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The first Rcr as a possible measure of the entrainment

length in a 2D steady wake

D. Tordella♯ and S. Scarsoglio♯

♯ Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, 10129

Torino, Italy

Abstract

At a fixed distance from the body which creates the wake, entrainment is only

seen to increase with the Reynolds number (R) up to a distance of almost 20 body

scales. This increase levels up to a Reynolds number close to the critical value for

the onset of the first instability. The entrainment is observed to be almost extin-

guished at a distance which is nearly the same for all the steady wakes within the

R range here considered, i.e. [20-100], which indicates that supercritical steady

wakes have the same entrainment length as the subcritical ones. It is observed

that this distance is equal to a number of body lengths that is equal to the value

of the critical Reynolds number (∼ 47), as indicated by a large compilation of

experimental results. A fortiori of these findings, we propose to interpret the un-

steady bifurcation as a process that allows a smooth increase-redistribution of the

entrainment along the wake according to the weight of the convection over the

diffusion. The entrainment variation along the steady wake has been determined

using a matched asymptotic expansion of the Navier-Stokes velocity field [Tordella

and Belan, Physics of Fluids, 15(2003)] built on criteria that include the matching

of the transversal velocity produced by the entrainment process.

Keywords: 2D steady wake, entrainment, critical Reynolds number, first instabil-

ity
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1 Introduction

The dynamics of entrainment and mixing is of considerable interest in engineering appli-

cations concerning pollutant dispersal or combustion, but it is also of great relevance in

geophysical and atmospherical situations. In all these instances, flows tend to be complex.

In most cases, entrainment is a time dependent multistage process in both the laminar

and turbulent regime of motion.

The entrainment of external fluid in a shear flow such as that of a wake or a jet is

a convective-diffusive process which is ubiquitous when the Reynolds number is greater

than about a decade. It is a key phenomenon associated to the lateral momentum trans-

port in flows which evolve about a main spatial direction. However, quantitative data

concerning the spatial evolution of entrainment are not frequent in literature and are

difficult to determine experimentally. Quantitative experimental observations are very

cumbersome to obtain either in the laboratory or in the numerical simulation context. In

some cases, such as, for instance, fluid entrainment by isolated vortex rings, theoretical

studies (Maxworthy 1972[1]) predate experimental observations (Baird, Wairegi and Loo

1977[2]; Müller and Didden 1980[3]; Dabiri and Gharib 2004[4]).

It is interesting to note that more attention has been paid to complex unsteady and

highly turbulent configurations in literature than to their fundamentally simpler steady

counterparts.

In unsteady situations, entrainment is believed to consist of repeated cycles of viscous

diffusion and circulatory transport. In turbulent flows, a sequence of processes is observed,

where the exterior fluid is first ingested by the highly stretched and twisted interior

turbulent motion (large-scale stirring) and is then mixed to the molecular level by the

action of the small-scale velocity fluctuations, see for instance the recent experimental

works carried out on free jets by Grinstein 2001[5] or on a plane turbulent wake by Kopp,

Giralt and Keffer 2002[6].

In steady laminar shear flows, stretching dynamics is generally absent (as in 2D flows)

or is close to its onset. In this case, entrainment is determined by the balance between the

longitudinal and lateral nonlinear convective transport and the mainly lateral molecular

diffusion.

Air entrainment in free-surface flows is another important instance of the entrainment
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Figure 1: - Sketch of the physical problem. Longitudinal velocity profiles (solid lines) at

R = 60 and at stations x = 7, x = 17.

process. The mechanism is complex and is also significant in nominally steady flows e.g.,

a waterfall, or a steady jet. In such flows, entrainment is produced through the generation

of cavities that can entrap air. The cavities are due to the impingement of the falling

jet, which free-surface is usually strongly disturbed, over the liquid surface of the pool.

As observed in Ohl, Oguz, Prosperetti 2000[7], the generation process takes advantage of

both the kinetic energy of the jet surface disturbances and of part of the actual energy

in the jet.

In this letter, we consider the steady two-dimensional (2D) wake flow past a circular

cylinder. We deduce the entrainment as the longitudinal variation of the volume flow

defect using a matched Navier-Stokes asymptotic solution determined in terms of inverse

powers of the space variables (Belan and Tordella 2002[8]; Tordella and Belan 2003[9]), see

Section 2. This approximated (2D) solution was obtained by recognizing the existence

of a longitudinal intermediate region, which introduces the adoption of the thin shear

layer hypothesis and supports a differentiation of the behaviour of the intermediate flow

with respect to its infinite asymptotics. The streamwise behaviour of the entrainment is

presented in Section 3. The concluding remarks are given in Section 4.
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2 Analytical approximation of the velocity field, ve-

locity flow rate defect and entrainment

For an incompressible, viscous flow behind a bluff body, the adimensional continuity and

Navier-Stokes equations are expressed as

u∂xu + v∂yu + ∂xp = R−1∇2u (1)

u∂xv + v∂yv + ∂yp = R−1∇2v (2)

∂xu + ∂yv = 0 (3)

where (x, y) are the adimensional longitudinal and normal coordinates, (u, v) the adi-

mensional components of the velocity field, p the pressure and R the Reynolds number.

The physical quantities involved in the adimensionalization are the length D of the body

that generates the wake, the density ρ and the velocity U of the free stream, see the flow

schematic in fig. 1. The Reynolds number is defined as R = ρUD/µ, where µ is the

dynamic viscosity of the fluid.

The velocity field for the intermediate region of the 2D steady wake behind a circular

cylinder was obtained by matching an inner solution - a Navier-Stokes expansion in

negative powers of the inverse of the longitudinal coordinate x

fi = fi0(η) + x−1/2fi1(η) + x−1fi2(η) + · · · (4)

where f is a generic dependent variable and where the quasi-similar transformation

η = x−1/2y is introduced, and an outer solution, which is a Navier-Stokes asymptotic

expansion in powers of the inverse of the distance r from the body

fo = fo0(s) + r−1/2fo1(s) + r−1fo2(s) + · · · (5)

where r =
√

x2 + y2 and s = y/x.

The wake mass-flow deficit of the inner field was considered by means of an infield

boundary condition carefully accounting for it. In fact, this condition is placed at the

beginning of the intermediate flow region which inherits the full dynamics properties of

near field. To this aim, we took advantage of experimental velocity and pressure profiles,

as usually done in many physical contexts and as suggested, in the present context, by

Stewartson (1957)[10]. Further details about the use of this infield condition are given
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below. It should be noted that the matched expansion in ranging from minus infinity

to plus infinity in the transversal flow direction and that the concept of wake flow is

clearly defined downstream from the intermediate region where the thin layer hypothesis

starts to apply. The relevant boundary conditions involve, aside the infield condition,

symmetry to the longitudinal coordinate and uniformity at infinity, both laterally and

longitudinally. For details on the expansion term determination, the reader can refer to

Tordella and Belan 2003[9].

The physical quantities involved in the matching criteria are the vorticity, the lon-

gitudinal pressure gradients generated by the flow and the transversal velocity pro-

duced by the mass entrainment process. The composite expansion is defined as fc =

fi + fo − fcommon, where fcommon is the common part of the inner and outer expansions.

In Tordella and Belan 2003[9] the explicit inner and outer velocity and pressure expan-

sions can be found up to order four (i.e. O(x−2) and O(r−2), for the inner and outer wake,

respectively), the composite approximation has been shown graphically. In this work, we

approximate the wake flow with the composite solution obtained by truncating the inner

and outer expansions at the third order term and then by determining their common part

by taking the inner limit of the outer approximation. For the reader’s convenience, the

inner and outer velocity component expansion terms are listed below (see equations 9 -

23). The common part has not been included because it has an analytical representation

which alone would take up a few pages. However, the c©Mathematica file that describes

its analytical structure and which allows its computation is given in the EPAPS online

repository[11]. The common expansion was obtained by writing the inner and outer ex-

pansions in the primitive independent variables and by taking the inner limit of the outer

expansion, that is, by taking the limit for s → 0 and r → ∞. To this end, the Laurent

series of the outer expansion about x → ∞ was considered up to the first order. The

composite expansion - which is, by construction, a continuous curve, since it is obtained

by the additive composition of three continuous curves, the sum of the inner and outer

expansions minus the part they have in common - is accurate if the common expansion is

accurate. This is always obtained if, at each order, the distance δn = |fi,n − fo,n| between

the inner and the outer expansions is bounded and is at most of the same order as the

range of fi and fo. In the present matching, we have verified that in the matching region

- that is, in the region where the composite connects the inner and the outer expansions
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- the distance δn is not only bounded, but is small with respect to the ranges of fi and

fo.

The velocity approximation is shown in figures 2 and 3, where the longitudinal and

transversal components of the composite solution for the velocity field are plotted for

different longitudinal stations and Reynolds numbers.

It should be noted, that in this analytical flow representation, a few key properties

of the wake flow have been taken into account. These properties can help an accurate

description of the entrainment process to be obtained. These properties are:

i) The existence of intermediate asymptotics for the wake flow, in the general sense as

given by Barenblatt and Zeldovich[12]. This is an important point, because the existence

of the intermediate region supports the adoption of the thin shear layer hypothesis and

relevant near-similar variable transformations for the inner flow, while, at the same time,

it also supports a differentiation of the behavior of the intermediate flow with respect to

its infinite asymptotics (Oseen’s flow).

ii) The use of an in-field boundary condition which consists of the distribution of

the momentum and pressure at a given section along the mainstream of the flow in

opposition to the use of integral field quantities. This kind of boundary condition is not

new in literature[10], and presents the evident advantage of having a higher degree of

field information with respect to the use of integral quantities such as the drag or the lift

coefficients (a given integral value can be obtained from many different distributions).

iii) The acknowledgment of the fact that in free flows, such as low Reynolds numbers

- 2D or axis-symmetric - wakes or jets developing in an otherwise homogeneous and

infinite expanse of a fluid, the main role in shaping the flow is played by the inner flow.

This directly inherits the main portion of the convective and diffusive transport of the

vorticity, which is created, at the solid boundaries, by the motion of the fluid relative

to the body. For these flows, it is physically opportune to denote the ”inner” flow as

the straightforward or basic approximation. This means that, up to the first order,

the inner solution is independent of the outer solution. According to this, the Navier-

Stokes model, coupled with the thin layer hypothesis, very naturally yields the order

of the field pressure variations O(x−2). Pressure variations were often overestimated

at O(x−1)[13],[9]. This was due to the use, in the inner expansion, of the assumption

that the field can accommodate an inner pressure which is independent of the lateral
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coordinate, which however varies at the leading orders along the x coordinate. However,

at intermediate values of y and for fixed x, this assumption is responsible for an anomalous

rise in the composite expansion, due to the central plateau that appears in the outer

expansion. The outer solution is in fact biased at finite values of x to values greater

than 1 and forces the composite expansion to assume inaccurate values – with respect to

experimental results – mostly in the region around y/D ≈ 2 and outwards (at y/D = 20

the longitudinal velocity is still appreciably different from U). For details, the reader

may refer to Section IV and fig.6 in Tordella and Belan 2003[9].

iv) Last, we would like to point out that we have used the Navier-Stokes equations in

the whole field, without the addition of any further restrictive axiomatic position, such as

the principle of exponential decay. This did not prevent our approximated solution from

spontaneously showing the properties of rapid decay and irrotationality at the first and

second orders for the inner and the outer flows, respectively. At the higher orders, which

mainly influence the intermediate region, the decay becomes a fast algebraic decay.

For an unitary spanwise length, the defect of the volumetric flow rate D is defined as

D(x) =

∫ +∞

−∞
(1 − u(x, y))dy (6)

and is approximated through uc = uc(x, y), the composite solution for the velocity field,

as

D(x) ≈
∫ +∞

−∞
(1 − uc(x, y))dy. (7)

Entrainment is the quantity that takes into account the variation of the volumetric

flow rate in the streamwise direction, and is defined as

E(x) = |dD(x)

dx
|. (8)

The sequence of the first four terms of the inner and outer approximation for the

streamwise velocity and the transversal velocity is given in the following.

Zero order, n=0,

ui0(x, y) = c0 (9)

vi0(x, y) = 0 (10)

uo0(x, y) = k0 (11)

vo0(x, y) = 0 (12)
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with c0 = 1, k0 = 1.

First order, n=1

ui1(x, y) = −Ac1e
−Ry2/(4x)x−1/2 (13)

vi1(x, y) = 0 (14)

uo1(x, y) = 0 (15)

vo1(x, y) = 0 (16)

with c1 = 1, while the constant A is related to the drag coefficient (A = 1
4
(R/π)1/2cD(R)).

Second order, n=2

ui2(x, y) = −1

2
A2e−Ry2/(4x)[e−Ry2/(4x) +

1

2

y√
x

√
πRerf(

1

2

√

R

x
y)]x−1 (17)

vi2(x, y) = −A

2

y√
x

e−Ry2/(4x)x−1 (18)

uo2(x, y) = 0 (19)

vo2(x, y) = 0 (20)

Third order, n=3

ui3(x, y) = A3e−Ry2/(4x)(2 − R
y2

x
)[

1

2
c3 − RF3(x, y)]x−3/2

vi3(x, y) = −A2

2
{−1

2

y√
x

e−Ry2/(2x) −
√

π

2R
erf(

√

R

2x
y) + (

1

2

√

π

R
+

−
√

πR

4

y2

x
)e−Ry2/(4x)erf(

1

2

√

R

x
y)}x−3/2 (21)

uo3(x, y) = Re(
i

3
k31e

(3i/2)arctan(s) + k33
s
3/2
+

s3/2
+

1

2
k32s

−3/2s
3/2
+

× {
√

(1 + is)s(3
4
− i

i+s
)

2(i + s)
+

(−1)1/4

16
√

2
log[

( i−1√
2

+
√

s)( i−1√
2
− (1 − i)

√
1 + is +

√
s)

(1−i√
2

+
√

s)(1−i√
2

+ (1 − i)
√

1 + is +
√

s)
)

vo3(x, y) = Re(e(3i/2)arctan(s)[k31 + k32s
+ s + i

3(s − i)2
])

where c3 = −2.26605 + 0.15752R − 0.00265R2 + 0.00001R3, F3 is the third order of the

function

Fn(x, y) =
1√
x

∫ y

0

eRζ2/(4x)

Hr2
n−1(x, ζ)Gn(x, ζ)

dζ (22)

Gn(x, y) = A−n 1√
x

∫ y

0

Mn(x, ζ)Hrn−1(x, ζ)dζ (23)

where Mn(x, y) is the sum of the non homogeneous terms of the general ordinary differen-

tial equation for the inner solution coefficients (φn), n ≥ 1, obtained from the x component
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of the Navier-Stokes equation[8],[9], and Hrn−1(x, y) = Hn−1(
1

2

√

R

x
y), where Hn are Her-

mite polynomials. In the outer terms, the variables r, s, s± are defined as r =
√

x2 + y2,

s = y/x, s± = (1 + s2)±1/2 and the relevant constants are k31 = ±1
2
A2/2

√

π/(2R),

k32 = 3ik31, k33 = 0.

3 Discussion of the results

Before describing the entrainment features we have observed, let us first discuss the

asymptotic behaviour of the inner expansion in the lateral far field, since this aspect is

important to determine the entrainment decay. At finite values of x, the inner streamwise

velocity decays to zero as a Gaussian law for n = 1 and as a power law of exponent −2

for n = 2 and of exponent −3 for n ≥ 3. The cross-stream inner velocity goes to zero for

n = 0, 1 and to a constant value for n ≥ 2. This allows v to vanish as x−3/2 for x → ∞.

When x → ∞ this approximation coincides with the Gaussian representation given by

the Oseen approximation. It can be concluded that, at Reynolds numbers as low as the

first critical value and where the non-parallelism of the streamlines is not yet negligible,

the division of the field into two basic parts - an inner vortical boundary layer flow and an

outer potential flow - is spontaneously shown up to the second order of accuracy (n = 1).

At higher orders in the expansion, the vorticity is first convected and then diffused in the

outer field. This is the dynamical context in which the entrainment process takes place.

In figures 2 (a) and 3 (a), the longitudinal velocity profiles are contrasted with the

experimental data available for steady flows by Berrone[14], Paranthoen et al.(1999)[15],

Nishioka & Sato (1974)[16] and Kovasznay (1948)[17]. The accuracy on the velocity

distributions, between the analytical data and the laboratory ones is lower than 5%.

This estimate was obtained by contrasting the longitudinal velocity distribution u with

the laboratory and numerical distributions, considered as the reference distribution. To

this end, we computed the deviation ∆ref = ‖u − uref‖0,x/‖1 − uref‖0,x. At R = 34,

a deviation ≃ 4.5% was obtained for the laboratory results by Kowasznay, where x is

the station at 20 diameters from the center of the cylinder, see fig.2. As for the data

by Berrone, we find a ∆ref of about 1.7%. At x ∼ 10 we have a comparison with

Paranthoen et al. and Nishioka and Sato, that yields a deviation ∆ref of about 2.5% and

1.5%, respectively, see fig.3.
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The entrainment is closely linked to the lateral and far field asymptotic behaviour.

Since a numerical experiment cannot be over an unbounded domain of a flow, this ap-

proach is not suitable for the study of the field asymptotic behaviour and, as a conse-

quence, entrainment (however, numerical simulations can yield very accurate representa-

tions of the near field, in particular of the standing eddy region). As far as entrainment

is concerned, we then contrasted our analytical data with laboratory data. We tried to

exploit all the results available in literature, obtaining a comparison with Paranthoen

et al. (1999)[15] and Kovasznay (1948)[17] because these authors present a sequence of

velocity profiles (mainly in supercritical flow configurations) that extend into the inter-

mediate wake. The comparison was instead not feasible with the data by Nishioka and

Sato (1974)[16] since they mainly measured the near wake (standing eddy region).

Figure 4 shows the volumetric flow rate defect D = D(x; R) and the entrainment E =

E(x; R) obtained from the composite expansion. It can be observed that the volumetric

defect flow rate slowly decreases with the distance from the body (fig.4 a). This decrease

is faster at the beginning of the intermediate wake and at the higher Reynolds values.

Considering a fixed position x (fig.4 c), the flow defect decreases with the Reynolds

number. Fig.4 (a) includes data from the laboratory experiments by Paranthoen et al.

(1999, R = 53.3) and Kovasznay (1948, R = 56), both carried out at a slight supercritical

R (unsteady regime). The difference between their results in not small, but it should be

recognized that the difficulties in measuring at small values of the Reynolds number are

exceptionally high. By considering the arithmetic mean between these two sets of data,

an increase of more than 50% with regards to the values of the steady configuration, for

x < 20, is observed.

Parts (b, d) of fig.4 concern the entrainment, that is, the spatial rate of change of

the wake velocity defect. The important points are: - the initial high variation at the

beginning of the intermediate part of the wake, which increases with R, - the higher

experimental mean value near x = 10 (2.45 10−2 against 6.5 10−3), - for all the R, the

exhaust of the entrainment at a distance of about 50 body lengths, - the collection of

experimentally determined values of the critical R number that has a median value of

46.6: a fact that relates the entrainment exhaust length - EEL - to Rcr with a simple

scaling, such as EEL ∼ Rn
cr with n = 1. In fig.4 (d), one can also observe that at a

constant distance x from the body, the entrainment stops growing beyond around Rcr.
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Though the connection between the entrainment length and the instability cannot

be direct: - the first can be deduced as an integral property of the steady fully non

linear version of the motion equations, - the second from the linear theory of stability,

which is conceived to highlight the role of the perturbation characteristics and not of the

integral properties of the basic flow, these results could be a fortiori used to interpret the

bifurcation to the unsteady flow condition at Rcr as a process that allows the wake to

tune the entrainment, and, possibly, to redistribute it on a larger wake portion, according

to the actual R value.

It can be noticed that the decay distance is of the same order of magnitude as Rcr

and this shows that the scaling used in recent stability analyses[19],[18] to represent the

slow time and space wake evolution - τ = εt and ξ = εx, where ε =
1

R
∼ 1

Rcr

- is linked

to the exhaust of the entrainment process. In fact, one can say that the unit value of the

slow time and spatial scales is reached where the entrainment nearly ends.

4 Conclusions

The entrainment is observed to be intense in the intermediate wake downstream from

the separation region where the two-symmetric standing eddies are situated. Here, the

dependence on the Reynolds number is clear. The entrainment grows six-fold when R is

increased from 20 to 100. The subsequent downstream evolution presents a continuous

decrement of the entrainment. For all the R here considered, it has been observed that

this decrease is almost accomplished at a distance from the body of about 50 diameters,

which is a value that is close to the critical value Rcr for the onset of the first instability

and the subsequent set up of the unsteady regime (the median value in literature being

Rcr = 46.6). The establishment of the unsteady regime could be interpreted as a way of

overcoming the limitation on the entrainment intensity and decay imposed by the steady

regime. The observed decay length confirms the validity of the scaling that is often

adopted in wake stability studies carried out using the spatial and temporal multitasking

approach.

The authors would like to thank Marco Belan from the Politecnico di Milano for

several helpful discussions.
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Figure 2: - Velocity profiles at the downstream stations x = 20, x = 80 and for R =

20, 40, 60, 80 and 100. (a)-(b) Longitudinal velocity u, x = 20 and x = 80, (c)-(d)

transversal velocity v, x = 20 and x = 80. The comparison with the numerical results by

Berrone (2001) (triangles, R = 34, x = 20) and the laboratory data by Kovasznay (1948)

(circles, R = 34, x = 20) is shown in part (a).
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Figure 3: - Velocity profiles for R = 30, 60 plotted at stations x = 10, 20, 40, 60, 80 and

100. (a)-(b) Longitudinal velocity u, R = 30 and R = 60, (c)-(d) transversal velocity v,

R = 30 and R = 60. The comparison with the experimental data by Nishioka & Sato

(1974) (squares, R = 40, x = 7) and Paranthoen et al. (1999) (triangles, R = 34, x = 10)

is shown in part (a).
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Figure 4: - (a)-(b): Downstream distribution of the volumetric flow rate defect D and entrain-

ment E for R = 20, 40, 60, 80 and 100. (c)-(d): Volumetric flow rate defect D and entrainment

E as a function of the R for different stations (x = 8, 10, 20, 40, 80). The values of the volumetric

flow rate defect D for the oscillating (supercritical) wake, as inferred from experimental data by

Kovasznay (1948, R = 56) and Paranthoen et al. (1999, R = 53.3), are also shown in part (a).

The values of the critical Reynolds number obtained from different numerical and experimental

results are placed at a distance from the body, xe, equal to Rcr, see part (b). Position xe is

observed to be the wake length where the entrainment is almost extinguished ∀R ∈ [20, 100],

which leads to the hypothesis that the steady wake becomes unstable at a Reynolds number that

is equal to the normalized distance where the entrainment almost ends and to the value beyond

which the entrainment, at a constant distance from the body, stops growing (see part (d)). The

symbols represent data from: Norberg 1994 (N), Zebib 1987 (♦), Pier 2001 (×), Williamson

1989 (△), Leweke & Provansal 1995 (+), Strykowski & Sreenivasan 1990 (∗), Coutanceau &

Bouard 1977 (◦), Elsenlhor & Eckelmann 1989 (•), Hammache & Gharib 1989 (�), Jackson

1987 (�), Ding & Kawahara 1999 (�), Morzynski et al. 1999 (▽), Kumar & Mittal 2006 (H).

The solid line in parts (b) and (d) indicates the median value (Rcr ≈ 46.6) of these data.
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