
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High-level Synthesis for Semi-global Matching: Is the juice worth the squeeze? / Qamar, Affaq; Muslim, FAHAD BIN;
Gregoretti, Francesco; Lavagno, Luciano; Lazarescu, MIHAI TEODOR. - In: IEEE ACCESS. - ISSN 2169-3536. -
5:(2017), pp. 8419-8432. [10.1109/ACCESS.2016.2635378]

Original

High-level Synthesis for Semi-global Matching: Is the juice worth the squeeze?

Publisher:

Published
DOI:10.1109/ACCESS.2016.2635378

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2658952 since: 2020-10-20T15:54:34Z

Institute of Electrical and Electronics Engineers Computer Society

IEEE ACCESS 1

High-level Synthesis for Semi-global Matching: Is
the juice worth the squeeze?

Affaq Qamar, Member, IEEE, Fahad Bin Muslim, Student Member, IEEE, Francesco Gregoretti, Member, IEEE,
Luciano Lavagno, Senior Member, IEEE and Mihai Teodor Lazarescu, Member, IEEE

Abstract—High-level Synthesis (HLS) based design method-
ologies are extremely viable for industries that are sensitive to
production costs. In order to have competitive advantage, the
ability to have several different implementations of the same
algorithm satisfying a diverse range of resolution, cost and perfor-
mance constraints is highly desirable. In this article, we present
multiple hardware implementations of the Semi-global Matching
(SGM) algorithm which is used in stereo vision systems e.g. for
automotive applications. The hardware platform considered in
this work is a Xilinx R© ZynqTM System-on-Chip. A performance
comparison of both HLS-based design as well as a manual RTL
design in terms of quality of results (QoR), flexibility and design
time is also presented. SGM mainly includes a sequence of three
processing steps i.e. the ”cost cube calculation” followed by the
”path cost computation” and finally the ”disparity approximation
and minimization”. The path cost processor further performs a
pixel-wise processing of the cost cube data along eight distinct
path orientations. The baseline algorithmic model usually called
the ”golden” model utilizes considerably large arrays, that are
required to be mapped to an external DRAM and brought into
the on-chip RAM when required. This necessitates adding both
the memory transfer loops as well as insertion of calls to the
AXI transactors for accessing the DRAM through the on-chip
DDR slave. Furthermore, the initial algorithm (typically single-
threaded) must be parallelized to fully exploit the concurrency
offered by the target hardware platform. The design space
exploration was thus performed by making several considerably
different micro-architectural choices. Eventually, we were able
to obtain an implementation comparable to the manual RTL
design. Both manual RTL as well as the HLS designs achieved the
target real-time performance of 30 fps for the image resolution
of 640x480 with a disparity depth of 128 pixels per frame.

Index Terms—High-level Synthesis, FPGA, RTL, Semi-global
Matching, DRAM, Design Space Exploration.

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) designs are becoming increas-
ingly heterogeneous as they combine multicore architec-

tures with a variety of hardware accelerators to carry out ded-
icated computational tasks. These hardware accelerators offer
several orders of magnitude higher power and timing efficiency
than a corresponding software implementation [1]. However,
the presence of accelerators aggravates the complexity of SoC
design. With the continuous advancements in technology, the
complexity of electronic designs now has a profound effect on
the overall cost, performance, and power consumption of the
modern electronic systems.

A. Qamar is with the Department of Electrical Engineering, Abasyn
University, Peshawar, KP, 25000 Pakistan e-mail: affaq.qamar@abasyn.edu.pk

F. B. Muslim, F. Gregoretti, L. Lavagno and M. T. Lazarescu are with the
Department of Electronics and Telecommunications, Politecnico di Torino,
Italy.

Architectural DSE

Setup design

Micro-Architectural DSE

Allocate IP

Manage Registers

Generate RTL

Simulate and Analyze

Fig. 1. General high-level synthesis flow.

As far as behavioral description for the hardware design
is concerned, the abstraction level is rising from RTL to
algorithmic untimed or transaction-based, followed by an
automated high-level synthesis (HLS) flow [2]. Model-based
Design (MBD) is a methodology that starts from an abstract,
implementation-independent model that is functionally verified
and algorithmically optimized. It then maps the model to sev-
eral optimized candidate implementations, eventually choosing
the one that best meets the market requirements. In the context
of hardware design, MBD uses high-level synthesis for this
mapping.

HLS takes as input the model-based description of the
design, specified in some high-level language such as C,
C++, SystemC or Simulink, and synthesizes it to generate
RTL, as depicted in Fig. 1. By elaborating different sets of
constraints, HLS tools allow designers to evaluate multiple
implementation alternatives, a process known as Design Space
Exploration (DSE) [3], [4]. HLS enables the description of a
digital design at a higher level of abstraction accompanied
by different design constraints by using control and data flow
graphs (CDFG). CDFG scheduling and binding with respect
to these constraints enable us to explore the design space
more rapidly thereby improving the Quality of Results (QoR)
compared to the manually-coded RTL design.

Design space exploration with HLS is much broader and
easier than what is possible with logic synthesis alone, since

IEEE ACCESS 2

the former can be achieved by simply changing HLS tool
directives, while the latter usually requires one to manually
change a detailed hardware description expressed in the form
of Verilog or VHDL code. Such hardware descriptions at a
lower abstraction level are often attempted only for a limited
number of architectural options, because of the corresponding
larger design and verification times [5]. Owing to its improved
design re-use, reduced simulation run-time and a broader
design space exploration, HLS considerably reduces the time
to market and improves the coding productivity. Additionally,
high design productivity necessitates that complex SoCs use
a higher percentage of reused components [6]. This in turn
requires soft IP components, that are designed only once using
some high-level languages and are implemented at various
instances in order to meet various design requirements [7].

A C-based algorithmic model is usually available as a
reference ”golden” model to both HLS and RTL designers.
This model however, needs several modifications before it can
be synthesized automatically via HLS. This is particularly true
when the reference model (typically single-threaded) lacks
sufficient parallelism, thus making it very difficult to meet
the design constraints. This hence, requires putting in some
effort to manually parallelize the code by splitting it into
multiple synchronized threads communicating through e.g.
FIFOs or ping-pong buffers. This manual effort however, is
still considerably smaller than the extensive coding effort
required for direct RTL implementation.

In addition to concurrency, another aspect worth consider-
ing while gauging the manual effort is the memory access
optimization, which usually is the bottleneck, particularly for
image and video processing algorithms. This becomes even
more crucial when the design implementation requires ac-
cesses to external dynamic random access memory (DRAM).
This requires writing custom-built memory transfers to on-chip
SRAM buffers which replace the caches that are being used
in the respective software implementation of the algorithm.

A. Problem Statement

This article addresses some important issues related to
high-level synthesis and system-level design in general. Syn-
thesizing a design from an algorithmic (also called system-
level) model using an automated HLS flow provides efficient
implementation in terms of area, performance and power with
respect to its software counterpart. However, the high-level
code requires to be modified considerably with regards to a
pure simulation model in order to ensure an implementation
that is comparable to a highly efficient (and therefore very
rigid) manual RTL design written in hardware description
languages such as Verilog or VHDL. In particular, it must
consist of a very sophisticated mechanism to ensure a fine-
grained management of data and computation.

This apparently deviates somewhat from the stated goal of
MBD that is ”model once, run anywhere”. However, it still
follows broadly the MBD guidelines, because these optimiza-
tions are beneficial for all hardware implementations derived
from HLS, and simply maximize the size of the design space
that can be explored, while simultaneously optimizing the

QoR. Typically these modifications include: (1) increasing the
level of explicit parallelism in the model, since its automated
extraction from a sequential model is almost impossible for
a tool, and (2) restructuring the memory accesses to better
exploit their locality, since in hardware there is no cache to
provide the illusion of a very fast and huge memory.

Video processing algorithms are widely used in the field of
machine vision applied e.g. to the automotive and surveillance
domains. An efficient vision system in an automobile is a
promising technological solution to replace human interaction
during driving. In order to cater to a wide range of vehicles
in a cost-effective manner, the ability to achieve several
varieties of a single design offering a diverse range of cost and
performance, would lead to a great competitive advantage.

B. Contribution

The scope of the paper covers the manual transformations
needed in order to get an efficient hardware implementation
from a high-level code. This article targets the design space
exploration of a Stereo Vision System (SVS), which is a
reasonably complex design (i.e. it can fit over a high-end
FPGA). We intend to explore the application of HLS to a
complex design involving memory-intensive operations. The
test case under consideration is the FPGA implementation
of a Semi-global Matching (SGM) algorithm which is being
employed in a Stereo Vision System. SGM finds broad range
of applications in the automotive domain, e.g. in assisted
driving applications, and it needs to be executed in real-time
while adhering to strict cost and power constraints. SVS uses
a set of 2D images taken by two cameras separated by some
distance to construct a 3D image frame, as illustrated in Fig. 2.

The process is based on a disparity estimation technique
using SGM. To cater to a broader range of vehicles in a cost-
effective manner, the ability to have multiple implementations
of a design satisfying various cost/performance constraints
helps achieving a tremendous competitive advantage. The
manual RTL for this design was already implemented for an
automotive company in the context of a European Research
Council (ERC) Sensor for 3D Vision (3DV#297463) Proof
of Concept grant [8]. In the present work, we explore an
alternate approach to achieve comparable results with much
lower design effort and a higher degree of re-usability. The
latter is particularly important for the automobile industry
which is highly sensitive to cost. This industry requires various
rapid and diverse implementations of the same algorithm
satisfying various resolution, cost and performance metrics
targeting different market segments. A comparsion of the two
flows in terms of both flexibility and QoR will be presented
in this article.

C. Paper Organization

The rest of the article is organized as follows. Section II
presents a brief overview of the SGM working principle
and its algorithmic background. Some relevant state-of-the-
art work is presented in Section III. Section IV discusses
the algorithmic refinements needed at the pre-synthesis stage

IEEE ACCESS 3

followed by the hardware-software partitioning. Three dif-
ferent hardware architectures and their implementations are
presented in Section V. It starts with the memory access
optimizations and then presents a single threaded sequential
architecture. Section V also highlights the introduction of
parallelism using manual effort as well as tool-based micro-
architectural decisions. Section VI discusses the design space
exploration setup and design analysis using HLS and compares
its results with current state-of-the-art. The work is concluded
in Section VII.

II. STEREO VISION SYSTEMS

Stereo vision systems have multiple cameras fixed over
a common platform, all capturing the same scene. Slight
differences in the points of view of the cameras produce
small displacements of the various objects in the camera
images, in exactly the same manner as in case of human eyes.
These displacements can be used to obtain a three-dimensional
model of the framed scene. This can be done by adding the
displacement of each object to its two-dimensional position,
estimated from each image. The distance computation be-
comes extremely simple if the displacements are known, as
it will only depend on the baseline between the cameras. The
displacement calculation however, is not straight forward since
it includes an extremely complicated comparison between the
various camera images [9].

In this work, we consider an automotive application that
detects obstacles and their distance from a vehicle using SVS.
The system consists of two cameras that are assumed to be
mounted in front of a car, taking numerous shots that need to
be analyzed in real-time. The sensors in the cameras are posi-
tioned such that their longer side is aligned with the baseline
between the two cameras. This ensures that the displacements
occur in a single dimension only hence, making the vision
algorithm considerably simpler. Considering the baseline to be
horizontal, then the two images are termed as left and right
images respectively. The system gives output in the form of an
image, which contains, for each pixel, its estimated distance
from the cameras. This is followed by another algorithm for
detecting the presence of an obstacle. Furthermore, in the
case of an obstacle being detected, automatic intervention
is ensured as well [9]. Among numerous potential stereo
vision approaches, SGM algorithm is selected here due to its
greater robustness and regularity [10]. These properties are
important as they can be exploited for an efficient hardware
implementation and design space exploration as well.

A. Semi-Global Matching (SGM)

One way to determine a three dimensional model of a
scene is by considering a pair of images taken at the same
time and calculating the displacement of all pixels in those
images. This problem is typically called ”image registration”,
and has applications in several domains e.g. remote sensing,
medical imaging and computer vision, to name a few. Several
approaches for image registration are surveyed in [11]. Semi-
global matching however, provides the best known approach
for image registration [10], [12].

Pre-processing

and

Rectification

Cost Cube

Generation

(C)

Path Cost

Generation

(L)

Aggregation

(S)

and

Disparity

Estimation (D)

Post-

processing

Semi-global Matching (SGM)

Fig. 2. Semi-global Matching based stereo vision system.

disparity = x-x'

Rectification X

Epipolar
line

x'

x

Fig. 3. Illustration of disparity in a stereo vision system.

The main blocks of an SVS system are shown in Fig. 2.
The two images, each with WxH pixels, need to be pre-
processed for noise reduction. Rectification, thereafter, is used
to compensate the effects of camera distortion and sensor
misalignment. A Look-up table (LUT) is used to perform
rectification, which gives, for every pixel in the rectified image,
the coordinates of the corresponding pixel in the original input
image. An external DRAM is used to store the rectified pixels
for census computation. For a square (n× n) window around
a pixel, census represents a string of n2 bits. Each of these
bits equals 1 if intensity of the corresponding pixel in the
window is higher than that of the center pixel while it equals
0 otherwise [9]. SGM uses the census transforms CL and
CR corresponding to the left and right images respectively
for computing the cost cube over disparity of depth d. The
disparity is the difference in locations of the projection points
in both the images as depicted in Fig. 3, where the rectification
is only illustrated for the left projection plane. These steps are
described next.

1) Cost Cube Generator: It computes the cost cube using
the Hamming distance between pixels over the 128 disparity
levels by scanning the left and right images. The corresponding
mathematical equation is given by (1):

C(p, d) = H(CL(x+ d, y), CR(x, y)) (1)

Where p = [x, y]T represents the location of a pixel in the
base image.

2) Path Costs Processor: This represents the major com-
putation task corresponding to SGM. It aggregates the path
costs Lr(p, d) along multiple independent paths in a recur-
sive manner. Paths may be arbitrary, but are usually one-
dimensional while following the main Cartesian axes and those
at 45◦, as shown in Fig. 4, which depicts eight separate paths
(P1, P2, ..., P8) for a specific pixel p. The cost Lr, for a path
r for a specific pixel p is represented by (2).

IEEE ACCESS 4

P1

x

y

P2
P3

P4

P5

P6
P7

P8

Fig. 4. Eight path orientation for path cost calculation.

Lr(p, d) = C(p, d) + min[Lr(p − r, d),

Lr(p − r, d− 1) + P1,

Lr(p − r, d+ 1) + P1,

min
i

Lr(p − r, i) + P2]−

min
l

Lr(p − r, l)

(2)

3) Aggregation and disparity estimation: The aggregated
cost for each pixel is calculated by adding the path costs
as presented in (3). The disparity is finally calculated by
minimizing the aggregated costs as shown in (4).

S(p, d) =
∑
r

Lr(p, d) (3)

D(p) = min
d

S(p, d) (4)

In this work, we assume a VGA frame where; W = 640,
H = 480, n = 5 and d = 128.

III. RELATED WORK

A. HLS-based work

Most of the previous work on the SGM algorithm pertains
with the RTL implementation of the SGM algorithm. One
of the few exceptions is [9], where a sequential SystemC
model of the SGM algorithm is implemented on a Xilinx
Zynq 7020. The design space exploration results suggest that
the code required huge arrays which were mapped to the
external DRAM. Furthermore, the performance in terms of
cycles per pixel (CPP) is affected not only by the frequent
DRAM accesses but also by the sequential nature of the code.
Thus, with this sort of implementation, the target of 30 fps
with the image resolution of 480x640 for 128 disparity levels
can not be achieved. Some architectural as well as algorithmic
modifications are proposed in [13]. This work presents an
integrated approach that combines memory partitioning and
merging with data reuse and loop unrolling for optimizing
memory organization for FPGA behavioral synthesis. The
performance (cycles per pixel) is better than the one proposed
in [9]. However, the size of the arrays implied by this FIFO-
based strategy requires huge on-chip BRAM resources which

are available only in the Xilinx Virtex-7 v2000T. This makes
it a resource-dependent implementation which is not desirable.

The authors of [14] have tried to manage array reuse mainly
through loop tiling, while in [15] they have suggested a pow-
erful dependence distance approach that organizes the reused
data in sets. In [16], buffer allocation reuse was optimized by
a heuristic algorithm. The same authors also generated an on-
chip reuse buffer in [17] by combining loop transformation
and memory hierarchy allocation. All of the cases mentioned
here involve sequential execution models, thereby enabling the
sharing of the reuse buffer among all the arrays without any
conflicts in access. The same techniques would not however,
be suitable for loop unrolling, wherein access conflicts may
arise due to limited number of ports of the physical RAMs as a
result of concurrent data requests. Hence, direct combination
of data reuse along with loop unrolling may not yield the
expected improvement in throughput.

Memory allocation and binding guided by scheduling has
been used in a lot of cases to avoid access conflicts. Moreover,
traditional scheduling and binding algorithms that are used
by many state-of-the-art HLS tools e.g. Vivado HLS from
Xilinx [18], C-to-Silicon from Cadence [19], Catapult from
Mentor Graphics [20] and Synphony from Synopsys [21] also
do not cater to the needs of embedded designs involving
complex image processing algorithms and stricter performance
and area constraints [22]. This is because these tools are
mainly designed to optimize scalar operations. The authors
in [23] have used instruction-level macro-rescheduling and
memory access-level micro-rescheduling to choose the best
allocation and binding strategy. Although such methods can
reduce the access conflicts and latency, yet the improvement
in performance will be limited without some type of data
layout optimization e.g. data reuse. A simple solution to reduce
access conflicts can be to increase the number of memory
ports. However, this leads to quadratic growth in complexity
and area, which is inefficient and unrealistic [24].

An alternate solution to manage port constraints is to
partition the memory into several banks with an acceptable
overhead. The authors of [25] have designed a logical-to-
physical mapping algorithm to break and pack memories into
dual port RAM. The on-chip SRAM has been partitioned using
an application-driven approach in [26], where frequently ac-
cessed data is mapped to smaller power-efficient memory units
using application profiling. For reconfigurable architectures,
the authors of [27] utilize memory distribution, replication
and scalar replacement to map arrays of data to heterogeneous
storage resources. The approach is used to combine a high-
level specification with scheduling. A profiling-based approach
that considers the partitioning of elements into data struc-
tures for behavior-level synthesis has been presented in [28],
aiming to increase memory parallelism by data partitioning.
Memory partitioning has been automated in [29] to achieve
maximum throughput while using loop pipelining. All these
methods need affine indices, while data reuse buffers are
always updated in a circular manner to save buffer sizes, hence
bringing modulo operations into the indices. None of the above
mentioned strategies would work in such circumstances.

The authors of [30], [31] implemented an integer non-

IEEE ACCESS 5

linear programming model for data reuse and loop-level
parallelization which solves the issue of access conflict by
using memory and data duplication. This solution yields better
performance, but causes an increase in the on-chip RAM and
a redundancy in the data movement due to the process of
memory duplication.

Loop unrolling for general purpose and embedded proces-
sors has been extensively studied in compilers [32], [33].
Several compiler optimizations and transformations e.g. sub-
expression elimination, speculation, loop retiming and pipelin-
ing, and bit-level optimizations, have been explored and
adapted to HLS flows in [34]. The area and performance
impact of such transformations when mapping applications
onto re-configurable processors has been studied recently in
[29]. Loop unrolling has been addressed in articles such as [35]
but the unroll factor had to be specified manually. Additionally,
several commercial HLS tools e.g. SystemC Compiler, Xilinx
Vivado HLS and CatapultC, also require the designer to either
explicitly instruct the tool to completely unroll a particular
loop, or explicitly specify an unroll factor for partial unrolling.

B. RTL-based work

An RTL implementation of SGM having a VGA image
resolution i.e. 640x480 pixels running at 30 fps has been
presented in [8]. The implementation platform considered
in this work is the Xilinx R© ZynqTM 7020 board, which
yields a significant reduction in development effort as this
board incorporates an FPGA, a dual-core ARM processor and
multiple I/Os.

Some algorithmic extensions for power efficiency have been
made to the SGM implementation in [36]. The resolution of
the proposed implementation is 340x200 pixels, which is one
fourth of our target, and it can achieve a frame rate of 27 fps.

A novel two-way parallelization-based architecture has been
presented in [37] to obtain highly efficient computation. The
systolic-array based architecture also ensures easy scalability
in terms of frame rates and image resolutions. The hardware
platform selected in this work is a Xilinx R© Virtex-5 platform
with a VGA image resolution and a frame rate of 30 fps.

An alternative SGM implementation on an Nvidia R© Tesla
C2050 Graphics Processing Unit (GPU) has been presented
in [12]. Disparity estimation in the proposed implementation
is performed at 27 fps for an image resolution of 1024x768
pixels with 128 disparity levels. The GPU performance in
this case is quite exceptional but the implementation does not
meet our application requirements in terms of size and power
consumption and hence this approach is not considered.

In the present work, we have performed manual memory
optimizations such as minimization of read/write operations,
resolution of access conflict by design-centric address analysis
and shrinking down of huge arrays into memory banks in order
to avoid data dependencies. We also exploited the HLS tool
capabilities to define micro-architecture by partially unrolling
loops. This was combined with array splitting for the memory
banks that were used in unrolled loops.

IV. ALGORITHMIC REFINEMENTS OF SGM

The system-level code of the SGM algorithm must undergo
some refinements in order to achieve better QoR. Some of
these transformations deal with datatype conversion, since for
hardware the bit count is crucial both for the I/O ports as
well as for the communication interfaces. The rest of the
refinements target algorithmic and architectural modifications
in order to achieve the area and performance constraints.

A. Pre-transformations of reference code

The algorithmic C/C++ based model, that is usually avail-
able as a reference for hardware implementation, needs con-
siderable amount of modifications before it can undergo auto-
mated RTL synthesis. These modifications involve:

• converting global variable declarations to local declara-
tions.

• converting floating point arithmetic to fixed-point.
• converting dynamic arrays to static arrays.

These transformations are necessary in order to achieve an
efficiently synthesizable model. Afterwards, the information
regarding the I/O ports and the synchronization mechanism
required by the code to communicate with the camera sensors
and the output memory are required. This is accomplished by
using the SystemC as an HLS input language. SystemC is a
C++ class library designed to effectively create a Transaction-
level model (TLM) or cycle-accurate model of functionality,
hardware architecture, and interfaces required for system-
level designs [38]. It offers the necessary constructs required
to build a system architecture model, including information
regarding ports, timing information and concurrency etc that
are absent in standard C++. A simplified graphic illustration of
high-level code assembly into a SystemC wrapper is depicted
in Fig. 5. The main advantage of this assembly stems from the
distinction between the behavioral model of the system and the
data communication, that this embedding achieves. The source
code is connected with the rest of the system through the port
interfaces and the communication channels.

Path aggregation results in the production of a huge amount
of data for each frame (data width x VGA frame size x number
of disparity levels). Since the target hardware platform is an
FPGA with limited on-board RAM, such a huge array needs
to be mapped to an external DRAM. AXI bus communication
can be used to access the external DRAM in Xilinx 7 series
FPGAs. As illustrated in Fig. 6, the AXI protocol uses a master
transactor in order to transform the memory access requests
made by the SGM module into AXI signals. The AXI slave
transactor; which is available on the 7 series FPGA fabric in
the form of memory interface solution, is used to interpret the
data read/write requests to DRAM, to synchronize and reorder
them so as to maximize the throughput and translate them in
to actual signals to be sent to the DRAM [13].

B. Software vs. hardware

For HLS to work efficiently for real-time applications, some
refinements must be made to the algorithm in order to obtain
a desirable HW implementation. These modifications mostly

IEEE ACCESS 6

High-Level Code

P

O

R

T

S

P

O

R

T

S

Synchronization

Fig. 5. SystemC wrapper around the high-level code for HLS.

AXI Master

Transactor
PHY

DDR3

SDRAMPhysical

InterfaceAXI Bus

SGM Module with AXI communication

I

O

B

Memory Interface

FPGA device

SGM SystemC Wrapper

SGM

Behavioral

Model

Fig. 6. Illustration of SGM Module with AXI interface for external DRAM
access.

stem from the fact that while memory is cheap and parallelism
is limited in software, in HW fast memory is expensive but
a high level of parallelism can be available. As a matter
of fact, most of the architectural exploration in an image
processing application such as SGM tries to match the rates
of memory read/write and those of data computation. When
that is achieved, the Pareto-optimal cost/performance design
space exploration points are obtained.

Fig. 7 displays the modifications that were made to the non-
hardware specific code in order to achieve a desirable hardware
implementation. The original software code calculates the cost
cube for each pixel once thereby storing it in a very large
memory as shown in (Fig. 7(a)). On the contrary, the cost cube
computation of each pixel in the modified code takes place on
the fly, while calculating the path costs of the specific pixel,
and is stored into a FIFO register of width 128 as shown in
(Fig. 7(b)). The result of the computation from the FIFO is
updated by the cost cube of the next pixel, since the scan
handles one pixel at a time.

C. Hardware-software partitioning

The present work focuses on the DSE of the SGM al-
gorithm. For this, the cost cube and path cost calculation
along with path aggregation and disparity estimation blocks
are targeted for hardware implementation. We used the Xilinx
ZynqTM 7020 SoC which is equipped with both an FPGA
Programmable Logic (PL) and a Programmable System (PS)
with a dual-core ARM CortexTM-A9 CPU in the same physical
packaging. On the other hand, the other key constituent blocks
for stereo reconstruction, namely the rectification and census,
as discussed in Section II, are kept as software implementation
because they are not as performance critical. The intermediate
results from the census transform of each VGA frame are
stored in the external DRAM memory. The values of each
pixel are then pre-fetched into local buffers and fed to the

cost cube computation block. The implementation takes into
account the throughput of the SGM block, assuming that the
required parts of the census images are already available in
the local buffers.

V. HARDWARE ARCHITECTURES OF THE SGM
ALGORITHM AND HIGH-LEVEL SYNTHESIS

In Section IV we discussed refinements at the algorithmic-
level. We performed design space exploration of three dif-
ferent hardware architectures of the SGM algorithm based
on manually defined parallelism, along with the tool-assisted
coarse-grained micro-architectural decisions, in order to get
various HW implementations covering a wide range of the area
performance curve. This section discusses the manual trans-
formations of the high-level code, leading to three different
hardware architectures with different degrees of parallelism
and memory utilization. Moreover, we also discuss the tool-
assisted micro-architectural choices.

A. Micro-architectural decisions

The system-level test bench written in SystemC is used
both for the functional verification of the high-level code as
well as for the performance analysis of the resulting RTL,
post-scheduling. For design space exploration, different micro-
architectural decisions give several different RTL implemen-
tations each offering different area vs. performance trade-offs.
The general flow to carry out HLS is illustrated in Fig. 1.
The micro-architectural decisions involve loop, function and
array implementation. Loop unrolling creates N copies of the
loop body. The function calls inside the high-level code can
be inlined or assigned to some specific IP block, while the
arrays can be mapped to register files, block RAM (BRAM) or
any vendor-supplied memory in case of ASIC implementation.
Once such choices are made, the scheduling and binding step
maps the functional blocks to the available resources fulfilling
the latency constraints.

B. Array Optimizations

Memory accesses usually form bottlenecks in achieving
higher performance optimization particularly for digital signal,
image and video processing algorithms. Thus, they need to be
optimized very carefully [13]. This is especially true, when the
primary and intermediate input/output design data is too large
to fit in the on-chip SRAM and an external DRAM is required.
Customized memory transfers are required to be written in this
case. Before the micro-architecture is defined, it is a good idea
to move as many memory read/write operations as possible,
outside the body of the loop [39]. Occasionally the HLS tool
can do this, but in many cases, the tool needs to be guided
explicitly to perform this optimization.

To emphasize on this point, consider the loop (for path cost
accumulation) as given in Fig. 8, which is called numerous
times and it accounts for around 25% of the overall compu-
tation. The loop contains two read operations for the array
named pathcost[i]. If we unroll this loop 256 times while this
array is assigned to an external memory e.g. DDR3, then the

IEEE ACCESS 7

a. SW implementation

…… through the cameras after rectification

Path Cost (L) (640 x

480 x 128)

Similarity Index Generation (Census)

Cost cube Matrix (C)

(640 x 480 x 128)

Cost Cube Generation

Cost Aggregation (S)

(640 x 480)

CensusLe� CensusRight
Array

(640 x 480)

Cost Aggregation (S)

(640 x 480)

FIFO (depth = 128)

…… through the cameras after rectification

Similarity Index Generation (Census)

Cost Cube Generation

CensusLe� CensusRight
Array

(640 x 480)

b. HW implementation

Path Cost (L)

(640 x 480 x 128)

Path Cost (L)

(640 x 480 x 128)

8

8

8

16

8

8

8

16

Fig. 7. Algorithmic refinement made at system-level for hardware implementation.

for(int i = 0; i < DISPARITY; i++)

{

……………………….

uint8_t min_path = min(pathcost[i], next, previous);

……………………….

previous = pathcost[i];

……………………….

}

Fig. 8. Illustration of un-optimized read operation.

for(int i = 0; i < DISPARITY; i++)

{

……………………….

uint8_t temp_path = pathcost[i];

uint8_t min_path = min(temp_path, next, previous);

……………………….

previous = temp_path;

……………………….

}

Fig. 9. Illustration of optimized read operations.

same memory location would need to be read from, two times
per iteration of the loop i.e. 512 reads for the complete loop.
Alternately this read operation can be executed as presented
in Fig. 9, where the array is read once into a variable. This
will lead to savings in read operations thereby improving both
the resource utilization and the overall design throughput.

Table I indicates the optimizations made to the memory ac-
cesses, corresponding to the three main computational blocks
of SGM. The former function is inlined to be used by all
the processes, thus reading three successive on-chip BRAM
locations and then writing back to it. Such reads can be joined

together as bursts to achieve better performance while utilizing
buffers, hence resulting in memory bandwidth saving. Both the
latter functions (accessing much slower external DRAM) can
be optimized in the same way to improve the overall QoR.

C. Single threaded sequential code

After describing the manually guided memory access opti-
mizations, we are ready to discuss the impact of parallelism
to reduce design latency, thereby improving the overall per-
formance of the design. The performance measure is the CPP
count, which is the total number of clock cycles taken by
the SGM hardware to compute the disparity value of the full
image, divided by the number of pixels. The single threaded
code performs sequential computations similar to the original
reference code. The only difference is that it underwent the
synthesizability changes discussed in Section IV-A and the
memory access optimizations described in Section V-B. The
computation begins with the top left pixel, after omitting the
first two pixels, and computes the cost cube (C) of all the
pixels. This is because the census transform cannot be applied
to the boundary pixels since it requires a 5x5 pixel window.
The cost cube computation is performed only once and is used
by all the path cost (L) calculation steps in their respective
path orientation. For the first pixel, the path cost is simply the
minimum between the cost cube and the maximum disparity
value, which in our case is 128. The path costs of all the path
orientations are aggregated alongside. Once the path costs are
computed in all eight orientations, the disparity estimation is
performed, as illustrated in Fig. 10. It is worth mentioning
here that all the intermediate and final results in the form
of disparity are stored into arrays. These arrays need to be
mapped onto a larger, but comparably slower, Double Data
Rate (DDR) memory (faster on-chip BRAMs may be used for

IEEE ACCESS 8

TABLE I
OPTIMIZATIONS APPLIED TO MEMORY ACCESSES

Function Mem Type Occurence Iterations Pre-
optimization
R/W Op-
erations

Mem Access Post-
Optimization
R/W Op-
erations

Mem Access Optimization

Path Accumulation SRAM 8 128 4 4096 2 2048
Aggregation DRAM 8 128 4 4096 2 2048

Disparity Estimation DRAM 1 128 5 640 2 320

Cost (C)

Path L1

Path L2

Path L7

Path L8

Aggregation and

Disparity Estimation

Fig. 10. Illustration of Single-threaded sequential architecture.

smaller arrays). As a result, a single threaded, sequential code
would not be able to meet the performance constraints. This
sequential architecture also has a very small BRAM usage,
thus making it very inefficient also from the view point of
resource utilization.

It should be noted that only the innermost loops (with the
highest number of computations) are considered for analysis
of various loop implementation options. The most obvious
options for trade-off analysis, obtained as a result of profiling
the initial high-level code, were the loops performing the path
accumulation, and the loop performing Cost Cube generation.

When performing tool-assisted micro-architectural decisions
for the sequential single-threaded architecture, we inline all
the functions. Two types of loop implementations are tried for
the cost cube and path cost loops. As an initial case, all the
loops are resolved by adding sufficient wait() statements in the
loop bodies to make them sequential and also accommodating
all the BRAM access requirements of the algorithm. This is
termed as ”loop breaking”. Xilinx supplies memory models
for both BRAM (on-chip memory) and DDR (external IP).
As a second variant, complete unrolling is performed on the
most time-consuming loops so as to increase the concurrency
(at a small expense of the area cost). All the other loops are
resolved by breaking them as explained above. The arrays used
inside the loops are flattened into registers, to obtain a smaller
and faster implementation. The rest of the larger arrays are
still mapped to on-chip BRAMs.

Initialize

Enable =

?
Wait

Start scan path orientation

Load census value of pixel from memory

Cost Cube Calculation (C)

Path Cost Calculation (L)

Check

FIFO

slot

availabi-

lity

Move Path Cost (L) value to FIFO

Wait

No

No

Yes

Yes

Fig. 11. Algorithmic description of one of the parallel SGM threads.

D. FIFO-based concurrent architecture

To improve the overall design throughput, the original
single-threaded model needs to be split into multiple synchro-
nized threads. The verification of such a transformation is still
much simpler and faster than the huge manual effort required
for the direct RTL implementation of the design [6].

The path cost calculation process is completely independent
from one direction to the other and hence it is pertinent to
divide the path cost calculation operation into eight different
parallel processes. Nevertheless, as these threads access shared
memory, either they need to be properly scheduled in order
to prevent race conditions or local copies must be created in
order to optimize the performance at the cost of additional
BRAM resources. In our case, we followed the former strategy
and introduced another concurrent process which performs
arbitration and path cost accumulation. The computations
carried out in each parallel process for path cost computation
are depicted as a flow chart in Fig. 11.

The cost cube corresponding to each pixel along the 128
disparity levels is computed on the fly and is saved in a
temporary memory buffer while moving along the direction
of a single path. This implies that for each pixel, the cost
cube is computed eight times, but this calculation replication
can dramatically reduce the memory access cost. Without this,
the cost cube values corresponding to the whole frame would

IEEE ACCESS 9

Cost (C)

Path L1

Cost (C)

Path L1

Cost (C)

Path L7

Cost (C)

Path L8

FIFO FIFO FIFO FIFO

Aggregation and

Disparity Estimation

Fig. 12. Illustration of the SGM FIFO-based multi-threaded (nine) concurrent
architecture.

AXI

Master Transactor

IP

P1

P2

P8

P7

FIFO

FIFO

FIFO

FIFO

Controller
AXI

Interface

Read

Write

I

O

B

SGM – AXI System

To PHY

SGM Module

Fig. 13. Parallel SGM processes communication architecture via AXI
interface.

need to be saved in an external DRAM, thereby causing a
significant increase in expensive DRAM accesses. The path
cost is then calculated and the result is stored into a dedicated
FIFO, as illustrated in Fig. 12. The results from the FIFO
channel are thereafter written into the external DRAM via
AXI communication.

The communication architecture between the various pro-
cesses of the SGM module and the AXI master transactor
is depicted in Fig. 13. The controller enables all the SGM
processes to begin the path computation. The controller also
does the path costs aggregation by calling a method to read
the older value from the DRAM, once the data is available
at the FIFO, thereby accumulating it (with saturation) and
writing it back. Once all the calculations for an entire frame
are completed, the path processes are deactivated by the
controller. Data is then read back from the DRAM for disparity
computation of each pixel.

The FIFO-based architecture enhances the performance by
a factor of ten with respect to the single-threaded implemen-
tation discussed before. However, its shortcoming is the large
size of the eight FIFOs which are to be mapped to the on-chip
BRAMs. Each of the path accumulation processes stores the
path cost results into its specific FIFO, whereas the arbitration
operation of the controller reads the path costs back from the
FIFO channels corresponding to all the eight paths, which

Fig. 14. Loop unroll (body) example combined with array splitting.

are then accumulated and the results sent to the DRAM. A
large enough FIFO makes sure that the two processes i.e. the
path accumulation and arbitration, perform their specific tasks
in parallel with minimum synchronization overhead. Several
experiments were performed with different sizes of the FIFO
channels, after which, it was concluded that a FIFO with
sufficient size to accommodate the results of 35 rows of a
VGA frame over 128 disparity values provides enough amount
of parallelism in order to meet the desired performance, while
still conforming onto the on-chip BRAM.

The micro-architectural decisions again focus on the cost
cube and path cost computation functions, because these two
loops are the computation bottlenecks of the design. We
again applied partial unrolling by a factor of two and four
respectively. This was combined with array splitting using
HLS tool directives. The splitting factor was kept the same as
the loop unrolling factor to avoid any race condition among
the memory banks. Fig. 14 shows that, if an array is allocated
to a BRAM (with separate read and write ports) without
partitioning, then scheduling cannot be done. This is because,
both the parallel threads would attempt to access the same
memory bank simultaneously, thereby causing memory access
conflicts. This problem is resolved by splitting the array and
mapping it to different memory banks. We could not go
beyond a factor of four for unrolling due to the resource
constraints of the selected FPGA platform.

E. Forward/backward scan-based architecture

The most refined architecture is quite similar to the architec-
ture proposed by the 3DV project presented in [8]. It heavily
relies on the on-chip BRAMs and uses pre-fetching to meet the
performance constraints. The path cost calculation (L) step is
divided into two scans, i.e. the forward scan and the backward
scan. The forward scan consists of the 0◦, 45◦, 90◦ and 135◦

paths, whereas the backward scan consists of the 180◦, 225◦,
270◦ and 315◦ paths, as depicted in Fig. 15. The forward
scan starts from the top left pixel, and computes the four path
costs for each pixel. The path costs from the forward scan are
aggregated and written into the external DDR memory. This is
followed by the backward scan starting from the bottom-right
pixel. Furthermore, the four paths corresponding to the forward

IEEE ACCESS 10

Cost (C)

Path L

Cost (C)

Path L

Cost (C)

Path L

Cost (C)

Path L

Aggregation

Disparity Estimation

P1

P2

P3

P4
Forward scan

P5

P6
P7

P8

Backward scan

Fig. 15. Illustration of forward/backward scan-based multi-threaded (five)
architecture.

scan are added together before being moved to the DDR in
order to decrease the bandwidth requirements. The aggregated
cost is read back from the DDR and the final aggregated cost is
then used to perform the disparity estimation by minimizing all
the path costs. We will see shortly that this refinement proved
to be good enough to meet the performance of the manual
RTL implementation, while keeping the on-chip memory sizes
within the bounds of the target platform.

The architectural overview of the parallel path cost cal-
culation of the SGM along with the disparity aggregation
and estimation is presented in Fig. 16. For both forward and
backward scans, the cost cube results are computed only once
and then replicated three more times, so that each path cost
process has its own copy. All these intermediate results are
stored into arrays which are mapped to on-chip BRAMs.
The aggregated result of each pixel is then stored into the
external DDR. The backward scan works the same except for
an additional read from the DDR. Once all the results of all
the paths are aggregated, disparity computation is performed.

It is evident from the architectural block diagram that while
path cost aggregation is performed by the path cost and
aggregation blocks, the cost cube block remains idle. Thus,
we introduce a top-level pipeline between the cost cube and
the aggregation processes. Because of this, the cost cube starts
computation when the aggregation process is fetching the data
from the path cost process, as presented in Fig. 17. The red
numbers inside the brackets show the order of the computation
steps.

VI. HIGH-LEVEL SYNTHESIS FOR SEMI-GLOBAL
MATCHING ALGORITHM

In the previous sections we discussed the hardware ar-
chitectures and various micro-architectural choices for each
implementation. Now we discuss the experimental setup and
the results of various implementations as a result of design
space exploration based on HLS. We also compare the results
with other relevant state-of-the-art implementations.

Cost Cube
(2)

CE = 0, PCE = 1

Aggregation
(4)

AE = 0 , PAE = 1

(5) DE = 1

Path Cost
(3)

PCE = PAE = 0

CE = AE = 1

Disparity

Estimation
(6) End

(1)Initialize CE = 1

(2)Initialize PAE = 1

(1)Initialize AE = DE = 0

DE

CE Cost Enable

PCE Path-Cost Enable

PAE Path-Aggregate Enable

AE Aggregate Enable

DE Disparity Enable

Fig. 17. Top level pipelined among cost cube, path cost and aggregation
processes.

A. Design Analysis

The total design effort to undertake the algorithmic as
well as architectural refinements with respect to the refer-
ence system-level code (executable specification) is compared
against the manual RTL implementation. The total line count
for the reference code was 917, while the SystemC implemen-
tation comprised of approximately 1238 lines (800 for HW,
438 for SW). The number of reused code lines in SystemC
was 700 (HW 35%, SW 65%). Thus the estimated additional
coding effort for SystemC-based HLS implementation was
43% (measured by counting the total number of code lines in
SystemC implementation), with a reuse factor of 76% (of the
number of lines in the reference code). It is worth mentioning
that the RTL implementations obtained from the automated
HLS flow contained roughly 10000 code lines (without the
testbench), which also shows the significance of adopting HLS
for designs with moderate complexity.

The SGM unit needs to attain a frame rate of 30 fps for VGA
images with 128 px disparity range. As mentioned above,
the less critical steps of preprocessing and rectification are
executed in SW, while the cost cube (C) generation, the path
cost accumulation (L) and the disparity estimation are executed
in HW.

C-to-Silicon (CTOS) version 13.20 from Cadence Design
Systems has been used as an HLS tool in this activity. The
SystemC test bench has been used both for the functional
verification of the high-level implementation of the algorithm
as well as for performance analysis of the corresponding RTL
implementation.

B. Design Space Exploration

The main goal of this work was to obtain an HLS-based
hardware implementation of SGM, that is comparable to a
highly efficient (and hence very rigid) manual RTL imple-
mentation that was previously developed by our group [8].
Moreover, we also wanted to perform design space exploration
by making several considerably different micro-architectural

IEEE ACCESS 11

C

L0o L90o L135o L45o

�

External DDR memory

C

L180o L-90o
L-

135o
L-45o

�
Disparity

computation

C(p,d)

L
r(
x
,y
,d
)

S
(p
,d
)

S
(p
,d
)

D
(x
,y
)

L
r(
x
,y
,d
)

C(p,d)

Censusleft

Censusright

Censusleft

Censusright

BRAM

A

BRAM

B

BRAM

B

BRAM

B

BRAM

A

BRAM

B

BRAM

B

BRAM

B

BRAM

A

BRAM

A

BRAM

B

4x8

4x8

8

16

16

8

16

16

BRAM

A

BRAM

B

Size: 128 slots

Size: 128 x 640 slots

Fig. 16. Architectural overview of the parallel path cost calculation of the semi-global matching.

decisions yielding different implementations of a single de-
sign, fitting into a wide range of cost (FPGA resources) and
performance curve. Before comparing the implementations
as a result of DSE, we present a performance comparison
between the manual RTL system (3DV) and other publicly
available SGM implementations in Table II. The solution
presented in [12] exhibits a better processing time, however
it runs on a hardware device with considerably higher cost
and power consumption [8]. The implementation proposed in
[37] is a scalable architecture with better processing time.
However, it takes into account only the path costs in four
orientations, which requires intensive post processing steps to
improve the image quality, because the disparity values with
four path accumulation produce poor resolution. Our selected
reference [8] has far better results in terms of execution time
than the implementations presented in [40], [41].

Table III presents the area and performance results in terms
of cycles per pixels for the three different architectures along
with the results of manual RTL implementation. For HLS, all
arrays having more than one read or write request at the same
time are automatically mapped to distributed RAM which is
formed using logic slices. It is worth mentioning that the
LUT logic count of all the implementations were within the
allowed limits for the Zynq 7020. Also the performance figures
were even better than the manual RTL implementation for
the architecture based on FIFOs. However, due to the large
FIFOs, the BRAM count exceeded the available resources,
which motivated us to switch to the scan-based architecture in
order to meet the resource constraint of the ZED board.

From Table III, it can be seen that the area is split into four
incomparable aspects (LUTs, BRAMs, Distributed RAMs,
DSPs). It is impossible thus to plot the area vs. CPP plot in 2
dimensions. Therefore, for better visual comparison, we have
made a few simplifications. We have merged the area counts of
different resources into a single logic slice figure, based on the
information mentioned in the Xilinx 7 series DSP48E1 slice

user guide [42]. This implies that the vertical height of a single
DSP slice contains 20 LUTs, 36Kb RAM, and 2x18Kb RAM,
vertically. It must be noted that the datasheet only provided
the vertical height ratios of these resources. So we assumed
that the horizontal widths of these resources were the same in
order to simplify things. With this simplification, we obtained
the area in terms of a single resource i.e. slices, as shown in
Table IV.

The plot of design performance in terms of CPP versus
area resource in terms of slices is depicted in Fig. 18. The
points marked by green triangles are the Pareto-optimal points
both in terms of resource utilization as well as performance,
obtained from design space exploration. The explored macro-
architectural space from a single model spans a 10X range in
terms of performance and a 3X range in terms of area. The
micro-architectural space for the most efficient model spans a
3X performance range and 2X area range.

VII. CONCLUSION

This article addresses some of the challenges posed by
high-level synthesis tools while trying to improve the QoR
for hardware implementations from a system-level behavioral
model described at a high abstraction level. This research
activity shows how HLS can be used to get several consider-
ably different RTL implementations of a design by specifying
different micro-architectural choices. This shall firstly reduce
the design time and effort for achieving various performance
and cost targets, and secondly, it shall improve the quality of
results for a given target by allowing a much wider design
space exploration as compared to what can be explored with
the manual RTL design. These savings were exhibited by
considering a Stereo Vision System example taken from the
automotive domain. Several modifications were made to the
reference software code before it went through high-level
synthesis. These transformations included algorithmic modi-
fications along with wrapping of the C code using SystemC,

IEEE ACCESS 12

TABLE II
COMPARISON OF VARIOUS STEREO RECONSTRUCTION HW IMPLEMENTATIONS

Implementation reference Choice of HW Platform Algorithm choice Image Size [px] Time [ms]
Gehrig ECVW10 [40] Intel R© CoreTM i7 975 EX@3.3GHz CT + SGM(8) +MF + L/R 640 x320@128 224

Hirschmller ISVC10 [41] NVIDIA R© GeForceTM 8800 Ultra HMI +SGM(8) +MF +L/R 640 x 480@128 238
Banz ICCV11 [12] NVIDIA R© Tesla C2050 RT + SGM(8) +MF 640 x 480@128 16

Banz SAMOS10 [37] Xilinx R© Virtex-5 LX 220T-1 RT + SGM(4) + L/R +MF 640 x 480@128 9.7
3DV [8] Xilinx R© ZynqTM 7020 CT + SGM(8) + 2ndmin 640 x 480@128 33

Current SGM implementations overview; In parentheses, aggregation paths count. Various cost functions have been utilized i.e. the
census transform represented by CT, rank transform given by RT, hierarchical mutual information given by HMI, and zero-mean sum
of absolute differences represented by ZSAD. L/R stands for the left-right consistency check, MF stands for median filtering and
2ndmin is the minimum vs 2nd minimum ratio check.

TABLE III
DESIGN SPACE EXPLORATION OF SGM ALGORITHM VS. MANUAL RTL IMPLEMENTATION

Refinement Implementation Logic LUTs BRAMs Distributed RAMs DSPs Cycles Per Pixels (CPP)

Sequential Code No Unroll 14844 - 22 6 83
Full Unroll 26273 - 40 6 62

FIFO-based Code
No unroll 20504 1542 67 6 21
Unroll 2x 26373 1187 120 6 10
Unroll 4x 35663 983 150 6 7

Forward/Backward scan-based Code

No unroll 20055 201 56 6 26
Unroll 2x 23106 190 97 6 14
Unroll 4x 27072 186 104 6 10
Unroll 8x 33584 188 155 6 8

Manual RTL (3DV) Manual RTL 23600 189 - 48 8

TABLE IV
SGM IMPLEMENTATION RESULTS W.R.T. AREA IN TERMS OF LOGIC SLICES VS. CPP

Refinement Implementation Logic Slices Cycles Per Pixels (CPP)

Sequential Code No Unroll 764 83
Full Unroll 1470 62

FIFO-based Code
No unroll 1819 21
Unroll 2x 1949 10
Unroll 4x 2317 7

Forward/Backward scan-based Code

No unroll 1123 24
Unroll 2x 1280 14
Unroll 4x 1478 10
Unroll 8x 1818 8

Manual RTL (3DV) Manual RTL 1322 8

1

10

100

0 500 1000 1500 2000 2500

C
yc

le
 p

er
 p

ix
el

 [C
PP

]

Area in terms of slices

Sequen✁ al code

FIFO-based code

Forward/Backward

Manual RTL (3DV)

scan-based

ti

Fig. 18. Performance vs Area Curve for various micro-architectural choices.

mostly aiming to increase the explicit parallelism, so that the
HLS tool could more easily exploit it. This was followed
by some architectural refinements which mainly dealt with
manual address analysis and loop unfolding to assist and
improve the results of automated micro-architectural choices.
We were eventually able to obtain HLS-based implementations
that were comparable to the performance of the equivalent
manual RTL design. This hence answered affirmatively the
question that was posed in the title of this article i.e. the
juice indeed is worth the squeeze. As a future extension of
this work, it would be interesting to use the findings of this
research activity to try and develop a methodology which can
automatically perform or at least advise the transformations
that were made manually here to obtain high performance RTL
via high-level synthesis.

REFERENCES

[1] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14. [Online].
Available: http://dx.doi.org/10.1109/ISSCC.2014.6757323

IEEE ACCESS 13

[2] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proceedings of the 50th
Annual Design Automation Conference. ACM, 2013, p. 50.

[3] S. Ravi and M. Joseph, “High-level test synthesis: A survey from synthe-
sis process flow perspective,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 19, no. 4, p. 38, 2014.

[4] J. Cong, “From design to design automation,” in Proceedings of the
2014 on International symposium on physical design. ACM, 2014, pp.
121–126.

[5] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level synthesis
languages, tools, and compilers for reconfigurable high performance
computing,” in Advances in Systems Science. Springer, 2014, pp. 483–
492.

[6] H.-Y. Liu, M. Petracca, and L. P. Carloni, “Compositional system-level
design exploration with planning of high-level synthesis,” in Proceedings
of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2012, pp. 641–646.

[7] W. Cesário, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu,
Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava, “Component-based
design approach for multicore socs,” in Proceedings of the 39th annual
Design Automation Conference. ACM, 2002, pp. 789–794.

[8] G. Camellini, M. Felisa, P. Medici, P. Zani, F. Gregoretti, C. Passerone,
and R. Passerone, “3dvan embedded, dense stereovision-based depth
mapping system,” in 2014 IEEE Intelligent Vehicles Symposium Pro-
ceedings. IEEE, 2014, pp. 1435–1440.

[9] A. Qamar, C. Passerone, L. Lavagno, and F. Gregoretti, “Design space
exploration of a stereo vision system using high-level synthesis,” in
MELECON 2014-2014 17th IEEE Mediterranean Electrotechnical Con-
ference. IEEE, 2014, pp. 500–504.

[10] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[11] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image
and vision computing, vol. 21, no. 11, pp. 977–1000, 2003.

[12] C. Banz, H. Blume, and P. Pirsch, “Real-time semi-global matching
disparity estimation on the gpu,” in Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on. IEEE, 2011, pp.
514–521.

[13] A. Qamar, F. B. Muslim, and L. Lavagno, “Analysis and implementation
of the semi-global matching 3d vision algorithm using code transforma-
tions and high-level synthesis,” in 2015 IEEE 81st Vehicular Technology
Conference (VTC Spring). IEEE, 2015, pp. 1–5.

[14] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “A compiler-based approach for dynamically managing
scratch-pad memories in embedded systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23,
no. 2, pp. 243–260, 2004.

[15] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “Drdu: A data reuse
analysis technique for efficient scratch-pad memory management,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 12, no. 2, p. 15, 2007.

[16] J. Cong, H. Huang, C. Liu, and Y. Zou, “A reuse-aware prefetching
scheme for scratchpad memory,” in Proceedings of the 48th Design
Automation Conference. ACM, 2011, pp. 960–965.

[17] J. Cong, P. Zhang, and Y. Zou, “Combined loop transformation and
hierarchy allocation for data reuse optimization,” in Proceedings of the
International Conference on Computer-Aided Design. IEEE Press,
2011, pp. 185–192.

[18] Xilinx, Vivado Design Suite User Guide High-Level Synthesis, Xilinx.
[19] Cadence, Cadence C-to-Silicon Compiler User Guide, Cadence.
[20] Calypto, Catapult Synthesis Process, Concept and Reference Manual,

Calypto.
[21] “Synphony c compiler,” https://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx,
2016, [Online;accessed 16-August-2016].

[22] Y. Wang, P. Zhang, X. Cheng, and J. Cong, “An integrated and automated
memory optimization flow for fpga behavioral synthesis,” in 17th Asia
and South Pacific Design Automation Conference. IEEE, 2012, pp.
257–262.

[23] T. Kim and J. Kim, “Integration of code scheduling, memory allocation,
and array binding for memory-access optimization,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 1, pp. 142–151, 2007.

[24] Y. Tatsumi and H. Mattausch, “Fast quadratic increase of multiport-
storage-cell area with port number,” Electronics Letters, vol. 35, no. 25,
pp. 2185–2187, 1999.

[25] W. K. Ho and S. J. Wilton, “Logical-to-physical memory mapping for
fpgas with dual-port embedded arrays,” in International Workshop on
Field Programmable Logic and Applications. Springer, 1999, pp. 111–
123.

[26] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino, “Layout-driven
memory synthesis for embedded systems-on-chip,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 2, pp. 96–
105, 2002.

[27] N. Baradaran and P. C. Diniz, “A compiler approach to managing
storage and memory bandwidth in configurable architectures,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 13, no. 4, p. 61, 2008.

[28] Y. Ben-Asher and N. Rotem, “Automatic memory partitioning: in-
creasing memory parallelism via data structure partitioning,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
155–162.

[29] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory partitioning
and scheduling for throughput and power optimization,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 16,
no. 2, p. 15, 2011.

[30] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. Cheung, “Combin-
ing data reuse with data-level parallelization for fpga-targeted hardware
compilation: a geometric programming framework,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 3, pp. 305–315, 2009.

[31] Q. Liu, T. Todman, and W. Luk, “Combining optimizations in automated
low power design,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation
Association, 2010, pp. 1791–1796.

[32] F. Balasa, H. Zhu, and I. I. Luican, “Computation of storage re-
quirements for multi-dimensional signal processing applications,” IEEE
transactions on very large scale integration (VLSI) systems, vol. 15,
no. 4, pp. 447–460, 2007.

[33] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory hierarchy allocation
with loop transformations for high-level synthesis,” in Proceedings of the
49th Annual Design Automation Conference. ACM, 2012, pp. 1233–
1238.

[34] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong, “Memory
partitioning and scheduling co-optimization in behavioral synthesis,” in
Proceedings of the International Conference on Computer-Aided Design.
ACM, 2012, pp. 488–495.

[35] Y. Ben-Asher and N. Rotem, “Automatic memory partitioning: in-
creasing memory parallelism via data structure partitioning,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
155–162.

[36] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in International Conference
on Computer Vision Systems. Springer, 2009, pp. 134–143.

[37] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and fpga-implementation,” in Embedded Computer Systems
(SAMOS), 2010 International Conference on. IEEE, 2010, pp. 93–101.

[38] O. S. Initiative, SystemC 2.0.1 Language Reference Manual, Open
SystemC Initiative.

[39] L. Gallo, A. Cilardo, D. Thomas, S. Bayliss, and G. A. Constantinides,
“Area implications of memory partitioning for high-level synthesis on
fpgas,” in 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2014, pp. 1–4.

[40] S. K. Gehrig and C. Rabe, “Real-time semi-global matching on the cpu,”
in 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition-Workshops. IEEE, 2010, pp. 85–92.

[41] I. Ernst and H. Hirschmüller, “Mutual information based semi-global
stereo matching on the gpu,” in International Symposium on Visual
Computing. Springer, 2008, pp. 228–239.

[42] Xilinx, 7 Series DSP48E1 Slice User Guide, Xilinx.

