads. The main characteristics can

9

0.0

0.2

0.4

0.6

0.8

1.0

C
loud D

rive

ow
nC

loud

W
uala

G
oogle D

rive

H
orizon

H
ubic

M
ega

O
neD

rive

B
ox

D
ropbox

C
opy

F
ra

ct
io

n
 o

f
ti

m
e

Start-up
Propagation

Upload
Download

(a) Workload 1 – 1 file of 100 kB

0.0

0.2

0.4

0.6

0.8

1.0

W
uala

ow
nC

loud

C
loud D

rive

H
orizon

G
oogle D

rive

O
neD

rive

M
ega

H
ubic

D
ropbox

B
ox

C
opy

F
ra

ct
io

n
 o

f
ti

m
e

Start-up
Propagation

Upload
Download

(b) Workload 2 – 1 file of 1 MB

0.0

0.2

0.4

0.6

0.8

1.0

W
uala

ow
nC

loud

C
loud D

rive

M
ega

O
neD

rive

H
orizon

H
ubic

G
oogle D

rive

D
ropbox

B
ox

C
opy

F
ra

ct
io

n
 o

f
ti

m
e

Start-up
Propagation

Upload
Download

(c) Workload 3 – 1 file of 20 MB

Fig. 8: Fraction of time expended in each step of the synchronization cycle for single-file workloads. Note that clients are

sorted according to their fraction of silent periods in each plot (i.e., start-up plus propagation delays).

be summarized as follows: (i) Files stored in the cloud are

generally small, with typical data storage flows that carry

few Bytes; (ii) the file size distribution is, however, heavy-

tailed – users thus do generate some large content; (iii) the

majority of content is already compressed (e.g., images, videos

and archives), although a non-negligible percentage (more

than 30%) of compressible files is present (e.g., text files);

(iv) files are often added in large batches with tens of files;

(v) replication is common, both within folders of a single user

and among different users because of shared folders.

Based on this information, we create 6 benchmarks varying

(i) the number of files; (ii) file sizes; (iii) file formats; and

(iv) the percentage of file replicas. Tab. IV lists them. The first

four sets are arbitrary and aim to test typical synchronization

scenarios – i.e., small files, large files, bundles etc. The last

two sets, instead, are formed by files recreated using a random

subset of the file metadata collected in [15]. They mimic a

scenario in which a user adds a large number of files into a

synchronized folder at once, such as when adding previously

existing content or when migrating files between services.

TABLE IV: Benchmarks to assess service performance.

Work-
load

Files Binary Text
Total
Size

Replicas

1 1 1 – 100 kB –

2 1 1 – 1 MB –

3 1 1 – 20 MB –

4 100 50 50 1 MB –

5 365 194 171 87 MB 97 (5.4 MB)

6 312 172 140 77 MB 136 (5.5 MB)

All experiments are executed precisely in the same environ-

ment, from a single location, and under the same conditions,

in order to isolate other effects and highlight the implications

of design choices. Each experiment is repeated 20 times per

service, and we wait until the network is completely silent to

consider an experiment round complete. Furthermore, we run

a different benchmark set (see Tab. IV) at each round and wait

for a random period of time between rounds (always longer

than 5 min) to prevent our results from being affected by

systematic sampling bias [17] and to avoid creating abnormal

workload to servers and the network. Only experiments that

complete successfully are considered. Indeed, some few tests

have been aborted automatically due to failures, in particular

with Wuala and Copy, for which reliability issues could

be identified. Depending on the benchmark set and on the

application-under-test, an experiment round lasts up to one

day. In total, results presented in the following summarize

experiments collected in more than 90 days.

B. What Dominates Synchronization Delay?

We start by identifying which factors contribute the most to

the overall synchronization delay. Figs. 8 and 9 report average

values in each synchronization phase – i.e., the time interval

in each step from the workload generation till the download

is complete (see Fig. 2).

Fig. 8 depicts the fraction of time spent by the 11 services

in each synchronization step for Workload 1 (1 file of 100 kB),

Workload 2 (1 file of 1 MB) and Workload 3 (1 file of

20 MB), i.e., when a single small, medium or large file has to

be synchronized. For improving visualization, we report only

the part of the propagation delay between upload end and

download start. Indeed, in this scenario, all services wait for

the upload to complete before starting the download. Services

are sorted by the sum of start-up and propagation delays – i.e.,

the most reactive services are in the right side of the plots.

A striking conclusion immediately emerges, in particular for

near real-time scenarios (e.g., collaborative sharing of files).

Despite the high variation among services, synchronization

time in most examples is dominated by start up and prop-

agation delays. This behavior might be expected for small

files, where uploads and downloads complete very fast. Yet,

for some services we observe that this holds true even with

large files: Start up and propagation delays consume up to 90%

of the total synchronization time when sending 20 MB files

(see Wuala in Fig. 8c), whereas those delays are at least equal

to 40% when sending 1 MB files in the best case (Fig. 8b).

As we will detail later, some services exhibit clear perfor-

mance penalties. Our local ownCloud installation, for example,

takes longer to finish handling Workload 2 (1 MB file) than

Dropbox – the former needs more than 10 s to complete a

1 MB synchronization, 98% of which is spent being idle.

Cloud Drive and Wuala typically require more than 2 min

to complete the same 1 MB tasks. However, Wuala start up

and upload delays are generally low, thus suggesting that this

long delay is not due to Wuala local encryption of files. In

10

 400

≈

≈

Box

Wuala

Cloud Drive

ownCloud

Google Drive

hubiC

Copy

OneDrive

Dropbox

Horizon

Mega

 0 40 80 120 160 200 240

Time (s)

≈

≈

Start-up
Upload

Propagation
Download

(a) Workload 4 – 100 files of 10 kB

 2200

≈

≈

Box

Copy

ownCloud

Cloud Drive

Horizon

Google Drive

Wuala

Dropbox

hubiC

Mega

OneDrive

 0 100 200 300 400 500 600 700

Time (s)

≈

≈

Start-up
Upload

Propagation
Download

(b) Workload 5 – 365 files, 87 MB in total

 2000

≈

≈

Box

Copy

ownCloud

Cloud Drive

Google Drive

Horizon

Dropbox

hubiC

Wuala

OneDrive

Mega

 0 100 200 300 400 500 600

Time (s)

≈

≈

Start-up
Upload

Propagation
Download

(c) Workload 6 – 312 files, 77 MB in total

Fig. 9: Average time to complete each phase of the benchmarks with multiple file workloads. Silent periods are marked with

dashed bars. Services are sorted per total synchronization time. Note the discontinuity on x-axes.

both Cloud Drive and Wuala cases, the long delay is caused

by a time-based approach to trigger downloads, which forces

clients to stay idle for long intervals.

We repeat the analysis with multiple-file workloads in

Fig. 9. Services are sorted according to their average total

synchronization time. Overall, all services become slower

when multiple files are involved. Mega and OneDrive win

these benchmarks after expending 44 s, 235 s and 204 s on

average to complete Workload 4 (100 files, 1 MB in total),

Workload 5 (365 files, 87 MB in total) and Workload 6

(312 files, 77 MB in total), respectively. Interestingly, they

generally achieve a good performance despite not implement-

ing advanced client capabilities. In the case of Mega, this

seems to happen because of both the proximity of its data

centers to our test location and its lightweight client, whereas

OneDrive performs well with large workloads because of its

concurrent transfers. Dropbox with its sophisticated client is

usually among the best as well as hubiC. Other services are

much slower owing to several factors, including simplistic

clients and traffic shaping policies as detailed later. Notice, for

instance, that Box consistently requires one order of magnitude

more time than others, expending 400 s to complete the

synchronization of 100 files of 1 kB. Box figures grow to

more than 35 min with Workload 5 and 6.

Our private Horizon and ownCloud installations (marked in

bold in the figures) present disappointing performance. Such

poor performance definitively illustrates the importance of

client design in cloud storage.

Overall, these results highlight that services have room

for improvements, and better performance could be offered

by improving system design. In the following we present

a detailed analysis of each synchronization phase to better

highlight properties, strengths and weaknesses of each service.

C. Synchronization Start Up

We investigate how much time services need before syn-

chronization starts. This metric reveals whether the adoption

of advanced capabilities (e.g., bundling) could increase the

initial synchronization delay. The metric is computed from

the moment files are placed in Test Computer 1 until the

first packet with payload in a storage flow is observed in the

network – i.e., TCP and SSL handshakes are ignored.5

Fig. 10 depicts results for 6 services and 4 workloads. It

shows the empirical Cumulative Distribution Function (CDF)

obtained by considering 20 repetitions. Other services and

workloads are not shown for brevity, but the conclusions hold.

When dealing with single small files (Workload 1, single file

of 100 kB), we can see that Dropbox and Cloud Drive are

the fastest services to start synchronizing. Dropbox’s bundling

strategy, however, delays the start up when multiple files are

involved – compare to Workload 4, 100 files of 10 kB, in the

bottom-left plot. As we have seen in previous section, such

strategy pays back in total upload time.

Horizon needs few more seconds to start the synchronization

even if servers are placed in our LAN. This large start up delay

contributes to make the service slower than services operating

from other continents, thus canceling advantages of the local

installation. OneDrive is generally among the slowest, waiting

at least 9 s before starting submitting files. The root cause of

this delay is unclear, since the service does not report activity

during the period. Interestingly, Google Drive and Box CDFs

present knees, also visible in other metrics. Coming sections

will show that these services either have different servers that

deliver variable performance or shape traffic explicitly.

Finally, start up delay is affected by the size of the workload

being manipulated. We observe that the delay increases as ei-

ther the number of files or the number of Bytes in the workload

is increased. OneDrive and Box, for instance, take around 35 s

and 40 s on average to start submitting Workload 5 (bottom-

right plot). It is clear from these results that performance could

be improved by reducing the start up delays, in particular when

large workloads are involved.

D. Upload And Download Duration

Next, we evaluate how long each service takes to complete

upload and download tasks. This is measured as the difference

between the first and the last packet with payload in storage

flows going to Test Computer 1 (uploads) or Test Computer 2

5The metric includes the delay of our application to send files to Test Com-
puter 1. This artifact is ignored since all tests are equally affected.

11

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12

C
D

F

Time (s)

Workload 1 (1 x 100 kB)

Dropbox
Google Drive

OneDrive
Cloud Drive

Box
Horizon

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

C
D

F

Time (s)

Workload 3 (1 x 20 MB)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

C
D

F

Time (s)

Workload 4 (100 x 10 kB)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

C
D

F

Time (s)

Workload 5 (87 MB)

Fig. 10: Start up delays. Note the different x-axes.

(downloads). Again, we ignore TCP and SSL handshakes,

tear-down delays and control messages sent after transfers are

complete.6 We expect the network properties to play a central

role, i.e., services whose data centers are far from our test

location are expected to show poor performance due to the

well-known limitations of TCP with high RTT.

Focusing on top-left plot of Fig. 11, notice how services

require a negligible amount of time to upload single 100 kB

files. As the workload size is increased, upload time increases

fast for services deployed far from our test location – e.g.,

Dropbox and Google Drive take up to 5 times more time than

our local Horizon to complete 20 MB uploads (top-right plot).

Box and Cloud Drive are even slower, the former requiring

around 200 s to complete 20 MB uploads (800 kb/s, 170 ms

RTT). When comparing results to download figures (omitted

for brevity), a different pattern emerges, confirming that Box

and Cloud Drive shape upload rates only. Overall, we can

conclude that data center placement and the explicit selection

of system parameters are the determining factors for upload

and download speeds with single-file workloads.

When multiple files are stored, on the other hand, other

aspects play the central role, such as client capabilities. Bottom

plots in Fig. 11 show a striking difference on transfer duration

when a large number of files is used. Notice how the upload of

100 files of 10 kB (thus 1 MB in total) takes more time than

the exchange of a single 20 MB file in most cases. Dropbox

wins when uploading Workload 4 (100 files, 1 MB in total)

and Workload 5 (365 files, 87 MB) because its capabilities

(e.g., bundling) allow to optimize the data transfer phases. The

service is at least two times faster than any competitor when

sending Workload 4. Interestingly, we can see the trade-offs of

implementing advanced client capabilities on Dropbox results:

20% of Dropbox uploads finishes in around 1 s. Those are,

however, the experiment rounds in which Dropbox experiences

its longest start up delays – see the tail of the distribution in

bottom-left plot of Fig. 10.

6Some services allow users to limit data rates manually. This functionality,
as well as P2P synchronization, has been disabled where available.

0.0

0.2

0.4

0.6

0.8

1.0

 0.001 0.01 0.1 1 10

C
D

F

Time (s)

Workload 1 (1 x 100 kB)

Dropbox
Google Drive

OneDrive
Cloud Drive

Box
Horizon

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000

C
D

F

Time (s)

Workload 3 (1 x 20 MB)

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000

C
D

F

Time (s)

Workload 4 (100 x 10 kB)

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000

C
D

F

Time (s)

Workload 5 (87 MB)

Fig. 11: Upload times. Note the logarithmic x-axes.

0.0

0.2

0.4

0.6

0.8

1.0

 0.1 1 10 100 1000

C
D

F

Time (s)

Workload 1 (1 x 100 kB)

Dropbox
Google Drive

OneDrive
Cloud Drive

Box
Horizon

0.0

0.2

0.4

0.6

0.8

1.0

 0.1 1 10 100 1000

C
D

F

Time (s)

Workload 3 (1 x 20 MB)

Fig. 12: Propagation delays. Note the logarithmic x-axes.

Both Horizon (local installation) and Google Drive (world-

wide data centers) are slower than Dropbox. They need around

300 s to complete experiments with Workload 5, whereas

Dropbox finishes in 130 s, owing to capabilities. OneDrive

presents a stable and consistent performance. Box shows

again a poor performance when uploading because of the

combination of traffic shaping with lack of capabilities. It takes

more than 30 min to conclude experiments with Workload 5!

Overall, results for other services reinforce the role of client

design when manipulating complex workloads.

E. Propagation Delay

Propagation delays are depicted in Fig. 12. This metric

is computed as the difference between download and upload

starting times. It thus includes the first content upload delay,

since none of the services is able to start downloading content

before completing the upload of at least one file.

We see in Fig. 12 that propagation delays do not vary greatly

among different workloads, with the exception of Workload 3,

in which services wait for the single file of 20 MB to be

uploaded before propagating changes. Google Drive, Dropbox,

OneDrive and Box are relatively stable and start downloading

after 3–10 s in experiments with Workload 1, 4 and 5. Our

Horizon installation is by far the most reactive. It notifies and

triggers downloads almost instantly after upload is complete.

Propagation delays of Cloud Drive vary greatly during the

12

0.0

0.2

0.4

0.6

0.8

1.0

 1 1.1 1.2 1.3 1.4 1.5

C
D

F

Overhead

Workload 1 (1 x 100 kB)

Dropbox
Google Drive

OneDrive
Cloud Drive

Box
Horizon

0.0

0.2

0.4

0.6

0.8

1.0

 0.8 1.2 1.6 2 2.4

C
D

F

Overhead

Workload 4 (100 x 10 kB)

Fig. 13: Traffic overhead. The x-axes depict the ratio between

control and storage traffic over two times the benchmark size.

experiments. Manual inspection shows that Cloud Drive uses

a time-based trigger of 5 min for checking for updates (thus

waiting on average 2.5 min). In contrast, other services (e.g.,

Dropbox) implement asynchronous notification protocols. This

behavior can be noticed by the shape of Cloud Drive CDFs

in left plot of Fig. 12 – propagation delays grow from 10 till

300 s almost uniformly (note the logarithmic x-axes).

It is clear from these results that finding the right balance

between start up, upload/download, and propagation delays is

hard and our methodology helps in revealing trade-offs of the

various design choices.

F. Traffic Overhead

We evaluate overhead to check to what extent the control

traffic required for implementing client capabilities affects

cloud storage network fingerprint. Fig. 13 shows the overhead

CDFs of 6 services, calculated as the ratio between total

exchanged traffic over twice the total file size (hereafter called

overhead ratio).7 Note that the use of compression may lead

to ratios smaller than 1 when text files are in the workloads.

We see that all services have a significant overhead when a

single small file is synchronized (see left plot in Fig. 13).

Services using one or several TCP connections for every

file transfer, such as Cloud Drive, present the highest ratio.

Dropbox also exhibits a high overhead, possibly owing to

the signaling cost of implementing its advanced capabilities.

On average, its ratio is equal to 1.2 when synchronizing

100 kB. Not shown in the figure, the overhead ratio decreases

dramatically for most services when large files are submitted

(e.g., Workload 3, single file of 20 MB). Dropbox surprisingly

still presents high overhead (7%) in this scenario as well.

The lack of bundling dramatically increases the overhead

when multiple small files are synchronized, because the ex-

change of every file requires application layer control traf-

fic to be sent. Cloud Drive, for instance, exchanges more

than twice as much traffic as the actual data size when

handling 100 files of 10 kB (Workload 4, see right plot).

Services implementing compression naturally perform better

with Workload 4, being 50% of its content compressible. The

lack of bundling capabilities, however, makes the overhead of

Google Drive to reach 20%, despite the compression gains.

Google Drive indeed suffers from opening a separate TCP

7The factor 2 accounts for both upload and download phases.

3

10

30

100

00:00 06:00 12:00 18:00 00:00

T
h
ro

u
g
h
p
u
t

(M
b
/s

)

Dropbox
Google Drive

ownCloud
Horizon

Mega

Fig. 14: Upload throughput according to the time of the day

(20 MB files). Note the logarithmic y-axes.

(and thus SSL) connection for each content. Compare Google

Drive to Dropbox in Workload 4 to appreciate the extra cost.

Other workloads confirm the advantages of client capabilities

such as bundling, de-duplication and compression.

G. Long-term Delay Patterns

Finally, we perform long-term measurements to understand

whether services present any performance periodicity. As we

saw previously, services such as Google Drive deliver variable

performance – e.g., sudden increases in upload times (see

Fig. 10). We perform measurements with single file workloads

over one month, committing more than 8,800 transactions.

Fig. 14 shows results for uploads with 1 file of 20 MB.

For improving visualization, we report the throughput in each

transaction – i.e., benchmark size over upload delay. Results

for 5 services are presented. Each experiment is marked with

a dot according to the time of the day it is performed. Thus,

results are mapped to a single 24-hour x-axis.

We can see that services have stable performance without

any evident periodicity. Google Drive is the only exception,

exhibiting a bi-modal distribution: Experiments at night show

11 Mb/s of average upload throughout, while 8 Mb/s or

11 Mb/s is reached during day-time. Manual inspection re-

veals that synchronization is consistently slower when clients

contact a subset of the Google edge nodes in charge of cloud

storage traffic. Interestingly, slow nodes are likely contacted

during daytime. Since the selection of edge nodes is automati-

cally done by load balancing techniques, users have no control

on what performance they will experience in a transaction.

Fig. 14 also reinforces the role of RTT when synchroniz-

ing large single-file workloads: Our local deployments (e.g.,

ownCloud) make a much better use of network capacity in

such scenario than services operating far from our test location

– e.g., Dropbox with 100 ms of RTT.

H. Summary

Tab. V summarizes results. It shows: (i) An indication of

client sophistication based on the number of implemented

capabilities (Sect. III); (ii) the average RTT from our testbed to

servers, which is related to data center placement and topology

(Sect. IV); (iii) the minimum and maximum traffic overhead

ratio observed during the benchmarks, which is a consequence

of the presence/lack of capabilities as well as the design of

13

TABLE V: Summary of the benchmark results.

Service Capabilities RTT (ms) Overhead ratio
Silent Period1 (s) and Total Synchronization Time2 (s)

WL 2 WL 3 WL 4 WL 5

OneDrive + 129 1.00 – 1.40 21 23 28 46 32 71 43 235

Mega + + 45 0.95 – 1.13 4 5 8 11 10 44 36 238

hubiC - 22 1.01 – 1.12 34 35 95 113 46 76 43 271

Dropbox + + + + + + 99 0.93 – 1.09 7 10 21 44 43 64 37 283

Wuala + + 35 1.00 – 1.89 135 136 147 158 131 238 112 305

Google Drive + + 12 1.00 – 1.19 18 19 27 32 19 77 20 334

Cloud Drive - 46 1.01 – 2.13 165 167 232 254 132 160 202 414

Copy + + + 119 0.99 – 1.42 11 17 105 168 17 72 17 680

Box - 170 1.02 – 1.30 29 33 321 347 25 406 68 2,208

Horizon + + < 1 1.00 – 1.30 4 4 9 11 4 45 5 336

ownCloud + < 1 1.00 – 1.22 11 11 22 24 23 108 23 501

1 Sum of start-up and propagation time. These numbers show the total time Test Computers spend idle before reacting in an experiment.
2 Workload 2 – 1 file of 1 MB; Workload 3 – 1 file of 20 MB; Workload 4 – 100 files of 10 kB; Workload 5 – 365 files, 87 MB in total.

notification/control protocols; (iv) the time Test Computers

spend idle before reacting in an experiment (i.e., start-up plus

propagation delays), indicating how reactive services are; and

(v) the total synchronization time for 4 different workloads.

Services are sorted by the synchronization time in Workload 5.

Bold highlights the best service in each metric.

While the RTT is a key parameter to performance as ex-

pected, the table reinforces the importance of design choices.

We can see, for example, that although our private deploy-

ments win some benchmarks, other services deliver similar

performance under much higher RTT, thanks to client capa-

bilities, reactiveness, etc. It is also evident that there is no

single winner. Sophisticated clients, such as Dropbox, seem

to be the most suitable for near real-time scenarios (e.g.,

collaborative work), but the simple and concurrent design of

OneDrive performs equally well with large workloads (e.g.,

migrations) despite the high RTT and reaction time.

VI. RELATED WORK

The study of personal cloud storage services has re-

cently attracted the interest of the research community. Some

works [1], [18], [19] focus on the characterization of a specific

cloud storage service from passive measurements obtained in

the network. Those measurements are used to build an initial

model for the Dropbox client behavior in [20]. Security threats

for cloud storage services are discussed in [13], [21], in which

the internal functioning of Dropbox is also revealed by means

of reverse engineering in a lab environment. In contrast to

these works, we propose a generic benchmark methodology to

compare several services using active network measurements.

The authors of [22] present a study similar to ours, but

focusing on server infrastructure only. In [23], a performance

analysis of the Amazon Web Services (AWS) is presented, but

without focusing on personal storage. Similarly to our goal,

[5] evaluates Dropbox, Mozy, Carbonite and CrashPlan by

manually running simple experiments. Motivated by the exten-

sive list of services on the market, we propose a methodology

and implement tools to automate the benchmarks. Moreover,

we analyze various synchronization scenarios, shedding light

on the impact of design choices on performance. In [6], [24],

a set of active experiments is performed with Dropbox, and

high traffic overhead is identified in certain scenarios. Our

work automates the benchmark and can be used to perform

similar (and other) analyses with multiple cloud storage ser-

vices. Authors of [4] propose a methodology to benchmark

cloud storage, and evaluate three services (Dropbox, Box

and SugarSync) in a long-term measurement campaign. The

methodology in [4], however, relies on public APIs to perform

the measurements, whereas we develop a black-box approach

that can be used to test any cloud storage services under

realistic usage conditions.

Quality of Experience (QoE) in cloud storage has been

studied in [25], [26]. Technical aspects such as network

bandwidth and synchronization latency are identified as im-

portant sources of users’ satisfaction. In [27], a mechanism

to ensure consistency between the local file system and the

remote repository is proposed, possible improving QoE. We

contribute with tools to measure performance of cloud storage

service, thus helping users and new providers to independently

compare services. The characteristics of files stored in cloud

services and possible bottlenecks in storage protocols have

been analyzed in [1], [15], [16]. We rely on findings of

these works to define the benchmarks used to evaluate the

performance of storage services.

VII. CONCLUSIONS

This paper presented a methodology to study personal

cloud storage services. Our methodology first unveils client

capabilities and system designs. It then allows repeatable and

customizable benchmarks to be executed without instrument-

ing proprietary services. The effectiveness of the methodology

was shown in a case study in which 11 services were compared

in a measurement campaign lasting more than 3 months.

By contrasting the performance of local cloud installations

and public services deployed at different continents, our case

study showed the relevance of client capabilities, protocol

design and data center placement to personal cloud storage.

We observed, for instance, that Dropbox outperforms our

local ownCloud installation, even if the RTT from our testbed

to Dropbox servers is three orders of magnitude higher, thanks

14

to Dropbox sophisticated client. However, we also showed

that client capabilities are not always a guarantee of good

performance. Indeed, we concluded that the synchronization

time of several services is dominated by silent periods, which

could be reduced by engineering smarter notification protocols.

Lightweight and reactive services (such as Mega) were shown

to perform better than other more capable services. Wuala

and Cloud Drive, for instance, are strongly penalized by start-

up and propagation delays in the order of minutes, due to

notification protocol design.

Overall, our methodology and case study highlighted the

implications of several design choices and the performance

trade-offs engineers have to face when building cloud storage

services. Our results are a strong indication that cloud storage

can be improved, and better performance can be offered by fine

tuning system designs according to the desired usage scenario.

Finally, aiming to foster further comparisons and improve-

ments on cloud storage, we contribute the tools implementing

our methodology to the community as free software available

at http://www.simpleweb.org/wiki/Cloud benchmarks.

REFERENCES

[1] I. Drago, M. Mellia, M. M. Munafò, A. Sperotto, R. Sadre, and A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services,” in
Proceedings of the IMC, 2012, pp. 481–494.

[2] M. Naldi and L. Mastroeni, “Cloud Storage Pricing: A Comparison of
Current Practices,” in Proceedings of the HotTopiCS, 2013, pp. 27–34.

[3] L. Eadicicco, “Google Drive’s New Pricing Plans Blow Dropbox Away,”
2014, http://www.businessinsider.com/google-drive-pricing-2014-3.

[4] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and
P. G. Lopez, “Actively Measuring Personal Cloud Storage,” in Proceed-

ings of the CLOUD, 2013, pp. 301–308.
[5] W. Hu, T. Yang, and J. N. Matthews, “The Good, the Bad and the Ugly

of Consumer Cloud Storage,” SIGOPS Oper. Syst. Rev., vol. 44, no. 3,
pp. 110–115, 2010.

[6] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai,
and Z.-L. Zhang, “Towards Network-Level Efficiency for Cloud Storage
Services,” in Proceedings of the IMC, 2014.

[7] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking
Personal Cloud Storage,” in Proceedings of the IMC, 2013, pp. 205–212.

[8] I. N. Bermudez, S. Traverso, M. Mellia, and M. M. Munafò, “Exploring
the Cloud from Passive Measurements: The Amazon AWS Case,” in
INFOCOM, 2013, pp. 230–234.

[9] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govin-
dan, “Mapping the Expansion of Google’s Serving Infrastructure,” in
Proceedings of the IMC, 2013, pp. 313–326.

[10] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
Geolocation Databases: Unreliable?” SIGCOMM Comput. Commun.

Rev., vol. 41, no. 2, pp. 53–56, 2011.
[11] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafò, and

S. Rao, “Dissecting Video Server Selection Strategies in the YouTube
CDN,” in Proceedings of the ICDCS, 2011, pp. 248–257.

[12] B. Eriksson and M. Crovella, “Understanding Geolocation Accuracy
using Network Geometry,” in INFOCOM, 2013, pp. 75–79.

[13] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl,
“Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector
and Online Slack Space,” in Proceedings of the SEC, 2011, pp. 1–11.

[14] A. Tridgell, “Efficient Algorithms for Sorting and Synchronization,”
Ph.D. dissertation, Australian National University, 1999.

[15] I. Drago, “Understanding and Monitoring Cloud Services,” Ph.D. dis-
sertation, University of Twente, 2013.

[16] S. Liu, X. Huang, H. Fu, and G. Yang, “Understanding Data Character-
istics and Access Patterns in a Cloud Storage System,” in Proceedings

of the CCGrid, 2013, pp. 327–334.
[17] R. Sadre and B. R. Haverkort, “Fitting Heavy-Tailed HTTP Traces with

the New Stratified EM-Algorithm,” in Proceedings of the IT-NEWS,
2008, pp. 254–261.

[18] T. Mager, E. Biersack, and P. Michiardi, “A Measurement Study of the
Wuala On-line Storage Service,” in Proceedings of the P2P, 2012, pp.
237–248.

[19] H. Wang, R. Shea, F. Wang, and J. Liu, “On the Impact of Virtualization
on Dropbox-Like Cloud File Storage/Synchronization Services,” in
Proceedings of the IWQoS, 2012, pp. 11:1–11:9.

[20] G. Gonçalves, I. Drago, A. P. C. da Silva, A. B. Vieira, and J. M.
de Almeida, “Modeling the Dropbox Client Behavior,” in Proceedings

of the ICC, 2014, pp. 1332–1337.
[21] D. Kholia and P. Wegrzyn, “Looking Inside the (Drop) Box,” in

Proceedings of the WOOT, 2013.
[22] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing

Public Cloud Providers,” in Proceedings of the IMC, 2010, pp. 1–14.
[23] A. Bergen, Y. Coady, and R. McGeer, “Client Bandwidth: The Forgotten

Metric of Online Storage Providers,” in Proceedings of the PacRim,
2011, pp. 543–548.

[24] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang,
and Y. Dai, “Efficient Batched Synchronization in Dropbox-Like Cloud
Storage Services,” in Proceedings of the Middleware, 2013, pp. 307–
327.

[25] P. Amrehn, K. Vandenbroucke, T. Hossfeld, K. D. Moor, M. Hirth,
R. Schatz, and P. Casas, “Need for Speed? On Quality of Experience for
Cloud-based File Storage Services,” in Proceedings of the PQS, 2013,
pp. 184–190.

[26] P. Casas and R. Schatz, “Quality of Experience in Cloud Services:
Survey and Measurements,” Comput. Netw., vol. 68, pp. 149–165, 2014.

[27] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“ViewBox: Integrating Local File Systems with Cloud Storage Services,”
in Proceedings of the FAST, 2014, pp. 119–132.

BIOGRAPHIES

Enrico Bocchi is a Ph.D. candidate in the Depart-
ment of Electronics and Telecommunications of the
Politecnico di Torino, Italy. In 2013 he was granted a
scholarship from Consortium Garr, Italy, to work on
personal cloud storage monitoring and analysis. He
was a visiting researcher at the École Polytechnique
Fédérale de Lausanne in 2013, working on cloud
storage for data-intensive applications. His research
interests include Internet monitoring and cloud stor-
age benchmarking.

Idilio Drago is a Postdoctoral Researcher at the Po-
litecnico di Torino, Italy, working at the Department
of Electronics and Telecommunications. He received
his Ph.D. degree from the University of Twente in
2013. Also in 2013 he was awarded an Applied Net-
working Research Prize (ANRP) by the IETF/IRTF
for his work on cloud storage traffic analysis. His
research interests include Internet measurements, big
data analysis and network security.

Marco Mellia (SM’08) graduated from the Po-
litecnico di Torino with Ph.D. in Electronic and
Telecommunication Engineering in 2001, where he
holds a position as Associate Professor. Since 2011
he collaborates with Narus Inc., working on traffic
monitoring and cyber-security system design. He
has co-authored over 250 papers published in in-
ternational journals and presented in leading confer-
ences. He participated in the program committees
of several conferences including ACM SIGCOMM,
ACM CoNEXT, ACM IMC, IEEE Infocom, IEEE

Globecom and IEEE ICC. He is Area Editor of ACM CCR, and ACM/IEEE
Transactions on Networking. He is coordinator of the mPlane Integrated
Project that focuses on building an Intelligent Measurement Plane for Future
Network and Application Management.

http://www.simpleweb.org/wiki/Cloud_benchmarks

	Introduction
	Major Findings and Implications

	Methodology
	Goals
	Testbed and Tools
	Client Capabilities and Storage Protocols
	Data Center Locations
	Benchmarking Performance
	Storage Services Under Test

	Capabilities
	Bundling
	Chunking
	Compression
	Client-Side Deduplication
	Delta Encoding
	P2P Synchronization
	Summary

	System Design
	Protocols and Overhead
	Data Center Topology
	Summary

	Benchmarks
	Workloads
	What Dominates Synchronization Delay?
	Synchronization Start Up
	Upload And Download Duration
	Propagation Delay
	Traffic Overhead
	Long-term Delay Patterns
	Summary

	Related Work
	Conclusions
	References
	Biographies
	Enrico Bocchi
	Idilio Drago
	Marco Mellia (SM'08)

