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Abstract The development of a reliable Sense-And-Avoid
(SAA) system is one of the limiting aspects for the integra-
tion into civil airspace of Unmanned Aerial Vehicles (UAVs),
for which the market demand is becoming viral in many
fields. To overcome these limitations, it is required that the
Sense and Avoid (SAA) system perform equally or even
better than the human eye. This can be achieved integrat-
ing information from different sensors using data-fusion al-
gorithms, like Bayesian estimators or neural network tech-
niques. SAA system degradation could arise from both sin-
gle sensor shortcomings and bad numerical behaviours, in-
jected by the specific fusion algorithm, such as real machine
round-off errors or divergences introduced by approximat-
ing strongly non-linear functions. An alternative formula-
tion of the Square-Root Unscented Kalman Filter (SRUKF)
based on the Joseph form of the state covariance update step,
is used in order to avoid numerical instabilities induced by
ill-conditioned matrix problems. The novelty of this tech-
nique lies in the exploitation of the Sigma-Point Kalman
Filters, which ensure a higher order accuracy in the non-
linear inference problem solving, and in the application of
the Joseph update equation, which improves numerical ro-
bustness. Moreover, this approach prevents the algorithm
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from failing, avoiding the downdating process of the Cholesky
factor when the SRUKF is used and to take advantage by the
higher numerical stability assured by a lower matrix Condi-
tion Number.

Keywords Kalman Filter · Sense And Avoid · UAV ·
Tracking · Square-Root · Cholesky · Radar · GNSS

Nomenclature
x State space vector
f Non-linear state transition function
u Control vector
v Unmodeled dynamics
z Measurement vector
h Non-linear measurement function
w Measurement noise
p(x|z) Conditional probability
Pxx State covariance matrix
Sxx Cholesky factor of Pxx

Q Noise covariance matrix
SQ Cholesky factor of Q
ẑ Estimated measurement vector
Pzz Innovation matrix
Szz Cholesky factor of Pzz

R Measurement covariance matrix
SR Cholesky factor of R
x̂ Estimated state space vector
Pxz State-Measurement covariance matrix
K Kalman gain
F Linear state transition matrix
H Linear measurement matrix
c( j) Normalised sigma-points
X( j) Sigma-points
ω j Sigma-point weights
x,y,z Cartesian coordinates
∆ t Time Step
qx,qy,qz,qc Power Spectral Density
R,θ ,φ Range, Azimuth and Elevation
ρ, ρ̇ Pseudorange and Pseudorange rate
σR,σθ ,σφ ,σρ ,σρ̇ Sensor error standard deviation
κ(P) Condition Number of a matrix P
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1 Introduction

One of the main difficulty for the integration of Unmanned
Aerial Vehicles (UAV) into civil airspaces is related to the
development of a reliable Sense And Avoid (SAA) system
[1–3]. This can be accomplished by requiring performance
equal or better than the see-and-avoid ability of the pilot
in manned aircraft. The challenge for the future Air Traf-
fic Management (ATM) [4] system will be to dynamically
manage UAVs, including structures to support 2D, 3D and
4D operations, precise navigation technologies and enhanc-
ing surveillance capabilities, fusing airborne and radar in-
formation [1].
Currently, many research fields are focused on developing
state-of-the-art sensors working properly for Simultaneous
Localization And Mapping (SLAM) [5], obstacle detection
and surveillance, particularly when platforms with a very
fast dynamics are involved, like military aircraft, rockets and
controlled bombs. Passive and active MMW radar, Forward
Looking Infra-Red (FLIR), LIDAR, Electronic Surveillance
Module (ESM), Electro-Optical (EO) sensors [6–8], sonars
are suitable systems for sensing and tracking intruders, esti-
mating location, velocity and size of both ground and flying
obstacles [9–11].
In order to compensate for individual sensors shortcomings
and to provide a much reliable tracking solution, multi sen-
sor data fusion techniques have been developed [12,2,11,
13–15]. Tirri in [33] implements a Particle Filter (PF) with
dynamic motion based on Singer model integrating EO and
radar sensors. In [34] a track-to-track algorithm using a lin-
ear Kalman Filter (KF) is the adopted solution for aircraft
Sensing and Avoidance, with respect to Noth that proposes
a ground based approach using radar [35]. Ground-Based
SAA (GBSAA) systems that use electronic sensors have also
been developed. These ground based systems provide in-
formation for manoeuvre decisions for terminal-area oper-
ations [36]. In [22], the tracking performance has been in-
vestigated, comparing the Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF) solutions with differ-
ent update covariance formulations.
As it is well known, the optimal solution to the nonlinear fil-
tering problem is infinite dimensional. For this reason, sub-
optimal approaches like the EKF, UKF [16], PF [12,17],
Statistically linearized filter (SLF), Gauss Hermite Kalman
filter (GHKF), Cubature Kalman filter (CKF) and Spherical
Simplex Kalman Filter (SSKF) [18–21] are normally con-
sidered. However, the EKF has shown several limitations
and easily exhibits divergent characteristics when the sys-
tem model is highly non-linear. An improvement in per-
formance can be obtained using the Sigma-Point Kalman
Filters (SPKF) like the Unscented one, which determines
mean value and covariance approximating a Gaussian dis-
tribution instead of linearising a non-linear transformation.

This technique is accurate to the second order, whereas the
EKF is only able to obtain a first order accuracy [23]. An-
other cause of performance degradation and divergence of
the filter is the round-off errors affecting the covariance ma-
trix. Increasing the computation precision can be effective,
however this solution is costly in computer hardware and
time. To limit this problem, the Square Root version of the
Sigma Point Kalman Filters (SRSPKF) was proposed [24].
Using this technique the Square Root covariance is predicted
and updated, achieving better numerical accuracy. A possi-
ble drawback related to this filter is that the negative up-
date, necessary in the classical covariance matrix formula-
tion, might destroy the positive definiteness property of the
Cholesky factor. To try to overcome this problem, in [24]
the information form of the filter (SRUIF) was proposed.
An alternative solution was suggested in [37], where a ma-
nipulation of the covariance matrix was carried out in order
to solve problems related to the existence of negative matrix
eigenvalues.

In this work an novel method is proposed to avoid nu-
merical instabilities and to limit the effect of the round-off
errors. The adopted solution makes use of the Joseph formu-
lation for the state covariance matrix updating, applied to the
SRSPKFs. After the calculation is performed using the EKF
and UKF, a Square-Root version of the Joseph covariance
matrix formula has been derived. In this way it was possible
to improve the numerical accuracy and to avoid problems
related to the negative updating of the Cholesky factor, not
required by this algorithm. In the following sections firstly
the Bayesian inference is described from a theoretical point
of view; the proposed methodology is then presented and
finally the simulation results are shown.

2 Bayesian inference

In a discrete dynamic process, the current state of the system
is dependent on one or more prior states. When observa-
tions are provided at discrete times, estimation conditioned
on those observations can only occur at those times [18].
Considering a first order Markov process, it is possible to
describe a random Markov dynamic process as

xn = fn−1(xn−1)+un +vn−1 (1)

where xn is the state of the system at time tn, fn−1 is a de-
terministic transition function that moves the state x from
time tn−1 to time tn, un is a known control vector and vn−1 is
a white noise vector describing uncertainties about unmod-
eled dynamics. The goal is to estimate the unobservable state
vector xn, based on the set of all experimental observation
vectors z1:n = {z1,z2, . . . ,zn}. It is assumed that an analyti-
cal relationship is known between the observation vector at
time tn and the state vector at time tn, represented by
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zn = hn(xn)+wn. (2)

Here, zn is designated as the observation vector and hn is
a deterministic observation function linking the state vec-
tor with the observation and wwwn is a white noise vector (not
necessarily Gaussian) representative of the sensor accuracy.
Equations 1 and 2 represent a complete model of the sys-
tem and the inference can be turned into an estimation of
the conditional posterior density p(xn|z1:n) using the Bayes’
law

p(xn|z1:n) =
p(zn|xn)p(xn|z1:n−1)

p(zn|z1:n−1)
(3)

where

p(xn|z1:n−1) =
∫

p(xn|xn−1)p(xn−1|z1:n−1)dxn−1. (4)

From equation 3 and 4, a recursive link has been established
between the previous posterior p(xn−1|z1:n−1) and the cur-
rent posterior p(xn|z1:n) [18] as desired.

2.1 Recursive estimation of mean and covariance

Using equations 3 and 4 it is possible to obtain xn|n and
Pxx

n|n conditioned on all observations up to the time step
tn, as shown hereinafter. The state prediction is obtained as

x̂n|n−1 =
∫

Rnx
fn−1(xn−1)p(xn−1|z1:n−1)dxn−1

+un +
∫

Rnx
vn−1 p(xn−1|z1:n−1)dxn−1. (5)

Defining

x̃n−1|n−1 =
[
fn−1(xn−1)+un− x̂n|n−1

]

the state covariance matrix is

Pxx
n|n−1 =

∫

Rnx
[x̃n−1|n−1][x̃n−1|n−1]

T

× p(xn|z1:n−1)dxn−1 +Q (6)

where the noise covariance matrix Q is

Q =
∫

Rnx
vn−1vT

n−1 p(xn|z1:n−1)dxn−1. (7)

The estimation of the measurement vector is obtained as

ẑn|n−1 =
∫

Rnx
hn(xn|n−1)p(xn|z1:n−1)dxn

+
∫

Rnx
wn p(xn|z1:n−1)dxn. (8)

Defining

z̃n|n−1 =
[
hn(xn−1)− ẑn|n−1

]

the innovation covariance matrix is provided by the follow-
ing relation

Pzz
n|n−1 =

∫

Rnx
[z̃n|n−1][z̃n|n−1]

T × p(xn|z1:n−1)dxn +R (9)

where R is

R =
∫

Rnx
wnwT

n p(xn|z1:n−1)dxn. (10)

The covariance matrix between states and measurements is

Pxz
n|n−1 =

∫

Rnx
[x̃n−1|n−1][z̃n|n−1]

T × p(xn|z1:n−1)dxn (11)

and the Kalman gain Kn is given by

Kn = Pxz
n|n−1

[
Pzz

n|n−1
]−1

. (12)

At this point, it is possible to update the state vector and the
covariance matrix as

x̂n|n = x̂n|n−1 +Kn
(
zn− ẑn|n−1

)
(13)

Pxx
n|n = Pxx

n|n−1−KnPzz
n|n−1Kn

T . (14)

3 Methodology

Particularizing the previous relations in case of linear state
and measurement equations we get the LKF algorithm shown
in Table 1. When the state or measurement equations are
non-linear, this algorithm can be used by linearising them
by means of a Taylor series expansion, getting the EKF. In
this case the state transition matrix F and the measurement
matrix H are substituted by the respective Jacobian matrices
FJ and HJ.
More accurate filtering solutions are based on the numerical
estimation of the integrals shown in equations 5-11. Filters
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Table 1 LKF algorithm

x̂n|n−1 = Fx̂n−1|n−1 +un

Pxx
n|n−1 = FPxx

n−1|n−1FT +Q

ẑn|n−1 = Hx̂n|n−1

Pzz
n|n−1 = HPxx

n|n−1HT +R

Pxz
n|n−1 = Pxx

n|n−1HT

Kn = Pxz
n|n−1(Pzz

n|n−1)
−1

x̂n|n = x̂n|n−1 +Kn(z− ẑn|n−1)

Pxx
n|n = Pxx

n|n−1−KnPzz
n|n−1Kn

T

Table 2 SPKF algorithm

X( j)
n−1|n−1 = x̂n−1|n−1 +

√
Pxx

n−1|n−1c( j)

x̂n|n−1 = ∑
ns
j=0 ω jf(X

( j)
n−1|n−1)+un

Pxx
n|n−1 = ∑

ns
j=0 ω j

[
f(X( j)

n−1|n−1)− x̂n|n−1

]

×
[
f(X( j)

n−1|n−1)− x̂n|n−1

]T
+Q

X( j)
n|n−1 = x̂n|n−1 +

√
Pxx

n|n−1c( j)

ẑn|n−1 = ∑
ns
j=0 ω jh(X

( j)
n|n−1)

Pzz
n|n−1 = ∑

ns
j=0 ω j

[
h(X( j)

n|n−1)− ẑn|n−1

]

×
[
h(X( j)

n|n−1)− ẑn|n−1

]T
+R

Pxz
n|n−1 = ∑

ns
j=0 ω j

[
f(X( j)

n−1|n−1)− x̂n|n−1

]

×
[
h(X( j)

n|n−1)− ẑn|n−1

]T

Kn = Pxz
n|n−1(Pzz

n|n−1)
−1

x̂n|n = x̂n|n−1 +Kn(z− ẑn|n−1)

Pxx
n|n = Pxx

n|n−1−KnPzz
n|n−1Kn

T

using these techniques are called SPKFs. The SPKF algo-
rithm is shown in Table 2 where ns is the number of nor-
malised sigma-points c( j), and ω j are the weights. In order
to find a compete procedure to calculate them see [18].
Using the formulation of the equation 14 for the state covari-
ance matrix update Pxx

n|n, a matrix subtraction is performed.
This operation could generate numerical errors, which can
cause even the loss of its positive definiteness. The alterna-
tive form (equation 15), is known as the Joseph form covari-
ance update, which is less sensitive to round-off errors [19]

Pxx
n|n = (I−KnH)Pxx

n|n−1(I−KnH)T +KnRKn
T (15)

where I is the identity matrix and H is the measurement ma-
trix or equivalently the Jacobian of the measurement func-
tion h(x), indicated above as HJ. With the proper imple-
mentation of the products of three matrices, the symmetry is
preserved. Furthermore, since the only operation of matrix
subtraction is in the term (I−KnH), which appears squared,

this form of the covariance updating has the property of pre-
serving the positive definiteness [19]. This formulation can
be applied in the case of LKF or EKF once H or HJ have
been defined, but it can not be used for the SPKFs. As men-
tioned above, the common technique adopted in this case
to increase the filter numerical stability is to use a Square-
Root formulation (SRKF). This filter requires to perform the
square root of the covariance matrix which needs symmetry
and positive definiteness. These two properties might be lost
due to errors introduced by arithmetic operations, performed
on finite word-length digital computers, or ill-conditioned
non-linear filtering problems [24]. A feasible first approach
to estimate H in order to make appropriate the use of the
Joseph formula is to start from the definition of Pxz

n|n−1 for
the LKF

Pxz
n|n−1 = Pxx

n|n−1HT .

Inverting this relation in order to explicit H we obtain

H =
[(

Pxx
n|n−1

)−1 Pxz
n|n−1

]T
(16)

that can be seen as a Jacobian matrix, where Pxx
n|n−1 and

Pxz
n|n−1 are estimated using the SPKF. Beside the compu-

tational cost required for the matrix inversion, a problem
might arise in inverting the matrix Pxx

n|n−1 when this is ill-
conditioned. The proposed method, instead, makes use of
the Jacobian matrix HJ of the non-linear measurement func-
tion h(x) estimated at the point x̂n|n

HJ =
∂h(x)

∂x
∣∣
x=x̂n|n

. (17)

Calculating HJ after the state updating step, enables a much
more accurate matrix to be calculated, compared to the one
used for the EKF, estimated at x̂n|n−1. This improvement
derives from the lower x̂n|n variance, ensured by the mea-
surement information available at this step, with respect to
x̂n|n−1 which prediction is based only on the accuracy of the
model chosen to represent the target dynamics. Once HJ is
obtained, the Joseph form can be applied

Pxx
J n|n = (I−KnHJ)Pxx

n|n−1(I−KnHJ)
T +KnRKn

T . (18)

Using this approach, higher filtering performance is pro-
vided and, at the same time, numerical stability is improved
by the Joseph formulation, at the expense of a slightly com-
putational higher cost, as can be seen in Table 3.
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Table 3 Filters Computational Complexity. n is the state space vector
dimension and m the number of measurements [25]

Algorithm Math Operations

+ × ÷ √·
Conventional

(1.5n2 +3.5n)m (1.5n2 +4.5n)m m 0
Px−KPzKT

U-D factorization 0.5n2−0.5n n2−n
nm 0

Px =UDUT +(1.5n2 +1.5n)m +(1.5n2 +5.5n)m

Triangular Cov. 0.5n2 +0.5n 0.5n2 +0.5n
2nm nm

Square Root +(1.5n2 +3.5n)m +(2n2 +5n)m

Kalman Stable
(4.5n2 +5.5n)m (4n2 +7.5n)m m 0

Joseph

3.1 Square-Root SPKF

In order to improve filter performance and numerical stabil-
ity, a triangular Covariance Square-Root form of the Equa-
tion 18 has been derived, in order to apply the Square-Root
filter. As extensively demonstrated in literature, using the
Square-Root formulation, the matrix Condition Number is
strongly reduced, improving the filter numerical behaviour.
As introduced in the previous paragraph, the Joseph covari-
ance matrix updating does not require a subtraction as for
the classical one, avoiding the risks of losing the matrix
positiveness associated with the negative Cholesky updating
step. Defining

S = chol {P} | SST = P

and:

Sxx
n−1|n−1 = chol

{
Pxx

n−1|n−1
}

SQ = chol {Q}
SR = chol {R}

it is possible to estimate the state vector

X( j)
n−1|n−1 = x̂n−1|n−1 +

√
Pxx

n−1|n−1c( j) (19)

x̂n|n−1 =
ns

∑
j=0

ω jf(X
( j)
n−1|n−1)+un (20)

where c( j) are the normalised sigma-points and ω j are the
sigma-point weights. In order to predict the state covariance
matrix, the upper triangular matrix obtained from the QR-
Orthogonal-triangular decomposition is used;

SxxT
n|n−1 = qr








√
ω1(X

(1)
n−1|n−1− x̂n|n−1)

T

√
ω2(X

(2)
n−1|n−1− x̂n|n−1)

T

...
√ω j(X

( j)
n−1|n−1− x̂n|n−1)

T

...
√

ωns(X
(ns)
n−1|n−1− x̂n|n−1)

T

ST
Q








(21)

Sxx
n|n−1 = cholupdate

{
Sxx

n|n−1,

(X(0)
n−1|n−1− x̂n|n−1),ω0

}
. (22)

Now it is possible to update the sigma-points and predict the
measurement vector as

X( j)
n|n−1 = x̂n|n−1 +

√
Pxx

n|n−1c( j) (23)

ẑn|n−1 =
ns

∑
j=0

ω jh(X
( j)
n|n−1). (24)

The innovation matrix is calculated using the same tech-
nique adopted for predicting the covariance matrix

SzzT
n|n−1 = qr








√
ω1(h(X

(1)
n|n−1)− ẑn|n−1)

T

√
ω2(h(X

(2)
n|n−1)− ẑn|n−1)

T

...
√ω j(h(X

( j)
n|n−1)− ẑn|n−1)

T

...
√

ωns(h(X
(ns)
n|n−1)− ẑn|n−1)

T

ST
R








(25)

Szz
n|n−1 = cholupdate

{
Szz

n|n−1,

(h(X(0)
n|n−1)− ẑn|n−1),ω0

}
(26)

Pxz
n|n−1 =

ns

∑
j=0

ω j

[
f(X( j)

n−1|n−1)− x̂n|n−1

]

×
[
h(X( j)

n|n−1)− ẑn|n−1

]T
. (27)

The Kalman gain can be calculated as
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Kn =
(
Pxz

n|n−1/SzzT
n|n−1

)
/Szz

n|n−1. (28)

Once the Kalman gain is available, it is possible to update
the state vector

x̂n|n = x̂n|n−1 +Kn(z− ẑn|n−1). (29)

In order to use the Joseph formulation, firstly the Jacobian
matrix HJ must be calculated as shown in Equation 17, sec-
ondarily the QR-decomposition algorithm can be applied to
a generic matrix A, defined as

S = {qr{A}}T = chol
{

AT A
}

(30)

Writing A as

A = SxxT
n|n−1(I−KnHJ)

T ,

and introducing G = (I−KnHJ) for simplicity, we obtain

AT A = GSxx
n|n−1SxxT

n|n−1︸ ︷︷ ︸
Pxx

n|n−1

GT

= (I−KnHJ)Pxx
n|n−1(I−KnHJ)

T (31)

that is the first term of the Joseph covariance matrix update.
Applying the QR-decomposition to the matrix A, as defined
in the Equation 30, it is possible to obtain the Cholesky ma-
trix of this term. To take into account also the second term,
it is necessary to apply the QR-decomposition as it follows

Sxx
n|n = qr








SxxT
n|n−1(I−KnHJ)

T

ST
RKT

n





 . (32)

In order to obtain the correct solution, it is necessary to take
the upper triangular matrix given by the the qr MATLAB

function.

4 Model Validation

4.1 Dynamic model

This simulation concerns the tracking of an aircraft from a
fixed sensor in a Cartesian space. Assuming a constant ac-
celerated dynamics, the discrete time state space equation is
described by the following linear relation

xn = Fn−1xn−1 +vn−1 (33)

where the state space vector is the following

x = [x, ẋ, ẍ,y, ẏ, ÿ,z, ż, z̈]T

with ẋ and ẍ indicating respectively the first and second time
derivatives and the state transition matrix Fn−1 is defined as

F =




F1 0 0
0 F1 0
0 0 F1




with:

F1 =




1 ∆ t ∆ t2

2
0 1 ∆ t
0 0 1




and ∆ t is the time step. The noise is assumed to be inde-
pendent, with zero-mean and Gaussian vn−1 v N (0,Q)

with

Q =




qxQ1 0 0
0 qyQ1 0
0 0 qzQ1




and

Q1 =




∆ t5

20
∆ t4

8
∆ t3

6
∆ t4

8
∆ t3

6
∆ t2

2
∆ t3

6
∆ t2

2 ∆ t


 (34)

where qx, qy and qz, are the noise Power Spectral Densities
(PSD) along each Cartesian direction.

4.2 Sensor Model

The sensor provides measurements of the range, azimuth
and elevation angles

z = [R,θ ,φ ]T .

From the nature of measured variables it is clear that the
function h(x) relating these measurements to the state vector
is non-linear

z = h(x)+wn (35)

where
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h(x) =




√
x2 + y2 + z2

arctan
(

x
y

)

arctan
(

z√
x2+y2

)


 . (36)

The observation noise wn is considered to be independent,
with zero-mean and Gaussian wn v N (0,R) with

R =




σ2
R 0 0

0 σ2
θ 0

0 0 σ2
φ




where σR, σθ and σφ are the sensor error standard devia-
tions. In this case the Jacobian matrix HJ is given by

HJ =




∂h(1)
∂x 0 0 ∂h(1)

∂y 0 0 ∂h(1)
∂ z 0 0

∂h(2)
∂x 0 0 ∂h(2)

∂y 0 0 0 0 0
∂h(3)

∂x 0 0 ∂h(3)
∂y 0 0 ∂h(3)

∂ z 0 0


 (37)

where

∂h(1)
∂x

=
x√

x2 + y2 + z2

∂h(1)
∂y

=
y√

x2 + y2 + z2

∂h(1)
∂ z

=
z√

x2 + y2 + z2

∂h(2)
∂x

=
y

x2 + y2

∂h(2)
∂y

=− x
x2 + y2

∂h(3)
∂x

=− xz√
x2 + y2(x2 + y2 + z2)

∂h(3)
∂y

=− yz√
x2 + y2(x2 + y2 + z2)

∂h(3)
∂ z

=

√
x2 + y2

x2 + y2 + z2

4.3 Numerical results

In this section the results obtained from the MATLAB nu-
merical simulations are presented. For the case under study
we have considered a sensor sampling frequency of 2 Hz and
the three standard deviations respectively of 30 m in range,
1.45 deg in azimuth and 5 deg in elevation. The theoreti-
cal trajectory, the measurements and the filtered solution are
shown in Fig. 1. Each figure is generated using LATEX.
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Fig. 2 RMSE of the x coordinate from 500 Monte Carlo runs for the
EKF, UKF and SRUKF using Joseph formulation

In order to get statistically consistent results, 500 Monte
Carlo (MC) simulations were performed. As it can be seen
from the estimated position Root Mean Square Error (RMSE)
in Fig. 2, 3 and 4, the UKF exhibits better performance than
the EKF version, as expected, although the best accuracy is
obtained by applying the Joseph formula to the SRUKF, as
confirmed also by outcomes in Fig. 5.

A key result that validates the potentiality of the present
approach is shown in Fig. 6 and 7. With the EKF method in
the classical formulation, the ill-conditioned covariance ma-
trix makes the Condition Number diverge after 75 sec, with
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Fig. 4 RMSE of the z coordinate from 500 Monte Carlo runs for the
EKF, UKF and SRUKF using Joseph formulation

direct effects on the accuracy of the filtered solution. This
can be confirmed by a rule of thumb stating that if the con-
dition number is expressed as κ(P) = 10k, a precision loss
of at least k digits can be expected [26]. Better outcomes are
guaranteed by the UKF algorithm. Using the Joseph formu-
lation, moreover, it is possible to obtain much better perfor-
mance with both the EKF and UKF. Using the SRUKF, the
Condition Number is reduced by two orders of magnitude
with respect to the UKF, ensuring a higher numerical accu-
racy. The real advantage in applying the Joseph covariance
formula to SRUKF is not strictly related to the κ-reduction:
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Fig. 5 Difference between the position RMSEs from 500 Monte Carlo
runs obtained using the UKF and SRUKF with the Joseph covariance
formulation
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Fig. 6 Condition Number of the state covariance matrix Pxx
n|n for the

EKF using classical and Joseph formulation from 500 Monte Carlo
runs

it lies in the capability of preserving the positive definite-
ness, when the downdating process is applied to the classical
formulation. This encouraging results open the possibility of
the application of this technique to manage situations where
strong function non-linearities make the EKF inapplicable
and where ill-conditioned problems could lead to filter in-
stabilities, if the classical updating relation is used. Filter
comparisons, in terms of computational time, is shown in
Fig. 10. These results are obtained using an Intel Core i7-
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4710HQ 64 bit, 2.50 GHz with 16 GB RAM. It is evident
that the proposed technique has a negligible impact, being
the simulation time mainly affected by filter typology rather
than covariance updating formula.

5 Test Cases

In the previous section the new algorithm has been validated
using an ideal situation with a linear dynamics corrupted by
a simplified noise model. This section has the aim to apply
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Fig. 10 Algorithms computational time from 5000 Monte Carlo runs

the proposed filter to two realistic situations where both dy-
namic and measurements models are non-linear and noise
has a more realistic distribution. The first one is the tracking
of an aircraft using a ground based radar, the second one is
the tracking performed by means of an Automatic Depen-
dant Surveillance-Broadcast (ADS-B) technique, where the
cooperative intruder provides information about the proper
GNSS position.
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5.1 Ground based RADAR data filtering

5.1.1 Dynamic model

In order to improve the modelling of the tracked object dy-
namics, a non-linear variable turn model has been assumed.
Using the Fundamental Relation of Kinematics (FRK), it is
possible to obtain the derivative of a time-dependent vector
as shown in the following equation

duI

dt
=

duB

dt
+ΩΩΩ BI×u (38)

where uI and uB represent the vector expressed respectively
in the inertial and body reference frame, and ΩΩΩ BI is the an-
gular velocity vector of B with respect to I frame. Applying
the FRK to the target velocity v we get the target accelera-
tion

a =
dvB

dt
+ΩΩΩ ×v. (39)

Applying again the FRK, it is possible to obtain the target
jerk equation

ȧ =
d2vB

dt2 + Ω̇ΩΩ ×v+2ΩΩΩ ×v−ΩΩΩ × (ΩΩΩ ×v). (40)

With the hypothesis of ΩΩΩ ⊥ v, ΩΩΩ can be written as follow

ΩΩΩ =
v×a
‖v‖2 . (41)

Substituting Equation 41 into 40, it is possible to model the
target acceleration as a second order Markov process with
state dependent coefficients [32]

ȧ =−2αa− (2α2 +ω2)v+vn−1 (42)

where

ω =
‖v×a‖
‖v‖2 , α =− v ·a

‖a‖2 , vn−1 =
d2vB

dt2 + Ω̇ΩΩ ×v.

Rearranging Equation 42 in a matrix form, the state equation
becomes

ẋ =




A(ωc,α) 0 0
0 A(ωc,α) 0
0 0 A(ωc,α)


x+




B
B
B


vn−1 (43)

where

A(ωc,α) =




0 1 0
0 0 1
0 −(α2 +ω2

c ) −2α


 , B =




0
0
1




and ωc = α2 +ω2. During filtering process, this non-linear
differential equation is integrated using a 4th order Runge-
Kutta algorithm. For this dynamic model, Q1 matrix is dif-
ferent from that defined in the previous paragraph. In order
to find an analytical form for it, ωc and α have been con-
sidered constant within each time step. Applying Equation
7 for this model, it is possible to calculate Q1 as follows

Q1(ωc,α,∆ t) =
∫ ∆ t

0

(
eA(ωc,α)τ B

)(
eA(ωc,α)τ B

)T
dτ (44)

where eA(ωc,α)τ is the state space exponential matrix. Each
term of Q1 is in Appendix A.

5.1.2 Measurement model

The measurement equations are the same shown in the previ-
ous paragraph, where the sensor provides information about
the target range, elevation and azimuth. Differences are in a
more accurate and realistic noise modelling and in consid-
ering a non-constant covariance matrix R. The radar model
considered here is a phased array radar. Radar accuracy is
given by the following set of equations

σi =
√

σ2
i,N +σ2

i,F +σ2
i,B with i = {R,θ ,φ} (45)

σi,N is the Signal-to-Noise S/N-dependent random range mea-
surement error, σi,F is the fixed random error and σi,B is the
bias error. In explicit form, the terms in Equations 45 are

σRN =
∆R√

2(S/N)
σRF '

∆R
25

σRB ≈ 0

σθN =
∆θ

kM cosϕθ
√

2(S/N)
σθF '

∆θ
40cosϕθ

σθB ≈ 0

σφN =
∆φ

kM cosϕφ
√

2(S/N)
σφF '

∆φ
40cosϕφ

σφB ≈ 0

where ∆R = c/2B is the range resolution, B the signal band-
width defined for a phased array as

B =
max{∆θ ,∆φ}c

0.886λ sin(min
{

ϕθ ,ϕφ
}
)
,

c is the speed of light, ∆θ and ∆φ are the phased-array
beamwidth on broadside, ϕθ and ϕφ are the off-broadside
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scan angles. kM is the monopulse pattern difference slope, λ
the signal wavelength, the Signal-to-Noise ratio is

S/N =
PpτG2

t λ 2σ
(4π)3R4kTsL

(46)

where Pp is the peak power of the antenna at the transmitter,
τ the pulse duration, Gt is the antenna gain, σ is the target
Radar Cross Section (RCS), k = 1.3807×10−23 JK−1 is the
Boltzmann constant, Ts is the system noise temperature and
L the radar losses in dB, given by

L = Lmt +Lmr +Ls +Lp +Llens +Lsp +Lrain +Lbs.

In the previous relation, Lmt and Lmr are the microwave losses
at transmitting and receiving antenna that, in this case, are
coincident, Ls is the scan loss

Ls ≈ [cos(| φr−φ |)cos(| θr−Φ |)]−2.5

where φr and θr are the azimuth and elevation of the radar
beam with zero scan angle, and Φ is the target elevation
angle above the horizon

Φ = arcsin

[
−R2 +R2

e− (Re + z)2

2RRe

]
.

Re in the above equation is 4/3 the Earth radius. Lp is the
path loss, Llens the lens loss, Lrain the rain loss, Lsp is the loss
due to suboptimal signal processing and Lbs is the beamshape
loss. To calculate the extent of these losses refer to [31].
Once the S/N ratio for a single pulse is calculated, it is pos-
sible to integrate it for np pulses assuming a coherent inte-
gration

(S/N)CI = npS/N
S/N

(1+S/N)Li

where Li is the integration loss. This value of S/N can be
used to calculate the radar accuracy in Equation 45. Once
the standard deviation has been obtained using the previous
algorithm, the R matrix can be computed for each time step.
The Jacobian matrix HJ is equal to that defined in Equation
37, being the measurement equations the same. In order to
test the filter performance outside the nominal conditions,
the value of the rain intensity has been changed and the sig-
nal has been jammed using the following relation for calcu-
lating the new S/N value

S
J+N

=

PpτGt Grλ 2σ
(4π)3R4Lt Lr

ERPGrλ 2

(4πR)2BJLpolLr
+ kTs

where Gr is the receiving antenna gain, Lt and Lr are the
losses at transmitting and receiving antenna, Lpol is the po-
larization loss assumed to be 0 dB, BJ is the bandwidth of the
jamming signal and ERP is the Effective Radiated Power.

5.1.3 Numerical results

For the radar test case, sensor parameters have been listed
in Table 4. In Fig. 11 the simulated trajectory is illustrated,
together with the radar noisy measurements. The figure also
shows when the jamming and signal losses occur. Conse-
quences of these two faults can be seen from the first graph
of Fig. 12. The radar measurements have an update rate of
10 Hz. As it can be seen from the second plot of Fig. 12, the
condition number κ of the EKF diverges when the signal is
jammed, about 70 sec after the simulation starts, and UKF
diverges when the signal is lost. On the contrary, the Joseph
formulation of the Square Root UKF prevents filter diver-
gence over the entire simulation, confirming the higher sta-
bility features, already proved previously. Better filter per-
formance is also confirmed by Fig. 13, where deviation of
the filtered acceleration from the real value is lower than
those estimated by EKF and UKF. Fig. 14 shows how the
Root Mean Square Error of the SRUKF is halved with re-
spect to the input radar noise also during out-nominal con-
dition.

Table 4 RADAR input parameters

Param. Value Units Param. Value Units

θr 0 deg BJ 0.15 GHz
φr 20 deg np 10 -
Pp 2.5 kW ϕθ max ±60 deg
τ 50 µ-sec ϕφ max ±60 deg
Gt 39.5 dB Lmt 1.5 dB
Gr 39.5 dB Lmr 1.5 dB
f0 3.3 GHz Lsp 1 dB
Ts 500 K Li 1 dB
kM 1.6 - Lbs 3.2 dB
∆θ 2 deg σ 0.1 dBsm
∆φ 2 deg ERP 15 W

5.2 GNSS data filtering

5.2.1 Dynamic model

The dynamic model assumed here is the non-linear second
order Markov process already used for the radar test case,
where the state vector is augmented with two state variables,
in order to estimate the clock error and the clock error drift
[27] of the GNSS receiver

xGNSS =
[
xT Cb Cd

]T
. (47)
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The state vector xGNSS is expressed in the ECEF reference
frame and hereinafter it will be indicated simply by x. The
state representation of the augmented model is

ẋ=




A(ωc,α) 0 0 0 0
0 A(ωc,α) 0 0 0
0 0 A(ωc,α) 0 0
0 0 0 0 1
0 0 0 0 0




x+




B
B
B
0
1




vn−1 (48)

where A(ωc,α) and B are those expressed in the previous
section. The system noise covariance matrix Q instead is
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Fig. 13 Filtered acceleration using Joseph formulation for EKF,
UKF and SRUKF for RADAR measurements
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Fig. 14 RMSE between RADAR measurements and filtered so-
lution from 10 Monte Carlo runs using Joseph formulation of the

SRUKF

Q =




qxQ1(ωc,α,∆ t) 0
0 qyQ1(ωc,α,∆ t)
0 0
0 0

0 0
0 0

qzQ1(ωc,α,∆ t) 0
0 qcQc(∆ t)


 (49)
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where Qc is

Qc =

[
∆ t3

3
∆ t2

2
∆ t2

2 ∆ t

]

and qc is the Power Spectral Density of the clock drift.

5.2.2 Measurement model

The non-linear measurement model is composed by the pseu-
dorange and the pseudorange rate between the GNSS con-
stellation [28] and the on-board receiver as shown below

z =
[
ρ1 . . . ρNs ρ̇1 . . . ρ̇Ns

]T (50)

z = h(x)+wn

h(x) =
[
ρ̂1 . . . ρ̂Ns ˙̂ρ1 . . . ˙̂ρNs

]T
. (51)

ρ̂i and ˙̂ρi are defined as

ρ̂i=1...Ns = Ri=1...Ns +Cb

˙̂ρi=1...Ns = Ṙi=1...Ns +Cd

where Ns is the number of satellites, Ri and Ṙi are respec-
tively

Ri =

√
[xs,i(t)− x(t)]2 +[ys,i(t)− y(t)]2 +[zs,i(t)− z(t)]2

Ṙi =
1
Ri

[(ẋs,i− ẋ)(xs,i− x)+

+(ẏs,i− ẏ)(ys,i− y)+(żs,i− ż)(zs,i− z)]

where for Ṙi the time dependency has been omitted for clar-
ity. In order to derive a simpler form for the Jacobian matrix
HJ, a linear dynamic model has been assumed for the state
variables,





ξ (t) = ξ + ξ̇ ∆ t +
1
2

ξ̈ ∆ t2

ξ̇ (t) = ξ̇ + ξ̈ ∆ t

∣∣∣∣∣∣
ξ ∈

{
x y z

}


 (52)

obtaining the components shown in Appendix B.
GNSS accuracy can be expressed as a function of different
error sources

σρ = σρ
(

δρ,clock δρ,atm δρ,rec δρ,mp
)

σρ̇ = σρ̇
(

δρ̇,clock δρ̇,atm δρ̇,rec
)

where δi,clock, δi,atm, δi,rec and δi,mp, with i = {ρ, ρ̇}, are re-
spectively the clock, tropospheric, receiver and multipath er-
rors. Clock and receiver errors are modelled as a zero mean
white noise, whereas δρ,atm is obtained by means of Niell
Mapping Function (NMF)

δρ,atm = Tdry(zNED)Mdry(E)+TwetMwet(E) (53)

where Tdry and Twet represent respectively dry and wet delay
at altitude zNED, which are given by

Tdry = ae−bzNED

Twet = T0,wet +∆Twet

where a = 2.3m, b = 0.116×10−3 m−1, T0,wet = 0.1m and
∆Twet is a random walk process which features a PSD of
1 cm2/hour. For Mdry and Mwet formulation see [30,38]. Ap-
plying the Standard Multipath Error Model (SMEM) en-
dorsed by International Civil Aviation Organization (ICAO),
it is possible to calculate δρ,mp

δρ,mp = 0.13+0.53e−
E
10

where E is the satellite elevation in radians [29]. In order to
test the filter performance outside nominal conditions, two
different kind of faults have been injected. The first one is a
clock degradation and the second one is a Phase Lock Loop
(PLL) fault.

5.2.3 Numerical results

Parameters for GNSS sensor have been chosen in order to
simulate a Commercial Off-The-Shelf receiver, with clock
accuracy of 500 ns, frequency jitter of 0.3 Hz, bit resolution
of 1 % of the chip rate and an update rate of 1 Hz. The sim-
ulated trajectory is the same of Paragraph 5.1.3 with the dif-
ference that the NED reference frame origin is fictitiously
located in a point of latitude 45.2◦-N and longitude 7.6◦-
E. The trajectory geo-localization is necessary to express it
in ECEF coordinates. The GPS constellation is obtained by
the almanac of the 29th February 2016. As an update rate
of 10 Hz has been chosen for the filter, whereas the actual
measurement occurs with a rate of 1 Hz, it has been neces-
sary to estimate the state vector in absence of measurements
propagating the dynamic equation 43. Similarly to the pre-
vious case, two faults have been simulated: a clock accuracy
degradation (Fig. 15) and a PLL failure, which corresponds
to loosing all the satellites in view. The clock degradation
failure affects the filter performance more critically, caus-
ing the divergence of the EKF and UKF even if the Joseph
formulation is used. Nevertheless, the algorithm proposed in
this paper remains stable after both failures. Evidence of the
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improved filter performance is shown also in Fig. 16 and 17,
except for the z-coordinate of the RMSE, for which the state
estimation is noisier when the clock degradation is injected.
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UKF and SRUKF for GNSS measurements
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Fig. 17 RMSE between GNSS measurements and filtered solution
from 10 Monte Carlo runs using Joseph formulation of the SRUKF

6 Conclusions

This paper presents an alternative approach to improve filter
numerical stability for non-linear estimation and sensor fu-
sion. This technique is based on the Joseph formulation of
the state covariance matrix. It guarantees better numerical
properties, such as improved numerical stability and preser-
vation of symmetry, as well as a higher order accuracy in the
state estimation. A further positive aspect is that it prevents
divergences when the equations are strongly non-linear as
shown in radar and GNSS simulation. This approach is also
of great interest in solving positive definiteness issues of the
Square-Root algorithm, avoiding the negative Cholesky up-
dating. The numerical results show how estimated values
by SRUKF are much more accurate than those obtained by
EKF and UKF. The matrix condition number is improved
using the Joseph formula and becomes even better if the lat-
ter is combined with the Square-Root algorithm, that never
diverges even in case of signal degradation. Furthermore,
another important aspect is that the computational time is
not affected by the Joseph approach.
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Appendix A Q1 Matrix

Solving the Equation 44 we get the following expressions
for the Q1 matrix components. ωc, α and ∆ t are the same
defined in Paragraph 5.1.1.

q1,1 =
4∆ tω2

c α +ω2
c +4∆ tα3−11α2

4α(ω2
c +α2)3 − e−2α∆ t

4ω2
c α(ω2

c +α2)3

[
ωcα sin(2ωc∆ t)

(
3α2−ω2

c
)
+α2 cos(2ωc∆ t)

(
3ω2

c −α2)

ω4
c +α4 +2ω2

c α2 +8ωcαeα∆ t sin(ωc∆ t)
(
ω2

c −α2)

−16ω2
c α2eα∆ t cos(ωc∆ t)

]

q1,2 =
e−2α∆ t

2ω2
c (ω2

c +α2)2

[
ω2

c e2α∆ t + cos(ωc∆ t)2 (ω2
c −α2)

+α2−2ω2
c eα∆ t cos(ωc∆ t)+ωcα sin(2ωc∆ t)+

−2ωcαeα∆ t sin(ωc∆ t)
]

q1,3 =
e−2α∆ t

4ω2
c α(ω2

c +α2)

[
α2 cos(2ωc∆ t)−ω2

c e2α∆ t +ω2
c

−α2−ωcα sin(2ωc∆ t)+4ωcαeα∆ t sin(ωc∆ t)
]

q2,1 =
e−2α∆ t

2ω2
c (ω2

c +α2)2

[
ω2

c e2α∆ t +α2 +ω2
c cos(ωc∆ t)2

−α2 cos(ωc∆ t)2−2ω2
c eα∆ t cos(ωc∆ t)+ωcα sin(2ωc∆ t)

−2ωcαeα∆ t sin(ωc∆ t)
]

q2,2 =
e−2α∆ t

4ω2
c α(ω2

c +α2)

[
ω2

c −ω2
c e2α∆ t −α2 cos(2ωc∆ t)

+α2 +ωcα sin(2ωc∆ t)
]

q2,3 =
e−2α∆ t

4ω2
c

[cos(2ωc∆ t)−1]

q3,1 =
e−2α∆ t

4ω2
c α(ω2

c +α2)

[
α2 cos(2ωc∆ t)−ω2

c e2α∆ t

+ω2
c −α2−ωcα sin(2ωc∆ t)+4ωcαeα∆ t sin(ωc∆ t)

]

q3,2 = q2,3

q3,3 =
e−2α∆ t

4ω2
c α

[
α2 cos(2ωc∆ t)−ω2

c −α2+

+ωcα sin(2ωc∆ t)]

Appendix B Jacobian Matrix

Applying the Jacobian matrix definition of Equation 17 to
the measurement model defined in Equation 51 we get the
following expressions for the HJ components, where sym-
bols have been defined in Paragraph 5.2.2.

∂ ρ̂i

∂ξ
=−ξs,i−ξ

Ri
,

∂ ρ̂i

∂ ξ̇
=

∂ ρ̂i

∂ξ
∆ t,

∂ ρ̂i

∂ ξ̈
=

1
2

∂ ρ̂i

∂ξ
∆ t2

∂ ρ̂i

∂Cb
= 1

∂ ρ̂i

∂Cd
= 0

∂ ˙̂ρi

∂ξ
=− ξ̇s,i− ξ̇

Ri
+

Ṙi (ξs,i−ξ )
R2

i

∂ ˙̂ρi

∂ ξ̇
=−

ξs,i−ξ +
(

ξ̇s,i− ξ̇
)

∆ t

Ri
+

Ṙi (ξs,i−ξ )∆ t
R2

i

∂ ˙̂ρi

∂ ξ̈
=− (ξs,i−ξ )∆ t

Ri
− 1

2
∆ t2

Ri

(
ξ̇s,i− ξ̇ +

Ṙi (ξs,i−ξ )
Ri

)

∂ ˙̂ρi

∂Cb
= 0,

∂ ˙̂ρi

∂Cd
= 1
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