
13 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Route Selection Problem Applied to Auto-Piloted Aircraft Tugs / Sirigu, Giuseppe; Cassaro, Mario; Battipede, Manuela;
Gili, Piero. - In: WSEAS TRANSACTIONS ON ELECTRONICS. - ISSN 1109-9445. - ELETTRONICO. - 8:-(2017), pp.
27-40.

Original

A Route Selection Problem Applied to Auto-Piloted Aircraft Tugs

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2670886 since: 2017-05-15T17:09:49Z

World Scientific and Engineering Academy and Society

A Route Selection Problem Applied to Auto-Piloted Aircraft Tugs

Giuseppe Sirigu
Politecnico di Torino

Department of Mechanical
and Aerospace Engineering

Corso Duca degli Abruzzi 24
10129, Torino, ITALY

giuseppe.sirigu@polito.it

Mario Cassaro
ONERA

Dpartement traitement de
l’information et systmes

Toulouse, France
Mario.Cassaro@onera.fr

Manuela Battipede, Piero Gili
Politecnico di Torino

Department of Mechanical
and Aerospace Engineering
C.so Duca degli Abruzzi 24

10129, Torino, ITALY
manuela.battipede@polito.it

piero.gili@polito.it

Abstract: The antithetical needs of increasing the air traffic, reducing the air pollutant and noise emissions, jointly
with the prominent problem of airport congestion spur to radically innovate the entire ground operation system
and airport management. In this scenario, an alternative autonomous system for engine-off taxiing (dispatch tow-
ing) attracts the interest of the civil aviation world. Even though structural and regulatory limitations undermine
the employment of the already existing push-back tractors to this purpose, they remain the main candidates to
accomplish the mission. New technologies are already under investigation to optimize towbarless tractor joints,
so as to respond to the structure safety requirements. However, regulation limitations will soon be an issue. In
this paper, a software solution for a route selection problem in a discretized airport environment is presented, in
the believe that a full-authority control system, including tractors’ selection logic, path planning and mission event
sequencing algorithms will possibly meet the regulation requirements. Four different algorithms are implemented
and compared: two Hopfield-type neural networks and two algorithms based on graph theory. They compute the
shortest path, accounting for restricted airport areas, preferential directions and dynamic obstacles. The computed
route checkpoints serve as a reference for the tractor autopilot. Two different missions are analyzed, concerning
the towing of departing and arriving aircraft respectively. A single mission consists of three different events, called
phases: Phase 1 goes from the actual tractor position (eventually the parking zone) to the selected aircraft (parked
or just landed); Phase 2 is the actual engine-off taxi towing; Phase 3 is the tractor return to its own parking zone.
Both missions are simulated and results are reported and compared.

Key–Words: Route selection, Airport Taxiing, Neural Network, Hopfield, Dijkstra, A*

1 Introduction

The current vivid interest of the civil aviation in the
development and implementation of innovative air-
port management and ground operation systems is
prompted by the antithetical needs of increasing the
air traffic, reducing the air pollutant and noise emis-
sions. In particular, airport congestion is globally rec-
ognized as one of the most prominent problem areas
of the next future and the straightforward solution of
expanding the airfields is not that efficient and not al-
ways doable. In fact, the higher complexity of air
terminals deriving from the addition of runways and
taxiways will penalize the overall system efficiency
by increasing the human workload and error risk, re-
sulting in potentially hazardous situations. For ex-
ample, Hilburn in [4] and the ICAO regulations [10]
demonstrate the high level of risk derived by the Head
Down Operations (HDOs) during taxi phases. In ad-
dition, the increasing aircraft number, jointly with the

longer taxiing, will significantly contribute to an in-
crease in fuel burn and emissions, which is in contrast
with the stringent environmental regulations. There-
fore, the concept of autonomous engines-off taxiing,
using towing vehicles, has been recently investigated
and recognized as a feasible and effective solution to
the aforementioned issues. It consists in employing
push-back tractors to tow the aircraft from gate to run-
way for departure and from runway to gate for arrival,
while keeping engines off during ground movements.
To make the new concept operative, some structural
and regulatory issues need to be solved. Structurally,
nose landing gears (NLGs) are not designed to be
towed for long distances; this feature can lead to fa-
tigue failures due to transversal loads. Towbarless sys-
tems decrease NLG loads, while ensuring an effective
connection between the aircraft and the tractor. Thus,
they can be used to tow the aircraft along the entire
taxiing path. Indeed, aeronautical industries and aca-
demics are currently investigating different solutions,

ranging from a semi-robotic towbarless tractor [15] to
a completely autonomous system [14]. In the Taxibot
solution, developed by an industrial consortium, the
thrust required for taxing is provided by a diesel en-
gine tug, while the direction control is managed by the
aircraft pilot through the aircraft steering system [15].
This control setup allows to avoid regulations’ limi-
tations since the pilot stays in charge of the ground
maneuvering. Even if the explained solution seems to
be of ease implementation in short time and resolve
the air-noise pollution and fuel consumption issues, it
has a major drawback that is the increased hazardous
conditions deriving from the higher complexity level
of operations, to be performed by pilots and ground
operators. On the other hand, an autonomous exter-
nal taxiing system, with a manned tugs that tows and
drives utterly the aircraft through the taxiways, will
reduce the pilot workload and will optimize the air-
port ground movements. In this configuration, all the
pre-flight procedures (e.g. aircraft system functional-
ity checks, Flight Management System setup and en-
gine warm up) might be performed by the pilot during
the semi-autonomous taxi, without loss of safety [14].
The drawback consists of a regulatory limitation, es-
pecially in terms of responsibility allocation, deriving
from the lack of Pilot in Control (PIC) situation.
To this purpose, another concept of airport ground
operation system has been presented by our research
team [5]. It consists in a semi-automatic system, acti-
vated by the control tower, in which autonomous auto-
piloted tractors are capable of accomplishing towing
missions between points, selected by the tower oper-
ators. Albeit a full-authority control system for tug
selection and route conflict avoidance will be required
for the final application, at the project status, the route
selection problem is the major objective. The route
selection problem is thoroughly addressed in litera-
ture and it has been solve by several techniques such
as genetic algorithms [6], heuristic methods [24] [3]
[25] and tabu search algorithms [16]. Neural networks
have been also used for vehicle and computer network
routing. In particular, Hopfield-type Neural Networks
(HNNs) [11] [12] [13] have been extensively used in
the past to these purposes, as they minimize an en-
ergy function, which can be properly defined to per-
form a shortest path search [18] [20] or can be used in
a non-static environment [27]. Lately, among all the
other solutions, the graph theory and the Dijkstra’s al-
gorithm became established methodologies, because
of their fastness and robustness, to solve routing se-
lection problems in any kind of environment [8] [17]
[2]. In addition, a modified version of the Dijkstra
algorithm, which uses heuristic functions to define a
preferential search direction, called A* [22] [26] [7],
allows for further computational time reduction with

respect to the standard Dijkstra’s algorithm, particu-
larly noticeable for large dimensions of the searching
domain.
In this paper, a software solution for the push-back
tractor route selection problem in a discretized airport
environment (apron) is presented. Four different al-
gorithms are implemented: two Hopfield-type neural
networks and two algorithms based on the graph the-
ory. Their objective is the shortest path, accounting
for restricted airport areas, preferential directions and
dynamic obstacles. The computed route checkpoints
serve as reference for the tractor autopilot. Two dif-
ferent missions are analyzed, concerning the towing
of departing and arriving aircraft respectively. A sin-
gle mission consists of three different events, called
phases: Phase 1 goes from the actual tractor position
(eventually the parking zone) to the selected aircraft
(parked or just landed); Phase 2 is the actual engine-
off taxi towing; Phase 3 is the tractor return to its own
parking zone. The paper is organized as follows: Sec-
tion 2 contains the problem formulation referred to
our test case airport; in Section 3 the mathematical
formulation of the proposed algorithms is presented
and their application justified. Section 4 describes the
algorithms’ implementation and the results obtained
for the selected test case. Pertinent conclusions are
reported in the closing section.

2 Problem Formulation
A single mission of the tug is discretized in three dif-
ferent phases which have different initial and final
checkpoints, whether an aircraft departure or arrival
mission is being performed.

• Phase 1: reaching the targeted aircraft (A/C park-
ing slot for departure mission, runways for ar-
rival mission);

• Phase 2: perform engine-off taxi towing (apron
to runways for departure mission, vice versa for
arrival mission);

• Phase 3: returning to the tug parking area (run-
ways to parking for departure mission, apron to
parking for arrival mission).

As already mentioned, the problem to be solved for
each phase is a shortest path route selection problem
in a non-static environment with constraints. The con-
sidered constraints are the apron ground vehicles per-
mitted ways, the one-way only routes and the differ-
ent obstacles that can obstruct the way. Therefore, the
trivial straight-line trajectory between initial and end-
ing checkpoints of each phase is not always a solution
of the problem. Fig. 1, which represents our test case,

shows the actual taxiways and ground vehicle permit-
ted areas in the Sandro Pertini airport of Turin.

Figure 1: Turin Airport ”Sandro Pertini”, satellite
picture with directions for taxi and ground move-
ment. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google

For the proposed application, the spatial domain
is given by the airport runways, taxiways, ground ve-
hicles routes, and aircraft parking lots. Route se-
lection algorithms require a domain discretization in
checkpoints and arcs with directions and possible ob-
stacles. For the proposed application, this operation is
automatically performed by a tool coded on purpose
that discretizes differently depending on the path op-
timization algorithm to be used. Fig. 2 represents one
of the possible Sandro Pertini airport discretization,
with very few points for sake of clarity of the figure.
The blue stars represent the checkpoints in the permit-
ted airport area, while the black link are the permitted
ways between checkpoints. Once the spatial domain
is discretized, the proposed algorithm should compute
the shortest path, for each phase separately and a pre-
selected tug-aircraft combination. The mission (de-
parture or arrival), tug and aircraft definition is con-
sidered at the moment as an external input, which can
be provided from a human operator or a scheduling
software in the future.

Figure 2: ”Sandro Pertini” airport checkpoint dis-
cretization. Credits: Pictures 2015 DigitalGlobe, Map
data c©2015 Google

3 Proposed Algorithms
The proposed algorithm consists of two main parts:
the first one loads the airport geographical data (lon-
gitude and latitude) and discretizes the domain, based
on the apron features; the second solves the route
selection problem computing the shortest path for
each mission phase. The computation on the do-
main is performed only once at the beginning, while
the route selection algorithm is run three times per
mission (arrival or departure). This section gives
an overview of the mathematical formulations of the
different methodologies employed and compared to
solve the route selection problem under analysis.

3.1 Neural Network
Artificial neural networks are paradigms of a non-
analytic way of solving problems, which are applied
in different fields of science and engineering because
of their versatility [9]. This system, inspired by bi-
ological nervous systems, is able to learn and make
intelligent decisions without a precisely defined al-
gorithm or a complete set of input data. Although
the work of individual neurons can be quite slow, the
overall neural network is very fast, which is due to
the large neuronal connections and parallel process-
ing [9], [23]. Among all types of neural networks,
particular attention is given here to the recursive neu-
ral networks [18], which are characterized by a feed-
back signal that allows the net to use the neuron output
value as an input, to obtain a faster and more robust re-
sponse. Typically, this is the time delay of the signal
[9]. Hopfield’s neural networks are representative of
this type of networks [11], [12], and its structure is
shown in Fig. 3.

One of the main features of the Hopfield neural
network is the possibility of a simple hardware imple-
mentation, as suggested by Fig. 4. Hopfield and Tank
proposed their neural network structure [12] capable
of solving different complex problems by the mini-
mization of an energy function that has to be properly
defined. This approach was demonstrated on the well-
known and computationally very complex Traveling
Salesman Problem (TSP) with 30 nodes [12]. Since
then, many researchers have used similar models for
solving a large variety of combinatorial optimization
problems.

3.1.1 Hopfield Neural Network Implementation
Each neuron is realized as an operational amplifier
with an increasing sigmoid function, relating the out-
put Vi and the input Ui of the i-th neuron. In this way,
the network acquires the characteristics of nonlinear-
ity. Output values are called to range from 0 to 1. The

Figure 3: Hopfield neural network electric circuit
model [13].

Figure 4: Electronic circuit model of Hopfield neuron.

activation function for each neuron is given as [12],
[18]

Vxi = gxi (Uxi) =
1

1 + e−λxi·Uxi
(1)

where λ is a constant that determines the decli-
nation of the characteristics. In accordance with the
rule of recursive networks, the output signal of the i-
th neuron is fed back as input for the other neurons
of the input layer, through resistive connections. This
connectivity is defined with the synaptic weight ma-
trix T = [Tij]. In addition to receiving signals from
the output neurons, each of the input neurons operates
with the additional electrical signal (bias current) Ii.
This is to adjust the polarization of the input neurons
[12]. The input signals’ dynamics is defined by equa-

tion 2,

dUi
dt

= −Ui
τ

+
N∑
j=1

TijVj + Ii (2)

where τ is the time constant. Each neuron has its
own entrance Ui, the output signal Vi and the polar-
ization signal Ii, which defines the checkpoint activa-
tion level. Output feedbacks Vi and the external inputs
of each neuron pass through the resistance R, i 6= j
(called synapses), and iteratively provide a change of
state of the network. At the end of the process, the
network converges to a stable state. A capacitor Ci is
connected in parallel to the resistance, and its capac-
ity affects the neuron state as shown in the following
relation [12].

Ci
dUi
dt

= −Ui
Ri

+
N∑
j=1

TijVj + Ii (3)

The capacitor Ci acts at the input of the nonlinear
differential amplifier, whose output signals are func-
tion of Vi and −Vi of these cells, according to Eq. (1)
[11]. If the steepness of the sigmoid function is suf-
ficiently large (for instance λi > 100), the stability
of the network, in the Lyapunov sense, may be veri-
fied by observing the energy function, E, describing
the state of the network [12]

E = −1

2

N∑
i=1

N∑
j=1

Tij · VjVi −
N∑
i=1

ViIi (4)

For the large reinforcement of an operational am-
plifier, the minimum energy, at a given N dimen-
sional space, is allocated in 2N distinct states, asso-
ciated with an N-dimensional hypercube with sides
V ∈ {0, 1}. Then the dynamics of the i-th neuron,
according to equation (2), can be expressed as

dUi
dt

= −Ui
τ
− ∂E

∂Vi
(5)

Relation (5) defines the change of the input sig-
nal and the neuron energy at every iteration. It can
be demonstrated that this network architecture con-
verges to stable states [21]. Such a network is used
as a basic network structure for solving optimization
problems. Starting from the original Hopfield-Tanks
architecture, several modifications have been imple-
mented for performance improvement purposes, as for
example the model proposed by Ali and Kamoun [18].
In their model, the network has n (n− 1) neurons,
where n denotes the dimension of the input square
matrix, by neglecting the self-recursive signals that

are the diagonal elements (i, i) in matrix T . During
the iteration process, the stable neuron states define
the shortest path between the source (s) and the desti-
nation (d) points. A suitable energy function is of the
form

E =
µ1

2

∑
X

∑
i 6=X

(X,i)6=(d,s)

CXiVXi+

+
µ2

2

∑
X

∑
i 6=X

(X,i)6=(d,s)

ρXiVXi+

+
µ3

2

∑
X

∑
i 6=X

VXi −
∑
i 6=X

ViX

2

+

+
µ4

2

∑
X

∑
i 6=X

VXi (1− VXi) +

+
µ5

2
(1− Vds)

(6)

CoefficientsCXi are the link costs from neuronX
to router i and the terms ρXi describe the connection
between routers: the value is 1 if the routers are not
connected, and 0 for connected routers. The term µ1

minimizes the total cost; µ2 prevents nonexistent links
from being included in the chosen path; µ3 is zero for
every router in the valid path (the number of incom-
ing links is equal to the number of outgoing links); µ4

forces the state of the neural network to converge to
one of the stable statescorners of the hypercube de-
fined by V ∈ 0, 1. The state Vi is close to 1 for router
belonging to the valid path, otherwise the state is close
to 0. The term µ5 is zero when the output Vds is equal
to 1. This term is introduced to ensure that the source
and the destination routers belong to the solution (the
shortest path). The main contribution of the Ali and
Kamoun’s approach [21] consist in keeping the synap-
tic conductance constant (7), while the link costs and
the information about the connection between nodes
were associated to the bias currents Ii:

TXi,Y i = µ4δXY δij − µ3 (δXY + δij − δjX − δiY)
(7)

IXi =

µ5
2 −

µ4
2 (X, i) = (d, s)

−µ1
2 CXi −

µ2
2 ρXi −

µ4
2 otherwise

(8)
where δii = 1 ,δij = 0, for i 6= j. In this way,

the neural network algorithm becomes very attractive
for real time processing, since bias currents may be

easily controlled via external circuitry, following the
changes in actual traffic through the network. Sev-
eral researches demonstrate that HNN is very effective
for shortest or optimal path problem solution. On the
other hand, the main drawbacks is the net possible in-
stability, typically caused by the noise amplification in
recursive algorithms, and the not guaranteed optimal
solution convergence. However, as Hopfield demon-
strated, if the obtained solution is not optimal, it will
be in a group of solutions that are very ”close to” the
optimal.

3.1.2 Modified Hopfield Neural Network.
An Hopfield-type neural network has been proposed
by Zhong et al. [27] for real-time collision-free robot
path planning in a non-static environment. This ap-
proach is based on the propagation of the target activ-
ity through the local connectivity of neurons, which is
formulated using harmonic functions. The main ad-
vantage in using harmonic functions lies in the local
minima removal. In their application, Zhong et al.
used the Laplace operator discretization applying a fi-
nite difference scheme on the grid reported in Fig. 5
[27].

Figure 5: Local connectivity grid [27].

The dynamics of the neural network is given by
Eq. (9)

dUi
dt

= −Ui
Ri

+
∑

e(j)∈Nr(i)

AijUi + Ii (9)

where Nr (i) represents the neighborhood of ra-
dius r of the neuron e (i) and Aij is the jth element

of the local connectivity matrix of the neuron e (i).
The initial neurons activity can be modulated by us-
ing the bias current Ii, which assumes the value E if
the ith neuron is the target, otherwise it is equal to 0,
as expressed by Eq. (10):

Ii =

{
E if there is a target
0 otherwise

(10)

Using the grid reported in Fig. 5, the local con-
nectivity for each neuron assumes the shape reported
in Eq. (11). The global stability of this neural net-
work has been proved using the Lyapunov’s method,
even though the local connectivity is asymmetric [27].

A =
(
A1, A2, A3

)
(11)

where,

A1 =

2h

∆sj(∆sj−1+∆sj)

2h
∆ui−1(∆ui−1+∆ui)

2h
∆qi−1(∆qi−1+∆qi)

 (12)

A2 =

2h

∆wj(∆wj−1+∆wj)

0

2h
∆wj−1(∆wj−1+∆wj)

 (13)

A3 =

2h

∆qi(∆qi−1+∆qi)

2h
∆ui(∆ui−1+∆ui)

2h
∆sj−1(∆sj−1+∆sj)

 (14)

3.2 Graph Theory

Graph representation is very effective in describing
real-world situations. Graphs are schemes consisting
in points (nodes) and links (edges) connecting a pairs
of nodes [1]. The basic graph form is composed of un-
weighted and undirected edges. However, some real
applications could be more effectively represented by
means of a weighted graph. The main idea is to as-
sociate a weight, or cost, to each edge and the total
cost of a path in the graph is defined as the sum of the
costs of each selected edge [19]. This approach allows
for easy representation of optimization problems aim-
ing to find a graph subset with minimum or maximum
weight, as the shortest route selection problem. Fur-
thermore, by specifying edges directions, it is possi-
ble to reproduce an asymmetrical domain. For the ap-
plication under investigation, the relative distance be-
tween two points is used as edge weight and the edge
direction is used to simulate one-ways only routes.

An algorithm based on graph theory was pre-
sented by Dijkstra in 1959 [8]. It is able to find the

shortest route from one starting point within the spa-
tial domain to all the vertices of the graph. A mod-
ified version of the Dijkstra’s algorithm, which uses
an heuristic function to define a preferential search di-
rection, was proposed in 1968 and is called A* [22].
These two algorithms do not require any parameter
setting, leading to an easier implementation process
with respect to the two neural networks implemented.

3.2.1 Dijkstra’s Algorithm.
Consider a graph G(V,E,w), where V is the set of
nodes, E is the set of edges and w(uv) is the weight
of the edge from u tu v, a source node s and a target
t. S is a subset of V such that s ∈ S and denote V \S
as S̄. If P = s...s̄t̄ is the shortest path from s to S̄,
then, s̄ ∈ S and the finite sequence s...s̄ of P is the
shortest path from s to s̄. Thus, the distance from s to
t̄ is expressed as

d (s, t̄) = d (s, s̄) + w (s̄t̄) (15)

Therefore, starting from the subset containing the
only source S0 = {s}, it is possible to construct an
increasing sequence of subsets S0, S1, ..., Sn−1 of V
such that, at a certain step i, the shortest paths from
s to all the nodes in Si are calculated. The Dijkstra’s
algorithm is schematically outlined as follows, report-
ing the different steps to obtain the shortest path from
a generic source node to all the domain vertices.
Consider a domain with n points; first of all, it is nec-
essary to define some variables:

• l(v) is the length of the shortest path from the
source node s to a generic node v;

• S is the set of nodes v for which the shortest path
from s to v has been found (closed set);

• X is the set of nodes v for which a path has been
found, but may be not the shortest path (open
set);

• E(v) is the set of neighbors of the generic node
v.

• parent is a n × 1 vector, containing the label of
the node that precedes v in the shortest path to v.

The Dijkstra’s algorithm can be divided in four
steps:

1. Set S = ∅, X = {s}, l(s) = 0, l(v) = ∞ for
v 6= s;

2. Find v ∈ X : l(v) = minu∈X l(u), add it to S
and remove it from X;

3. ∀u ∈ E(v)

(a) If u ∈ X∧l(v)+w(v, u) < l(u), set l(u) =
l(v) + w(v, u) and parent(u) = v;

(b) If u /∈ S ∧ u /∈ X, X = {X,u}, set
l(u) = l(v) + w(v, u) and parent(u) = v;

4. If X 6= ∅ repeat from Step 2.

When the algorithm terminates, the shortest paths
from s to all the other points are computed, and thus
also the shortest path from the source s to the target
t. To save computational time, it is possible to ter-
minate the process when the node t is added to S. It
can be proved by means of Lemma 1 in [22] that Di-
jkstra’s algorithm always finds the optimal (shortest)
path from s to v.

3.2.2 A* Algorithm

As mentioned, the A* algorithm is an improvement of
the Dijkstra’s algorithm obtained by adding a heuristic
function to fasten the solution [22]. The introduced
evaluation function is

f(v) = l(v) + h(v) (16)

where, h(v) is the distance from v to t. Thus,
f(v) represents the distance from s to t, passing
through v. h(v) can be estimated by means of an
heuristic function ĥ(v), for example the Euclidean
distance. However, the optimal heuristic function is
problem dependent and so forth cannot be defined
uniquely. Conversely to the Dijkstra’s algorithm, thus,
the subsequent check-point of the path is chosen using
the following relation:

f̂(v) = min
u∈X

f̂(u) (17)

Hart et al. [22] prove that the A* algorithm finds
the optimal solution as long as the distance from v
to t is underestimated, which means that the relation
ĥ(v) ≤ h(v) must be satisfied. The A* algorithm
steps are the same of the Dijkstra’s one, where the
function l(v) is substituted by f(v).

4 Implementation and Results
The proposed algorithms have been implemented for
test and comparison purposes in Matlab R© environ-
ment without using any existing toolbox. The code,
which is optimized for airport environment, allows for
an automatic discretization of the apron area of certain
airports belonging to an available database.

4.1 Airport data loading and domain dis-
cretization

The first operation required to apply the several al-
gorithms available is to define the spatial domain in
terms of geographical coordinate system and properly
discretize it. An airport official website can provide
those information, as aircraft parking/docking, taxi-
ways and runways locations through the aeronautical
information publication (AIP). It must be pointed out
that the spatial domain discretization differs whether
neural network or graph theory based algorithms are
being used. When the HNN based algorithm is em-
ployed, the whole set of available checkpoint coordi-
nates are normalized to 1, indexed and stored in a 2D
matrix. The maximum dimension of the airport do-
main and the geographical distances between check-
points are stored in a second matrix for the actual path
length computation. An extra matrix, called connec-
tivity matrix contains the information about the avail-
able connections and directions between nodes (Fig.
2). As already explained in section 3, the generic ele-
ment ij of the connectivity matrix is 0, if nodes i and j
are connected, 1 otherwise.
As the modified HNN requires high spatial accuracy,
a dense grid is needed, which implies an high number
of neurons, because of the correspondence of nodes,
checkpoints and neurons for this particular neural net-
work mathematical model. For the modified HNN
each neuron is connected with other 4 neurons, so a
4 × 4 local connectivity matrix is defined, instead of
having a global matrix. In the proposed application,
the four connected neurons are arranged in a + con-
figuration, and the diagonal motion between nodes is
so forth not allowed. In this case, the obstacle node
indexes are stored in a different matrix and used to
properly modify the local connectivity matrix during
the simulation of the network dynamics.
As far as the graph theory based algorithm are con-
cerned, the domain discretization coincides with the
standard HNN application with a different concept of
the connectivity matrix. The generic element ij is ex-
actly the distance between the i and j nodes if con-
nected, otherwise is 0.
A graphical user interface (GUI) has been developed,
always in Matlab R© environment, to make the prepro-
cessing more user friendly and to easily access differ-
ent airport database. The GUI showing the discretiza-
tion of the Sandro Pertini airport for the graph algo-
rithms is reported in Appendix A. The whole set of
matrices represents the airport database named with
its ICAO code.

4.2 Shortest path computation

The core of the implemented code is the shortest path
computation and, as far as the HNN based algorithms
are concerned, the time evolution of the state of the
neural network is simulated by numerically solving
Eq. (5). The net simulation corresponds to solve a
system of n (n− 1) nonlinear differential equations,
where the variables are the neuron output voltages
VXi. The fourth order Runge-Kutta method has been
chosen for the numerical solution in time domain, as
it is sufficiently accurate and of easy implementation.
Accordingly, the simulation consists in observing and
updating the neuron output voltages at incremental
discrete time steps δt = 10−5sec. The time con-
stant τ of each neuron is set to 1 and, for simplicity,
λXi = λ and gXi = g are assumed to be independent
of the subscript (X, i). Of critical importance is the
network initial condition, which is defined by the neu-
rons initial input voltages UXi. Albeit, a null voltage
condition for the entire domain will guarantee to not
preconditioning the final solution, the symmetric net-
work topology imposes the insertion of some initial
random noise −0.0002 ≤ δUXi ≤ +0.0002 to drive
the net to one of the possible multiple shortest paths.
The simulation is stopped when the system reaches a
stable final state. This is assumed to occur when all
neuron output voltages do not change by more than a
threshold value of ∆Vth = 10−5 between two time
steps. When the steady state of the net is reached,
each neuron is defined either On if VXi ≥ 0.5 or Off
if VXi ≤ 0.5. The described process is referred to a
single mission phase and then is repeated three times
per mission. The shortest path computed as the sum
of the three phases is finally displayed on the airport
satellite map.
Unlike the standard HNN, its modified version always
leads to an optimal solution resulting in the shortest
path from the starting node to the target. From the
source position, the activation values of the neighbor
nodes, belonging to the local connectivity matrix, is
evaluated at each discrete time step. The highest ac-
tivity value identifies the next neuron of the path. If
none of the neighbor nodes has higher activity value
than the actual neuron, the path does not evolve. This
mechanism allows to simulate unsteady environments
with, for example, moving obstacles or changing tar-
gets. The simulation terminates when the vehicle
reaches the target. However, for sake of clarity, the
dynamics of the moving obstacle must be slower than
the net evolution time in order to be captured. Also
in this case, the described process is referred to a sin-
gle mission phase and then is repeated three times per
mission. The shortest path computed as the sum of the
three phases is finally displayed on the airport satellite

map.
As far as the two graph theory based algorithms are
concerned, after the airport database initialization, it-
erations start by adding the source node s to the set
of the found shortest paths S. The algorithm prose-
cutes by repeating iteratively step 2 and 3, described
in the previous section, until the target is added to the
closed set S. As S contains the shortest path from the
source to the different nodes, the shortest path from
s to t must be reversely reconstructed: starting from
the target node, the point stored in the corresponding
parent vector row is added to the path; the operation
is repeated until the source node is reached.

4.3 Test case results using standard HNN
To validate the algorithms’ functioning and to com-
pare their performance, a test case application for the
Turin airport Sandro Pertini is implemented (Fig. 1).
A network of 102 checkpoints is created correspond-
ing to the real airport parking decks and taxiways.
The global connectivity matrix, defined using Eq. (7),
respects the airport regulations. Value 1 is given to
the matrix elements representing unconnected nodes,
while the zeros are existing connections. As previ-
ously discussed, the matrix is not symmetric because
some taxiways are one way only.

For the simulated test case an appropriate param-
eters’ setup is found by the general rules reported in
[18]:

µ1 = 100;µ2 = 3500;µ3 = 2500;µ4 = 100;µ5 = 3500.

In particular, the suboptimal parameter setup is
a compromise between obtaining legitimate tours (µ1

small) and heavily weighting the distances between
nodes (µ1 large). Furthermore, undersized or over-
sized values of λ (gain) result in fuzzy VXi distribu-
tion, which drives the simulation to a non-optimal so-
lution. In the reported test case, this parameter is set to
λ = 50. Results of the simulations are reported from
Fig. 6 to Fig. 11, where two different tug missions
are analyzed. The first is an aircraft departure mission
where the tug initial position is in its deposit area and
the airplane is located in a generic parking lot in the
apron. The second is an aircraft arrival mission where
the tug is randomly located in the apron, as its initial
position, and an appropriate parking lot is chosen for
airplane. For sake of clarity, each figure shows sepa-
rately one mission phase, the optimized paths are de-
picted in the figures with different colors and the ini-
tial and target points are indicated respectively with
a magenta and black cross. It is worth pointing out
that the HNN parameters are kept constant during the
entire simulation test case.

Figure 6: Standard HNN. Departure mission, Phase
1: from tractor deposit to departing aircraft parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 7: Standard HNN. Departure mission, Phase 2:
from departing aircraft parking lot to runway thresh-
old. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 8: Standard HNN. Departure mission, Phase
3: from runway threshold to tractor deposit. Cred-
its: Pictures 2015 DigitalGlobe, Map data c©2015
Google.

4.4 Test case results using modified HNN
The same test case is solved with the modified HNN
algorithms. For this application, a 700× 700 neurons
net has been created and dynamic obstacles are used
to prevent convergence through unpermitted direction.
This is a programming expedient to overtake the limi-
tation of using a local connectivity matrix to speed up

Figure 9: Standard HNN. Arrival Mission: Phase 1,
from tractor deposit to aircraft landing waiting posi-
tion. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 10: Standard HNN. Arrival Mission: Phase
2, from aircraft landing waiting position to parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 11: Standard HNN. Arrival Mission: Phase
3, from aircraft selected parking lot to tractor de-
posit. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

the solution.
For this test case, the parameters are set as fol-

lows: the bias current for the target node is E = 100,
while the time step is dt = 10−2. Results are shown
in figures from Fig. 13 to Fig. 18. The same mis-
sions considered for the previous algorithm are ana-
lyzed and, for consistency, results are shown in the
same order as before.

It is worth pointing out the effectiveness of the
virtual dynamic obstacle, as the resulting path is al-

Figure 12: ”Sandro Pertini” airport scheme for mod-
ified Hopfield neural network application. Cred-
its: Pictures 2015 DigitalGlobe, Map data c©2015
Google.

Figure 13: Modified HNN. Departure mission, Phase
1: from tractor deposit to departing aircraft parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 14: Modified HNN. Departure mission, Phase
2: from departing aircraft parking lot to runway
threshold. Credits: Pictures 2015 DigitalGlobe, Map
data c©2015 Google.

ways the shortest path, Fig. 15 and Fig. 18. However,
because of the higher number of checkpoints in the
airport discretization, as shown in Fig. 12, the com-
putational time increases with respect to the standard
Hopfield Neural Network.

4.5 Test case results using graph theory
based algorithms

For these test cases, the same spatial domain dis-
cretization used for the standard HNN is employed
(Fig. 1). For consistency purpose, the same path op-

Figure 15: Modified HNN. Departure mission, Phase
3: from runway threshold to tractor deposit. Cred-
its: Pictures 2015 DigitalGlobe, Map data c©2015
Google.

Figure 16: Modified HNN. Arrival Mission: Phase 1,
from moving tractor to aircraft landing waiting posi-
tion. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 17: Modified HNN. Arrival Mission: Phase
2, from aircraft landing waiting position to parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

timizations are performed by means of the Dijkstra’s
and the A* methods. In this cases, the optimal paths
computed by the two algorithms is identical. Results
are reported from Fig. 19 to Fig. 24.

4.6 Results comparison
The result analysis suggests that the final optimized
solutions, computed by the four implemented algo-
rithms, slightly differ, as shown in Fig. 15 and Fig.
21. This might be caused by the different domain
discretization employed. However, the length of the
paths are very similar as shown in Table 1 and Table

Figure 18: Modified HNN. Arrival Mission: Phase
3, from aircraft selected parking lot to tractor de-
posit. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.1

Figure 19: Algorithm 3. Departure mission, Phase
1: from tractor deposit to departing aircraft parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 20: Algorithm 3. Departure mission, Phase 2:
from departing aircraft parking lot to runway thresh-
old. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

2, for the two missions respectively.
A substantial difference between the implemented al-
gorithms arises when considering the computational
time required to generate the optimal shortest path.

Figure 21: Algorithm 3. Departure mission, Phase
3: from runway threshold to tractor deposit. Cred-
its: Pictures 2015 DigitalGlobe, Map data c©2015
Google.

Figure 22: Algorithm 3. Arrival Mission: Phase 1,
from moving tractor to aircraft landing waiting posi-
tion. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Figure 23: Algorithm 3. Arrival Mission: Phase
2, from aircraft landing waiting position to parking
lot. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

The code was executed on a Windows 8.1 Pro plat-
form supported by an Intel Core i7-4810MQ CPU and
8 GB RAM. Table 3 reports the required computa-
tional time for each algorithm for both test cases. It
is clear that the computational time required by the
graph theory-based algorithms is some order of mag-
nitude smaller than the one required by the two neural
networks. In particular, the modified HNN is the slow-
est algorithm, because of the huge amount of nodes
(neurons) required for the proposed application, espe-
cially during the first phase of the computation, when
the target activation must propagate to the initial tug
position so that it starts virtually moving.

Table 1: Optimal trajectories length comparison for the Departure mission.

Algorithm Phase1 [m] Phase2 [m] Phase3 [m] Total length [m]

HNN 1097.20 1442.50 1342.60 3882.30
mHNN 1071.90 1407.50 1376.10 3855.50
Dijkstra 1097.20 1442.50 1342.60 3882.30

A* 1097.20 1442.50 1342.60 3882.30

Table 2: Optimal trajectories length comparison for the Arrival Mission.

Algorithm Phase1 [m] Phase2 [m] Phase3 [m] Total length [m]

HNN 1106.00 1619.50 455.38 3180.88
mHNN 1126.40 1570.00 526.05 3222.45
Dijkstra 1106.00 1619.50 455.38 3180.88

A* 1106.00 1619.50 455.38 3180.88

Figure 24: Algorithm 3. Arrival Mission: Phase
3, from aircraft selected parking lot to tractor de-
posit. Credits: Pictures 2015 DigitalGlobe, Map data
c©2015 Google.

Table 3: Computational time comparison for both
missions.

Algorithm Departure [s] Arrival [s]

HNN 705.01 767.83
mHNN 1839.66 1272.93
Dijkstra 0.01 0.01

A* 0.01 0.01

5 Conclusion
This paper presents a software solution for a route
selection problem applied to airport environment for
the path planning of innovative and automatic aircraft
tugs, responding to the need of engine-off taxi in the
next airport generation. Four different algorithms,

based on artificial intelligence and graph theory, have
been implemented and their performance compared.
The developed software works with any airport and
is able to properly discretize the spatial domain (e.g.
taxiways, runways and aircraft parking lots) in func-
tion of the employed algorithm. To solve the problem,
an entire engine-off towing operation is called mis-
sion and is divided into three sub-operations, called
mission phases. There are two types of mission, de-
pending whether the aircraft to be towed is arriving or
departing, whereas the phases sequence is the same
and in the following order: reach the targeted air-
craft, perform the engine-off taxi towing and return to
the tug parking area. In detail, a standard Hopfield
neural network and a modified version, which con-
siders a local connectivity of neurons, based on har-
monic functions, a Dijkstra and a A* algorithms have
been employed. The algorithms are conceptually dif-
ferent, with their own pros and cons. In particular,
the standard HNN and the two graph theory based al-
gorithms minimize the entire path in once, while the
modified HNN works locally, in a small neighborhood
of checkpoints, allowing for dynamic obstacles avoid-
ance (i.e. moving tugs, airplanes and foreign objects
along the path).
A unique test case, referred to the real data of the
Sandro Pertini airport of Turin, has been performed
for each algorithm for comparison purposes. The re-
sults demonstrate that all the algorithms converge to a
unique shortest path, exception done for the modified
HNN, which result in a slightly longer route. In addi-
tion, the two graph theory based algorithms are several
order of magnitude more efficient, requiring an almost
negligible computational time, making them more at-
tractive for a possible real-time application.

A Airport Discretization Tool

Figure 25: Airport Discretization Graphical User In-
terface. Credits: Pictures 2015 DigitalGlobe, Map
data c©2015 Google.

Acknowledgements: Authors would like to thank
Prof. Giovanni Squillero, from the Politecnico di
Torino, for his advising during the implementation of
the presented route selection algorithms.

References:

[1] Bondy A.J. and Murty U.S.R. Graph Theory
with Applications.

[2] Goldberg A.V. and Tarjan R.E. Expected per-
formance of dijkstra’s shortest path algorithm.
Technical report, NEC RESEARCH INSTI-
TUTE REPORT, 1996.

[3] Bonet B. and Geffner H. Planning as heuristic
search. Artificial Intelligence, 129(12):5 – 33,
2001.

[4] Hilburn B. Head down time in aerodrome oper-
ations: a scope study. 2004.

[5] M. Battipede, A. Della Corte, M. Vazzola, and
D. Tancredi. Innovative airplane ground han-
dling system for green operations. In 27th Inter-
national Congress Of The Aeronautical Sciences
ICAS, 2010.

[6] Baker B.M. and Ayechew M.A. A genetic algo-
rithm for the vehicle routing problem. Comput-
ers and Operations Research, 30(5):787–800,
2003.

[7] Lesire C. An iterative a* algorithm for planning
of airport ground movements. In Proceedings of
the 2010 Conference on ECAI 2010: 19th Euro-
pean Conference on Artificial Intelligence, pages
413–418, 2010.

[8] Dijkstra E.W. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[9] S. Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2nd edition, 1998.

[10] ICAO. Manual on the prevention of runway in-
cursions. Technical Report Doc 9870 AN/463,
International Civil Aviation Organization, 2007.

[11] Hopfield J.J. Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the National Academy
of Sciences, 79(8):2554–2558, 1982.

[12] Hopfield J.J. and Tank D.W. Neural computation
of decisions in optimization problems. Biologi-
cal Cybernetics, 52(3):141–152, 1985.

[13] Hopfield J.J. and Tank D.W. Computing
with neural circuits: a model. Science,
233(4764):625–633, 1986.

[14] J.Y. Kim, Aktay K., Aktay K., and Ropp T.D.
Ants-automated nextgen taxi system. FAA De-
sign Competition 2009-2010, 2010.

[15] Lufthansa. Innovative taxibot now used in real
flight operations, 2015.

[16] Gendreau M., Guertin F., J.Y. Potvin, and Tail-
lard . Parallel tabu search for real-time vehi-
cle routing and dispatching. Transportation Sci-
ence, 33(4):381–390, 1999.

[17] Xu M.H., Liu Y.Q., Huang Q.L., Zhang Y.X.,
and Luan G.F. An improved dijkstras short-
est path algorithm for sparse network. Applied
Mathematics and Computation, 185(1):247 –
254, 2007.

[18] Ali M.K.M and Kamoun F. Neural networks for
shortest path computation and routing in com-
puter networks. Neural Networks, IEEE Trans-
actions on, 4(6):941–954, Nov 1993.

[19] Christofides N. Graph Theory: An Algorith-
mic Approach. Computer Science and Applied
Mathematics.

[20] Kojic N., Reljin I., and Reljin B. Route selec-
tion problem based on hopfield neural network.
Radioengineering, 22(4):1182–1193, 2013.

[21] Wasserman P.D. Advanced Methods in Neural
Computing. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1993.

[22] Hart P.E., Nilsson N.J., and Raphael B. A for-
mal basis for the heuristic determination of min-
imum cost paths. Systems Science and Cybernet-
ics, IEEE Transactions on, 4(2):100–107, July
1968.

[23] S.A. Rahman, M.S. Ansari, A.A. Moinuddin,
and et al. Solution of linear programming prob-
lems using a neural network with non-linear
feedback. Radioengineering, 21(4):1171, 2012.

[24] Khebbache-Hadji S., Prins C., Yalaoui A., and
Reghioui M. Heuristics and memetic algorithm
for the two-dimensional loading capacitated ve-
hicle routing problem with time windows. Cen-
tral European Journal of Operations Research,
21(2):307–336, 2013.

[25] Mitrovi-Mini S., Krishnamurti R., and Laporte
G. Double-horizon based heuristics for the dy-
namic pickup and delivery problem with time
windows. Transportation Research Part B:
Methodological, 38(8):669 – 685, 2004.

[26] Zeng W. and Church R.L. Finding shortest paths
on real road networks: The case for a*. Int. J.
Geogr. Inf. Sci., 23(4):531–543, April 2009.

[27] Zhong Y., Shirinzadeh B., and Tian Y. A new
neural network for robot path planning. In
Advanced Intelligent Mechatronics, 2008. AIM
2008. IEEE/ASME International Conference on,
pages 1361–1366, July 2008.

