POLITECNICO DI TORINO Repository ISTITUZIONALE

Degradation of phosphorus based flame retardant by IR radiation

Original

Degradation of phosphorus based flame retardant by IR radiation / Yasin, Sohail; Rovero, Giorgio; Nemeshwaree, Behary; Anne, Perwuelz; Stéphane, Giraud. - (2015). (Intervento presentato al convegno AUTEX World Textile Conference 2015).

Availability: This version is available at: 11583/2670416 since: 2017-05-07T09:16:42Z

Publisher: AUTEX

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

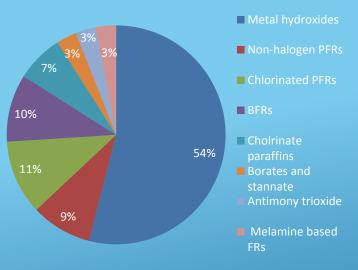
Publisher copyright

(Article begins on next page)

DEGRADATION OF PHOSPHORUS BASED FLAME RETARDANT BY IR RADIATION

Sohail Yasin^{1, 2, 3}, Nemeshwaree Behary^{1, 2}, Stephane Giraud^{1, 2}, Anne Perwuelz^{1, 2}, Giorgio Rovero³

 ¹ENSAIT-Ecole Nationale Supérieure des Arts et Industries Textiles, Roubaix 59100, France.
²Université Lille Nord de France, F-59000 Lille, France.
³Politecnico di Torino, Corso Giuseppe Pella, 2b - 13900 Biella, Italy.



Summary

Abstract

It is well-known that presence of discarded textile products in municipal landfills pose environmental problems due to leaching of chemical products from the textile to the environmental. Incineration of such textiles is considered to be an efficient way to produce energy and reduce environmental impacts of textile materials at their end-of life stage. However presence of flame retardant products on textiles would decrease the energy yield and emit toxic gases during the incineration stage. Additionally, some non-durable flame retardants can be removed by wet treatments (e.g. washing), these substances pollute water and pose concerns towards the environmental health. Our study shows that infrared radiation can be used efficiently to degrade flame retardant products on the textiles. This method is finalized to minimize the decrease in energy yield during the incineration or gasification processes of flame retardant cotton fabrics.

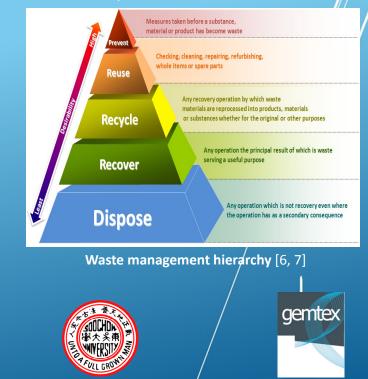
Europes FRs consumption in 2006, 465k tons [1]

European Commission

MUNDUS

Université

Lille1


Concerns

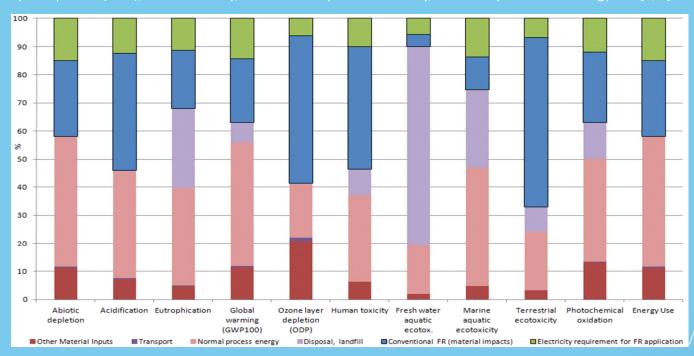
The consumption of FRs in Europe in 2006 was 465,000 tons, 10% by weightage of which were brominated FRs [1]. FRs have different chemical composition: they contain halogens (bromine and chlorine), phosphorus, nitrogen, aluminum, magnesium, boron, antimony, molybdenum, or recently developed nano-fillers.

Non-durable flame retardant finishes such as ammonium phosphates are mostly used in disposable medical gowns, curtains and carpets, upholstery, bedding and party costumes [2].

The washed off DAP or APP is a serious threat to the water system and soil. If left on the fabric and discarded for disposal (landfill or incineration) will emanate toxic gases increasing the environmental impact.

According to EUROPA & DEFRA [6, 7], a better alternative of disposal is to recycle discarded products rather than producing new ones. When it comes to waste management hierarchy, direct disposals is the least desired option for the waster and discarded products.

Sohail Yasin et al. Degradation of phosphorus based flame retardant by radiation. Autex-2015, Romania.



Introduction

Sources

In one LCA study, non-durable flame retardants such as ammonium phosphate appeared to have high impact on the environment. The environmental impacts in many categories such as global warming (GWP100), ozone layer depletion (ODP), human toxicity, marine and aquatic ecotoxicity, abiotic depletion and energy use [3, 4]

Overall impact of ammonium phosphate salt FR from cradle-to-gate life cycle assessment [5]

Objectives

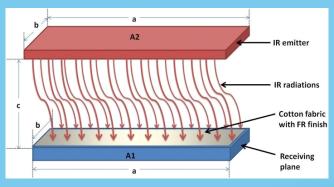
- The aim of this work was to degrade FR from the textile before it goes through incineration process, so it can be used as fuel alternative.
- The proposed pathway of the degradation of FR of the fabric can be a supportive route to decrease environmental impacts as well.

AS;

- Incineration of textile products is an efficient way to produce energy using discarded textiles, but incineration of the FR textiles would affect the energy generation and evolves toxic emissions.
- Non-durable FRs can be removed by water treatments, but can pollute the water posing concerns towards environmental sustainability. In addition, the toxicity of FRs is yet to be fully investigated.

gemtex

Sohail Yasin et al. Degradation of phosphorus based flame retardant by radiation. Autex-2015, Romania.


Experimental

Materials & Methods

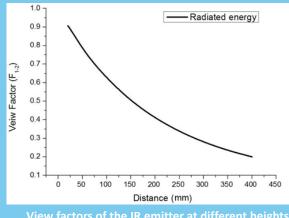
Flame retardant and application

sample used was plain woven dyed 110 g/m² fabric.

Infrared emitter

Schematic illustration of FR degradation with IR radiation

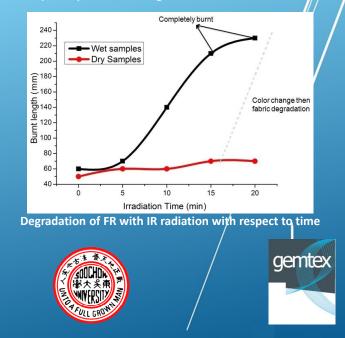
View Factor


reaches the product, a geometric relationship can be used. This expression is called view factor and can be

$$F_{1-2} = \frac{2}{\pi XY} \left\{ \ln \left[\frac{\left(1 + X^2\right) \left(1 + Y^2\right)}{1 + X^2 + Y^2} \right]^{1/2} + X \sqrt{1 + Y^2} \tan^{-1} \frac{X}{\sqrt{1 + Y^2}} \right] + Y \sqrt{1 + X^2} \tan^{-1} \frac{Y}{\sqrt{1 + X^2}} - X \tan^{-1} X - Y \tan^{-1} Y \right\}$$

Where, $X = a/c \& Y = b/c$

Results


View Factor

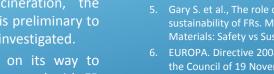
View factors of the IR emitter at different heights

Flame test

(1M to 5M samples), shows that samples with 100 RH subjected to 15-20 minutes IR radiation were completely burnt during the flame test.

Sohail Yasin et al. Degradation of phosphorus based flame retardant by radiation. Autex-2015, Romania.

Discussion & Conclusions


Degradation of FR

Flame test of flame retarded samples by IR radiation. Samples in dry conditions (D) and moist conditions (M)

Samples	Weight	Radiation time	Distance burnt
	(g)	(min)	(mm)
1D	7.44	0	50
2D	7.31	5	60
3D	7.01	10	60
4D	7.64	15	70
5D	7.45	20	70
1M	7.12	0	60
2M	7.54	5	70
3M	7.56	10	150
4M	6.95	15	Complete
5M	7.42	20	Complete

Future perspectives

- check the benefits of the method proposed.
- ✤ A simple method to improve the energetic yield of a flame retardant textile during incineration, the any thermal treatment has still to be investigated.
- ✤ Gasification of discarded textiles is on its way to generate syngas: in this view cotton treated with FR may encounter some difficlulty in the process.
- economical aspect of this step which is preliminary to

- 7. DEFRA. Guidance on applying the waste hierarchy, 15 June 2011.
- 8. Whitaker. S., 1983, Fundamental Principles of Heat Transfer, Krieger Publishing Company, Malabar.

Conclusions

- environmental impact at their end of life.

Acknowledgments

tests presented in this work.

References

- Edward D. et al., Flame Retardants in Commercial Use of Development for Textile. 2008 26: 243 Journal of Fire Strences
- 3. Hakan S. et al., Fire safety of upholstered furniture, A life-Cyc Assessment–Summary Ropert, IVL.
- 4. RedFR–Gnosys Summary Work Package D. Life Cycl, Assessment RedFR Final Consortium Meeting, 2 February 2011
- 5. Gary S. et al., The role of LCA methods in assessing/the sustainability of FRs. Materials KTN Meeting on Fire Retardant Materials: Safety vs Sustainability, Bolton, 6 October 2011.
- 6. EUROPA. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain

