CrowdSurf: Empowering Informed Choices in the Web

Original
CrowdSurf: Empowering Informed Choices in the Web / Metwalley, Hassan; Traverso, Stefano; Mellia, Marco; Miskovic, S.; Baldi, Mario. - STAMPA. - (2016), pp. 5-12. (Intervento presentato al convegno ACM SIGCOMM 2016 tenutosi a Florianópolis nel Agosto.

Availability:
This version is available at: 11583/2656559 since: 2017-05-16T12:11:22Z

Publisher:
ACM

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
CrowdSurf
Empowering Transparency in the Web

25 Aug 2016, ACM SIGCOMM, Florianopolis

Hassan Metwalley
Stefano Traverso
Marco Mellia
Stanislav Miskovic
Mario Baldi
Introduction
Do you know what you HTTP?
Example
Web tracking

Thousands of Web trackers collect our data

- Browsing histories
- Religious, sexual, and political preferences

- On average, the first tracker is met as soon as the browser starts

- Some trackers reach 96% of users

- 71% of websites host at least one tracker

The Open Question

How to **know** and **choose** which **services** our **data is exchanged** with and how?
Partial solutions

In network devices
- Firewalls and proxies
 - Fail in case of encrypted traffic (HTTPS)
 - Lack scalability
 - Managed by third parties

On client
- Browser plugins
 - Limited scope
 - No control on device traffic
 - Not transparent

Google, Microsoft, and Amazon are paying Adblock Plus huge fees to get their ads unblocked
A New System

Goal
Let **users** re-gain **visibility** and **control** on the **information** they exchange with **Web services**

Design Principles

- Holistic
 working in any scenario
- Client-centric
 available on any kind of device
- Practical, not revolutionary
 use existing technology
- Crowd-sourced
 knowledge built on a community of users
- Automatic
 little engagement of the user
- Privacy-safe
 never compromise users’ privacy
CrowdSurf
Cloud
- A **controller** collects information about the services users visit
 - Explicit -> their opinion
 - Implicit -> traffic samples
- Users’ contributions processed by **data-analyzers** and the **advising community**
- Results = **suggestions** about the reputation of services

Client
- Users download the suggestions they like
- the **CrowdSurf Layer** translates them into **rules**
- Rules = **actions** on users’ traffic
 - Regexp + action
CrowdSurf Controllers

Open Controller
- Collaborative approach
- Users improve the wisdom of the system
 - Traffic samples and opinions
 - Build data analyzers and suggestions

Corporate Controller
- Builds directly rules for employees
- Employees can not customize rules
- All devices follow the same rules
The CrowdSurf Layer

HTTP

Regular Expression Matching

Action

Block Redirect Allow Modify Log and Report

Anonymization

Suggestions to Rules

Open Controller

Corporate Controller

CrowdSurf Layer

Rule Processor

TLS

TCP
CrowdSurf in a picture

Opinions + Traffic samples

Suggestions

Ruled Interaction

Web Services

Opinions

Rules

Traffic samples

Open Controller

Corporate Controller
Proof of Concept
Prototype

Controller
- Java-based web service
- Communicates with CrowdSurf devices
- Hosts a data analyzer for identification of tracking sites
- Collects traffic samples
- Distributes suggestions

Client
- Implemented as a Firefox plugin
- Supports block, redirect, log&report
Example of Data Analyzer: Automatic Tracker Detector

Unsupervised methodology to identify third-party trackers [2]

- **Observation:**
 - Trackers usually embed UIDs as URL parameters

- **Procedure:**
 1. Input: HTTP traffic samples provided by CS users
 2. Take all HTTP queries to third-party services

 http://acmetrack.com/query?key1=X&key2=Y
 3. Extract keys (key1, key2) and their values
 4. Check the presence of key values uniquely associated to the users

Example of Data Analyzer: Automatic Tracker Detector

34 new third-party trackers found
Performance Implications of running CrowdSurf

Different user profiles

Paranoid Profile
- Blocks
 - adv/tracking
 - JS code
- Does not report traffic samples

Kid Profile
- Activates child protection rules
- Reports traffic to trackers

Corporate Profile
- Redirects search.google.com to search.bing.com
- Blocks social networks, e-commerce sites, trackers
- Reports activity on DropBox
Impact on Web site loading time

Paranoid is **1.07 times faster** than baseline
Kid is **1.08 times slower**
Corporate is **1.18 times slower**
Conclusion
Open Problems

- Lot of details to consider
- Design/develop/standardize a new network layer
- Protecting users’ privacy
 - Anonymizing HTTP/S traffic
- Usability
- Involve users to join
- Protection from malicious biases
CrowdSurf

Holistic, crowd-sourced system for the auditing of the information we expose in the Web

https://www.myermes.com
Thank you!
Need a new model that...

- Enables transparency and visibility
 - Monitor the HTTP traffic before encryption takes place
- Takes actions
 - Block/manipulate/report transactions to undesired services
- Under user’s control
 - Automatic, but configurable
Example of Data Analyzer: Automatic Tracker Detector

Automatic Tracker Detector vs

Dataset
HTTP trace from ISP running Tstat
- 10 days of October 2014
- ~19k monitored users
- ~240k HTTP transactions per day

34 new third-party trackers found

<table>
<thead>
<tr>
<th>Third-Party Trackers</th>
<th>News1</th>
<th>Portal1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.bidswitch.net</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>user_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.77tracking.com</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>rand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rack.movad.net</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>us</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ovo01.webtrekk.net</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>cs2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dis.criteo.com</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>uid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p.rfihub.com</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bk-uuid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ib.adnxs.com</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>xid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example
A growing business around our data

Loss of visibility and control

- HTTPS *protects* our privacy, but...
- ...prevents third parties to check **what’s going on under the hood** of encryption
- ...and **severely limits network functions**

“Child protection through the use of Internet Watch Foundation blacklists has become ineffective, with just 5% of entries still being blocked when HTTPS is deployed” [2]

Time to collect a dataset

[Graph showing the relationship between number of visits and service rank]
Monitoring the Web

CrowdSurf Controllers

Open Controller
- Collaborative approach
- Users improve the wisdom of the system
 - Traffic samples and opinions
 - Build data analyzers and suggestions

Third party Controller
- Suggestions for commercial purposes
- Opens to a market of suggestions

Corporate Controller
- Builds directly rules for employees
- Employees can not customize rules
- All devices follow the same rules
CrowdSurf in a picture

Open controller

Third-party controller

Corporate controller

Web Services

Suggestions

Corporate Rules

Web Browsing

Traffic samples

Private User Device

Corporate Device

Data Analyzer