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The twist-bend nematic phase, NTB, may be viewed as a heliconical molecular arrangement in which the
director n precesses uniformly about an extra director field, t. It corresponds to a nematic ground state exhibiting
nanoscale periodic modulation. To demonstrate the stability of this phase from the elastic point of view, a natural
extension of the Frank elastic energy density is proposed. The elastic energy density is built in terms of the
elements of symmetry of the new phase in which intervene the components of these director fields together
with the usual Cartesian tensors. It is shown that the ground state corresponds to a deformed state for which
K22 > K33. In the framework of the model, the phase transition between the usual and the twist-bend nematic
phase is of second order with a finite wave vector. The model does not require a negative K33 in agreement with
recent experimental data that yield K33 > 0. A threshold is predicted for the molecular twist power below which
no transition to a twist-bend nematic may occur.

DOI: 10.1103/PhysRevE.92.030501 PACS number(s): 61.30.Gd, 61.30.Cz, 61.30.Dk, 61.30.Pq

Conical structures in liquid crystals pose an interesting
gateway for scientific challenges and industrial utilization. Its
aspects have indeed been predicted, as in [1–3], and recently
experiments have shown it has immediate applications [4]. The
recently discovered twist-bend nematic phase, NTB, has been
theoretically predicted by Meyer [5] and Dozov [6], and has
been experimentally evidenced by a number of studies [7–19].
By speculating that the bend elastic constant, K33, may become
negative, Dozov [6] employed a simple fourth-order model for
the bulk free energy to predict the existence of two different
periodic one-dimensional textures in the nematic phase. The
first one was called splay-bend texture, characterized by a
local bend that periodically changes its sign. The other one
is a continuous conical twist-bend (TB) texture, in which the
director n rotates along an axis forming a revolution cone
with aperture θ . In an achiral system, this latter texture is
twofold degenerated, allowing both right-hand and left-hand
twists. By using techniques of small-angle x-ray scattering,
modulated differential scanning calorimetry, it was recently
concluded that the low-temperature mesophase of CB7CB
is a new uniaxial nematic phase whose director distribution
is composed of twist-bend deformations [7]. Transmission
electron (TEM) and polarized optical microscopy have been
used to experimentally demonstrate the existence of the TB
nematic phase [19]. Structural observations confirming the
existence of a TB ground state have also been carried out by
TEM, together with measurements of the director cone angle
and the full pitch of the director helix, indicating a strong
coupling between the molecular and the director bend [8].

*Corresponding author: lre@dfi.uem.br

These experimental identifications permit one to describe this
nematic order as a true liquid-crystal phase with a new type of
order. It is then a twist-bend modulated phase formed by achiral
molecules, in which the director follows an oblique helicoid,
maintaining a constant oblique angle 0 � θ � π/2, with the
helix axis [19]. If the helix axis is along z, then the director n
may be written as n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), where
ϕ is the azimuthal angle, given by ϕ = qz = (2π/p)z, where q

is the modulus of the wave vector and p is the nanoscale pitch
of the helix. In this way, this new ground state may be faced as
an intermediate structural phase between the (usual) uniaxial
and the chiral nematic phases [19]. It can also be faced as
a nonuniform ground state, characterized by the presence of
a local spontaneous bend and a very low value of the bend
elastic constant K33. To account for the elastic properties of
the phase, Virga [20] proposed an intrinsically quadratic elastic
theory to describe NTB phases with an extra director field, in
which there are two variants of the helical nematic phase, as
predicted in Ref. [6], with a helix axis t: one in which the helix
winds upward and another one in which it winds downward, as
shown in Fig. 1. This theory does not require a negative bend
elastic constant, as suggested by the quartic theory proposed
in Ref. [6] or the existence of a locally ferroelectric phase,
as required by the theory proposed in Refs. [21,22], which
is also quadratic but deals with an effective bend constant
arising from the flexoelectric coupling. Katz and Lededev [23]
propose a Landau description, which includes fluctuations,
for the phase transition from the conventional nematic into the
conical helical orientationally nonuniform structure formed by
“banana” shaped molecules. Their main result is that fluctua-
tions convert the phase transition to first order. Greco et al.
[24] proposed a more molecular model by invoking a
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FIG. 1. (Color online) One of the variants of the helical nematic
phase in which the helix can wind upwards or downwards. The
vertical axis defines the direction of t.

generalized Maier-Saupe theory for the transition to NTB

phase.
In this Rapid Communication, a quadratic elastic theory

also based on the existence of an extra director, represented by
the helix axis t, as in Ref. [20], is proposed. Here, however,
this extra director plays the role of an internal local field
that couples with the nematic director n. In this sense, it
not only defines the conical organization of the phase but
may be understood as an internal field that originates from
the bend-shaped molecules, giving rise to a local twisting
power, whose strength is measured by η. Differently from
what is done in Ref. [20], in which the NTB is assumed
as existing, the reference state used here is the undeformed
nematic, characterized only by the uniform part of the free
energy density. The aim is to demonstrate that a phase like the
NTB may be stabilized, i.e., the ground state of the system
corresponds to the minimum of a quadratic elastic theory
built using only the existing elements of symmetry of the
phase. Our model is predicting the NTB phase as a ground
state, stable phase. It can also predict the NTB to regular
nematic phase transition. Moreover, it describes the standard
cholesteric phase and, as in [20], reduces to the usual Frank’s
theory for ordinary nematics if the extra director vanishes.

The starting point is to consider a crystal characterized by
the nematic director n and the director of the torsion t related
to the chiral twisted collective arrangement. One assumes no
polar order, in such a manner that n is the usual nematic
director. The elastic energy density of a crystal of this type,
f , depends on the director field n. According to general rules
[25]

f (n) = f0(n) + Lij ni,j + 1
2Kijklni,j nk,l, . . . , (1)

where the dots are terms of higher order in ni,j = ∂ni/∂xj ,
and the summation convention has been assumed. The quantity
f0(n), independent of ni,j , can be decomposed, at the lowest
order, as

f0(n) = f1 − 1
2η(n · t)2 + · · · , (2)

where f1 is the uniform part of the energy of the usual nematic
phase, if one treats the vector t as a field, as proposed above.

In this framework, the parameter η represents the intrinsic
coupling between n and t [26–28].

The tensor of second order has to be decomposed in terms
of the elements of symmetry of the phase, n and t, of the
identity tensor and of the antisymmetric tensor of elements δij

and εijk , respectively. Standard calculations give

Lij = A1ninj + A2nitj + A3tinj + A4ti tj + A5δij

+A6nkεkij + A7δijnktk. (3)

Since the medium is globally nonpolar, the condition

f (n) = f (−n) (4)

holds. It requires that Lij has to be odd in n, which implies that
A1 = A4 = A5 = 0. Furthermore, since |n| = 1, i.e., nini =
1, it follows that nini,j = 0. Consequently, the term connected
to A2 does not play any role. The elastic energy density linear
in the deformation, related to the spontaneous deformation of
the phase under consideration, is

Lij ni,j = −κ1ti nj ni,j + κ2nk εkij ni,j + κ3δijnktk, (5)

where the phenomenological constants appearing in Eq. (3)
have been renamed as κ1 = −A3, κ2 = A6, and κ3 = A7. A
simple calculation shows that

ti nj ni,j = −t · [n × (∇ × n)]
(6)

and nk εkijni,j = n · (∇ × n),

and the linear term in the deformation of the elastic energy
density can be rewritten in covariant form as

Lij ni,j = κ1 t · [n × (∇ × n)] + κ2 n · (∇ × n)

+ κ3(n · t)(∇ · n). (7)

One notices that while the term related to n · (∇ × n) is a chiral
term, present in standard cholesteric liquid crystals, the first
term is peculiar to the heliconical phase under consideration.
In the case in which t = uz, the director field n may be
expressed as

n = [cos ϕ(z) ux + sin ϕ(z) uy] sin θ + cos θ uz, (8)

where ux,uy,uz are the unit vectors along the Cartesian axes.
As stated before, the director field given by Eq. (8) corresponds
to a precession of n around z with constant orientation of n
with respect to t. In this case, one easily shows that

t · [n × (∇ × n)] = 0, ∇ · n = 0,
(9)

and n · (∇ × n) = −q sin2 θ

are constant quantities.
The fourth-rank tensor Kijkl in the elastic energy (1), may

be decomposed by following the standard procedure (see, e.g.,
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Ref. [25]), namely,

Kijkl = k5njnlδik + k6δij δkl + k7δikδj l + k8δilδjk + μ1nlnj ti tk + ν1ti tj tktl

+ 1
2ν2(ti tj δkl + tktlδij ) + ν3ti tkδjl + 1

2ν4(ti tlδjk + tj tkδil)

+ ν5tj tlδik + ν6tiεjkl . (10)

The terms involving ki yield the usual Frank contribution. The other terms are also decomposed in the usual manner and the total
elastic energy density may be written as

f = f0 − 1
2η(n · t)2 + κ1 t · [n × (∇ × n)] + κ2 n · (∇ × n) + κ3(n · t)(∇ · n)

+ 1
2K11(∇ · n)2 + 1

2K22[n · (∇ × n)]2 + 1
2K33(n × ∇ × n)2

− (K22 + K24)∇ · (n∇ · n + n × ∇ × n)

+μ1[t · (n × ∇ × n)]2 + ν1[t · ∇(t · n)]2 + ν2[t · ∇(n · t)(∇ · n)]

+ ν3[∇(t · n)]2 + ν4[(t · ∇)n]2 + ν5[∇(n · t) · (t · ∇)n] + ν6∇(n · t) · (∇ × n). (11)

For the physical state represented by the director given by
Eq. (8), the terms connected with ν1, ν2, ν3, ν5, and ν6 do
not contribute, because n · t = cos θ , which is independent of
z. The only term that survives is the one connected with ν4,
because

[(t · ∇)n]2 = q2 sin2 θ.

For what concerns the usual Frank terms, the nonvanishing
ones are

(n × ∇ × n)2 = q2 sin2 θ cos2 θ

and (n · ∇ × n)2 = q2 sin4 θ.

After collecting all the nonvanishing terms, one obtains for the
elastic energy density the following expression:

f (q,x) = f1 − 1
2η(1 − x) − κ2qx + 1

2K22q
2x2

+ 1
2K33q

2x(1 − x) + ν4q
2x, (12)

where x = sin2 θ is the order parameter of the transition. If
x = 1, that is, t ⊥ n, Eq. (12) reduces to energy density of a
cholesteric phase, with an effective twist elastic constant equal
to K22 + 2ν4. For x < 1, the procedure is now to minimize
f (q,x) with respect to x and q. By imposing ∂f/∂x = 0 and
∂f/∂q = 0, one obtains

x∗ = −K33 + 2ν4 ∓ κ2
√

(K33 + 2ν4)/η

K22 − K33
(13)

for the cone angle of n with t, and

q∗ = ±
√

η

K33 + 2ν4
(14)

for the wave vector. Note that, by replacing Eq. (14) with
Eq. (13), one obtains the same x∗ no matter the sign of q∗.
Thus, both signs of q∗ are likely, indicating that both right-
and left-handed twist have the same chance of occurring. This
result is in agreement with the experimental observations that
both chiralities are present in a sample [8,29,30] in the form
of domains. For the subsequent analysis we arbitrarily chose
the (+) sign for the chirality without loss of generality. The
director profile associated with x∗ and q∗ corresponds to a
minimum of the free energy density of an unlimited nematic

sample only if
(

∂2f

∂x2

)
x∗,q∗

� 0, (15)

and the Hessian determinant defined by

H (x∗,q∗) =
{

∂2f

∂x2

∂2f

∂q2
− ∂2f

∂x∂q

∂2f

∂q∂x

}
> 0. (16)

Simple calculations yield
(

∂2f

∂x2

)
x∗,q∗

= η
K22 − K33

K33 + 2ν4
� 0 (17)

and

H (x∗,q∗) = κ2

√
η(K33 + 2ν4) − η(K33 + 2ν4) > 0. (18)

These are the requirements to be fulfilled in order to have an
equilibrium state. We note here that the pseudoscalar κ2 is a
phenomenological elastic constant that quantifies the tendency
of the molecules to twist (see, e.g., Ref. [31]). Therefore, it is
different from zero for (i) chiral molecules as in a cholesteric
phase, and (ii) for “achiral” molecules that may give helical
structure as in the case of banana shaped molecules and dimers
[8,19,29,30,32,33]. The Hessian gives a minimum as far as
κ2 >

√
η(K33 + 2ν4) = κc, that is, for values of κ2 larger

than a critical value κc, otherwise no TB phase could be
stabilized. Note that for κ2 = κc, Eq. (13) gives x∗ = 0, which
is a nematic phase with t‖n. From Eqs. (17) and (18), one
concludes that two scenarios are possible. Since q∗ is real,
one obtains that a stable ground state may exist if η < 0 and
K33 + 2ν4 < 0. In this case, η(K22 − K33)/(K33 + 2ν4) � 0
when K22 > K33. On the other hand, another stable ground
state may be obtained if η > 0 and K33 + 2ν4 > 0. Again,
η(K22 − K33)/(K33 + 2ν4) � 0 when K22 > K33. Thus, both
situations are physically possible, implying that the twist
elastic constant is such that K22 > K33, as observed experi-
mentally (see, e.g., Ref. [34]). Now, the analysis can be cast in
the framework of a simple Landau-like expansion of the free
energy if one rewrites Eq. (12) in a still more compact form as

f (x) = f1 − η

2
+ Ax + Bx2, (19)
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FIG. 2. (Color online) Elastic energy density F = f − f1 (in
arbitrary units), given by Eq. (19), as a function of x in three situations:
(1) for A > 0 and B > 0 (dotted line), (2) A = 0 and B > 0 (dashed
line), and (3) A < 0 and B > 0 (solid line). For illustrative purposes,
the curves have been drawn for η > 0.

in which A = −κ2 + η/2 + K33/2 and B = �/2, with the
following compact notation introduced: κ2 = κ2q

∗, K33 =
(K33 + 2ν4)(q∗)2, and � = (K22 − K33)(q∗)2. Simple calcu-
lations show that f is minimum for x = −A/(2B), as given
by (13) when (14) is taken into account. This corresponds to a
stable state if B > 0, i.e., � > 0 or K22 > K33. The twist-bend
phase, which corresponds to x �= 0, is energetically favored
only if A < 0 (see Fig. 2). Thus, there is a phase transition from
the usual nematic phase (x = 0) to a twist-bend nematic x �= 0
for A = 0, i.e., when 2κ2q

∗ = η + (K33 + 2ν4)(q∗)2, which,
by using (14), becomes η = ηc = κ2

2 /(K33 + 2ν4). For this
critical value, the wave vector of the modulated phase assumes
the value qc = |κ2/(K33 + 2ν4)|. In addition, A = η − √

ηηc

may be used to drive the transition according to the values
of η. Therefore, one can conclude that a second-order phase
transition occurs when η = ηc, if x = sin2 θ is used as the
“order parameter” for the NTB phase. This critical value of
η separates the usual from the twist-bend nematic phase. In
this way as well, the parameter η may play a role similar to
the temperature such that A > 0 for η > ηc, and A < 0 for
η < ηc.

Some concluding remarks are in order. The experimentally
discovered twist-bend nematic phase may be described from
the elastic point of view by means of a quadratic theory,
which can be constructed as the usual one, i.e., by considering
only the elements of symmetry enough to characterize the
system. For the twist-bend phase, these elements are the

director n and the helix vector t, the latter playing the role
of an internal field. In addition to the usual Frank constants,
the elastic theory requires the existence of three additional
parameters, namely, η, which is the coupling constant between
the nematic director and the director of the helical structure;
κ2, which is the coefficient of the twist distortion, peculiar to
the heliconical phase; and ν4, a parameter that renormalizes
the elastic constant K33. The model can be interpreted in
analogy with the Landau phenomenological approach for
phase transitions. This analogy permits one to treat the cone
angle θ as the main ingredient for an “order parameter” defined
by x = sin2 θ . The twist-bend nematic phase is then the one for
which x �= 0, and is energetically favored with respect to the
usual nematic phase (x = 0) when η is larger than a critical
value ηc pointing to a second-order transition between the
two stable phases allowed by symmetry considerations, the
uniform nematic and the twist-bend nematic. This scenario
is characterized by the exigence that K22 > K33 always, as
experimentally evidenced. In addition, the possibility of having
negative values of K33, as argued by some authors, may not be
excluded but it is not mandatory. Indeed, one of the possible
stable phases may exist for η < 0 and K33 + 2ν4 < 0, but
this condition may be satisfied also for K33 > 0 when the
elastic parameter ν4 is negative enough, i.e., when the term
ν4[(t · ∇)n]2 = ν4q

2 sin2 θ is energetically favored, which is a
physically sound possibility. Finally, note that (i) our model
explains why some bend-core molecules give rise to the NTB

phase and others do not. This is due to the existence of a
threshold for the parameter κ2 = κc below which the molecular
interaction is not strong enough to induce long range twisted
structures. (ii) It does not imply a negative K33 in order to
be stabilized the twist-bend phase, in agreement with recent
experimental results which show that K33 goes through a
positive minimum at the transition [34,35]. (iii) It gives two
minima in the twist-bend nematic corresponding to (+) and
(−) chirality domains in agreement with experimental results
[8,9,18,19,30] and previous theoretical models [6,20].
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[10] M. Šepelj et al., J. Mater. Chem. 17, 1154 (2007).
[11] C. T. Imrie and P. A. Henderson, Chem. Soc. Rev. 36, 2096

(2007).
[12] V. P. Panov et al., Phys. Rev. Lett. 105, 167801 (2010).
[13] P. A. Henderson and C. T. Imrie, Liq. Cryst. 38, 1407 (2011).
[14] M. Cestari et al., J. Mater. Chem. 21, 12303 (2011).
[15] V. P. Panov et al., Appl. Phys. Lett. 99, 261903 (2011).
[16] V. P. Panov et al., Appl. Phys. Lett. 101, 234106 (2012).

030501-4

http://dx.doi.org/10.1063/1.1651992
http://dx.doi.org/10.1063/1.1651992
http://dx.doi.org/10.1063/1.1651992
http://dx.doi.org/10.1063/1.1651992
http://dx.doi.org/10.1016/0038-1098(68)90024-0
http://dx.doi.org/10.1016/0038-1098(68)90024-0
http://dx.doi.org/10.1016/0038-1098(68)90024-0
http://dx.doi.org/10.1016/0038-1098(68)90024-0
http://dx.doi.org/10.1051/jp2:1996192
http://dx.doi.org/10.1051/jp2:1996192
http://dx.doi.org/10.1051/jp2:1996192
http://dx.doi.org/10.1051/jp2:1996192
http://dx.doi.org/10.1002/adma.201500340
http://dx.doi.org/10.1002/adma.201500340
http://dx.doi.org/10.1002/adma.201500340
http://dx.doi.org/10.1002/adma.201500340
http://dx.doi.org/10.1209/epl/i2001-00513-x
http://dx.doi.org/10.1209/epl/i2001-00513-x
http://dx.doi.org/10.1209/epl/i2001-00513-x
http://dx.doi.org/10.1209/epl/i2001-00513-x
http://dx.doi.org/10.1103/PhysRevE.84.031704
http://dx.doi.org/10.1103/PhysRevE.84.031704
http://dx.doi.org/10.1103/PhysRevE.84.031704
http://dx.doi.org/10.1103/PhysRevE.84.031704
http://dx.doi.org/10.1073/pnas.1314654110
http://dx.doi.org/10.1073/pnas.1314654110
http://dx.doi.org/10.1073/pnas.1314654110
http://dx.doi.org/10.1073/pnas.1314654110
http://dx.doi.org/10.1103/PhysRevE.89.022506
http://dx.doi.org/10.1103/PhysRevE.89.022506
http://dx.doi.org/10.1103/PhysRevE.89.022506
http://dx.doi.org/10.1103/PhysRevE.89.022506
http://dx.doi.org/10.1039/b612517d
http://dx.doi.org/10.1039/b612517d
http://dx.doi.org/10.1039/b612517d
http://dx.doi.org/10.1039/b612517d
http://dx.doi.org/10.1039/b714102e
http://dx.doi.org/10.1039/b714102e
http://dx.doi.org/10.1039/b714102e
http://dx.doi.org/10.1039/b714102e
http://dx.doi.org/10.1103/PhysRevLett.105.167801
http://dx.doi.org/10.1103/PhysRevLett.105.167801
http://dx.doi.org/10.1103/PhysRevLett.105.167801
http://dx.doi.org/10.1103/PhysRevLett.105.167801
http://dx.doi.org/10.1080/02678292.2011.624368
http://dx.doi.org/10.1080/02678292.2011.624368
http://dx.doi.org/10.1080/02678292.2011.624368
http://dx.doi.org/10.1080/02678292.2011.624368
http://dx.doi.org/10.1039/c1jm12233a
http://dx.doi.org/10.1039/c1jm12233a
http://dx.doi.org/10.1039/c1jm12233a
http://dx.doi.org/10.1039/c1jm12233a
http://dx.doi.org/10.1063/1.3671996
http://dx.doi.org/10.1063/1.3671996
http://dx.doi.org/10.1063/1.3671996
http://dx.doi.org/10.1063/1.3671996
http://dx.doi.org/10.1063/1.4769458
http://dx.doi.org/10.1063/1.4769458
http://dx.doi.org/10.1063/1.4769458
http://dx.doi.org/10.1063/1.4769458


RAPID COMMUNICATIONS

ELASTIC CONTINUUM THEORY: TOWARDS . . . PHYSICAL REVIEW E 92, 030501(R) (2015)

[17] L. Beguin et al., J. Phys. Chem. B 116, 7940 (2012).
[18] M. Copic, Proc. Natl. Acad. Sci. USA 110, 15855 (2013).
[19] V. Borshch et al., Nat. Commun. 4, 2635 (2013).
[20] E. Virga, Phys. Rev. E 89, 052502 (2014).
[21] S. M. Shamid et al., Phys. Rev. E 87, 052503 (2013).
[22] S. M. Shamid et al., Phys. Rev. Lett. 113, 237801 (2014).
[23] E. I. Katz and V. V. Lebedev, JETP Lett. 100, 110

(2014).
[24] C. Greco et al., Soft Matter 10, 9318 (2014).
[25] G. Barbero and L. R. Evangelista, An Elementary Course on

the Continuum Theory for Nematic Liquid Crystals (World
Scientific, Singapore, 2001).

[26] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Clarendon Press, Oxford, 1993).

[27] P. K. Challa et al., Phys. Rev. E 89, 060501 (2014).
[28] S. M. Salili et al., RSC Adv. 4, 57419 (2014).
[29] T. Sekine et al., Jpn. J. Appl. Phys. 36, 6455 (1997).
[30] A. Hoffmann et al., Soft Matter 11, 850 (2015).
[31] A. C. Sparavigna, Int. J. Sci. 2, 54 (2013).
[32] T. C. Lubensky and L. Radzihovsky, Phys. Rev. E 66, 031704

(2002).
[33] R. Memmer, Liq. Cryst. 29, 483 (2002).
[34] K. Adlem et al., Phys. Rev. E 88, 022503 (2013).
[35] C.-J. Yun et al., Appl. Phys. Lett. 106, 173102 (2015).

030501-5

http://dx.doi.org/10.1021/jp302705n
http://dx.doi.org/10.1021/jp302705n
http://dx.doi.org/10.1021/jp302705n
http://dx.doi.org/10.1021/jp302705n
http://dx.doi.org/10.1073/pnas.1315740110
http://dx.doi.org/10.1073/pnas.1315740110
http://dx.doi.org/10.1073/pnas.1315740110
http://dx.doi.org/10.1073/pnas.1315740110
http://dx.doi.org/10.1038/ncomms3635
http://dx.doi.org/10.1038/ncomms3635
http://dx.doi.org/10.1038/ncomms3635
http://dx.doi.org/10.1038/ncomms3635
http://dx.doi.org/10.1103/PhysRevE.89.052502
http://dx.doi.org/10.1103/PhysRevE.89.052502
http://dx.doi.org/10.1103/PhysRevE.89.052502
http://dx.doi.org/10.1103/PhysRevE.89.052502
http://dx.doi.org/10.1103/PhysRevE.87.052503
http://dx.doi.org/10.1103/PhysRevE.87.052503
http://dx.doi.org/10.1103/PhysRevE.87.052503
http://dx.doi.org/10.1103/PhysRevE.87.052503
http://dx.doi.org/10.1103/PhysRevLett.113.237801
http://dx.doi.org/10.1103/PhysRevLett.113.237801
http://dx.doi.org/10.1103/PhysRevLett.113.237801
http://dx.doi.org/10.1103/PhysRevLett.113.237801
http://dx.doi.org/10.1134/S0021364014140070
http://dx.doi.org/10.1134/S0021364014140070
http://dx.doi.org/10.1134/S0021364014140070
http://dx.doi.org/10.1134/S0021364014140070
http://dx.doi.org/10.1039/C4SM02173H
http://dx.doi.org/10.1039/C4SM02173H
http://dx.doi.org/10.1039/C4SM02173H
http://dx.doi.org/10.1039/C4SM02173H
http://dx.doi.org/10.1103/PhysRevE.89.060501
http://dx.doi.org/10.1103/PhysRevE.89.060501
http://dx.doi.org/10.1103/PhysRevE.89.060501
http://dx.doi.org/10.1103/PhysRevE.89.060501
http://dx.doi.org/10.1039/C4RA10008E
http://dx.doi.org/10.1039/C4RA10008E
http://dx.doi.org/10.1039/C4RA10008E
http://dx.doi.org/10.1039/C4RA10008E
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1039/C4SM02480J
http://dx.doi.org/10.1039/C4SM02480J
http://dx.doi.org/10.1039/C4SM02480J
http://dx.doi.org/10.1039/C4SM02480J
http://dx.doi.org/10.18483/ijSci.211
http://dx.doi.org/10.18483/ijSci.211
http://dx.doi.org/10.18483/ijSci.211
http://dx.doi.org/10.18483/ijSci.211
http://dx.doi.org/10.1103/PhysRevE.66.031704
http://dx.doi.org/10.1103/PhysRevE.66.031704
http://dx.doi.org/10.1103/PhysRevE.66.031704
http://dx.doi.org/10.1103/PhysRevE.66.031704
http://dx.doi.org/10.1080/02678290110104586
http://dx.doi.org/10.1080/02678290110104586
http://dx.doi.org/10.1080/02678290110104586
http://dx.doi.org/10.1080/02678290110104586
http://dx.doi.org/10.1103/PhysRevE.88.022503
http://dx.doi.org/10.1103/PhysRevE.88.022503
http://dx.doi.org/10.1103/PhysRevE.88.022503
http://dx.doi.org/10.1103/PhysRevE.88.022503
http://dx.doi.org/10.1063/1.4919065
http://dx.doi.org/10.1063/1.4919065
http://dx.doi.org/10.1063/1.4919065
http://dx.doi.org/10.1063/1.4919065



