
Doctoral Dissertation
Doctoral Program in Electronics Engineering (29thcycle)

Design and Optimization of
Graph Transform for Image

and Video Compression

By

Giulia Fracastoro

Supervisor:
Prof. Enrico Magli

Doctoral Examination Committee:
Prof. Riccardo Bernardini
Prof. Gene Cheung
Prof. Lorenzo Galleani
Prof. Maurizio Martina
Dr. Chiara Ravazzi

Politecnico di Torino
2017

Declaration

I hereby declare that, the contents and organization of this dissertation consti-
tute my own original work and does not compromise in any way the rights of
third parties, including those relating to the security of personal data.

Giulia Fracastoro
2017

* This dissertation is presented in partial fulfillment of the requirements for
Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo).

To my mother

Acknowledgements

Firstly, I would like to thank my thesis advisor, Prof. Enrico Magli, for his
support and guidance during all these years. I would like to thank him for
always encouraging my research and for allowing me to grow in this field. Beside
my advisor, I also would like to express my deep gratitude to Prof. Pascal
Frossard, who gave me the opportunity to join his lab for a visiting period,
during which I have learned so many things.

During my PhD I had the oppurtunity to work closely with a number of
people who contributed significantly to this thesis. I am grateful to Dr. Dorina
Thanou for her help during my visiting period at EPFL. Her support was really
valuable and she always encouraged me to be more optimistic about my work.
I would like also to thank Prof. Marco Grangetto and Francesco Verdoja for
giving me the chance of collaborating with them.

My sincere thanks also goes to all the people of Sisvel Technology for giving
me this opportunity and for being helpful and supportive during my PhD.

I also would like to thank all the people from LTS4 that I have met during
my visiting period in Lausanne.

A huge thanks goes to all the former and current members of IPL. They
have all helped me during these years. In particular, I am grateful to my
officemate Matteo for his endless patience, always listening to all my concerns.
A special thanks also goes to Sophie and Chiara for always encouraging me in
my research work.

Finally, I am also deeply grateful to my family and to Gianluca for their
unconditional support during all these years.

Abstract

The main contribution of this thesis is the introduction of new methods for
designing adaptive transforms for image and video compression. Exploiting
graph signal processing techniques, we develop new graph construction methods
targeted for image and video compression applications. In this way, we obtain a
graph that is, at the same time, a good representation of the image and easy to
transmit to the decoder. To do so, we investigate different research directions.
First, we propose a new method for graph construction that employs innovative
edge metrics, quantization and edge prediction techniques. Then, we propose to
use a graph learning approach and we introduce a new graph learning algorithm
targeted for image compression that defines the connectivities between pixels by
taking into consideration the coding of the image signal and the graph topology
in rate-distortion term. Moreover, we also present a new superpixel-driven
graph transform that uses clusters of superpixel as coding blocks and then
computes the graph transform inside each region.

In the second part of this work, we exploit graphs to design directional trans-
forms. In fact, an efficient representation of the image directional information
is extremely important in order to obtain high performance image and video
coding. In this thesis, we present a new directional transform, called Steerable
Discrete Cosine Transform (SDCT). This new transform can be obtained by
steering the 2D-DCT basis in any chosen direction. Moreover, we can also use
more complex steering patterns than a single pure rotation. In order to show
the advantages of the SDCT, we present a few image and video compression
methods based on this new directional transform. The obtained results show
that the SDCT can be efficiently applied to image and video compression and
it outperforms the classical DCT and other directional transforms. Along the
same lines, we present also a new generalization of the DFT, called Steerable
DFT (SDFT). Differently from the SDCT, the SDFT can be defined in one

vi

or two dimensions. The 1D-SDFT represents a rotation in the complex plane,
instead the 2D-SDFT performs a rotation in the 2D Euclidean space.

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Graph-based image and video compression 2

1.2 Directional transform . 3

1.3 Thesis organization . 5

1.4 Publications . 6

2 Graph signal processing 8

2.1 Graph-based image processing 11

3 Predictive graph construction for image compression 14

3.1 Proposed graph construction technique 15

3.1.1 Graph weight metric . 15

3.1.2 Quantization . 16

3.1.3 Graph edge prediction method 17

3.1.4 Deletion of isolated edges 18

3.2 Experimental results . 19

3.2.1 Edge weight metric evaluation 20

viii Contents

3.2.2 Graph compression . 20

3.2.3 Image compression performance 21

4 Graph Transform Learning for Image Compression 24

4.1 Basic definitions on graphs . 25

4.2 Graph-transform optimization 26

4.2.1 Rate-distortion tradeoff 26

4.2.2 Distortion approximation 27

4.2.3 Rate approximation of the transform coefficients 27

4.2.4 Rate approximation of the graph description 28

4.2.5 Graph learning problem 30

4.3 Image compression application 31

4.4 Experimental results . 33

4.4.1 Experimental setup . 33

4.4.2 Results . 34

5 Superpixel-driven graph transform for image compression 36

5.1 Proposed technique . 37

5.1.1 Superpixel clustering . 37

5.1.2 Intra-region graph transform 40

5.2 Experimental results . 41

6 Steerable Discrete Cosine Transform 47

6.1 Preliminaries . 47

6.2 Analysis of the eigenvalues’ multiplicity 49

6.3 Transform definition . 50

6.4 Probabilistic interpretation of the SDCT 52

Contents ix

7 SDCT: application to image and video compression 54

7.1 SDCT-1 . 54

7.1.1 Experimental Results . 56

7.2 Rate-distortion optimization . 61

7.2.1 RD model . 62

7.2.2 Proposed algorithms for RD optimization 64

7.2.3 Image codec for SDCT-AM and SDCT-BT 69

7.2.4 Experimental results . 70

7.3 Subspace-Sparsifying Steerable DCT 79

7.3.1 Rate-Distortion Optimization 81

7.3.2 Encoder . 82

7.3.3 Experimental results . 83

8 Steerable Discrete Fourier Transform 86

8.1 SDFT - 1D case . 87

8.1.1 Relationships of the 1D-SDFT to other transforms 91

8.2 SDFT - 2D case . 91

8.3 Applications of the SDFT . 95

9 Conclusions 97

9.1 Future work . 98

References 100

List of Figures

2.1 An example of graph signal: the height of the black bar represents
the value of the signal in each node. 9

2.2 Two graph models: (a) the path graph P4, (b) the cycle graph C8. 11

2.3 An image block and its corresponding graph. 12

3.1 Prediction-based graph construction method. The nodes rep-
resent the binary image transmitted to the decoder: the black
ones are the edge pixels, the white ones the non-edge pixels.
The dotted lines represent the predicted image discontinuity, the
figure represents the three possible situations. The edges are set
in accordance with the discontinuities: the ones with a thicker
line have the higher weight, the ones with a thinner line have
the lower weight. 17

3.2 Block diagram of the proposed method 19

3.3 Original images. 20

3.4 Percentage of energy in function of the number of retained
coefficients. 20

3.5 Percentage of energy in function of the number of retained
coefficients. 21

3.6 RD curve comparison between our proposed method, DCT and
EAT. 22

3.7 Visual comparison between our proposed method and DCT at
0.4 bpp for the first line and 1.25 bpp for the second line. 23

List of Figures xi

4.1 An example of a graph (a) and its corresponding dual graph
(b). The edges in the first graph (labeled with lower case letters)
become the nodes of the corresponding dual graph. 29

4.2 Block diagram of the proposed method. 32

4.3 Block classification of Lena. 34

4.4 RD comparison between the proposed method and DCT. 35

5.1 An image segment into superpixels. 38

5.2 An image divided into 100 regions by the proposed algorithm. . 40

5.3 Three of the sample images. 43

5.4 The performance results of the proposed SDGT and DCT 8×8
is presented in term of PSNR values over bitrate. 44

5.5 A detail on the luminance component of one image compressed
with both DCT 8×8 and the proposed SDGT at bitrate of 0.75
bpp. 45

5.6 A 2592×3888 sample image with a 512×512 cropped patch (top)
and the performance of the proposed SDGT and 8×8 DCT on
the cropped region in term of PSNR values over bitrate (bottom). 46

6.1 The square grid graph P4 ×P4. 48

6.2 2D-DCT basis vectors represented in matrix form (with n =
8): the corresponding two eigenvectors of an eigenvalue with
multiplicity 2 are highlighted in red, the n− 1 eigenvectors
corresponding to λ = 4 are highlighted in blue and the n− 1
eigenvectors corresponding to the eigenvalues with algebraic
multiplicity 1 are highlighted in green. 50

6.3 Zigzag ordering for the p components of θ. 52

6.4 Steerable DCT with θ = π
4 . 53

7.1 Original images. 56

7.2 M -term non-linear approximation using different angle quanti-
zations. 57

xii List of Figures

7.3 M -term non-linear approximation using different block sizes. . . 58

7.4 Visual comparison between the conventional DCT and the pro-
posed SDCT-1: a detail of the House image reconstructed from
M = 6 coefficients using 8×8 blocks. 59

7.5 Visual comparison between the conventional DCT and the pro-
posed SDCT-1: a detail of the Lena image reconstructed from
M = 3 coefficients using 4×4 blocks. 59

7.6 Performance comparison between DCT, SDCT-1 and DDCT. . . 60

7.7 Binary subband subdivision for SDCT: from level 1 downwards,
we split a subband if this operation decreases the cost functional J 68

7.8 Signaling of the subbands structure: from level 1 downwards, we
transmit the labels of the nodes in the binary decision tree. . . . 69

7.9 RD performance comparison for the image Airplane F16 using
different block sizes: from top to bottom, n= 8,16,32 75

7.10 SSIM performance comparison for the image Airplane F16 using
different block sizes: from top to bottom, n= 8,16,32 77

7.11 Visual comparison on Airplane F16 image (block size 64×64, 2
bpp): at the same bpp, DCT is more spotted than SDCT-AM
and SDCT-BT. 78

7.12 Sparsifying rotation: using the angle defined in (7.3) p transform
coefficients are exactly null. 81

7.13 RD comparison between the three directional methods and the
DCT. 85

8.1 An example of a pair of coefficients x̂′
k and x̂′

N−k as a function
of the rotation angle θ ∈ [0,2π]. 90

8.2 A toroidal grid graph T16,16 . 92

8.3 Rotation of the 2D-DFT vector pair u(p,q) and u(q,p). 95

8.4 Example of filtering the even component of a real signal. 96

List of Tables

4.1 Average gain in PSNR measured with the Bjontegaard metric. . 34

7.1 Average gain in PSNR with respect to DCT measured with
Bjontegaard metric (tests on images) 72

7.2 Average gain in PSNR with respect to DCT measured with
Bjontegaard metric (tests on intra-prediction errors) 73

7.3 Average gain in PSNR with respect to wavelets measured with
Bjontegaard metric . 76

7.4 Integer SDCT for HEVC: average gain in PSNR with respect to
integer DCT measured with Bjontegaard metric 79

7.5 Percentage of blocks where the SDCT is chosen over the DCT
at 40 dB . 80

7.6 Average gain in PSNR and percentage of bitrate saving measured
with the Bjontegaard metric. 83

7.7 Percentage of blocks where the S3DCT is chosen over the DCT
for the image Lena. 84

Chapter 1

Introduction

In image and video compression, the two dimensional discrete cosine transform
(DCT) is by far the most widespread transform [1]. The DCT is used in the
majority of image and video compression standards, such as JPEG, H264 and
HEVC. For example, in the latest video coding standard HEVC, the core
transform is an integer approximation of the DCT [2]. Also other common
video codecs, such as Thor [3] and VP9 [4], use an integer approximation of
the DCT for residual coding.

The DCT can efficiently represent smooth signals, but it becomes inefficient
when the signal contains large discontinuities. In this case, the DCT will
generate a non-sparse signal representation and the high-frequency coefficients
can have large magnitude. This will result in poor coding performance. In such
cases, an adaptive transform, which adapts its basis functions to the signal
structure, may provide better performance.

In this thesis, we investigate two different types of adaptive transforms. In
the first case, we use a graph-based approach. Any image can be viewed as
a graph, where each pixel is a node of the graph and the edges describe the
connectivity relations among pixels, e.g. in terms of similarity [5]. It is possible
to define a transform on this domain, called graph Fourier transform (GFT) [5].
Thanks to the graph representation, the corresponding transform is “aware” of
image discontinuities, which are downplayed so as to minimize generation of
high-frequency coefficients and maximize energy compaction.

2 Introduction

In the second case, we exploit graph signal processing techniques in order
to propose a new directional transform. This new directional transform, called
steerable discrete cosine transform (SDCT), can be obtained by steering the
2D-DCT basis functions in any chosen direction. In this way, we incorporate
directional information into the 2D-DCT obtaining a transform that follows the
dominant direction of the image and better preserves the directional information
of the image.

In the next two sections we describe more in detail these two approaches.

1.1 Graph-based image and video compression

In the last few years, researchers have made some attempts to perform image
and video compression using graph signal processing techniques. Block-based
methods using graph Fourier transform have been proposed in [6–8], but they
reported unsatisfactory results on natural images that are not piecewise smooth.
For the specific case of residual coding, a few methods based on GFT have
been recently proposed. A novel graph-based method for intra-frame video
coding has been presented in [9], which introduces a new generalized graph
Fourier transform optimized for intra-prediction residues. Instead, in [10] the
authors propose a block-based lifting transform on graphs for intra-predicted
video coding. Moreover, a graph-based method for inter-predicted video coding
has been introduced in [11], where the authors design a set of simplified graph
templates capturing basic statistical characteristics of inter-predicted residual
blocks. Another graph-based method for inter-predicted video coding has been
recently proposed in [12], where the authors propose a new class of graph-based
transforms, called symmetric line graph transforms.

Another approach to graph-based image and video compression is presented
in [13], where the authors introduce a new lifting-based wavelet transform on
graphs. In [14, 15], a novel approach for image compression using graph-based
wavelet filterbanks is presented. Instead, in [16–18] the authors propose a
complete video encoder based on lifting-based wavelet transforms on graphs.
They construct a graph in which any pixel could be linked to a number of
spatial and temporal neighbors, in this way they exploit jointly spatial and
temporal correlation.

1.2 Directional transform 3

One of the main drawbacks of graph-based compression techniques lies in
the cost required to represent and encode the graph, which may outweigh the
coding gain provided by the edge adaptive transform. In order to solve this
problem, in [8] the authors propose to use a lookup table where they store
the most commonly used graph transforms, and then during encoding they
just transmit the index of the corresponding chosen transform. However, this
method present several issues when applied to larger blocks (such as 16×16
or 32×32 blocks) due to the increasing number of possible transforms. This
will lead to a very large lookup table, that is difficult to handle both from
the memory and computational side. In our work we focus on developing new
graph construction techniques for graph-based compression, obtaining a graph
that at the same time gives an efficient image representation and is not too
complex. In this thesis we introduce the following techniques:

• a new method of graph construction for image compression applications
that employs innovative edge metrics, quantization and edge prediction
techniques.

• a novel graph learning algorithm targeted for image compression that
uncovers the connectivities between pixels by taking into consideration the
coding of the image signal and the graph topology in rate-distortion term,
obtaining in this way a graph that optimizes the overall rate-distortion
performance.

• a new superpixel-driven graph transform that uses clusters of superpixels
[19], which have the ability to adhere nicely to edges in the image, as
coding blocks and computes inside these homogeneously colored regions
a graph transform which is shape adaptive.

1.2 Directional transform

Efficient representation of directional information is extremely important for
high performance image and video coding [20]. For this reason, recently several
directional transforms have been proposed and applied in image and video
coding. Most of these transforms consist in modification of the 2D-DCT in order
to incorporate directional information [21–25]. The directional DCT (DDCT)

4 Introduction

presented in [21] is the first attempt in this sense. It consists in a separable
transform in which the first 1D-DCT may follow a direction other than the
vertical or the horizontal one; then the coefficients produced by all directional
transforms in the first step are rearranged so that the second transform can
be applied to those coefficients that are best aligned with each other. Later,
other works have followed this approach. In [22], the authors have introduced
new directions for the first transform and have proposed a new zigzag scanning
method. In [23], it is suggested to not apply the second-stage DCT, or to apply
it only on the DC coefficients generated during the first transform [24]. In
[25], DDCT [21] is improved using anisotropic local basis supports, where the
optimal basis is selected exploiting the bintree structure of the dictionary.

These methods, however, have several issues. In particular, they require
1D-DCT of various lengths, some of which are very short and are not always a
power of 2; moreover, the second DCT may not always be applied to coefficients
of similar AC frequencies [26]. In our tests, we have also noticed that the
performance of the DDCT decreases when the block size increases.

Another method to introduce directionality in the DCT has been presented
in [27], where directional primary operations have been introduced for the
lifting-based DCT. In this way, the DCT-like lifting transform can be applied
along any direction, but it extends across block boundaries in order to apply
direction adaptation.

In the specific case of intra-frame video coding, another approach has been
investigated: the transform is constructed by a directional prediction and a
corresponding data-dependent transform. In [28], mode-dependent directional
transforms have been derived from Karhunen-Loève transform, using prediction
residuals from training video data. Various follow-up works have then enhanced
[28] exploiting the symmetry to reduce the number of transform matrices needed
[29–31]. To further improve the performance, several other mode-dependent
directional transforms have been proposed, such as the mode-dependent sparse
transform [32] and the rate-distortion optimized transform [33]. Another data-
dependent directional transform called Sparse Orthonormal Transform has been
proposed in [34] and [35]. In this case, the image blocks are classified using the
image gradient. Then, the transform of each class is optimized by minimizing
on a training set an approximation cost. A common problem of these methods

1.3 Thesis organization 5

is that training sets must be processed to obtain transforms that are optimal
for a given class, so the transform is always dependent on the training set used.

In this thesis, we present a new framework for directional transforms.
Starting from the graph transform of a grid graph, we design a new transform,
called steerable DCT (SDCT), which can be obtained by steering the 2D-DCT
basis in a chosen direction. The proposed transform can be oriented in any
possible direction and we can use more complex steering patterns than a single
pure rotation. We also show that the SDCT can be applied to image and video
compression problems providing a significant quality gain.

Moreover, we also introduce a novel generalization of the DFT, called
steerable DFT (SDFT). Differently from the SDCT, the SDFT can be defined
in one or two dimensions. The 1D-SDFT can be interpreted as a rotation of
the basis vectors in the complex plane. Instead, the 2D-SDFT represents a
rotation on the two-dimensional Euclidean space.

1.3 Thesis organization

The reminder of this thesis is organized as follows.

In Chapter 2 we introduce the graph signal processing framework. In
particular, we focus on graph-based image processing techniques. Chapter 3
describes a novel graph costruction technique targeted for image compression.
We introduce a new method for defining the edge weights of the graph and
efficiently coding them. In particular, we introduce a new method of edge
prediction that nearly halves the cost of graph transmission.

In Chapter 4, we propose a novel framework for designing the graph in
image compression applications. Using a graph learning approach, we choose
the optimal graph by solving a rate-distortion optimization problem that takes
into account the coding of the image as well as the cost of transmitting the
graph. Moreover, we also introduce an innovative method for coding the graph
by treating its weights as a graph signal that lies on the dual graph.

Chapter 5 describes an innovative image compression method that jointly
employs computer vision tools and the graph Fourier transform. We first subdi-

6 Introduction

vide the image into uniform regions that adhere well to the image boundaries,
then we apply a graph transform within each region.

We then move to directional transforms in Chapter 6. In this chapter we
present a new directional transform called steerable DCT (SDCT). Then, in
Chapter 7 we present a few image compression algorithms based on the SDCT.

Along the same line, in Chapter 8 we present a new directional DFT, called
steerable DFT (SDFT).

1.4 Publications

In this section we provide a list of publications which are the outcome of the
research carried out during the PhD program.

1. G. Fracastoro, E. Magli, Predictive Graph Construction for Image Com-
pression, Proc. of IEEE International Conference on Image Processing,
2015, pp. 2204-2208. (Best student paper award (third place))

2. G. Fracastoro, F. Verdoja, M. Grangetto, E. Magli, Superpixel-driven
Graph Transform for Image Compression, Proc. of IEEE International
Conference on Image Processing, 2015, pp. 2631-2635.

3. G. Fracastoro, E. Magli, Steerable Discrete Cosine Transform, Proc. of
IEEE International Workshop on Multimedia Signal Processing, 2015, pp.
1-6.

4. G. Fracastoro, E. Magli, Subspace-sparsifying Steerable Discrete Cosine
Transform from Graph Fourier Transform, Proc. of IEEE International
Conference on Image Processing, 2016, pp. 1534-1538.

5. G. Fracastoro, D. Thanou, P. Frossard, Graph Transform Learning for
Image Compression, Proc. of Picture Coding Symposium, 2016. (Best
paper award)

6. G. Fracastoro, S. M. Fosson, E. Magli, Steerable Discrete Cosine Trans-
form, IEEE Transactions on Image Processing, vol. 26, no. 1, pp. 303-314,
2017.

1.4 Publications 7

7. G. Fracastoro, E. Magli, Steerable Discrete Fourier Transform, accepted
for publication in IEEE Signal Processing Letters.

Chapter 2

Graph signal processing

Graphs are generic data representation forms that are useful for describing
the geometric structures of data domains in numerous applications, including
social, energy, trasportation, sensor, and neuronal networks [5]. Since these
types of data do not have a regular domain, it is not possible to process them
using the classical techniques of signal processing. For this reason, the new
field of graph signal processing addresses the problem of processing signals that
live on irregular domains.

A graph can be denoted as G = (V ,E), where V is the set of nodes with
|V| =N and E ⊂ V ×V is the set of edges with |E| =M and each edge connects
two nodes of the graph. A graph is denoted a weighted graph if each edge
has a weight value associated to it; otherwise we denote it as an unweighted
graph. If we consider a weighted graph, its weight often represents the similarity
between the two nodes it connects and it is possible to represent the graph
by its weighted adjacency matrix W (G) ∈ RN×N , where, if there is an edge
connecting nodes i and j, W (G)ij is the weight associated to the edge (i, j),
otherwise W (G)ij = 0 . Instead, if we consider an unweighted graph, we can
represent it by its adjacency matrix A(G) ∈ RN×N , where, if there is an edge
connecting nodes i and j, A(G)ij = 1, otherwise A(G)ij = 0 . In addition, a
graph is said to be an undirected graph if all its edges are bidirectional, i.e.
the edge (i, j) is equal to the edge (j, i). Moreover, we can say that a graph
is connected if there is a sequence of edges, called path, which connects every

9

Fig. 2.1 An example of graph signal: the height of the black bar represents the value
of the signal in each node.

pair of nodes of the graph. If the graph is not connected, we can identify K
connected components, where K > 1.

In this thesis, we consider undirected graphs with no self loops (i.e. there
are no edges (i, i) ∀i ∈ V), thus the adjacency matrix is symmetric and has null
diagonal.

We can define a graph signal x : V → R in the vertex domain as a real-
valued function defined on the nodes of the graph G. The graph signal may be
represented as a vector x ∈ RN , where the i-th component is the value of the
signal at node i ∈ V [5]. An example of graph signal is shown in Fig. 2.1.

The (unnormalized) graph Laplacian, also called the combinatorial graph
Laplacian, is defined as L(G) = D(G) −W (G) (or L(G) = D(G) −A(G) if the
graph is unweighted1), where D(G) is a diagonal matrix whose i-th diagonal
element D(G)ii is the sum of the weights of all edges incident to node i. The
graph Laplacian can be interpreted as a difference operator, because for any
graph signal x ∈ RN it satisfies the following relation

[L(G)x]i =
∑

j∈Ni

Wij(G)(xi −xj),

where Ni represents the neighborhood of the node i and contains all the nodes
connected to i by an edge. The graph Laplacian L(G) is also used to measure

1From now on, for the sake of simplicity we will consider only a weighted graph, but
analogous results can be obtained for unweighted graphs.

10 Graph signal processing

the smoothness of a graph signal f on G [36]

xTL(G)x = 1
2

N∑
i=1

N∑
j=1

Wij(G)(xi −xj)2.

Since the adjacency matrix is real symmetric and D(G) is a diagonal matrix,
L(G) is a real symmetric matrix, and therefore it is diagonalizable by an
orthogonal matrix

L(G) = ΨΛΨT ,

where Ψ ∈ RN×N is the eigenvector matrix of L(G) that contains the eigenvec-
tors as columns and Λ ∈ RN×N is the diagonal eigenvalue matrix where the
eigenvalues are sorted in increasing order. The eigenvalues {λl}l=0,...,N−1 of
L(G) are real and nonnegative. Moreover, zero is an eigenvalue of L(G) with
multiplicity equal to the number of connected components of the graph [37].

The eigenvectors of the Laplacian are used to define the graph Fourier
transform (GFT) [5] of the signal x as follows

x̂ = ΨT x.

The graph signal x can be easily retrieved from x̂ by inversion, namely x = Ψx̂.
Analogous to the Fourier transform in the Euclidean domain, the GFT is used
to describe the graph signal in the Fourier domain. As shown in [5], the graph
Laplacian eigenvalues and eigenvectors provide a notion of frequency. For
connected graphs, the eigenvector ψ0 associated with the eigenvalue λ0 = 0 is
constant in each node. The eigenvectors corresponding to the lowest eigenvalues
are smooth on G, i.e. if two nodes are connected by an edge with a large weight,
the values of the eigenvector in these nodes are likely to be similar. Instead,
the eigenvectors corresponding to larger eigenvalues oscillate more rapidly and
are more likely to have dissimilar values on nodes connected by edges with
large weight.

It is possible to recast some existing transforms as graph Fourier transforms
on a specific topology. An example is the equivalence between the 1D-DCT
and the graph Fourier transform of a path graph. We define a path graph PN

as a graph with N vertices and line topology, as shown in Fig. 2.2(a). It is
known that the eigenvectors of L(PN) are equal to the basis vectors of the

2.1 Graph-based image processing 11

(a)
(b)

Fig. 2.2 Two graph models: (a) the path graph P4, (b) the cycle graph C8.

1D-DCT (more precisely DCT-2) [38]. Therefore, the DCT is a valid GFT of a
path graph. Moreover, there is also an equivalence between the 1D-DFT and
the graph Fourier transform of a cycle graph CN , whose structure is shown in
Fig. 2.2(b). This type of graph is called a circulant graph because its adjacency
matrix, and therefore its Laplacian matrix, is circulant. It is well known that a
valid set of eigenvectors for any circulant matrix is the set of DFT matrix rows,
then the 1D-DFT is a valid GFT for CN .

2.1 Graph-based image processing

Graph signal processing can be used also in classical image processing applica-
tions. An image signal can be interpreted as a graph signal where the nodes
of the graph are the pixels of the image and each pixel is connected to the
neighboring pixels. Usually, the edge weights between two neighboring pixels
are set according to the similarity of the two pixels [39]. An example of a graph
of an image block is shown in Fig. 2.3. In this way, it is possible to embed
the structure of the image into the associated graph representation and one
can design signal-adaptive transforms or filters. This can be useful in many
image processing applications, such as compression, denoising and other image
enhancement techniques.

Image compression is an important application field of graph signal process-
ing. The graph representation of the image captures the main characteristics
of the signal and allows one to design an adaptive transform in an elegant and
effective way. The resulting transform is “aware” of the image discontinuities
and it can lead to a very compact representation of the signal, where the signal

12 Graph signal processing

0.018764 10.018764 1

Fig. 2.3 An image block and its corresponding graph.

energy is concentrated in few low frequencies coefficients. As shown in the
previous chapter, numerous graph-based image and video coding methods have
been presented in the last years [6–18].

Image denoising is another important application field of graph signal pro-
cessing. Since image denoising is an under-determined problem, it is important
to define appropriate regularizations or priors. In [40], a GFT domain sparsity
prior has been proposed. Moreover, recently some researchers propose to use
the graph Laplacian regularizer as a possible prior [41–44]. The graph Laplacian
regularizer states that a desirable image patch is smooth with respect to a
defined graph G. Therefore, the strength and direction of the resulting local
filter depends on the edge weights that define the adjacency matrix. These
methods perform competitively with other state-of-the-art methods for natural
images and outperform them significantly for piecewise smooth images such as
depth maps [40, 43].

Graph signal processing techniques are applied also in other inverse imaging
problems. In [45], the authors use a graph-based regularization problem for
upsampling low-resolution depth images. Instead, other researchers propose to
use the graph Laplacian regularizer for super-resolution [46], deblurring [47]
and soft decoding of JPEG images [48, 49].

In the remainder of this thesis, we will focus only on the specific problem of
graph-based image compression. More precisely, we will propose new techniques

2.1 Graph-based image processing 13

for designing the graph in order to find a good tradeoff between the cost of the
graph transmission and the quality of the transform. Moreover, we also use
the graph Fourier transform in order to define a new directional transform.

Chapter 3

Predictive graph construction
for image compression

While graph-transforms have been shown to be more efficient than conventional
transforms, the overhead of graph transmission may easily outweigh the coding
efficiency benefits. Therefore, it is very important to design graph representa-
tions and corresponding graph transforms that are efficient also when graph
has to be transmitted to a decoder. In this chapter, we propose a new method
of graph construction for graph-based image compression, obtaining a graph
that at the same time gives an efficient image representation and is not too
complex. We introduce a new technique for defining the edge weights of the
graph and efficiently coding them. One of the main novelty of our work is
the development of a technique for edge prediction that nearly halves the cost
for graph transmission. With the proposed method, we outperform existing
techniques achieving an average gain of 1.6 dB in PSNR compared to the DCT
transform.

Part of the work described in this chapter has been previously published in G. Fracastoro,
E. Magli, Predictive Graph Construction for Image Compression, Proc. of IEEE International
Conference on Image Processing, 2015, pp. 2204-2208.

3.1 Proposed graph construction technique 15

3.1 Proposed graph construction technique

We now describe the proposed technique used to construct a weighted graph
of an image. One of the main drawbacks of any graph compression technique
is that the graph itself has to be transmitted to the decoder. For this reason,
the cost of transmitting the graph should be as small as possible. In our work,
we pay particular attention to develop techniques that simplify as much as
possible the graph structure without a significant decrease in the compression
performance.

3.1.1 Graph weight metric

The graph structure used is a square grid where each pixel is a vertex of the
graph and is connected to each of its 4-connected neighbors. We have chosen
this structure because it has been proved that, when the graph is a 4-connected
grid and all edges have the same weight, the 2D DCT basis functions are
eigenvectors of the graph Laplacian, and thus the transform matrix U can be
the 2D DCT matrix [50].

The edge weights of the graph represent the similarity between the two
pixels connected by the edge. Several weighting functions have been used to
determine the edge weights in image processing applications, two of the most
commonly used are the Cauchy function and the Gaussian function [39], that
are defined as follows:

Cauchy function: W (G)ij = 1
1+(dij

α)2
,

Gaussian function: W (G)ij = e
−

d2
ij

σ2 ,

where dij is the Euclidean distance between pixel i and j of the image x
(dij = |xi −xj |) and α and σ are defined as in [51].

Most of the graph-based image compression methods present in the literature
use an unweighted graph, even if in some case a weighted graph with Gaussian
weights is used, as in [52]. Conversely, we propose to employ a Cauchy function

16 Predictive graph construction for image compression

to determine the weights. In Section 3.2.2 we show that this choice outperforms
the Gaussian weights.

Since the graph weights depend on the distance between pixels, the graph
construction could be influenced by the presence of noise and the obtained
graph may not capture the main characteristic of the image. In order to reduce
this influence, we do not compute the edge weights using the original image, but
first we smooth the image. It is important to use smoothing techniques that
do not modify the edges present in the image, in our tests we used anisotropic
diffusion [53].

3.1.2 Quantization

If we use a graph defined as in the previous section, the information we need to
encode are only the edge weights, whereas the graph topology is fixed and there
is no need to transmit it. Given an image block of n2 pixels, its grid graph has
2n(n−1) edges, i.e. almost twice the number of pixels, which explains why it
is extremely important to study techniques for reducing this overhead.

First, we decrease the number of possible edge weight values for each edge
in the graph. To do this we quantize the argument of the weight function,
i.e the distances dij . We have seen that their probability distribution can be
approximated with a Laplacian; therefore, we use an uniform quantizer for
Laplacian source [54] with an overload region.

Using this method, we can arbitrarily reduce the number of edge weight
values down to two. In term of compression performance, the case with only
two possible values is the most interesting because it has the best ratio between
quality gain and cost for the graph transmission.

The graph obtained using only binary weight values is similar to an un-
weighted graph (i.e. with weights in {0,1}) such as the one used in [6, 7], with
the important difference that, with the quantized weights, the graph cannot be
disconnected. In fact, if the graph is disconnected, the graph transform does
not perform well, in particular when there are connected components with a
small number of nodes.

3.1 Proposed graph construction technique 17

Fig. 3.1 Prediction-based graph construction method. The nodes represent the binary
image transmitted to the decoder: the black ones are the edge pixels, the white ones
the non-edge pixels. The dotted lines represent the predicted image discontinuity,
the figure represents the three possible situations. The edges are set in accordance
with the discontinuities: the ones with a thicker line have the higher weight, the ones
with a thinner line have the lower weight.

In the following sections, we will focus on this binary case, developing an
optimized graph compression scheme.

3.1.3 Graph edge prediction method

When we have only two possible edge weight values, the majority of the edges
in the graph will typically have the higher edge weight, meaning that the two
pixels connected by the edge are similar, instead only a small number of edges
will have the lower edge weight, indicating that there is a discontinuity between
the two pixels. Every interior node is connected to four pixels. In order to
structure our prediction mechanism, we consider nodes in raster order and, for
each node, we consider two edges, namely the one that connects the pixel to
the nearest one in the next column, and the one that connects the pixel to the
bottom one in the next row. We label each pixel of the image as “edge” or
“non-edge” pixel. Specifically, a pixel is labeled as an edge pixel if at least one
of the corresponding edges has the lower edge weight, otherwise it is labeled as
a non-edge pixel.

In order to obtain a more compact representation of the graph structure,
we have developed a method of edge prediction that reconstructs the graph
edges starting from a binary image that specify if each pixel has an edge or
non-edge label. Analysing the labels of neighboring pixels, the encoder can
predict whether the discontinuity is horizontal, vertical or diagonal, as shown in

18 Predictive graph construction for image compression

Algorithm 1 Prediction-based Graph Construction Algorithm. Ib: binary
image, M : higher edge weight, m: lower edge weight

Set all edge weights equal to M ;
for every edge pixel in Ib do

Nhor= number of horizontal neighbors that are edge pixel;
Nver= number of vertical neighbors that are edge pixel;
if Nhor > 0 then

Set the vertical edge to m;
end if
if Nver > 0 then

Set the horizontal edge to m;
end if
if Nhor = 0 and Nver = 0 then

Set the vertical edge to m;
Set the horizontal edge to m;

end if
end for

Fig. 3.1. Then it constructs a new graph, setting the edge weights in accordance
with the predicted discontinuities. The graph generation algorithm is explained
in detail in Algorithm 1. The binary image containing the labels is losslessly
coded and transmitted to the decoder, then, starting from the received labels,
the decoder runs the graph construction algorithm and recovers the same graph
used at the encoder. Several techniques could be used to code the binary image,
in the proposed method we decided to use JBIG, however the use of other more
specific techniques for contour coding, such as [55], will be evaluated in future.

As will be shown in Section 3.2.2, the graph provided by Algorithm 1 defines
a graph Fourier transform with very high coding efficiency.

3.1.4 Deletion of isolated edges

In order to obtain a smoother binary image and to remove small discontinu-
ities, we delete the connected components present in the binary image whose
dimension is smaller than a threshold value, which was experimentally set to
10.

3.2 Experimental results 19

Subdivide the image into 32×32 blocks

Compute the edge weights of the
graph using the Cauchy function

Quantize the edge weights

Perform edge prediction and obtain the
binary image containing the pixel labels

Delete the isolated edges

Construct a new graph setting the edge weights
in accordance with the predicted discontinuities

Compute the Graph Fourier transform and
the corresponding transform coefficients

Send to the decoder the transform coefficients
and the binary image containing the pixel labels

Fig. 3.2 Block diagram of the proposed method

3.2 Experimental results

To test the proposed method, we have subdivided the images in 32×32 blocks
and we constructed the graph of each image block with the techniques discussed
in the previous section. After having obtained the graph, we computed the
adjacency matrix W (G) and the Laplacian matrix L(G). We used as transform
matrix the matrix Ψ of the eigenvectors of the Laplacian.Then, to code the
transform coefficients we used a bit plane coding on each block and we estimated
the bit rate computing the entropy of each bitplane. The principal steps of the
proposed image compression method are summarized in Fig. 3.2.

We have applied our method to some standard images, three of which are
shown in Fig. 3.3. We have chosen different image types, some having very
sharp edges, such as airplane, while others are more natural, such as cameraman.

20 Predictive graph construction for image compression

(a) Clock (b) Cameraman (c) Airplane

Fig. 3.3 Original images.

Fig. 3.4 Percentage of energy in function of the number of retained coefficients.

3.2.1 Edge weight metric evaluation

We have compared the performance of the two weighting functions showed in
Section 3.1.1 by computing the percentage of signal energy in function of the
number of retained coefficients. We have found that the Cauchy function has
better compression performance than the Gaussian function, as shown in Fig.
3.4. For this reason, in our tests we used the Cauchy weighting function.

3.2.2 Graph compression

We have compared the performance of the graph transform using a graph with
unquantized weights, with quantized weights and with the predicted weights.
We computed the percentage of signal energy in function of the number of
retained coefficients. The results are shown in Fig. 3.5. We can see that using
a small number of edge weight values reduces the performance but not in a

3.2 Experimental results 21

Fig. 3.5 Percentage of energy in function of the number of retained coefficients.

significant way. Moreover, it is important to note that the edge prediction
method produces a graph that is a very good approximation of the original one
and the results obtained are nearly the same, but it nearly halves the size of
the graph overhead, resulting in large performance improvement.

3.2.3 Image compression performance

To evaluate the performance of the proposed Predictive Graph Transform
(PGT), we computed the PSNR of each image as a function of the bitrate.
We compared the proposed PGT with the standard DCT and with the edge-
adaptive transform (EAT) proposed by Shen et al. in [6]. In order to have a
fair comparison, we used the same block dimension and the same method for
coding the transform coefficients. For the EAT and our proposed transform,
the bitrate also takes into account the cost of transmitting the graph. Fig. 3.6
shows the results obtained. We can see that our method outperforms both the
standard DCT and the EAT, with an average gain of approximately 1.6 dB
over the DCT and a maximum gain of 3 dB. In Fig. 3.7, we show two examples
of visual comparison between our proposed method and DCT where we can
clearly see that the proposed PGT provides a significant quality gain.

In this chapter, we have not taken into account the use of intra prediction.
In future, it would be interesting to investigate the possible application of the
PGT to intra-prediction residuals.

22 Predictive graph construction for image compression

Fig. 3.6 RD curve comparison between our proposed method, DCT and EAT.

3.2 Experimental results 23

DCT PGT

DCT PGT
Fig. 3.7 Visual comparison between our proposed method and DCT at 0.4 bpp for
the first line and 1.25 bpp for the second line.

Chapter 4

Graph Transform Learning for
Image Compression

One of the biggest challenges in graph-based image compression is the choice
of the graph and the corresponding transform. A good graph for effective
transform coding should lead to easily compressible signal coefficients, at the
cost of a small overhead for coding the graph. Since the definition of the
graph is often not straightforward, the problem of designing a graph transform
stays critical and may actually represent the major obstacle towards effective
compression of images.

In this chapter, we propose a novel graph-based framework for effective
coding of images that takes into account the coding of the images as well as
the cost of transmitting the graph. In particular, we introduce an innovative
way for coding the graph by treating its edge weights as a graph signal that
lies on the dual graph. We then compute the graph Fourier transform of this
signal and code its quantized transform coefficients. The choice of the graph is
posed as a rate-distortion optimization problem that is cast as a graph learning
problem. The cost of coding the image signal is captured by minimizing the
smoothness of the image on the learned graph while the transmission cost
of the topology is controlled by penalizing the sparsity of the graph Fourier
coefficients of the edge weight signal that lies on the dual graph. The solution of

Part of the work described in this chapter has been previously published in G. Fracastoro,
D. Thanou, P. Frossard, Graph Transform Learning for Image Compression, Proc. of Picture
Coding Symposium, 2016.

4.1 Basic definitions on graphs 25

our optimization problem is a graph that provides an effective tradeoff between
the quality of the transform and its transmission cost. Experimental results
on natural images confirm that the proposed algorithm can efficiently infer
meaningful graph topologies, which eventually lead to improved coding results
compared to non-adaptive methods based on DCT.

A few attempts have been recently proposed to learn the structure and
in particular a graph from data observations. In [56], the authors formulate
the graph learning problem as a precision matrix estimation with generalized
Laplacian constraints. In [57], a sparse combinatorial Laplacian matrix is
estimated from the data samples under a smoothness prior. In [58], a new class
of transforms called graph template transform is proposed; the authors use a
graph template to impose a sparsity pattern and approximate the empirical
inverse covariance based on that template. Even if all these methods contain
some constraints on the sparsity of the graph, none of them takes into account
the real cost of representing, and thus coding, the graph. Instead, in this work,
we go beyond prior art and we fill this gap by defining a new graph learning
problem for image compression that takes into account this overhead.

4.1 Basic definitions on graphs

For any weighted graph G = (V ,E), the graph Laplacian L(G) =D(G)−W (G)
can also be defined using the incidence matrix B(G) ∈ RN×M [59] such that

B(G)ie =

1, if e= (i, j)
−1, if e= (j, i)
0, otherwise,

where an orientation is chosen arbitrarily for each edge. Then, let Ŵ (G) ∈
RM×M be a diagonal matrix where Ŵ (G)ee = W (G)ij if e = (i, j). We can
define the graph Laplacian L(G) as

L(G) =B(G)Ŵ (G)B(G)T . (4.1)

26 Graph Transform Learning for Image Compression

It is important to underline that the graph Laplacian obtained using (4.1) is
independent from the edge orientation in G.

As shown in Chapter 2, given any graph signal x ∈RN defined on the nodes
of the graph G, the smoothness of x on G can be measured using the Laplacian
L(G) [36]

xTL(G)x = 1
2

N∑
i=1

N∑
j=1

Wij(xi −xj)2. (4.2)

Eq. (4.2) shows that a graph signal x is considered to be smooth if strongly
connected nodes have similar signal values.

4.2 Graph-transform optimization

4.2.1 Rate-distortion tradeoff

Graph-based image compression methods use a graph representation of the
image signal through its GFT, in order to obtain a data-adaptive transform
which captures the main characteristics of the image. The GFT coefficients are
then encoded, instead of the signal values. In general, a signal that is smooth on
a graph has its energy concentrated in the low frequency coefficients of the GFT,
hence it is easily compressible. To obtain good compression performance, the
graph should therefore be chosen such that it leads to a smooth representation
of the signal. On the other hand, it should also be easy to encode, since it has
to be transmitted to the decoder for signal reconstruction. Often, the cost of
the graph representation outweighs the benefits of using an adaptive transform
for signal representation. In order to find a good balance between graph signal
representation benefits and coding costs, we introduce a new graph learning
approach that takes into consideration the above mentioned criteria.

We first pose the problem of finding the optimal graph as a rate-distortion
optimization problem defined as

min
L(G)∈RN×N

D(L(G))+γ(Rc(L(G))+RG(L(G))), (4.3)

where D(L(G)) is the distortion between the original image and the recon-
structed one. The total coding rate is composed of two representation costs,

4.2 Graph-transform optimization 27

namely the cost of the transform coefficients Rc(L(G)) and the cost of the
graph description RG(L(G)). Each of these terms possibly depends on L(G)
and on the coding scheme. We describe them in more details in the rest of the
section.

4.2.2 Distortion approximation

The distortion D(L(G)) is defined as follows

D(L(G)) = ∥x − x̃∥2 = ∥x̂ − x̂q∥2,

where x and x̃ are respectively the original and the reconstructed image,
and x̂ and x̂q are respectively the transform coefficients and the quantized
transform coefficients. The equality holds due to the orthonormality of the
GFT. Considering a uniform scalar quantizer with the same step size q for all
the transform coefficients, if q is small the expected value of the distortion
D(L(G)) can be approximated as follows [60]

D(L(G)) = q2N

12 .

With this approximation, the distortion depends only on the quantization step
size and it does not depend on the chosen L(G) [8]. For simplicity, in the rest
of the paper we adopt this assumption. Therefore, the optimization problem
(4.3) is reduced to minimizing the rate terms.

4.2.3 Rate approximation of the transform coefficients

We can evaluate the cost of the transform coefficients Rc(L(G)) by using the
approximation proposed in [8], [7]

Rc(L(G)) = xTL(G)x = xT

N−1∑
l=0

λlψlψ
T
l

x

=
N−1∑
l=0

λl(xTψl)(ψT
l x) =

N−1∑
l=0

λlx̂2
l ,

(4.4)

28 Graph Transform Learning for Image Compression

where λl and ψl are respectively the l-th eigenvalue and eigenvector of L(G).
Therefore, Rc(L(G)) is an eigenvalue-weighted sum of squared transform coeffi-
cients. It assumes that the coding rate decreases when the smoothness of the
signal x over the graph defined by L(G) increases. In addition, (4.4) relates the
measure of the signal smoothness with the sparsity of the transform coefficients.
The approximation in (4.4) does not take into account the coefficients that
corresponds to λ0 = 0 (i.e., the DC coefficients). Thus, (4.4) does not capture
the variable cost of DC coefficients in cases where the graph contains a variable
number of connected components. However, we impose that the graph is
connected in our work, which removes the influence of the number of connected
components. In this case, the cost of the DC coefficient is independent of L(G),
so we can avoid to consider it in the Rc(L(G)) approximation.

4.2.4 Rate approximation of the graph description

The graph description cost RG(L(G)) depends on the chosen method to code
the graph. In order to reduce the graph transmission cost, we choose to vary
only the edge weights, without changing the connections between the nodes,
which are described by the incidence matrix B(G). Therefore, the graph can be
defined only by a vector w ∈ RM , where we is the weight of the edge e. Then,
by using (4.1) we can define the graph Laplacian L(G) =B(G)T diag(w)B(G).

In order to compress the edge weight vector w, we propose to treat it as a
graph signal that lies on the dual graph Gd. Given a graph G, its dual graph Gd

is an unweighted graph where each node of Gd represents an edge of G and two
nodes of Gd are connected if and only if their corresponding edges in G share
a common endpoint. An example of a dual graph is shown in Fig. 4.1. We
choose to use this graph representation for the signal w because consecutive
edges usually have similar weights, so the dual graph can provide a smooth
representation of w. Also for Gd we can define its graph Laplacian matrix
L(Gd) ∈ RM×M and the corresponding eigenvector and eigenvalue matrices
Ψd ∈ RM×M and Λd ∈ RM×M such that L(Gd) = ΨdΛdΨT

d .

In the literature, the dual graph has already been used in graph learning
problems. In [61] the authors propose a method for joint denoising and contrast
enhancement of images using the graph Laplacian operator, where the weights

4.2 Graph-transform optimization 29

1

2

3

4

5

a

b

c

d

e

f

(a)

a

b

c
d

e

f

(b)

Fig. 4.1 An example of a graph (a) and its corresponding dual graph (b). The
edges in the first graph (labeled with lower case letters) become the nodes of the
corresponding dual graph.

of the graph are defined through an optimization problem that involves the
dual graph. Moreover, [49] presents a graph-based dequantization method by
jointly optimizing the desired graph-signal and the similarity graph, where the
weights of the graph are treated as another graph signal defined on the dual
graph.

Since w can be represented as a graph signal, we can compute its GFT
ŵ ∈ RM as

ŵ = ΨT
d w.

Therefore, we can use ŵ to describe the graph and we evaluate the cost of the
graph description by measuring the coding cost of ŵ. It has been shown that
the total bit budget needed to code a vector is proportional to the number of
non-zero coefficients [62], thus we approximate the cost of the graph description
by measuring the sparsity of ŵ as follows

RG(L(G)) = ∥ŵ∥1 = ∥ΨT
d w∥1. (4.5)

The approximation of RG(L(G)) presented in (4.5) may look similar to the
one used in [49]. The main difference between the two formulations is that
in (4.5) w is represented using the GFT, instead in [49] the authors use a
difference operator to represent it.

30 Graph Transform Learning for Image Compression

4.2.5 Graph learning problem

By using (4.1), (4.4) and (4.5), the graph learning problem (4.3) becomes
equivalent to the following optimization problem

min
w∈RM

xTB(G)(diag(w))B(G)T x +α∥ΦT w∥1, (4.6)

where α is a constant parameter.

Building on the rate-distortion formulation of (4.6), we find the optimal
graph topology by solving the following optimization problem

min
w∈RM

xTB(G)(diag(w))B(G)T x +α∥ΦT w∥1 −β1T log(w),

s. t. w ≤ 1,
(4.7)

where α and β are two positive regularization parameters and 1 denotes the
constant one vector. The inequality constraint has been added only to guarantee
that all the weights are in the range (0,1], which is the same range of the most
commonly used weighting functions [39]. Instead, the logarithmic term has
been added to penalize low weight values and to avoid the trivial solution. In
addition, this term guarantees that wm > 0, ∀m, so that the graph is always
connected. A logarithmic barrier is often employed in graph learning problems
[63] and it has been shown that a graph with Gaussian weights can be seen as
the result of a graph learning problem with a specific logarithmic barrier on
the edge weights [63].

The problem in (4.7) can be cast as a convex optimization problem with
a unique minimizer. To solve problem (4.7), we write the first term in the
following form

xTB(G)(diag(w))B(G)T x = tr((B(G)T xxTB(G))diag(w))
= vec(B(G)T xxTB(G))T vec(diag(w))
= vec(B(G)T xxTB(G))TMdiagw,

where tr(·) denotes the trace of a matrix, vec(·) is the vectorization operator,
and Mdiag ∈ RM2×M is a matrix that converts the vector w in vec(diag(w)).

4.3 Image compression application 31

Then, we can rewrite problem (4.7) as

min
w∈RM

vec(B(G)T xxTB(G))TMdiagw +α∥ΨT
d w∥1 −β1T log(w),

s. t. w ≤ 1.
(4.8)

The problem in (4.8) is a convex problem with respect to the variable w and
can be solved efficiently via interior-point methods [64].

4.3 Image compression application

We now describe how the above graph learning problem can be applied to
image compression. As pointed out in the previous sections, we have two
different information to transmit to the decoder: the transform coefficients
of the image signal x̂ and the description of the graph ŵ. The transform
coefficients are quantized using a uniform quantizer with the same step size
q for all the coefficients. Then, we code the quantized coefficients until the
last non-zero coefficient using an adaptive bitplane arithmetic encoder and we
transmit the position of the last significant coefficient.

To code the graph, we use its GFT coefficients vector ŵ. In order to reduce
the cost of the graph description, we reduce the number of elements in ŵ taking
into account only the first M̃ ≪ M coefficients, which usually are the most
significant, and setting the other M − M̃ coefficients to zero. The reduced
vector ŵr ∈ RM̃ is then quantized and coded with the same entropy coder used
for the image signal.

The principal steps of the proposed image compression method are sum-
marized in Fig. 4.2. Given an image signal, we first solve the optimization
problem in (4.8) obtaining the optimal solution w∗. To transmit w∗ to the
decoder, we first compute its GFT coefficients ŵ∗ and the reduced vector ŵ∗

r ,
then we quantize and code it using an entropy coder. The reconstructed graph
described by w̃∗ is then used to define the GFT transform for the image signal.

It is important to underline that, since we perform a quantization of ŵ∗
r,

the reconstructed signal w̃∗ is not equal to the original w∗ and its quality

32 Graph Transform Learning for Image Compression

Solve the GL problem (8)

Code the solution weight vector
coefficients ŵ∗

r using different ∆i

For each ∆i, define the graph transform of
the image and evaluate rate and distortion

Choose the best ∆i

Quantize x̂ with the quantizer q

Output ∆i, ŵ
∗
r,∆i

and x̂q

Fig. 4.2 Block diagram of the proposed method.

depends on the quantization step size used. Since it is important to find the
best tradeoff between the quality of the graph and its transmission cost, for
each block we test different quantization step sizes {∆i}1≤i≤Q for a given graph
represented by ŵ∗

r. To choose the best quantization step size, we use the
following rate-distortion problem

min
i

D(∆i)+γ(Rc(∆i)+RG(∆i)), (4.9)

where RG(∆i) is the rate of ŵ∗
r,∆i

(the coefficient vector ŵ∗
r quantized with

∆i), D(∆i) and Rc(∆i) are respectively the distortion and the rate of the
reconstructed image signal obtained using the graph transform described by
ŵ∗

r,∆i
. We underline that in (4.9) we evaluate the actual distortion and rate

without using the approximation introduced previously in (4.3), (4.4), (4.5).
The coding methods described previously are used to compute the rates Rc(∆i)
and RG(∆i).

4.4 Experimental results 33

4.4 Experimental results

In this section, we evaluate the performance of the proposed method. We first
describe the general experimental setting, then we present the experimental
results obtained.

4.4.1 Experimental setup

We test our method on four standard grayscale images (Lena, Boat, Peppers
and House) and we split them into non-overlapping 16×16 pixel blocks. The
chosen topology of the graph is a 4-connected grid: this is the most used graph
topology for graph-based image compression, since its number of edges is not
too high, and thus the coding cost is limited. In a 4-connected square grid with
N nodes, we have M = 2

√
N(

√
N − 1) edges. In all our experiments, we set

M̃ = 64 and Q= 8. To find the best value for the parameters α and β of the
graph learning problem in (4.8), we use the following strategy. The value of
the parameter α depends on the characteristics of the block. For this reason,
we perform a block classification using the structure tensor analysis, as done
in [65]. Let µ1 and µ2 be the two eigenvalues of the structure tensor, where
µ1 ≥ µ2 ≥ 0, we can subdivide the image blocks in the following way:

• Class 1: smooth blocks, if µ1 ≈ µ2 ≈ 0;

• Class 2: blocks with a dominant principal gradient, if µ1 ≫ µ2 ≈ 0;

• Class 3: blocks with a more complex structure, if µ1 and µ2 are both
large.

Fig. 4.3 shows an example of block classification. We set α = 100 for blocks
that belong to the first class, α= 500 for blocks that belong to the second class
and α = 800 for blocks that belong to the third class. For all the three classes,
we set β = 1 in the graph learning problem.

We compare the performance of the proposed method against the classical
DCT transform. To have a fair comparison, we code the transform coefficients
x̂ of the image signal using the same entropy coder for the graph-based method
and for DCT-based encoder. In the first case, in addition to the bitrate of

34 Graph Transform Learning for Image Compression

Class 1 Class 2 Class 3

Fig. 4.3 Block classification of Lena.

x̂, we count the bitrate due to the trasmission of ŵ∗
r,∆i

and 3 additional bits
per block to transmit the chosen quantization step size ∆i for ŵr. For both
methods, we vary the quantization step size q of the transform coefficients to
vary the encoding rates.

Finally, in our method for each block we compare the RD-cost of the GFT
and the one of the DCT. Then, we code the block with the transform that has
the lowest RD-cost and we use 1 additional bit per block to signal if we are
using the GFT or the DCT.

Image class 1 class 2 class 3
Lena 0.06 0.66 0.52
Boat 0.03 0.31 0.47

Peppers 0.10 0.77 0.89
House 0.02 0.63 0.62

Table 4.1 Average gain in PSNR measured with the Bjontegaard metric.

4.4.2 Results

In Fig. 4.4, we show the performance of the two methods on the image House.
More results are given in Table 4.1, where we use the Bjontegaard metric [66]
to compute the average gain in PSNR compared to the DCT. In the second
and third classes, the proposed method outperforms DCT providing an average
PSNR gain of 0.6 dB for blocks in the second class and 0.64 dB for blocks
in the third class. It is interesting to point out that there is not a significant

4.4 Experimental results 35

bitrate (bpp)
1 1.5 2 2.5 3 3.5

P
S

N
R

 (
d
B

)

34

36

38

40

42

44

46

48

House - class 2

proposed method

DCT

bitrate (bpp)
1 2 3 4 5

P
S

N
R

 (
d
B

)

30

35

40

45

50
House - class 3

proposed method

DCT

Fig. 4.4 RD comparison between the proposed method and DCT.

difference in performance between the second class and the third one. Instead,
in the first class the gain is nearly 0, as DCT in this case is already optimal.

The obtained results show that the proposed method can outperform clas-
sical fixed transforms as DCT, even if they could be further improved by
optimizing the coding method, in particular the quantization strategy.

We point out that in this chapter we do not take into account intra-prediction.
In future, it would be interesting to investigate a possible application of the
proposed method to intra-prediction residuals and define a specific graph
learning problem also for this type of signals.

Chapter 5

Superpixel-driven graph
transform for image
compression

In this chapter, we propose a novel graph transform approach aiming at reducing
the cost of transmitting the graph structure while retaining the advantage
of a shape-adaptive and edge-aware operator. To this end, the image is first
segmented into uniform regions that adhere well to image boundaries. Such a
goal can be achieved using the so-called superpixels, which are perceptually
meaningful atomic regions which aim at replacing rigid pixel grid. Examples of
algorithms used to generate these kind of regions are Turbopixel [67], VCells [68]
and the widely used and very fast SLIC algorithm [69]. Then, we propose
to apply a graph transform within each superpixel that, being homogeneous
region, can be efficiently represented using an uniform graph, i.e. all graph
edges are given the same weight. In this way, the overhead of representing
the graph structure within each superpixel is avoided. Nonetheless, we need
to transmit additional information to describe region boundaries. To limit
such coding overhead, we design a clustering method that is able to aggregate
superpixels, thus reducing the number of regions that need to be coded.

Part of the work described in this chapter has been previously published in G. Fracas-
toro, F. Verdoja, M. Grangetto, E. Magli, Superpixel-driven Graph Transform for Image
Compression, Proc. of IEEE International Conference on Image Processing, 2015, pp.
2631-2635.

5.1 Proposed technique 37

The use of superpixels in compression is still an almost unexplored research
field and up to date only few works investigated the topic. Moreover, the
proposed approaches work in very specific cases, e.g. texture compression [70]
or user-driven compression [71]. On the contrary, the joint exploitation of
graph transforms and superpixels as a general approach to image compression
is completely novel and represents the key idea in this work. The contributions
of this work are the definition of a superpixel-driven graph transform, its
rate/distortion analysis using a bitplane encoding approach and the comparison
with standard DCT transform.

5.1 Proposed technique

Given an image x ∈ RN of N pixels, the proposed Superpixel-driven Graph
Transform (SDGT) performs the following steps:

• divide x in m regions by using SLIC [69], an example of superpixel
segmentation is shown in Fig. 5.1;

• cluster similar superpixels, to reduce the number of borders to be coded
to a desired number m′;

• inside each region, compute a piecewise smooth graph transform.

Superpixels are used to get a computationally efficient segmentation of the
image into homogeneous regions, that can be modeled with simple uniform
graph structure for the following transform stage.

5.1.1 Superpixel clustering

In this section the preliminary segmentation step based on superpixel is de-
scribed.

We define anm-regions segmentation of an image x as a partition Pm = {li}m
i=1

of the pixels in x; more precisely:

∀xi where 1 ≤ i≤N,∃l ∈ Pm | xi ∈ l

∀l ∈ Pm,∄ l′ ∈ Pm −{l} | l∩ l′ ̸= ∅
(5.1)

38 Superpixel-driven graph transform for image compression

Fig. 5.1 An image segment into superpixels.

Starting from an image x and a partition Pm composed of m regions, output
by some superpixel algorithm, the proposed algorithm aims at merging at each
iteration the pair of labels representing the most similar regions between the
ones determined in the previous step until the desired number of regions m′ <m

is reached. In particular at the kth iteration the two most similar segments
of Pk are merged to obtain a new set Pk−1 composed of k−1 segments. This
process can be iterated for k = m,m− 1, . . . ,m′, generating a hierarchy of
regions in terms of their respective similarity. The number of regions m′ to
be clustered must be chosen as a tradeoff between the segmentation accuracy
and the coding overhead required to represent and compress the borders of the
regions as discussed in more detail in Section 5.2.

We represent the merging process using a weighted graph. An initial
undirected weighted graph Gm = (Pm,Em) is constructed over the superpixel
set Pm, and the set Em is the edge set defined in the following way

Em = {wm
ij , ∀i ̸= j | lmi , lmj ∈ Pm ∧C(lmi , lmj) = 1} (5.2)

5.1 Proposed technique 39

for some region adjacency function C, i.e. 4-connectivity. Since Gm is an
undirected graph we have that wm

ij = wm
ji ; the weights represent the distance

(or dissimilarity measure) between a pair of regions wm
ij = d(lmi , lmj).

The approach proposed here can be used in conjunction with several distance
metrics capable to capture the dissimilarity between a pair of segmented
regions. In this study, CIELAB color space and the standard CIEDE2000
color difference [72] have been chosen thanks to their ability to reliably cluster
similar superpixels as shown in [73]. Given two regions li and lj , we compute
the mean values of the L*a*b* components Mi = (µL∗,i,µa∗,i,µb∗,i) and Mj =
(µL∗,j ,µa∗,j ,µb∗,j), and we define the distance between the two labels as

d(li, lj) = ∆E00(Mi,Mj) (5.3)

where ∆E00 is the CIEDE2000 color difference [72].

At each iteration k, we pick the pair of labels lkp , lkq ∈ P k having

wk
pq = min

wk
ij∈Ek

{wk
ij}

and merge them; as a consequence a new partition Pk−1 = Pk −{lkq } is formed.
The new partition Pk−1 now comprises k− 1 segments and all the pixels
xi ∈ lkp ∪ lkq are assigned to the label lk−1

p . After that, edges and corresponding
weights needs to be updated as well. The set Ek−1 is generated according to
the following rule:

wk−1
ij =

d(lk−1

p , lk−1
j) if i= p∨ i= q

wk
ij otherwise

(5.4)

It must be noted that wk
pq is no longer included in Ek−1 since the corresponding

label has been merged into a single one.

When k =m′, the algorithm stops returning the partition Pm′ composed
of the desired number of regions. A segmentation example with m′ = 100 is
shown in Fig. 5.2.

40 Superpixel-driven graph transform for image compression

Fig. 5.2 An image divided into 100 regions by the proposed algorithm.

5.1.2 Intra-region graph transform

Now we move to the description of the graph transform employed within each
region that leads to the computation of the proposed SDGT.

Given a m′-regions segmentation Pm′ of the image I, in each segment x of
Pm′ we can define an unweighted graph Gl = (Vl,El), where the nodes are the
pixels of the segment l and El is the set of edges. The adjacency matrix A(Gl)
is defined in the following way:

A(Gl)ij =

1 if j ∈ Nl ∧ i, j ∈ l

0 otherwise
(5.5)

where Ni is the set of 4-connected neighbors of the pixel i.

The adjacency matrix is used to compute the Laplacian matrix L(Gl). Then,
the matrix Ψ whose columns are the eigenvectors of L(Gl) is used to compute
the graph Fourier transform (GFT).

It is important to underline that to construct the graph we only need the
information about the coordinates of the region borders, that can be easily
summarized in a binary image. In this way, the cost for transmitting the graph
structure is considerably reduced and the GFT is used as an effective transform

5.2 Experimental results 41

for the arbitrarily shaped regions computed by the algorithm described in
Section 5.1.1. Finally, we refer to the whole set of transformed regions as the
SDGT of the entire image.

5.2 Experimental results

To evaluate the performance of the proposed SDGT, we need to take into account
its energy compaction ability and the cost for coding overhead information, i.e.
the region-borders.

A popular and simple method for evaluating the transform compaction
efficiency is to study the quality of the reconstructed image, e.g. using PSNR
with respect to the original image, as a function of the percentage of retained
transformed coefficients [74]; albeit interesting, this approach would neglect
the cost required to encode the ancillary information required to compute the
inverse transform.

To overcome this problem, in the following we estimate the coding efficiency
provided by SDGT by considering bit plane encoding of SDGT transformed
coefficients. Each bitplane is progressively extracted, from the most significant
down to the least significant one, and the bitrate of each bitplane is estimated
by its entropy. To this end, each bitplane is modeled as an independent and
memoryless binary source.

It is worth pointing out that such an estimate represents an upper bound
to the actual bitrate that would be obtained using a proper entropy coding
algorithm that is likely to exploit further the residual spatial correlation of
the transformed coefficients and the dependency between different bitplanes.
Nonetheless, the proposed bitplane approach can be replicated on any other
transform, e.g. the standard 8×8 DCT, allowing us to analyze the achievable
gain in a fair way.

Finally, to estimate the SDGT penalty due to coding of the region borders,
we use the standard compression algorithm for bi-level images JBIG [75]. The
regions boundaries are represented as a binary mask that is then compressed
with JBIG, whose bitrate is considered as coding overhead; from our experimen-
tation we have seen that this overhead is, on average, around 0.06 bpp. The

42 Superpixel-driven graph transform for image compression

use of other more specific methods for transmitting the region borders, such as
chain code [76, 77] and arithmetic edge coding [55], will be evaluated in future.
These methods are designed for efficiently encoding region borders. However,
the context of segmentation borders coding presents one characteristic that
these methods are not tailored to [78]: since all pixels must be assigned to a
region, all borders are shared between the two regions. It follows that, with
these methods, all edges will be encoded twice, resulting in an inefficient coding
method. Therefore, applying these methods will require careful investigation
in order to tailor them to the specific requirements of our technique.

Therefore using bitplane coding and JBIG we get a rough estimation of the
total bitrate needed to code the image with the SDGT transform. We compare
the obtained results with the standard DCT computed on 8×8 blocks. As
proved by Zhang and Florêncio in [50], if the graph is a uniform 4-connected
grid the 2D DCT basis functions are eigenvectors of the graph Laplacian, and
thus the graph Fourier transform matrix Ψ turns to be the 2D-DCT matrix.
Therefore, the 8×8 DCT can be seen as a graph transform like the SDGT, with
the major difference that instead of using superpixels as coding blocks it uses a
fixed grid of 8×8 blocks.

We have tested the transforms on several images from a dataset of lossless
images widely used in compression evaluation [79]. All the images in that
dataset are either 768×512 or 512×768 in size.

In Fig. 5.3 three sample images are shown and the respective coding results
(PSNR in dB vs. bitrate measured in bit per pixel) are shown in Fig. 5.4; these
results have been obtained setting m= 600, m′ = 100 and coding the luminance
component only.

We can see that SDGT significantly outperforms the DCT, in particular
at low bitrate, where it is able to achieve a maximum gain of more than 2 dB.
Overall, the average gain obtained is approximately 1 dB. This achievement is
particularly significant if one recall that the SDGT bitrate includes the constant
penalty yielded by JBIG coding of the borders. A detail of the significant
improvement at low bitrate obtained by SDGT can be visually appreciated in
Fig. 5.5.

Since standard image compression data set are historically biased by low
resolution images we conclude our analysis by considering high resolution

5.2 Experimental results 43

(a) Parrots (b) Lighthouse (c) Girl

Fig. 5.3 Three of the sample images.

images that are typically acquired by current imaging devices. We have tested
our method and the 8×8 DCT on some HD images acquired using a DSLR
camera; in particular, for complexity reasons, we have applied SDGT to non
trivial 512×512 patches cropped from the original images. In Fig. 5.6 the
results obtained on a sample image are shown; it is worth pointing out that the
SDGT gain over DCT is larger in this case and span all the considered bitrate
range. This is due to the fact that regions in HD images are usually wider
and smoother and therefore the segmentation algorithm and, consequently, the
graph transform can be even more effective.

Finally, it is important to underline that in this chapter we have evalu-
ated the application of the SDGT to image coding without considering intra-
prediction. Since it has been shown that prediction residuals and original
signals are very different from a statistical point of view, we leave as future
work the study of the application of SDGT for intra-prediction residual coding.
Moreover, it would be interesting to study the application of SDGT also for
inter-prediction residual coding, in this case SDGT could be used jointly with
a segmentation-based motion prediction, such as [80, 81].

44 Superpixel-driven graph transform for image compression

(a) Parrots

(b) Lighthouse

(c) Girl

Fig. 5.4 The performance results of the proposed SDGT and DCT 8×8 is presented
in term of PSNR values over bitrate.

5.2 Experimental results 45

(a) DCT 8×8

(b) SDGT

Fig. 5.5 A detail on the luminance component of one image compressed with both
DCT 8×8 and the proposed SDGT at bitrate of 0.75 bpp.

46 Superpixel-driven graph transform for image compression

Fig. 5.6 A 2592×3888 sample image with a 512×512 cropped patch (top) and the
performance of the proposed SDGT and 8×8 DCT on the cropped region in term of
PSNR values over bitrate (bottom).

Chapter 6

Steerable Discrete Cosine
Transform

In this chapter, we present a new framework for directional transforms. Starting
from the graph transform of a grid graph, we design a new transform, called
steerable DCT (SDCT), which can be obtained by steering the 2D-DCT basis
in a chosen direction.

6.1 Preliminaries

Before introducing the new SDCT, we first review some elements of graph
signal processing, introducing the concept of product graph and discussing the
relation between GFT and DCT.

As we have shown in Chapter 2, the 1D-DCT is a valid graph Fourier
transform of a path graph PN . Specifically, the 1D-DCT has N basis vectors
{v(k)}N−1

k=0 which are defined as

v(k)
j = cos

(
πk

N

(
j+ 1

2

))
, j,k = 0,1, ...,N −1. (6.1)

Part of the work described in this chapter has been previously published in G. Fracastoro,
S. M. Fosson, E. Magli, Steerable Discrete Cosine Transform, IEEE Transactions on Image
Processing, vol. 26, no. 1, pp. 303-314, 2017.

48 Steerable Discrete Cosine Transform

Fig. 6.1 The square grid graph P4 ×P4.

Each v(k) is the eigenvector of L(PN), for any k= 0,1, ...,n−1, L, associated
with the eigenvalue

λk = 4sin2
(
πk

2N

)
. (6.2)

Given that the multiplicity of the eigenvalues in (6.2) is always equal to 1, the
1D-DCT basis is the unique eigenbasis for L(PN), therefore the graph Fourier
transform for a signal represented by a path graph is equivalent to the 1D-DCT
transform.

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), let G = G1 × G2 be the
product graph of G1 and G2. Suppose v1, v2 ∈ V1 and u1, u2 ∈ V2. Then (v1,u1)
and (v2,u2) are adjacent in G if and only if one of the following conditions are
satisfied [82]: a) v1 = v2 and {u1,u2} ∈ E2; b) {v1,v2} ∈ E1 and u1 = u2. Let
us now consider the product graph of two path graphs, as shown in Fig. 6.1. If
the two path graphs have the same number of vertices, their product graph
Pn ×Pn is a square grid graph with N = n2 vertices. It has been proved that
the basis vectors of the 2D-DCT form an eigenbasis of L(Pn ×Pn) [50].

Moreover, the spectrum of the Laplacian of a product graph depends on the
spectrum of the two generator graphs, as illustrated in the following theorem.

Theorem 6.1 (Theorem 2.21 in [82]; [83]). Let G1 and G2 be graphs on N1 and
N2 vertices, respectively. Then the eigenvalues of L(G1 × G2) are all possible
sums of λi(G1) +λj(G2), with 0 ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1. Moreover,
if v(i) is an eigenvector of G1 corresponding to λi(G1), v(j) an eigenvector of
G2 corresponding to λj(G2), then v(i) ⊗v(j) (where ⊗ indicates the Kronecker
product) is an eigenvector of G corresponding to λi(G1)+λj(G2).

6.2 Analysis of the eigenvalues’ multiplicity 49

6.2 Analysis of the eigenvalues’ multiplicity

Leveraging the results presented in the previous section, we build a new
transform that can be oriented in any direction. Using Theorem 6.1 and
equations (6.1) and (6.2), we can compute the eigenvalues and the eigenvectors
of L(Pn ×Pn) (which, for simplicity, are labeled with a double index):

λk,l = λk +λl = 4sin2
(
πk

2n

)
+4sin2

(
πl

2n

)
, (6.3)

v(k,l) = v(k) ⊗v(l), 0 ≤ k, l ≤ n−1,

where v(k) is the eigenvector of Pn corresponding to λk and v(l) is the eigenvec-
tor corresponding to λl. From (6.3), it is evident that some repeated eigenvalues
are present, due to symmetry: λk,l = λl,k for k ̸= l. Moreover, through straight-
forward computations, it is possible to prove that the eigenvalue λ = 4 has
algebraic multiplicity n− 1 and corresponds to all eigenvalues λk,n−k with
1 ≤ k ≤ n− 1. Therefore, in the spectrum of L there are only n− 1 eigenvalues
with algebraic multiplicity equal to 1 (i.e. λk,k with k ̸= n/2), and all the
others but λk,n−k have algebraic multiplicity 2. It is important to highlight
that even if λk,l = λl,k when k ̸= l, we still have that v(k,l) and v(l,k) are linearly
independent, because the Kronecker product is not commutative. Therefore,
the geometric multiplicity is equal to the algebraic multiplicity. This means
that the dimension of the eigenspaces corresponding to these eigenvalues is
bigger than one. This proves the following proposition.

Proposition 6.1. The 2D-DCT is not the unique eigenbasis of the Laplacian
matrix of a square grid graph.

In Fig. 6.2 the 2D-DCT basis with n = 8 is represented in matrix form;
as an example, we have highlighted in red the corresponding two eigenvectors
of an eigenvalue with multiplicity 2: we can see that they are clearly related
to each other, since they represent the same frequency, one in the horizontal
direction and the other in the vertical direction.

50 Steerable Discrete Cosine Transform

Fig. 6.2 2D-DCT basis vectors represented in matrix form (with n = 8): the corre-
sponding two eigenvectors of an eigenvalue with multiplicity 2 are highlighted in
red, the n − 1 eigenvectors corresponding to λ = 4 are highlighted in blue and the
n−1 eigenvectors corresponding to the eigenvalues with algebraic multiplicity 1 are
highlighted in green.

6.3 Transform definition

Since the 2D-DCT is not the unique eigenbasis for L(Pn ×Pn), we aim to find
all the other possible eigenbases and choose as transform matrix the one that
better fits the properties of the signal that we want to process.

Given an eigenvalue λk,l of L(Pn × Pn) with multiplicity 2 and the two
vectors of the 2D-DCT v(k,l) and v(l,k) that are the eigenvectors of L(Pn ×Pn)
corresponding to λk,l, we can write any other possible basis of the eigenspace
corresponding to λk,l as the result of a rotation of v(k,l) and v(l,k)

v(k,l)′

v(l,k)′

=
 cosθk,l sinθk,l

−sinθk,l cosθk,l

v(k,l)

v(l,k)

 , (6.4)

where θk,l is an angle in [0,2π]. The rotation described in (8.4) can also be
defined as a Givens rotation [84] in the plane described by v(k,l) and v(l,k) of
the n2-dimensional space.

6.3 Transform definition 51

For every λk,l with multiplicity 2, we can rotate the corresponding eigen-
vectors as shown in (8.4); the n− 1 eigenvectors corresponding to λ = 4 are
rotated in pairs v(k,n−k) and v(n−k,k), if n is even v(n

2 , n
2) is not rotated. In the

2D-DCT matrix, the pairs v(k,l) and v(l,k) are replaced with the rotated ones
v(k,l)′ and v(l,k)′ obtaining a new transform matrix V (θ) ∈Rn2×n2 that can be
defined only by the rotation angles used, which we have to transmit to the
decoder. The number of angles used is equal to the number of rotated pairs,
that is p= n(n−1)

2 . The new transform matrix V (θ) can be written as

V (θ) = V R(θ),

where V = V (0) ∈Rn2×n2 is the 2D-DCT transform matrix, θ ∈Rp is the vector
containing all the angles used and R(θ) ∈Rn2×n2 is the rotation matrix, whose
structure is defined so that, for each pair of vectors, it performs the rotation as
defined in (8.4).

R(θ) can be decomposed in two matrices as

R(θ) = ∆+R̃(θ),

where ∆ ∈Rn2×n2 is a constant matrix representing the vectors that do not
rotate, and R̃(θ) ∈ Rn2×n2 represents the vectors that are rotated. ∆ is a
diagonal matrix, with ∆ii = 1 for any i= kn+k with 0 ≤ k ≤ n−1; otherwise,
∆ii = 0. Given 0 ≤ k, l ≤ n− 1 and k ̸= l, if i = kn+ l and j = ln+ k, then
R̃(θ)ii = R̃(θ)jj = cosθk,l, R̃(θ)ij = sinθk,l and R̃(θ)ji = −sinθk,l, otherwise
R̃(θ)ij = 0. Then, for any signal x ∈ Rn2 our new transform, which in the
following will be referred to as SDCT, is defined as follows:

x̂ = V (θ)T f = R(θ)TV T f = (∆T +R̃(θ)T)V T x. (6.5)

Equation (6.5) shows that the SDCT can be decomposed as a product of a
rotation matrix R(θ) and the 2D-DCT transform matrix V . Moreover, let
x̂DCT ∈Rn2 be the DCT coefficients of the signal x, then the SDCT can be
computed in the following way

x̂ = R(θ)T x̂DCT . (6.6)

52 Steerable Discrete Cosine Transform

Fig. 6.3 Zigzag ordering for the p components of θ.

In this way, the complexity of the SDCT can be drastically reduced because
x̂DCT can be computed using the separability property. Then, to compute the
SDCT coefficients, x̂DCT is multiplied by the sparse matrix R(θ).

The components θk,l of θ are ordered using the zigzag pattern shown in
Fig. 6.3. Unlike the classical zigzag ordering, in this case we consider only p
elements, since θk,l = θl,k and the diagonal elements θk,k are not considered,
since the eigenvectors v(k,k) do not rotate.

The transform (6.5) is still the graph transform of a square grid graph, but
with a different set of orientations with respect to DCT. As an example, in Fig.
6.4, we show the basis vectors obtained rotating by π

4 every pair of eigenvectors.
As can be seen, the diagonal elements v(k,k) are the same as the DCT ones
because the corresponding eigenvalues have multiplicity one, instead all the
others are rotated by π

4 .

6.4 Probabilistic interpretation of the SDCT

It is well known that the 1D-DCT is close to the optimum KLT for Markov
sources with high correlation coefficient [1]. Instead, the optimality of the
2D-DCT has been less studied than the 1D case. In [50], the authors have
shown that if we consider a first order Gaussian Markov random field with
correlation coefficient equal to one (the corresponding graph is a uniform grid
such as the one shown in Fig. 6.1), then the 2D-DCT achieves optimal signal
decorrelation. They have also pointed out that it is not the unique transform
that achieves this result, because the eigenvector matrix is not unique. The

6.4 Probabilistic interpretation of the SDCT 53

Fig. 6.4 Steerable DCT with θ = π
4 .

SDCT represents all the possible optimal transforms for this type of signals.
In the next chapter, we use a determistic approach in order to define for each
block the best orientation for the SDCT. Instead, we leave as future work a
probabilistic interpretation of the SDCT, where we could investigate what is
the influence of the transform orientation on its optimality.

Chapter 7

SDCT: application to image and
video compression

In the previous chapter, we have shown that a new directional transform, called
SDCT, can be derived rotating 2p = n(n− 1) columns of an n2 × n2 DCT
matrix. In this chapter we present a few image compression algorithms based
on the SDCT. These algorithms explore different possibilities for the choice
of the rotation angles. First, we consider the case where we have only one
rotation angle per block, rotating all the eigenspaces by the same angle. Then,
we exploit the possibility of subdiving the eigenspaces in subbands and use one
rotation angle per subband. Finally, we also present the case where for each
eigenspace we use its corresponding optimal angle.

7.1 SDCT-1

In principle, we can use more than one rotation angle per block. However, in
this case the cost required to transmit all the rotation angles may be too high.
For this reason, we first consider the case where we use the same rotation angle

Part of the work described in this chapter has been previously published in G. Fracastoro,
E. Magli, Steerable Discrete Cosine Transform, Proc. of IEEE International Workshop on
Multimedia Signal Processing, 2015, pp 1-6; G. Fracastoro, E. Magli, Subspace-sparsifying
Steerable Discrete Cosine Transform from Graph Fourier Transform, Proc. of IEEE Interna-
tional Conference on Image Processing, 2016, pp. 1534-1538; G. Fracastoro, S. M. Fosson, E.
Magli, Steerable Discrete Cosine Transform, IEEE Transactions on Image Processing, vol.
26, no. 1, pp. 303-314, 2017.

7.1 SDCT-1 55

Algorithm 2 SDCT-1. θ: set of p angles between 0◦ and 90◦, J : objective
function, Jopt: optimal value of the objective function, V : 2D DCT matrix.

Set Jopt to 0;
Set the optimal angle to 0;
for i=1 to p do

Rotate each pair of vectors in V by θi;
Build a new transform matrix V ′ with the rotated vectors;
Compute J(θi): the value of the objective function J using V ′;
if J(θi)> Jopt then

Set the optimal angle to θi;
Jopt = J(θi);

end if
end for

for every eigenspace, transmitting, therefore, only one rotation angle per block.
Rotating all the eigenspaces by the same angle, we obtain a new transform
matrix, that we call SDCT-1, which is still the graph transform of a square
grid graph, but its orientation is different from that of the DCT.

The aim of using a transform matrix whose vector basis has a different
orientation from the horizontal/vertical one is to obtain a more compact
signal representation by unbalancing the energy of the transform coefficients.
For each pair of rotated eigenvectors, the total energy of the corresponding
transform coefficients remains unchanged, but it is possible to sparsify the
signal representation in each eigenspace. In the optimal case, the rotation
compacts all the energy of the pair in one of the two coefficients. If every pair
of vectors is rotated by the same angle, in the majority of cases we will not
achieve a complete unbalancing that zeros out one of the two coefficients, but
we will still obtain an improvement in the compression performance.

To choose the best rotation angle, we use an exhaustive method, finding,
among a finite set of p possible angles between 0◦ and 90◦, the one that
optimizes a predetermined objective function J (e.g a measure of the sparsity
of the transform coefficients, more details will be given in the following section).
Algorithm 2 describes the method used.

56 SDCT: application to image and video compression

(a) House (b) Boat (c) Lena

Fig. 7.1 Original images.

7.1.1 Experimental Results

For the purpose of experimentation, first we subdivide the image into blocks;
then, in each block we apply the SDCT-1. To evaluate the performance of the
proposed transform, given an image x ∈ RN we use the M term non-linear
approximation, where we keep the M largest coefficients (where M <N) and
set the others to zero:

x̃ =
M∑

i=1
x̂ivi,

where x̃ is the reconstructed image, {x̂i}1≤i≤M are the M transform coefficients
with largest magnitude and vi are the corresponding transform basis vectors.
To find the best rotation angle, we choose, for each M , the one that maximizes
the energy in the M largest coefficients

(
J =∑M

i=1 x̂
2
i

)
. Then, we compute the

PSNR of each image and we compare the performance of the proposed SDCT-1
with the standard DCT. We have tested this method on several grayscale
images, three of them are shown in Fig. 7.1.

The results presented are preliminary and they are meant to demonstrate the
potentiality of the proposed transform, but further work is needed to develop
image coding applications. In particular, the non-linear approximation used
does not take into account the overhead bits needed to transmit the rotation
angle, therefore the comparison with the DCT is not completely fair, even if
the required overhead for the SDCT-1 is very low.

7.1 SDCT-1 57

Number of retained coefficients
10 12 14 16 18 20 22 24 26 28 30

P
S

N
R

 (
dB

)

36

38

40

42

44

46

48

House - 8x8 Blocks

DCT
SDCT-1 4 angles
SDCT-1 16 angles
SDCT-1 128 angles

Fig. 7.2 M -term non-linear approximation using different angle quantizations.

Angle quantization

To obtain a finite set of angles, we perform an uniform quantization of the angles
between 0◦ and 90◦. Since the SDCT-1 needs to transmit as side information
the rotation angle that we used for the transform, it is important to have a
small number of possible angles. We have evaluated the performance of the
SDCT-1 as a function of the number of available angles. The results obtained
using 8×8 blocks are shown in Fig. 7.2. From the results, we can see that
increasing the number of angles improves the performance of the SDCT-1,
but after a while this improvement becomes not significant, for example the
performance using 16 angles and 128 angles is nearly the same. For the tests
presented in the following sections, we decided to use quantization onto 16
possible angles.

Effect of block size

The proposed SDCT-1 can be applied to square blocks of any size. However,
in our experiments we have noticed that the gain of the SDCT-1 depends on
the block size used. In Fig. 7.3 we show the performance curves obtained
with different block sizes. On average, we have a coding gain of 1.5 dB with
4×4 blocks, 0.7 dB with 8×8 blocks and 0.25 dB with 16×16 blocks. We can
clearly see that the effectiveness of the SDCT-1 increase when we use small

58 SDCT: application to image and video compression

Number of retained coefficients
2 3 4 5 6 7 8 9 10

P
S

N
R

 (
dB

)

25

30

35

40

45

50

55

House - 4x4 blocks

SDCT-1
DCT

Number of retained coefficients
5 10 15 20 25 30

P
S

N
R

 (
dB

)

28

30

32

34

36

38

40

42

44

46

48

House - 8x8 Blocks

SDCT-1
DCT

Number of retained coefficients
0 20 40 60 80 100 120 140 160

P
S

N
R

 (
dB

)

20

25

30

35

40

45

50

55

House - 16x16 blocks

SDCT-1
DCT

Fig. 7.3 M -term non-linear approximation using different block sizes.

blocks, because in larger blocks it is more difficult to find just one predominant
direction.

A detail of the significant improvement obtained by the SDCT-1 can be
visually appreciated in Fig. 7.4 and 7.5. As can be seen, the SDCT-1 provides

7.1 SDCT-1 59

(a) DCT (b) SDCT-1

Fig. 7.4 Visual comparison between the conventional DCT and the proposed SDCT-1:
a detail of the House image reconstructed from M = 6 coefficients using 8×8 blocks.

(a) DCT (b) SDCT-1

Fig. 7.5 Visual comparison between the conventional DCT and the proposed SDCT-1:
a detail of the Lena image reconstructed from M = 3 coefficients using 4×4 blocks.

much better visual quality, minimizing artifacts along the edges thanks to the
alignment of the transform to the edge direction.

Comparison with DDCT

In the case of 8×8 blocks, we have also made a comparison with the DDCT
presented in [21]. In Fig. 7.6, the results obtained with some test images are
shown. We can see that the performances of the two methods are very similar,

60 SDCT: application to image and video compression

Number of retained coefficients
5 10 15 20 25 30

P
S

N
R

 (
dB

)

28

30

32

34

36

38

40

42

44

46

48

House - 8x8 Blocks

SDCT-1
DCT
DDCT
SDCT 4 subbands

Number of retained coefficients
5 10 15 20 25 30

P
S

N
R

 (
dB

)

28

30

32

34

36

38

40

42

44

Boat - 8x8 blocks

SDCT-1
DCT
DDCT
SDCT 4 subbands

Number of retained coefficients
5 10 15 20 25 30

P
S

N
R

 (
dB

)

30

32

34

36

38

40

42

44

46

Lena - 8x8 Blocks

SDCT-1
DCT
DDCT
SDCT 4 subbands

Fig. 7.6 Performance comparison between DCT, SDCT-1 and DDCT.

7.2 Rate-distortion optimization 61

even if the proposed SDCT-1 is slightly better with an average coding gain
of approximately 0.1 dB. Even if the performances of the two transforms are
similar, the SDCT-1 presents a more general framework for image coding that
can be further extended using more than one rotation angle. In order to show
the potential of the proposed framework, we have ordered the pairs of vectors
using the zigzag ordering and divided them in four subbands of equal size, then
we have used a different rotation angle for each subband. The results obtained
are plotted in Fig. 7.6. We can see that the improvement over the SDCT-1
and the DDCT is significant, with an average quality gain of 0.45 dB over the
SDCT-1 and of 1.15 dB over the standard DCT.

7.2 Rate-distortion optimization

In the previous section, we have presented a new algorithm for image compres-
sion based on the SDCT, where the 2D-DCT basis is rotated by a single given
angle for each image block.

In this section, we analyse the broader of finding the best set of rotations of
the 2D-DCT basis for each image block. Considering more than one angle per
block, we can potentially obtain a more compact representation at the price of
more side information to transmit. The tradeoff can be analysed from a RD
perspective. We first cast the problem as the problem as the minimization of a
RD functional. The minimum provides the optimal number of rotation angles
per block as well as the angles’ values. The problem is well-posed (the global
minimum exists), but it is non-convex, hence finding the global minimum is
non trivial. The best feasible strategy that one can conceive in such case is
iterative alternated minimization, that allows to get to a local minimum or a
saddle point. This is the basis of our first proposed algorithm, named steerable
DCT through alternated minimization (SDCT-AM). If suitably initialized,
SDCT-AM is proved to always outperform DCT in RD terms. We have also
investigated other strategies to define and transmit the angles’ distribution, in
order to reduce the angles’ transmission cost, and propose a subdivision into
subbands that can be encoded as a binary tree. This is the key idea for our
second proposed algorithm, named SDCT-BT, which significantly decreases
the amount of side information.

62 SDCT: application to image and video compression

7.2.1 RD model

Let V (θ) = VR(θ) be the steered transform matrix, x ∈ Rn2 be the image
block, θ = (θ1, . . . , θp) be the ordered set of angles, and x̂ = (x̂1, . . . , x̂n2)T be
the coefficients of the transform (6.5). As a distortion metric we employ the
reconstruction error:

D(x̂, θ) := ∥x −V (θ)x̂∥2
2. (7.1)

We consider two rate contributions, that is, the transform coefficients rate Rx̂
and the rotation angles’ rate Rθ. The total rate is R(x̂, θ) = Rx̂ +Rθ.

In [85, 25, 62], it has been shown that for DCT transforms there is an
approximately linear relationship between the coding bitrate Rx̂ and the ℓ0-
norm of x̂, that is, the number of its non-zero coefficients, i.e.

Rx̂ = α∥x̂∥0 (7.2)

where α can be empirically found [85].

Let us now discuss Rθ. In the previous section, we have considered the
simple case of using the same angle for all the eigenspaces, and concluded that
this is sufficient to outperform classical 2D-DCT. Our aim is now to study the
intermediate cases, seeking the optimal number and values of angles yielding
the best balance between recovery accuracy and rate.

Specifically, we split the angles into subbands of DCT coefficients, choosing
a single angle for all coefficients in each subband, so that the vector θ is
piecewise constant. Let s be the number of subbands: if s < p, instead of
transmitting p angles, we require only s angle values and s indexes indicating
where the subvectors end. Assuming no compression for the angles and a
quantization over qθ values in [0,2π] for each angle, the transmission amounts to
s⌈log2 qθ⌉ + s⌈log2 p⌉, which clearly increases much slower than than p⌈log2 qθ⌉.
We notice that s can be expressed as a function of θ as follows:

s= ∥Bθ∥0

7.2 Rate-distortion optimization 63

where B ∈Rp×p is the discrete difference operator, given by:

B =

1 0 · · · · · · 0

−1 1 0 · · · 0
0 0
0 · · · · · · −1 1

 .

In conclusion, we define the angles rate as follows:

Rθ = ∥Bθ∥0(⌈log2 qθ⌉+ ⌈log2 p⌉). (7.3)

Finally, we assume that both x̂ and θ are quantized, and denote as Qx̂ ⊂R
and Qθ ⊂ [0,π] the respective sets of available reconstruction values for each
component, so that x̂ ∈ Qn2

x̂ and θ ∈ Qp
θ. We are now ready to define our

RD optimization problem. As in [86], we consider the following Lagrangian
relaxation:

min
x̂∈QN

x̂ , θ∈Qp
θ

J(x̂, θ)

J(x̂, θ) = D(x̂, θ)+γ(Rx̂ +Rθ)
= ∥x −V (θ)x̂∥2

2+
+γ [α∥x̂∥0 +(⌈log2 qθ⌉+ ⌈log2 p⌉)∥Bθ∥0] ,

(7.4)

where γ > 0 is the Lagrangian parameter.

The problem (7.4) is similar to sparse signal recovery problems, for which
hard thresholding techniques can be used [87]. Briefly, a functional of kind
∥Aw−z∥2

2 +γ∥w∥0 with w ∈Rn and invertible A ∈Rn×n has global minimum
at H√

γ [A−1z], where H√
γ :Rn →Rn is the hard-thresholding operator that

sets to zero all the components smaller than √
γ in magnitude of its input vector.

This can be derived as a simpler subcase of iterative hard thresholding for sparse
problems [87, Equation 2.1-2.2]: since our transform matrix is orthogonal, the
procedure stops after one iteration.

Our problem is made more difficult by the non-convexity of the distortion
term due to the variable θ. However, we remark that the problem is well posed,
because it is lower bounded by 0, and it is proper (if x̂ goes to infinity, J

64 SDCT: application to image and video compression

tends to infinity as well). This encourages to search a solution; to this end, we
undertake alternated minimization on separated variables. In particular, we
notice that the problem can be analytically solved with respect to the individual
variables x̂ and θ1, . . . , θp.

7.2.2 Proposed algorithms for RD optimization

In this section, we present the proposed algorithms SDCT-AM and SDCT-BT
to seek the best set of rotations for SDCT.

In the previous section, we have defined the RD optimization problem (7.4)
and observed that a global solution is difficult to find due to global non-convexity.
However, the problem is mathematically tractable in the individual variables
x̂, θ1, θ2, . . . , θq, as we are going to show, and an alternated minimization achieves
a partial optimum (i.e., a local minimum or a saddle point). This is the basis
of SDCT-AM.

Alternated minimization: SDCT-AM

Assuming θ fixed, the evaluation of minx̂∈QN
x̂
J(x̂, θ) is straightforward. We

have

min
x̂∈QN

x̂

J(x̂, θ) = min
x̂∈QN

x̂

D(x̂, θ)+γα∥x̂∥0

= min
x̂∈QN

x̂

n2∑
i=1

[
x̂i − (V T (θ)I)i

]2
+γα∥x̂i∥0 .

Therefore, we can solve a separated problem for each component x̂i, whose
solution is given by

H√
γα

[
Q
[
(V T (θ)x)i

]]
where, for any z ∈R, Q [z] and H√

γα [z] respectively indicate the quantization
operator that projects onto Qx̂ and the hard thresholding operator with thresh-
old √

γα defined as H√
γα [z] = x if |z|>√

γα, and H√
γα [z] = 0 if |z| ≤ √

γα.

7.2 Rate-distortion optimization 65

We notice that
[
Q
[
(V T (θ)x)i

]]
= arg min

x̂i∈Qx̂

[
x̂i − (V T (θ)x)i

]2

since
[
x̂i − (V T (θ)x)i

]2
is convex and symmetric.

The procedure to minimize J(x̂, θ) with respect to θj , j ∈ {1, . . . ,p}, is
similar. We have

min
θj∈Qθ

J(x̂, θ) = min
θj∈Qθ

D(x̂, θ)+γ(⌈log2 qθ⌉+ ⌈log2 p⌉)∥Bθ∥0

where the term ∥Bθ∥0 can be substituted by ∥θj − θj+1∥0 + ∥θj − θj−1∥0 for
j ∈ {2, . . . ,p−1}, by ∥θ1∥0 +∥θ1 − θ2∥0 for j = 1, and by ∥θq − θq−1∥0 for j = p.

First, we analytically evaluate minθj∈[0,2π] D(x̂, θ). Since V (θ) is orthogonal
for any θ,

∥x −V (θ)x̂∥2
2 = ∥x∥2

2 −2xTV (θ)x̂ +∥x̂∥2
2.

Furthermore, it is straightforward to check that we can define a matrix U =
U(x̂) ∈Rn2×2p such that

V R̃(θ)x̂ = U(x̂)(cos(θ1),sin(θ1), . . . ,cos(θp),sin(θp))T ,

R̃(θ) being defined in Section 6.3. In this way,

V (θ)x̂ = V [∆+R̃(θ)]x̂
= V∆x̂ +U(x̂)(cos(θ1),sin(θ1), . . .)T .

Therefore,

min
θj∈[0,π]

D(x̂, θ) = min
θj∈[0,π]

−2xTU(x̂)(cos(θ1),sin(θ1), . . .)T .

We then compute the derivative with respect to θj , which is equal to zero when
xT (U (2j) sin(θj)−U (2j+1) cos(θj)) = 0, i.e.,

66 SDCT: application to image and video compression

Algorithm 3 SDCT-AM
1: Initialize: θ(0), x̂(0);
2: for t=1,2,. . . do
3: x̂(t) = argminx̂∈Q(x̂)N J(x̂, θ) (see Section 7.2.2)
4: for j = p,p−1, . . . ,1 do
5: θj(t) = argminθj∈Q(θ)J(x̂, θ) (see Section 7.2.2)
6: end for
7: if J(x̂(t−1), θ(t−1)) = J(x̂(t), θ(t)) then
8: break
9: end if

10: end for

θj = arctan
(

xTU (2j+1)

xTU (2j)

)

where U (i) indicates the ith column of U . This equation has one solution in
[0,π], which could be either the maximum or the minimum. For continuity, it
suffices to compare this solution with the extreme values θj = 0 and θj = π to
obtain the minimum.

Afterwards, as for x̂i, we proceed by projecting onto Qθj
(again, convexity

and symmetry of the subproblem guarantee that θ̂j = argminθj∈Qθj
D(x̂, θ) =

Q[argminθj∈[0,π] D(x̂, θ)]). Finally, we perform hard thresholding, which con-
sists in evaluating which one among θ̂j , θj−1, θj+1 is the most convenient choice
for θj , j = 2, . . . ,p−1 that is, which value provides the minimum J . For j = 1
and j = p, clearly the choice is among θ̂1,0, θ2, and θ̂p, θp−1.

Alternating these minimization tasks we obtain SDCT-AM, which is sum-
marized in Algorithm 3.

Theorem 7.1. There is a time t0 in which J(x̂(t), θ(t)) in SDCT-AM stabilizes
at a partial optimum.

Proof. The alternated minimization of SDCT-AM guarantees that the sequence
J(x̂(t), θ(t)) is not increasing. Since J is lower bounded by 0 and is a proper
function (if x̂ goes to infinity, J tends to infinity), it admits a minimum.
Therefore J(x̂(t), θ(t)) is not increasing and compact, which implies that is
convergent. Since x̂(t) and θ(t) are quantized values, convergence turns out to
be a stabilization, that is, from a time step t0, J(x̂(t), θ(t)) is constant. Finally,

7.2 Rate-distortion optimization 67

it is easy to check that (x̂(t0), θ(t0)) is partial optimum, because the functional
increases moving along the coordinate directions.

A consequence of this theorem is that the SDCT-AM performance is always
better than or equal to the DCT performance, in RD terms. In fact, Since
SDCT-AM decreases J , it is sufficient to initialize SDCT-AM with DCT to
be sure to perform better (or at least equivalently, in the case that DCT is a
partial optimum of J).

Moreover, the theorem suggests also a stop criterion for SDCT-AM: when
J(x̂(t), θ(t)) = J(x̂(t−1), θ(t−1)), the algorithm can be stopped.

Binary tree for angles structure: SDCT-BT

SDCT-AM (Algorithm 3) is proved to achieve a partial optimum of the RD
functional J , which is the best results that one can expect to achieve, due to
the non-convexity of the problem. In the following we propose an alternative
algorithm, called SDCT-BT, which reduces the angles side information cost,
allowing more freedom in choosing the rotation angles. Based on the con-
struction of a binary tree to describe the angles subband division, SDCT-BT
cannot be theoretically analyzed in terms of a minimization problem, but is
experimentally proved to perform well.

Before illustrating SDCT-BT, we specify that in this approach x̂ and θ are
no more considered as separated variables, since x̂ in this case is the vector of
the quantized transform coefficients obtained by performing the SDCT: each
time we modify θ, we automatically set x̂ = Q[V (θ)T x], where Q indicate the
operation of quantization onto Qx̂. Therefore, we will only use the variable θ,
and accordingly we will use J(θ) to indicate the cost functional.

Moreover, J(θ) is slightly different from J(x̂, θ) in the rate definition. For
Rx̂, we use the real bitrate, while Rθ is determined by the angle selection
procedure that we illustrate in the following.

The angles setting of SDCT-BT is as follows. We start from a single angle
value, say one subband, and we iteratively decide if it is convenient to split into
different subbands. Specifically, we impose that each subband can be divided

68 SDCT: application to image and video compression

Fig. 7.7 Binary subband subdivision for SDCT: from level 1 downwards, we split a
subband if this operation decreases the cost functional J

into two subbands of equal length if this decreases J (spare pairs of vectors are
included in the last group), as shown in Fig. 7.7. The decision about splitting
a subband is taken by performing an exhaustive search over all possible qθ

angles and selecting the one minimizing J ; if the so-obtained J(θ) is smaller
than the current cost Ĵ , then the split is accepted, and Ĵ = J(θ). We proceed
until no more improvement can be obtained, or when the maximum number of
subbands is achieved.

As depicted in Fig. 7.8, this procedure is efficient because it can be encoded
as a binary decision tree with the root set at level 1. Each node of this tree
represents a possible subband and is set to 1 if it actually is a subband, and
0 otherwise. Nodes labeled with 0 are linked to two new nodes, while nodes
labeled with 1 are leafs. We represent the final subband subdivision by signaling
the decision tree starting from top level 1.

In this way, if the number of subbands is s, the number of nodes in the
decision tree is 2s−1; then we have to signal only 2s−1 bits. For SDCT-AM
the subband structure is encoded over s⌈log2 p⌉ = ∥Bθ∥0⌈log2 p⌉, which is larger
than 2s−1 for any p≥ 2.

SDCT-BT is summarized in Algorithm 4. As one can deduce from Fig. 7.8,
for each accepted split we use 2 additional bits to signal it.

7.2 Rate-distortion optimization 69

Fig. 7.8 Signaling of the subbands structure: from level 1 downwards, we transmit
the labels of the nodes in the binary decision tree.

7.2.3 Image codec for SDCT-AM and SDCT-BT

When using SDCT-AM and SDCT-BT, we need to encode three different
types of information: the transform coefficients, the rotation angles, and the
subband subdivision. To code the transform coefficients, we perform an uniform
quantization and then we code the quantized coefficients using an adaptive bit
plane arithmetic coding.

To code the rotation angles, we fix qθ = 8 quantization levels for the angles,
uniformly set in [0,π] for both SDCT-AM and SDCT-BT. Then, we use log2 qθ =
3 bit to transmit each rotation angle. We do not perform any compression on
the angles, as their distribution, as observed in our tests, does not exhibit an
evident compressibility. In order to improve the compression performance, as
future work we may consider a non-uniform angle quantization.

Regarding the subband subdivision, the two proposed algorithms present
two different encoding methods, as explained in the previous section. SDCT-AM
requires (⌈log2 p⌉)s bits, where p= n(n−1)

2 , and s is the number of subbands.

As also done in [21], we take into account 1 more bit for each block to
declare whether we are applying the directional method or the classical DCT.

70 SDCT: application to image and video compression

Algorithm 4 SDCT-BT
1: Initialize: k = 0, θ̂ = (θ0, θ0, . . . , θ0) (i.e. 1 subband), Ĵ = J(θ̂)
2: for k = 1 . . . ,⌊log2 p⌋ do
3: for each subband s do
4: Split s into two sets of equal length
5: θ = θ̂
6: Sequentially, for each set S,

θj = ω for all j ∈ S

where ω = argminx∈Qθ
J (found via exhaustive search)

7: if J(θ)< Ĵ then
8: Ĵ = J(θ)
9: θ̂ = θ

10: the two sets are accepted as new subbands
11: end if
12: end for
13: if no split is performed at the current level k then
14: break
15: end if
16: end for

7.2.4 Experimental results

In this section, we evaluate the performance of the proposed SDCT-AM and
SDCT-BT methods and compare them to the state-of-the-art directional trans-
forms. We perform an objective comparison computing the PSNR and a
subjective comparison evaluating the SSIM index [88]. At the end of the
section, we also propose some considerations and experiments about a possible
future implementation of the SDCT in the HEVC standard.

We test SDCT-AM (Algorithm 3) and SDCT-BT (Algorithm 4) on some
standard grayscale images and on intra-frame prediction errors. For the pre-
diction errors, we use HEVC to generate intra-frame prediction residuals on
the first frame of few test video sequences. For both images and residual
frames, we use different block sizes n×n with n ∈ {8,16,32}. We compare
their performance against the classical DCT, the Directional DCT [21] and
the SDCT with only one rotation angle per block (SDCT-1), as proposed in

7.2 Rate-distortion optimization 71

the previous section of this chapter. Then, we also show a brief comparison
between wavelets and SDCT.

For the DDCT and the SDCT-1, we code the transform coefficients using the
same method used for SDCT-AM and SDCT-BT (see Sec. 7.2.3); in addition to
the bitrate of the coefficients, we count 3 bit per block to transmit the chosen
angle and one additional bit to signal if we are using the directional method
or the classical DCT. Regarding the wavelets, we use CDF 9/7 wavelets and
we code the transform coefficients with the same method used for the other
transforms.

For all our simulations, we consider qθ = 8 angles uniformly set in [0,π], as
explained in Section 7.2.3. We initialize both SDCT-AM and SDCT-BT with
one single angle, testing all 8 possible initializations and eventually choosing
the best one. For SDCT-BT, the maximum number of iterations is set by
⌊log2 p⌋, while for SDCT-AM we get a stationary point in very few iterations
(less than 10).

For SDCT-AM, we need to select the parameter α defined in (7.2). As we
do not know Rx̂ and ∥x̂∥0 in advance, we employ the values of Rx̂ and ∥x̂∥0

estimated by the classical DCT, multiplied by 2 (we observe in fact that slight
overestimation is more safe).

Objective comparison

In Tables 7.1 and 7.2, we summarize our performance results in terms of average
gain in PSNR compared to DCT, evaluated through the Bjontegaard metric
[66].

In Table 7.1, the comparison is performed on eight classical grayscale images
(House, Barbara, Boat, Lena, Aerial 5.1.10 [89], Stream and Bridge 5.2.10 [89],
Couple 4.1.02 [89], Airplane F16 4.2.05 [89]; color images have been converted
to grayscale). The gains obtained by DDCT and SDCT-1 are similar, and
decrease as the block size increases. An inverse behavior characterizes SDCT-
AM and SDCT-BT, which generally improve using larger blocks. For blocks
8×8, the four methods are quite similar, while for large blocks SDCT-AM and
SDCT-BT are definitely preferable than DDCT and SDCT-1. The PSNR gain
ranges from 0.3 dB to nearly 1 dB.

72 SDCT: application to image and video compression

Image block size DDCT SDCT-1 SDCT-AM SDCT-BT
House 8×8 0.325 0.382 0.406 0.432

256×256 16×16 0.274 0.335 0.636 0.563
32×32 0.312 0.259 0.718 0.603

Barbara 8×8 0.285 0.288 0.328 0.321
512×512 16×16 0.153 0.195 0.507 0.392

32×32 0.074 0.093 0.567 0.448
Boat 8×8 0.238 0.271 0.330 0.301

512×512 16×16 0.105 0.160 0.499 0.338
32×32 0.043 0.076 0.565 0.392

Lena 8×8 0.349 0.347 0.375 0.378
512×512 16×16 0.260 0.252 0.578 0.460

32×32 0.170 0.129 0.624 0.519
Aerial 8×8 0.343 0.490 0.476 0.572

256×256 16×16 0.132 0.297 0.512 0.720
32×32 0.017 0.143 0.455 0.985

Stream 8×8 0.394 0.417 0.442 0.476
512×512 16×16 0.165 0.256 0.547 0.559

32×32 0.046 0.119 0.522 0.736
Couple 8×8 0.239 0.294 0.341 0.326

256×256 16×16 0.140 0.223 0.570 0.456
32×32 0.066 0.114 0.620 0.630

F16 8×8 0.286 0.417 0.404 0.459
512×512 16×16 0.198 0.340 0.620 0.632

32×32 0.094 0.181 0.631 0.729

Table 7.1 Average gain in PSNR with respect to DCT measured with Bjontegaard
metric (tests on images)

7.2 Rate-distortion optimization 73

Prediction residual block size DDCT SDCT-1 SDCT-AM SDCT-BT
RaceHorses 8×8 0.401 0.443 0.431 0.477

416×240 16×16 0.249 0.313 0.461 0.625
32×32 0.119 0.164 0.354 0.827

RaceHorses 8×8 0.407 0.431 0.455 0.459
832×480 16×16 0.228 0.278 0.527 0.549

32×32 0.125 0.138 0.461 0.776
BasketballPass 8×8 0.322 0.381 0.503 0.415

416×240 16×16 0.200 0.235 0.619 0.502
32×32 0.120 0.133 0.606 0.652

PartyScene 8×8 0.468 0.368 0.335 0.388
832×480 16×16 0.283 0.235 0.307 0.451

32×32 0.138 0.122 0.243 0.549
ChinaSpeed 8×8 0.613 0.391 0.431 0.382
1024×768 16×16 0.486 0.312 0.565 0.477

32×32 0.289 0.150 0.491 0.527
Keiba 8×8 0.207 0.380 0.455 0.435

416×240 16×16 0.117 0.226 0.507 0.546
32×32 0.078 0.098 0.470 0.770

Keiba 8×8 0.267 0.331 0.471 0.367
832×480 16 ×16 0.157 0.205 0.580 0.419

32×32 0.068 0.086 0.543 0.510
Kristen&Sara 8×8 0.265 0.264 0.417 0.273

1280×720 16×16 0.217 0.220 0.607 0.396
32×32 0.124 0.129 0.644 0.529

Table 7.2 Average gain in PSNR with respect to DCT measured with Bjontegaard
metric (tests on intra-prediction errors)

74 SDCT: application to image and video compression

In Table 7.2, prediction errors are considered on eight different videos.
The behavior is similar to that appreciated for images in Table 7.1: the gain
obtained by SDCT-AM and SDCT-BT with respect to DDCT and SDCT-1 is
more consistent as the block size increases. In this case, the PSNR gain ranges
from 0.3 dB to 0.8 dB.

From the results we can see that the performance of SDCT-AM and SDCT-
BT are similar. In certain cases (such as Boat or Barbara), SDCT-AM outper-
forms SDCT-BT. Instead, in other cases the performance of SDCT-AM slightly
decreases using larger block sizes, while that of SDCT-BT always increases.
This happens mostly with prediction errors and with textured images (such as
Aerial), for which the non-regularity may require a higher number of subbands.
In such frameworks, SDCT-AM is penalized as it uses a larger number of bits
to signal the subbands structure if compared to SDCT-BT.

In Fig. 7.9, we depict the RD curves concerning the image Airplane F16, for
n= 8,16,32. For n= 16,32, SDCT-AM and SDCT-BT turn out to be better
than the state-of-the-art methods.

Comparison with wavelets

For still image compression, coding schemes based on wavelets have achieved
significantly better performance compared to DCT-based compression methods
[90]. Instead in video coding, wavelet-based compression methods have not
shown significant performance gains versus DCT-based methods [91]. In our
work we consider both images and videos, but our focus is mainly on video
compression and a possible future implementation of the SDCT in a video
compression standard. For this reason, we use as main benchmark the DCT,
that is the core transform of most video coding standards. However, we also
present a comparison between wavelets and SDCT on a few sample images.

In Table 7.3 we show a comparison between SDCT and wavelets for n=
16,32,64. We evaluate the performance of SDCT-AM and SDCT-BT in terms
of average gain in PSNR compared to wavelets. As we can see from the results,
when the dimension of the block is small, SDCT-AM and SDCT-BT show
a significant quality gain. Instead, at larger block size the wavelets usually
outperform both SDCT-AM and SDCT-BT. It is interesting to point out that

7.2 Rate-distortion optimization 75

 30

 32

 34

 36

 38

 40

 42

 44

 1.5 2 2.5 3

P
S

N
R

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

 30

 32

 34

 36

 38

 40

 42

 44

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

P
S

N
R

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

 30

 32

 34

 36

 38

 40

 42

 44

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

P
S

N
R

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

Fig. 7.9 RD performance comparison for the image Airplane F16 using different block
sizes: from top to bottom, n = 8,16,32

in the test Aerial with n= 64 SDCT-BT outperforms the wavelets, which in
turn outperform the classical DCT. This demonstrates that sometimes the
improvement obtained by SDCT is significant to make the DCT approach more
efficient than other approaches.

76 SDCT: application to image and video compression

Prediction residual block size SDCT-AM SDCT-BT DCT
Boat 16×16 1.858 1.702 1.359

512×512 32×32 1.589 1.384 0.985
64×64 -2.183 -1.862 -3.199

Aerial 16×16 1.724 1.519 1.012
256×256 32×32 1.161 1.690 0.714

64×64 -0.432 0.294 -0.886
Stream 16×16 1.265 1.272 0.718

512×512 32×32 1.043 1.234 0.495
64×64 -0.802 -0.232 -1.364

Table 7.3 Average gain in PSNR with respect to wavelets measured with Bjontegaard
metric

Subjective comparison

Since the PSNR is not always a good representation of the visual quality, we
also compute the SSIM index in order to evaluate the perceived quality. The
results for the image Barbara are shown in Fig. 7.10. Also in this case, we can
see that when we use smaller blocks the performance of the three directional
methods are very similar, instead when the block size increases the SDCT
clearly outperforms the other methods.

In Fig. 7.11, we show a detail of F16 (block size 64×64, 0.8 bpp) in which a
visual improvement can be observed in SDCT-AM and SDCT-BT with respect
to DCT.

Future applications

To conclude the experimental section, we propose some observations and tests
regarding possible future applications of SDCT. In particular, we investigate the
possibility to implement efficiently the proposed SDCT in the HEVC standard.

In HEVC, the core transform is DCT [92] [93]. Replacing it with SDCT is
then expected to produce a performance improvement. A test implementation
of SDCT within HEVC is beyond the purpose of this paper and is left for
future work. However, it is worth mentioning that HEVC uses an integer

7.2 Rate-distortion optimization 77

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.5 2 2.5 3 3.5 4

S
S

IM

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.5 2 2.5 3

S
S

IM

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.5 1 1.5 2 2.5 3

S
S

IM

bitrate (bpp)

DCT
DDCT

SDCT-1
SDCT-AM
SDCT-BT

Fig. 7.10 SSIM performance comparison for the image Airplane F16 using different
block sizes: from top to bottom, n = 8,16,32

version of DCT, i.e. an approximate DCT that can be stored using only integer
values [93]. This clearly has memory advantages, but involves a not exactly
orthogonal transform. For this reason, we have tested SDCT using the same
integer approximation in order to evaluate the possible drawbacks. To compute
the integer approximation of the proposed SDCT we have used equation (6.6),
where the DCT coefficients are computed using the integer DCT defined in

78 SDCT: application to image and video compression

Original image DCT

SDCT-AM SDCT-BT
Fig. 7.11 Visual comparison on Airplane F16 image (block size 64×64, 2 bpp): at
the same bpp, DCT is more spotted than SDCT-AM and SDCT-BT.

HEVC. The obtained results (of which we show just some samples in Table 7.4)
are in line with the previous non-integer approach. Moreover, Table 7.5 shows
that in mostly all cases the proposed SDCT is chosen in a significant number
of blocks.

7.3 Subspace-Sparsifying Steerable DCT 79

Prediction residual block size integer SDCT-AM integer SDCT-BT
RaceHorses 8×8 0.429 0.476

416×240 16×16 0.458 0.613
32×32 0.353 0.830

BasketballPass 8×8 0.498 0.413
416×240 16×16 0.615 0.494

32×32 0.609 0.642
Keiba 8×8 0.452 0.431

416×240 16×16 0.505 0.538
32×32 0.472 0.754

Table 7.4 Integer SDCT for HEVC: average gain in PSNR with respect to integer
DCT measured with Bjontegaard metric

This is a first step that suggests the possibility to implement efficiently an
integer SDCT in the HEVC standard.

7.3 Subspace-Sparsifying Steerable DCT

In this section, we propose a new directional DCT based on the SDCT, called
Subspace-Sparsifying SDCT (S3DCT), that utilizes a high number of rotation
angles, in order to better compact the energy of the signal. By properly
matching the angles to the imge block content, the proposed S3DCT yields a
matrix of transform coefficients that is triangular. In this way, the number of
the coefficients to be transmitted to the decoder is nearly halved, resulting in
a significant coding gain. We have integrated the S3DCT into a fully fledged
image codec, showing that the new transform significantly outperforms existing
conventional and directional DCTs.

The main idea of the S3DCT is to choose among all the possible rota-
tions that can be performed the one that provides the sparsest coefficients
representation.

For each eigenspace with multiplicity 2, we can find in an analytical way
the rotation angle that compacts all the energy in one coefficient, zeroing out
the other one. Let x ∈ Rn2 be the original (vectorized) image block, given

80 SDCT: application to image and video compression

Prediction residual block size integer SDCT-AM integer SDCT-BT
RaceHorses 8×8 50% 47%

416×240 16×16 56% 71%
32×32 38% 84%

BasketballPass 8×8 64% 46%
416×240 16×16 80% 65%

32×32 77% 78%
Keiba 8×8 57% 44%

416×240 16×16 79% 60%
32×32 89% 80%

Table 7.5 Percentage of blocks where the SDCT is chosen over the DCT at 40 dB

an eigenvalue λk,l of L(Pn × Pn) with multiplicity 2 and its corresponding
eigenvectors v(k,l) and v(l,k), for the given block, the corresponding DCT
coefficients are:

x̂DCTk,l
= v(k,l)T

x,

x̂DCTl,k
= v(l,k)T

x

Then, the angle that provides the sparsest representation is

θk,l = arctan
x̂DCTk,l

x̂DCTl,k

. (7.5)

In fact, given v(k,l)′ and v(l,k)′ , which are obtained rotating v(k,l) and v(l,k) by
θk,l as described in (8.4), the new transform coefficients are

x̂k,l = v(k,l)′T
x,

x̂l,k = v(l,k)′T
x.

Then, from (7.5), we conclude that x̂k,l = 0 and all the energy is conveyed to
x̂l,k, as shown in Fig. 7.12.

In this way, we can define the optimal rotation angle as θ∗, where each
component θ∗

k,l is defined as in (7.5). We obtain, then, a transform matrix
V (θ∗) that has the remarkable property that the coefficients matrix obtained
is triangular. We call this special case of SDCT as Subspace-Sparsifying SDCT

7.3 Subspace-Sparsifying Steerable DCT 81

Fig. 7.12 Sparsifying rotation: using the angle defined in (7.3) p transform coefficients
are exactly null.

(S3DCT). The main advantage of the S3DCT is that we know a priori that
we do not need to transmit p coefficients, since they are forced to be null. In
this way, we nearly halve the number of coefficients that have to be sent to the
decoder, while, on the other hand, we have to transmit also the rotation angles
used. However, the number of rotation angles to transmit can be reduced, since
many DCT coefficients (mostly in the higher frequencies) are null. In this case,
we can avoid to rotate the corresponding eigenspace and, therefore, to transmit
the rotation angles. In this way, we transmit only the rotation angles of the
coefficients that are not quantized to zero, reducing significantly the number of
angles to transmit. Another advantage of the S3DCT with respect of the DCT
lies in the fact that the angle for each subspace can be computed analytically
using (7.5); therefore, one does not need to perform an exhaustive search of
the optimal angle, leading to significantly reduced complexity.

7.3.1 Rate-Distortion Optimization

As pointed out in the previous section, when we use the S3DCT we have also
to take into account the cost of transmitting the rotation angles corresponding
to the coefficients that are not null. Therefore, the total rate should take into
account both the rate due to the coefficient transmission Rx̂ and the rate due
to the angles transmission Rθ. For this reason, the S3DCT is not necessarily
optimal in rate-distortion terms, i.e., if Rθ is too high, the RD cost of the
S3DCT may be higher than the RD cost of the DCT. In order to address this,
we introduce a rate-distortion optimization problem aiming to minimize the

82 SDCT: application to image and video compression

Algorithm 5 Subspace-Sparsifying SDCT (S3DCT)

1: Input: x ∈ Rn2 : (vectorized) image block;
2: Perform the 2D DCT: x̂DCT = V x;
3: Compute the optimal rotation θ∗ using (7.5);
4: V (θ∗) =R(θ∗)V ;
5: Perform the S3DCT: x̂ = V (θ∗)x
6: if JDCT < JS3DCT then
7: Choose the 2D DCT;
8: else
9: Choose the S3DCT;

10: end if

RD cost J
minJ, where J = D +γR,

where D and R respectively are the distortion and rate terms, and the La-
grangian RD cost J is minimized for a particular value of the Lagrangian
multiplier γ. For each block, we evaluate the RD cost of the DCT and the one
of the S3DCT and we perform the S3DCT only when its RD cost is lower than
that of the DCT, i.e. DDCT +λRDCT >DS3DCT +λ(Rx̂ +Rθ). Algorithm 5
describes the entire procedure used for S3DCT.

7.3.2 Encoder

When we use the S3DCT, we need to transmit to the decoder both the transform
coefficients and the rotation angles. To code the coefficients, we first quantize
the transform coefficients using the JPEG quantization table. Then, we perform
an adaptive bit plane arithmetic coding of the quantized coefficients.

In order to transmit the rotation angles, we first perform an uniform
quantization of the angles between −π

2 and π
2 . Therefore, after having computed

the optimal rotation θ∗ using (7.5), we perform a quantization of the angles
obtaining θ∗

q . Then, we use as transform matrix V (θ∗
q). Since the angles are

quantized, the transform may not perfectly sparsify the subspaces, in this case
we force to zero the coefficients in the triangular part of the matrix that is
not transmitted. From the experiments, we have seen that we obtain good
performance even if we use a coarse angle quantization, as shown in the first

7.3 Subspace-Sparsifying Steerable DCT 83

Average gain in PSNR (dB) Percentage of bitrate saving
Image S3DCT SDCT-1 DDCT S3DCT SDCT-1 DDCT

Barbara 4×4 0.805 0.174 0.806 6.252 1.35 5.889
Barbara 8×8 0.626 0.276 0.450 5.974 2.636 4.260

Barbara 16×16 0.373 0.198 0.163 4.202 1.811 2.237
Boat 4×4 0.559 0.106 0.413 5.660 1.016 3.952
Boat 8×8 0.466 0.225 0.233 5.779 2.769 2.782

Boat 16×16 0.338 0.133 0.093 4.599 1.815 1.222
Lena 4×4 0.758 0.167 0.474 7.632 1.831 4.784
Lena 8×8 0.585 0.318 0.344 7.929 4.384 4.741

Lena 16×16 0.382 0.208 0.224 6.064 3.336 3.597
House 4×4 0.577 0.128 0.325 6.033 1.190 2.840
House 8×8 0.510 0.280 0.336 6.406 3.172 3.922

House 16×16 0.339 0.174 0.265 4.892 2.303 3.546

Table 7.6 Average gain in PSNR and percentage of bitrate saving measured with the
Bjontegaard metric.

section of this chapter. For our experiments, we use a quantization on 8 angles.
Therefore, we take into account in the bitrate 3 bits for each rotation angle
used and also 1 bit per block to indicate if we use the S3DCT or the DCT. We
leave as future work an analysis of possible efficient compression methods for
the angles.

Only the angles corresponding to nonzero coefficients in the upper-triangular
part of the S3DCT coefficients matrix are actually transmitted. It is important
to underline that the decoder automatically identifies which subspaces corre-
spond to the received rotation angles, since angles are meaningful only for the
coefficients that are not quantized to zero.

7.3.3 Experimental results

To evaluate the proposed method, we use several standard grayscale images.
We test our method using different block sizes: 4×4, 8×8 and 16×16. We
compare our proposed S3DCT with the RD-optimized transform mode selection
against the classical 2D DCT, the Directional DCT (DDCT) proposed in [21]
and the Steerable DCT with one angle (SDCT-1) described in the first section

84 SDCT: application to image and video compression

Bitrate 4×4 8×8 16×16
1 bpp 92% 75% 57%

1.5 bpp 83% 67% 48%
2 bpp 77% 66% 49%

Table 7.7 Percentage of blocks where the S3DCT is chosen over the DCT for the
image Lena.

of this chapter. To obtain a fair comparison, we use the same quantization
table and coding technique for all these methods.

Fig. 7.13 shows the rate-distortion curves obtained using the image Lena.
More results are shown in Table 7.6 where we use the Bjontegaard metric [66]
to compute the average gain in PSNR and the percentage of bitrate saving
of the S3DCT, the DDCT and the SDCT-1 compared to the classical DCT.
Instead, in Table 7.7 we show at different bitrate the percentage of blocks where
the S3DCT is chosen over the DCT.

From these results, we can see that the proposed method outperforms the
DCT and the other two directional transforms and the average gain over the
DCT increases as the block size decreases reaching an average quality gain of
approximately 0.65 dB with 4×4 blocks. This is due to the fact that with larger
blocks the angles quantization has more influence, reducing the sparsifying
capability of the transform. For this reason, we note that the performance of the
S3DCT can be improved even more, especially on large blocks, by introducing
an efficient compression methods for the angles. It is also important to underline
that the gain of the S3DCT increases at high bitrate.

7.3 Subspace-Sparsifying Steerable DCT 85

bitrate (bpp)

1 2 3 4

P
S

N
R

 (
d

B
)

30

35

40

Lena 4x4

DCT

S3DCT

SDCT-1
DDCT

bitrate (bpp)

1 1.5 2 2.5 3

P
S

N
R

 (
d

B
)

32

34

36

38

40

42

Lena 8x8

DCT

S3DCT

SDCT-1
DDCT

bitrate (bpp)

1 2 3

P
S

N
R

 (
d

B
)

32

34

36

38

40

42

Lena 16x16

DCT

S3DCT

SDCT-1
DDCT

Fig. 7.13 RD comparison between the three directional methods and the DCT.

Chapter 8

Steerable Discrete Fourier
Transform

The discrete Fourier transform (DFT) is one of the most important tools in
digital signal processing. It enables us to analyze, manipulate, and synthesize
signals and it is now used in almost every field of engineering [94]. In the past,
some generalizations of the Fourier transform have been presented, such as the
short time Fourier transform [95] and the fractional Fourier transform (also
called angular Fourier transform) [96] [97]. The short time Fourier transform
subdivides the signal into narrow time intervals in order to obtain simultaneous
information on time and frequency. Instead, the fractional Fourier transform,
and its discrete version called discrete rotational Fourier transform [98], can be
interpreted as a rotation on the time-frequency plane. As already discussed in
the previous chapters, recently the concept of a graph Fourier transform (GFT)
has been introduced in [99]; this new transform generalizes the traditional
Fourier analysis to the graph domain.

In Chapter 6, the relationship between the graph Fourier transform and
grid graphs has been exploited to define a new directional 2D-DCT [38] that
can be steered in a chosen direction. In this chapter, we extend this concept
and present a new generalization of the DFT, called steerable discrete Fourier
transform (SDFT). The proposed SDFT can be defined in one or two dimensions
(unlike the steerable DCT which can be defined only in the 2D case). In 1D,

Part of the work described in this chapter has been previously published in G. Fracastoro,
E. Magli, Steerable Discrete Fourier Transform, IEEE Signal Processing Letters, 2017.

8.1 SDFT - 1D case 87

we start from the definition of the GFT of a cycle graph and we obtain a
new transform, the 1D-SDFT, by rotating the 1D-DFT basis. The 1D-SDFT
can be interpreted as a rotation of the basis vectors on the complex plane.
Instead, in the 2D case we use the GFT of a toroidal grid graph to introduce
the new 2D-SDFT, which can be obtained by rotating the 2D-DFT basis. The
2D-SDFT may represent a rotation on the two-dimensional Euclidean space.
Since the DFT is used in a wide range of applications, the SDFT represents an
interesting generalization that could be applied in various fields, including e.g.
filtering, signal analysis, or even multimedia encryption where parametrized
versions of common transforms have been used for security purposes [100, 101].
We also show that the SDFT is related to other well-known transforms, such
as the Fourier sine and cosine transforms and the Hilbert transform.

8.1 SDFT - 1D case

The forward one dimensional discrete Fourier transform (1D-DFT) of the signal
x ∈ RN can be computed in the following way

x̂k =
N−1∑
n=0

xne−i 2πkn
N .

We can write it in matrix form

x̂ = V x,

where Vkn = e−i 2πkn
N = ρn

k . V ∈ CN×N is the 1D-DFT matrix and it has the
following property.

Theorem 8.1 (Theorem 5.1 [39]). The rows of the DFT matrix are eigenvectors
of any circulant matrix.

Let us now consider an undirected cycle graph CN with N vertices. As we
have said in Chapter 2, the Laplacian matrix of a cycle graph is circulant and
it is well known that a valid set of eigenvectors for any circulant matrix is the
set of DFT matrix rows, then the 1D-DFT is a valid GFT for CN (i.e. ΨH = V ,

88 Steerable Discrete Fourier Transform

where H denotes the Hermiatian transpose1). However, repeated eigenvalues
are present in the spectrum of L(CN), because the following property holds

λk = λN−k (8.1)

where λk is the k-th eigenvalue of L(CN) with k = 1,2, ..., N
2 − 1 [102]. The

eigenvalues λk can be computed in the following way [102]:

λk = l0 + l1ρk + l2ρ
2
k + · · ·+ lN−1ρ

N−1
k = 2−2cos 2πk

N
, (8.2)

for k = 0,1,2, ...,N − 1. In addition, L(CN) has N orthogonal eigenvectors
{v(k)} [102]

v(k) =

1
ρk

ρ2
k
...

ρn−1
k

, (8.3)

for k = 0,1,2, ...,N −1.

From (8.1) and (8.2), we can state that, if N is even, λ0 and λN
2

have alge-
braic multiplicity 1, instead all the other eigenvalues have algebraic multiplicity
2 with λk = λN−k, where 1 ≤ k ≤ N

2 −1. Since the eigenvectors are orthogonal,
the geometric multiplicity is equal to the algebraic multiplicity. This means
that the dimension of the eigenspaces corresponding to λk where 1 ≤ k ≤ N

2 −1
is 2, then the vector basis of the 1D-DFT is not the only possible eigenbasis of
L(CN).

We can then introduce the following corollary, whose proof follows from the
discussion above and is omitted for brevity.

Corollary 8.1. The graph Fourier transform of a cycle graph CN may be equal
to the 1D-DFT, but it is not the only possible graph Fourier transform of a
cycle graph.

We now proceed to define the 1D-SDFT. Given an eigenvalue λk of L(CN)
with multiplicity 2 and the two corresponding 1D-DFT vectors v(k) and v(N−k),

1Since in this chapter we use complex numbers, the GFT matrix is defined using the
Hermitian transpose instead of the transpose, which was used in all the other chapters.

8.1 SDFT - 1D case 89

we can define any other possible basis of the eigenspace coerresponding to λk

as the result of a rotation of v(k) and v(N−k)

 v(k)′

v(N−k)′

=
 cosθk sinθk

−sinθk cosθk

 v(k)

v(N−k)

 , (8.4)

where θk is an angle in [0,2π].

For every λk where 1 ≤ k ≤ N
2 −1, we can rotate the corresponding eigen-

vectors as shown in (8.4). In the 1D-DFT matrix, the pairs v(k) and v(N−k)

are replaced with the rotated ones v′(k) and v′(N−k) obtaining a new transform
matrix V (θ) ∈ CN×N called 1D-SDFT. The vector θ ∈ Rp contains all the
rotation angles used and its length is p = N

2 − 1. The new transform matrix
V (θ) can be written as

V (θ) = V R(θ), (8.5)

where V = V (0) ∈ CN×N is the 1D-DFT matrix and R(θ) ∈ RN×N is the
rotation matrix, whose structure is defined so that, for each pair of eigenvectors,
it performs the rotation as defined in (8.4). It is important to underline that
the choice of the eigenvector pairs is given by the analysis of the eigenvalue
multiplicity. In this way, the transform defined in (8.5) is still the graph
transform of a cycle graph.

Equation (8.5) shows that the SDFT can be obtained by applying the
rotation described by R(θ) to the output of the standard DFT, that can be
easily computed using the FFT.

From a geometrical point of view, (8.4) represents a rotation in the complex
plane. Given a real-valued signal x ∈ RN , its DFT coefficients x̂ have the
following symmetry property [94]

x̂k = x̂∗
N−k,

where 1 ≤ k ≤ N
2 −1 and the “∗” symbol denotes conjugation. Then, using the

rotation in (8.4) we can break this symmetry. For example, if we perform a
rotation by π

4 , we can completely separate the real part and the imaginary part.
In fact, given v(k)′ and v(N−k)′ , which are obtained rotating v(k) and v(N−k)

90 Steerable Discrete Fourier Transform

θk

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

-0.4

-0.2

0

0.2

0.4

x̂k

Re(x̂k)
Im(x̂k)

θk

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

-0.4

-0.2

0

0.2

0.4

x̂N−k

Re(x̂N−k)
Im(x̂N−k)

Fig. 8.1 An example of a pair of coefficients x̂′
k and x̂′

N−k as a function of the rotation
angle θ ∈ [0,2π].

by π
4 as in (8.4), the new transform coefficients are

 x̂′
k

x̂′
N−k

=
 v(k)′

v(N−k)′

x =
 cos π

4 sin π
4

−sin π
4 cos π

4

 v(k)

v(N−k)

x

=
 √

2
2

√
2

2
−

√
2

2

√
2

2

 x̂k

x̂N−k

=
 √

2
2

√
2

2
−

√
2

2

√
2

2

x̂k

x̂∗
k

=
 √

2 Re(x̂k)
−i

√
2 Im(x̂k)

 ,
where i=

√
−1. As an example, Fig. 8.1 shows a plot of a pair of coefficients x̂′

k

and x̂′
N−k as a function of the rotation angle θk ∈ [0,2π]. For both coefficients,

we can clearly see that the absolute values of the real and imaginary part are
inversely proportional. Moreover, when θk = (2t+ 1)π

4 with t = 0,1,2,3 one
coefficient is a real value and the other one is a pure imaginary value. Finally,
it is important to underline that the rotation described in (8.4) preserves the
total energy of the coefficients in the eigenspace

|x̂k|2 + |x̂N−k|2 = |x̂′
k|2 + |x̂′

N−k|2.

8.2 SDFT - 2D case 91

8.1.1 Relationships of the 1D-SDFT to other transforms

We have already shown that if θ = 0 the 1D-SDFT is equal to the 1D-DFT.
Instead if θ= π

4 , it is interesting to point out that for 1 ≤ k≤ N
2 −1 we have that

x̂k =
√

2xcos
k , where xcos

k is the k-th coefficient of the Fourier cosine transform
[103]. Analogously, for N

2 +1 ≤ k ≤N −1 we have that x̂k = −i
√

2xsin
k , where

xsin
k is the k-th coefficient of the Fourier sine transform [103]. In turn, the

Fourier cosine and sine transform are highly related respectively to the DCT
and DST [103].

Moreover, we can also relate the 1D-SDFT with the Hilbert transform [104].
In fact, given a signal x it can be proved that

H(x) = Im
(
Ṽ
(
π

4

)H

V
(

−π

4

)
x
)
, (8.6)

where H(x) is the Hilbert transform of x and Ṽ
(

π
4

)
is the 1D-SDFT corre-

sponding to the improper rotation [105]
cos π

4 sin π
4

sin π
4 −cos π

4

 ,
and Re

(
Ṽ
(

π
4

)H
V
(
−π

4

)
x
)

= (v(0)T
x)v(0) +(v(N

2)T

x)v(N
2).

These relationships are interesting because they may open the way to new
generalizations of these transforms.

8.2 SDFT - 2D case

In the two dimensional case, the 2D-DFT of a signal X ∈ RN1×N2 can be
computed as follows

X̂kl =
N1−1∑
n=0

N2−1∑
m=0

Xmne−i2π
(

l
N1

n+ k
N2

m
)
,

in matrix form we can write it as

x̂ =Wx,

92 Steerable Discrete Fourier Transform

Fig. 8.2 A toroidal grid graph T16,16

where x ∈ RN1N2 is the vectorized signal X and W ∈ CN1N2×N1N2 is the 2D-
DFT matrix, which is defined in the following way

Wts = e−i2π
(

l
N1

n+ k
N2

m
)

= ρn
l ρ

m
k ,

where s=mN1 +n, t= kN1 + l, 0 ≤ l,n≤N1 −1 and 0 ≤m,k ≤N2 −1.

We now consider a grid graph with periodic boundary conditions that is
called toroidal grid graph TN1N2 [106], where |V| = N1N2. An example of a
toroidal grid graph is shown in Fig. 8.2. It is known that the toroidal grid
graph TN1N2 corresponds to the product graph CN1 ×CN2 , where CNi

is a cycle
of Ni vertices [107].

We now show that there is a strong connection between 2D-DFT and
toroidal grid graph.

Theorem 8.2. Let TNN be a toroidal graph, then the 2D-DFT basis is an
eigenbasis of L(TNN).

Proof. Let v(p) and v(q), where 0 ≤ p,q ≤N −1, be the eigenvectors of CN cor-
risponding respectively to the eigenvalues λp and λq, as defined in (8.3). Then,
using Theorem 6.1 we can compute the eigenvector u(p,q) of TNN corresponding
to the eigenvalue µp,q = λp +λq

u(p,q) = v(p) ⊗v(q) =

v(p)

1 v(q)

v(p)
2 v(q)

...
v(p)

n−1v(q)

=

v(q)

ρpv(q)

...
ρn−1

p v(q)

= w(k),

8.2 SDFT - 2D case 93

where k = pN +q and w(k) is the k-th column vector of the 2D-DFT matrix W .
Therefore, the 2D-DFT is an eigenbasis of the Laplacian of TNN (i.e. ΨH =W).

Since µp,q = λp +λq = µq,p and recalling property (8.1) for the eigenvalues
λk of CN , in the spectrum of L(TNN) several repeated eigenvalues are presents:

• The eigenvalues µp,q where 1 ≤ p,q ≤ N
2 − 1 and p ̸= q have algebraic

multiplicity 8 since µp,q = µq,p = µp,N−q = µN−q,p = µN−p,q = µq,N−p =
µN−p,N−q = µN−q,N−p.

• The eigenvalues µp,p where 1 ≤ p ≤ N
2 − 1 have algebraic multiplicity 4

since µp,p = µp,N−p = µN−p,p = µN−p,N−p.

• The eigenvalues µp,q where p= 0, N
2 and 1 ≤ q ≤ N

2 − 1 (or 1 ≤ p≤ N
2 − 1

and q = 0, N
2) have algebraic multiplicity 4 because µp,q = µq,p = µp,N−q =

µN−q,p (µp,q = µq,p = µN−p,q = µq,N−p).

• The eigenvalue µ0, N
2

= µN
2 ,0 has multiplicity 2.

• The eigenvalues µ0,0 and µN
2 , N

2
are the only ones with algebraic multi-

plicity 1.

Since the Kronecker product is not commutative, the eigenvectors u(p,q) of
TNN are orthogonal. Then, the geometric multiplicity is equal to the algebraic
multiplicity. Therefore, the dimension of the eigenspaces corresponding to the
repeated eigenvalues is bigger than one. This proves that the 2D-DFT is not
the unique eigenbasis for L(TNN) and, thus, the 2D-DFT is not the unique
GFT for TNN . Instead, the rotations that exploit the property µp,q = µN−q,N−p

and µN−p,q = µp,N−q are analog to the ones shown in the 1D case.

As shown above, in the spectrum of L(TNN) many eigenvalues with mul-
tiplicity greater than 2 are present. Therefore, it may be possible to define
rotations in more than two dimensions. However, these rotations may not have
a clear geometrical meaning. For this reason, in the following of this section we
restrict our study to rotations in two dimensions that exploit the symmetric
property µp,q = µq,p.

94 Steerable Discrete Fourier Transform

Given any vector pair of the 2D-DFT, u(p,q) and u(q,p) where p ̸= q, we
can obtain a new pair of eigenvectors of L(TNN) by performing the following
rotation u(p,q)′

u(q,p)′

=
 cosθp,q sinθp,q

−sinθp,q cosθp,q

u(p,q)

u(q,p)

 , (8.7)

where θp,q is an angle in [0,2π]. Then, analogously to the 1D case, we can define
a new transform matrix V (θ) ∈RN2×N2 , called 2D-SDFT, that is obtained by
replacing in the 2D-DFT matrix the pairs u(p,q) and u(q,p) with the rotated
ones u(p,q)′ and u(q,p)′ . The vector θ ∈Rp contains all the angles used and its
length is equal to the number of vector pairs, that is p = N(N−1)

2 . Similarly
to the 1D case, also the 2D-SDFT matrix V (θ) can be computed as in (8.5),
where, in this case, R(θ) ∈RN2×N2 is the rotation matrix whose structure is
defined so that, for each pair of vectors, it performs the rotation as defined in
(8.7).

Given a signal x ∈ RN×N , we can compute the SDFT coefficients of x
corresponding to the eigenvectors u(p,q)′ and u(q,p)′ in the following wayx̂′

p,q

x̂′
p,q

=
u(p,q)′

u(q,p)′

x =
 cosθp,q sinθp,q

−sinθp,q cosθp,q

u(p,q)

u(q,p)

x

=
 cosθp,q sinθp,q

−sinθp,q cosθp,q

x̂p,q

x̂q,p

=
 cosθp,q sinθp,q

−sinθp,q cosθp,q

Re(x̂p,q)+ Im(x̂p,q)
Re(x̂p,q)+ Im(x̂p,q)

=
 cosθp,q sinθp,q

−sinθp,q cosθp,q

Re(x̂p,q)
Re(x̂p,q)

+ i

 cosθp,q sinθp,q

−sinθp,q cosθp,q

Im(x̂p,q)
Im(x̂p,q)

 .
Therefore, we can state that, from a geometrical point of view, (8.7) performs
separately a rotation of the real and imaginary part in the 2D Euclidean space.
Then, by applying (8.7) the total energy of the real and imaginary part of the
coefficient pair remains unchanged, that is

Re(x̂p,q)2 +Re(x̂q,p)2 = Re(x̂′
p,q)2 +Re(x̂′

q,p)2,

Im(x̂p,q)2 + Im(x̂q,p)2 = Im(x̂′
p,q)2 + Im(x̂′

q,p)2,

8.3 Applications of the SDFT 95

Re(x̂p,q)

Re(x̂q,p)

θp,q

Re(x̂′p,q)

Fig. 8.3 Rotation of the 2D-DFT vector pair u(p,q) and u(q,p).

but it is possible to unbalance the energy of the real and imaginary part of
each coefficient. For example, we can compact all the energy of the real part
in one coefficient, zeroing out the other one. In fact, given the pair of DFT
coefficients x̂p,q and x̂q,p we rotate the pair of corresponding DFT vectors u(p,q)

and u(q,p) as in (8.7) by an angle defined as follows

θp,q = arctan Re(x̂q,p)
Re(x̂p,q) .

Then, we obtain that Re(x̂′
q,p) = 0 and all the energy of the real part of this

coefficient pair is conveyed to x̂′
p,q, as shown in Fig. 8.3.

8.3 Applications of the SDFT

In this section we discuss possible applications of the SDFT.

The 1D-SDFT can be useful for signal analysis and processing. For example,
it can be used for easily filtering the even/odd component of a signal. In fact,
if we rotate the pairs of vectors v(k) and v(N−k) by π

4 , we can design a filter
that, convolved with the input signal, retains only the first (last) N

2 coefficients
and outputs the even (odd) signal component, as shown in Fig. 8.4 where we
obtain as output of the filter the even component of the input signal. We can
also easily filter the even or odd component of specific frequencies. Analogously
in 2D, we can perform the same filtering operation by rotating by π

4 the pairs

96 Steerable Discrete Fourier Transform

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

200

300

400

input data
output data

Fig. 8.4 Example of filtering the even component of a real signal.

of vectors u(p,q) and u(N−p,N−q) and the pairs u(p,N−q) and u(N−p,q). This
filtering operation could be useful for signal representation, as in [108].

Moreover, in (8.6) we have already shown that the 1D-SDFT may be used
to perform the Hilbert transform, this could be useful for computing the local
phase and amplitude, that is used in many applications, such as edge detection
[109] and image feature extraction [110].

The 1D-SDFT can be applied also in multimedia encryption problems. In
this field, several works use parametrized versions of common transforms for
security purposes [100, 101]. Since the SDFT is a parametrized version of the
DFT, one can use the parameter θ ∈ Rp as a secret key. More specifically,
given a signal x ∈ Rp we can obtain x̂ = V (θ)x and then consider the first N

2
components of x̂ as the encrypted signal. Given θ, it is possible to reconstruct
x̂ and then we can obtain the original signal x by applying the inverse SDFT.
We can also consider the SDFT as a keyed transform basis that can be used
for compressed sensing-based cryptography [111, 112].

The applications presented in this section are just a few examples of possible
applications of the SDFT, but the SDFT could be of interest for a wide range of
fields, such as array signal processing, phase retrieval and magnetic resonance
imaging.

Chapter 9

Conclusions

In this thesis we explored the use of adaptive transforms in image and video
compression. More specifically, we investigated two different methods for
building an adaptive transform. Firstly, we exploited the graph representation
of an image in order to propose new compression methods. Since graph-
based compression methods have the disadvantage that the graph has to be
transmitted to decoder, we focused on the problem of developing new graph
construction methods that provide a graph that is, at the same time, an efficient
representation of the image and easy to transmit to the decoder. To address
this problem, we used different approaches. First, we developed an innovative
method of graph construction that employs edge quantization and a new edge
prediction technique. Then, in order to find the graph that provides the best
tradeoff between its transmission cost and the quality of the corresponding
transform, we applied a graph learning approach defining a new graph learning
problem targeted for image compression. Moreover, we also explored the use of
graph transform in conjunction with computer vision tools, such as superpixels.
Exploiting these techniques, we obtained new graph-based image compression
methods that provide a significant quality gain over the classical DCT.

In the second part of this thesis, we exploited the graph Fourier transform in
order to introduce a novel directional transform, called Steerable Discrete Cosine
Transform (SDCT). The proposed SDCT can be steered in any chosen direction
and we can use more complex steering patterns than a single pure rotation.
We investigated the applications of the SDCT in image and video compression

98 Conclusions

developing a few algorithms based on this new directional transform. Since the
SDCT admits more than one rotation angle per block, these algorithms explore
different methods for the choice of the rotation angles. The obtained results
show that the SDCT can outperform the classical DCT both for image and
video compression.

Along the same lines, we also presented a new generalization of the DFT,
called Steerable Discrete Fourier Transform (SDFT), that can be defined in
1D and 2D. Since the DFT is used in a wide range of applications, the SDFT
could be of interest in many fields, including e.g. filtering, signal analysis or
even multimedia encryption.

9.1 Future work

In this thesis, we have described new methods for designing adaptive transforms.
However, there are still some paths which can be followed and which may lead
to interesting research problems. In the follow we describe some future work
which may be interesting to further investigate.

• Implementation of the SDCT in the HEVC video coding standard: In
Chapter 7, we have already tested the SDCT with the integer approxima-
tion of the DCT that is used in HEVC. The obtained results show that
the integer SDCT provides an improvement in performance with respect
to the integer DCT. For this reason, it would be interesting to implement
the proposed SDCT in HEVC in order to see if the SDCT can provide
an improvement in the standard performance.

• Application of the SDCT in image interpolation: In this thesis we in-
troduced a new directional transform and we showed its application in
image and video compression application. It would be also interesting
to investigate other possible applications of the SDCT, such as image
interpolation. In this case we could exploit the transform directionality
in order to obtain an interpolation that better matches the directional
characteristics of the image.

• Extension of the SDCT to 3D: In this work we have defined the SDCT
in 2D. However, it is possible to define a steerable DCT also in 3D.

9.1 Future work 99

In this case, the 3D-SDCT could have interesting applications in video
compression. Differently from the 2D-SDCT, with the 3D-SDCT we may
define two different steering directions: one in the spatial dimension and
one in the temporal dimension.

• Dictionary learning for graph representation: In Chapter 4, we show that
the graph of an image can be treated as a signal that lies on the unweighted
dual graph. Whilst this representation turned out to be an effective way
to represent the graph structure, it could be useful to investigate other
possible representation for the graph, like dictionary-based techniques. In
this case, we may avoid to impose the strong assumption that consecutive
edges have similar weights.

• Graph-based transform for intra-prediction residual coding: In Chapter 3,
4 and 5 we have presented three different methods for image compression.
However, in these chapters we did not consider the use of intra-prediction.
In future, it would be interesting to investigate the possible application
of these techniques to intra-prediction residuals.

• Applications of the SDFT: In Chapter 8, we have introduced a new
generalization of the DFT. In future, it could be interesting to investigate
possible applications of the SDFT. As we previously discussed, the SDFT
may be of interest in a wide range of fields, such as signal analysis and
representation, array signal processing, phase retrieval and magnetic
resonance imaging. Moreover, we have shown that the SDFT could be
applied also in multimedia encryption problems.

References

[1] K. Sayood, Introduction to data compression. Newnes, 2012.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[3] A. Fuldseth, G. Bjontegaard, S. Midtskogen, T. Davies, and M. Zanaty,
“Thor video codec,” 2016, https://tools.ietf.org/html/draft-fuldseth-netvc-
thor-02.

[4] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins,
Y. Xu, and R. Bultje, “The latest open-source video codec vp9-an overview
and preliminary results,” in Proc. Picture Coding Symposium (PCS), 2013,
pp. 390–393.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[6] G. Shen, W. S. Kim, S. K. Narang, A. Ortega, J. Lee, and H. Wey,
“Edge-adaptive transforms for efficient depth map coding,” in Picture
Coding Symposium (PCS), 2010, pp. 2808–2811.

[7] W. S. Kim, S. K. Narang, and A. Ortega, “Graph based transforms
for depth video coding,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 813–816.

[8] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multiresolution graph
fourier transform for compression of piecewise smooth images,” IEEE
Trans. Image Process., vol. 24, no. 1, pp. 419–433, 2015.

[9] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and generalized
graph fourier transform for image coding,” IEEE Signal Process. Lett.,
vol. 22, no. 11, 2015.

[10] Y. H. Chao, A. Ortega, and S. Yea, “Graph-based lifting transform for
intra-predicted video coding,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 1140–1144.

References 101

[11] H. E. Egilmez, A. Said, Y.-H. Chao, and A. Ortega, “Graph-based
transforms for inter predicted video coding,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2015, pp. 3992–3996.

[12] K.-S. Lu and A. Ortega, “Symmetric line graph transforms for inter
predictive video coding,” in Proc. Picture Coding Symposium (PCS),
2016.

[13] S. K. Narang, Y. H. Chao, and A. Ortega, “Graph-wavelet filterbanks for
edge-aware image processing,” in Proc. IEEE Statistical Signal Processing
Workshop (SSP), 2012, pp. 141–144.

[14] S. K. Narang, Y.-H. Chao, and A. Ortega, “Critically sampled graph-
based wavelet transforms for image coding,” in Proc. Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA), 2013, pp. 1–4.

[15] Y.-H. Chao, A. Ortega, W. Hu, and G. Cheung, “Edge-adaptive depth
map coding with lifting transform on graphs,” in Proc. Picture Coding
Symposium (PCS), 2015, pp. 60–64.

[16] E. Martínez-Enríquez and A. Ortega, “Lifting transforms on graphs for
video coding,” in Proc. Data Compression Conference (DCC), 2011, pp.
73–82.

[17] E. Martínez-Enríquez, F. Díaz-de María, and A. Ortega, “Video encoder
based on lifting transforms on graphs,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2011, pp. 3509–3512.

[18] E. Martinez-Enriquez, J. Cid-Sueiro, F. Diaz-De-Maria, and A. Ortega,
“Directional transforms for video coding based on lifting on graphs,” IEEE
Trans. Circuits Syst. Video Technol., 2016.

[19] X. Ren and J. Malik, “Learning a classification model for segmentation,”
in Proc. IEEE International Conference on Computer Vision (CVPR),
2003, pp. 10–17.

[20] J. Xu, B. Zeng, and F. Wu, “An overview of directional transforms in
image coding.” in Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), 2010, pp. 3036–3039.

[21] B. Zeng and J. Fu, “Directional discrete cosine transforms - a new
framework for image coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 3, pp. 305–313, 2008.

[22] C. L. Chang and B. Girod, “Direction-adaptive partitioned block trans-
form for image coding,” in Proc. IEEE International Conference on Image
Processing (ICIP), 2008, pp. 145–148.

102 References

[23] F. Kamisli and J. S. Lim, “Transforms for the motion compensation
residual,” in Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2009, pp. 789–792.

[24] R. A. Cohen, S. Klomp, A. Vetro, and H. Sun, “Direction-adaptive
transforms for coding prediction residuals,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2010, pp. 185–188.

[25] A. Drémeau, C. Herzet, C. Guillemot, and J. Fuchs, “Sparse optimization
with directional dct bases for image compression,” in Proc. IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing (ICASSP),
2010, pp. 1290–1293.

[26] C. Yeo, Y. H. Tan, Z. Li, and S. Rahardja, “Mode-dependent transforms
for coding directional intra prediction residuals,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 4, pp. 545–554, 2012.

[27] H. Xu, J. Xu, and F. Wu, “Lifting-based directional DCT-like transform
for image coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 17,
no. 10, pp. 1325–1335, 2007.

[28] Y. Ye and M. Karczewicz, “Improved H.264 intra coding based on bi-
directional intra prediction, directional transform, and adaptive coefficient
scanning,” in Proc. IEEE International Conference on Image Processing
(ICIP), 2008, pp. 2116–2119.

[29] M. Budagavi and M. Zhou, “Orthogonal MDDT and mode dependent
DCT,” ITU-T Q, vol. 6, 2010.

[30] H. Yang, J. Zhou, and H. Yu, “Simplified MDDT (SMDDT) for intra
prediction residual,” Doc. JCTVC-B039, MPEG-H/JCT-VC, 2010.

[31] A. Tanizawa, J. Yamaguchi, T. Shiodera, T. Chujoh, and T. Yamakage,
“Improvement of intra coding by bidirectional intra prediction and 1
dimensional directional unified transform,” Doc. JCTVC-B042, MPEG-
H/JCT-VC, 2010.

[32] O. G. Sezer, R. Cohen, and A. Vetro, “Robust learning of 2-d separa-
ble transforms for next-generation video coding,” in Proc. IEEE Data
Compression Conference (DCC), 2011, pp. 63–72.

[33] X. Zhao, L. Zhang, S. Ma, and W. Gao, “Video coding with rate-distortion
optimized transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 1, pp. 138–151, 2012.

[34] O. G. Sezer, O. Harmanci, and O. G. Guleryuz, “Sparse orthonormal
transforms for image compression,” in Proc. IEEE International Confer-
ence on Image Processing (ICIP), 2008, pp. 149–152.

References 103

[35] O. G. Sezer, O. G. Guleryuz, and Y. Altunbasak, “Approximation and
compression with sparse orthonormal transforms,” IEEE Trans. Image
Process., vol. 24, no. 8, pp. 2328–2343, 2015.

[36] D. Zhou and B. Schölkopf, “A regularization framework for learning from
graph data,” in Proc. ICML workshop on statistical relational learning
and its connections to other fields, vol. 15, 2004, pp. 67–68.

[37] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997,
vol. 92.

[38] G. Strang, “The discrete cosine transform,” SIAM review, vol. 41, no. 1,
pp. 135–147, 1999.

[39] L. Grady and J. Polimeni, Discrete calculus: Applied analysis on graphs
for computational science. Springer, 2010.

[40] W. Hu, X. Li, G. Cheung, and O. Au, “Depth map denoising using
graph-based transform and group sparsity,” in Proc. IEEE International
Workshop on Multimedia Signal Processing (MMSP), 2013, pp. 1–6.

[41] J. Pang, G. Cheung, A. Ortega, and O. C. Au, “Optimal graph laplacian
regularization for natural image denoising,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 2294–2298.

[42] A. Kheradmand and P. Milanfar, “A general framework for kernel
similarity-based image denoising,” in Proc. IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2013, pp. 415–418.

[43] J. Pang and G. Cheung, “Graph laplacian regularization for inverse imag-
ing: Analysis in the continuous domain,” arXiv preprint arXiv:1604.07948,
2016.

[44] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, “Progressive image denois-
ing through hybrid graph laplacian regularization: a unified framework,”
IEEE Trans. Image Process., vol. 23, no. 4, pp. 1491–1503, 2014.

[45] Y. Wang, A. Ortega, D. Tian, and A. Vetro, “A graph-based joint
bilateral approach for depth enhancement,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 885–889.

[46] W. Hu, G. Cheung, X. Li, and O. C. Au, “Graph-based joint denoising
and super-resolution of generalized piecewise smooth images,” in Proc
IEEE International Conference on Image Processing (ICIP), 2014, pp.
2056–2060.

[47] A. Kheradmand and P. Milanfar, “A general framework for regularized,
similarity-based image restoration,” IEEE Trans. Image Process., vol. 23,
no. 12, pp. 5136–5151, 2014.

104 References

[48] X. Liu, G. Cheung, X. Wu, and D. Zhao, “Inter-block consistent soft
decoding of jpeg images with sparsity and graph-signal smoothness priors,”
in Proc. IEEE International Conference on Image Processing (ICIP),
2015, pp. 1628–1632.

[49] W. Hu, G. Cheung, and M. Kazui, “Graph-based dequantization of block-
compressed piecewise smooth images,” IEEE Signal Process. Lett., vol. 23,
no. 2, pp. 242–246, 2016.

[50] C. Zhang and D. Florêncio, “Analyzing the optimality of predictive
transform coding using graph-based models,” IEEE Signal Process. Lett.,
vol. 20, no. 1, pp. 106–109, 2013.

[51] M. Black, G. Sapiro, D. Marimont, and D. Heeger, “Robust anisotropic
diffusion,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 21–432, 1998.

[52] M. Hidane, O. Lezoray, and A. Elmoataz, “Lifting scheme on graphs with
application to image representation,” in Proc. IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2013, pp. 431–434.

[53] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic
diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp.
629–639, 1990.

[54] G. Sullivan, “Decoder inference of optimal reconstruction values for
DZ+UTQ quantization of laplacian source random variables,” in Proc.
16th JVT meeting, JVT-P111, 2005.

[55] I. Daribo, D. Florencio, and G. Cheung, “Arbitrarily shaped motion
prediction for depth video coding using arithmetic edge coding,” IEEE
Trans. Image Process., vol. 23, no. 11, pp. 4696–4708, 2014.

[56] E. Pavez and A. Ortega, “Generalized laplacian precision matrix estima-
tion for graph signal processing,” in Proc. IEEE International Conference
on Acoustics Speech and Signal Processing (ICASSP), 2016, pp. 6350–
6354.

[57] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, 2016.

[58] E. Pavez, H. E. Egilmez, Y. Wang, and A. Ortega, “GTT: Graph Template
Transforms with applications to image coding,” in Proc. Picture Coding
Symposium (PCS), 2015, pp. 199–203.

[59] J. Gallier, “Elementary spectral graph theory applications to graph clus-
tering using normalized cuts: a survey,” arXiv preprint arXiv:1311.2492,
2013.

[60] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, 1998.

References 105

[61] X. Liu, G. Cheung, and X. Wu, “Joint denoising and contrast enhancement
of images using graph laplacian operator,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 2274–2278.

[62] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,”
IEEE Trans. Signal Process., vol. 46, no. 4, pp. 1027–1042, 1998.

[63] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
vol. 13, 2016.

[64] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[65] I. Rotondo, G. Cheung, A. Ortega, and H. E. Egilmez, “Designing sparse
graphs via structure tensor for block transform coding of images,” in
Proc. Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2015, pp. 571–574.

[66] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” Doc. VCEG-M33 ITU-T Q6/16, Austin, TX, USA, 2-4 April
2001, 2001.

[67] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and
K. Siddiqi, “Turbopixels: Fast superpixels using geometric flows,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297, 2009.

[68] J. Wang and X. Wang, “VCells: Simple and efficient superpixels using
edge-weighted centroidal voronoi tessellations,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 6, pp. 1241–1247, 2012.

[69] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, 2012.

[70] P. Krajcevski and D. Manocha, “SegTC: Fast texture compression using
image segmentation,” Proc. High Performance Graphics, pp. 71–77, 2014.

[71] N. Brewer, L. Wang, N. Liu, and L. Cheng, “User-driven lossy compression
for images and video,” in Proc. International Conference on Image and
Vision Computing New Zealand (IVCNZ), 2009, pp. 346–351.

[72] G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference for-
mula: Implementation notes, supplementary test data, and mathematical
observations,” Color Res. Appl., vol. 30, no. 1, pp. 21–30, 2005.

[73] F. Verdoja and M. Grangetto, “Fast superpixel-based hierarchical ap-
proach to image segmentation,” in Proc. International Conference on
Image Analysis and Processing (ICIAP), 2015, pp. 364–374.

106 References

[74] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in im-
age/video quality assessment,” Electron. Lett., vol. 44, no. 13, pp. 800–801,
2008.

[75] Rec. T. 82 & ISO/IEC 11544: 1993, 1st ed., 1993.

[76] Y. K. Liu and B. Žalik, “An efficient chain code with huffman coding,”
Pattern Recognition, vol. 38, no. 4, pp. 553–557, 2005.

[77] H. Sanchez-Cruz and R. M. Rodriguez-Dagnino, “Compressing bilevel
images by means of a three-bit chain code,” Optical engineering, vol. 44,
no. 9, 2005.

[78] F. Verdoja and M. Grangetto, “Efficient representation of segmentation
contours using chain codes,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017.

[79] R. Franzen, “Kodak lossless true color image suite,” 2013,
http://r0k.us/graphics/kodak/index.html.

[80] M. Blaser, C. Heithausen, and M. Wien, “Segmentation-based partitioning
for motion compensated prediction in video coding,” in Proc. Picture
Coding Symposium (PCS), 2016.

[81] S. Milani and G. Calvagno, “Segmentation-based motion compensation
for enhanced video coding,” in Proc. IEEE International Conference on
Image Processing (ICIP), 2011, pp. 1649–1652.

[82] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and
its applications, vol. 197, pp. 143–176, 1994.

[83] ——, “Laplacian graph eigenvectors,” Linear algebra and its applications,
vol. 278, no. 1, pp. 221–236, 1998.

[84] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
1996.

[85] Y. K. Kim, Z. He, and S. K. Mitra, “A novel linear source model and a uni-
fied rate control algorithm for H. 263/MPEG-2/MPEG-4,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2001, pp. 1777–1780.

[86] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90, 1998.

[87] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse
approximations,” J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 629 – 654,
2008.

References 107

[88] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[89] USC-SIPI, “Image database, volume 3: Miscellaneous,” http://sipi.usc.
edu/database/database.php?volume=misc.

[90] D. Taubman and M. Marcellin, JPEG2000 Image Compression Fun-
damentals, Standards and Practice: Image Compression Fundamentals,
Standards and Practice. Springer Science & Business Media, 2012, vol.
642.

[91] T. Sikora, “Trends and perspectives in image and video coding,” Proc.
IEEE, vol. 93, no. 1, pp. 6–17, 2005.

[92] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale, “Core
transform design in the high efficiency video coding (HEVC) standard,”
IEEE J. Sel. Topics Signal Process., vol. 7, no. 6, pp. 1029–1041, 2013.

[93] M. Wien, High Efficiency Video Coding. Springer, 2015.

[94] R. G. Lyons, Understanding digital signal processing. Pearson Education,
2004.

[95] J. B. Allen and L. R. Rabiner, “A unified approach to short-time Fourier
analysis and synthesis,” Proc. IEEE, vol. 65, no. 11, pp. 1558–1564, 1977.

[96] L. B. Almeida, “The fractional fourier transform and time-frequency
representations,” IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3084–
3091, 1994.

[97] ——, “An introduction to the angular Fourier transform,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 3, 1993, pp. 257–260.

[98] B. Santhanam and J. H. McClellan, “The discrete rotational Fourier
transform,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 994–998,
1996.

[99] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, 2011.

[100] A. Pande and J. Zambreno, “The secure wavelet transform,” in Embedded
Multimedia Security Systems. Springer, 2013, pp. 67–89.

[101] G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-
random phase encoding in the fractional fourier domain,” Opt. Lett.,
vol. 25, no. 12, pp. 887–889, 2000.

http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc

108 References

[102] G. J. Tee, “Eigenvectors of block circulant and alternating circulant
matrices,” N. Z. J. Math., vol. 36, pp. 195–211, 2007.

[103] A. D. Poularikas, Transforms and applications handbook. CRC press,
2010.

[104] F. R. Kschischang, “The hilbert transform,” University of Toronto, 2006.

[105] D. Salomon, Computer graphics and geometric modeling. Springer
Science & Business Media, 2012.

[106] J. H. Park and I. Ihm, “Many-to-many two-disjoint path covers in cylin-
drical and toroidal grids,” Discrete Appl. Math., vol. 185, pp. 168–191,
2015.

[107] F. Ruskey and J. Sawada, “Bent hamilton cycles in d-dimensional grid
graphs,” Electron. J. of Combin., vol. 10, 2003.

[108] A. Gnutti, F. Guerrini, and R. Leonardi, “Representation of signals by
local symmetry decomposition,” in Proc. European Signal Processing
Conference (EUSIPCO), 2015, pp. 983–987.

[109] P. Kovesi, “Image features from phase congruency,” Videre: Journal of
computer vision research, vol. 1, no. 3, pp. 1–26, 1999.

[110] G. Carneiro and A. D. Jepson, “Phase-based local features,” in Proc.
European Conference on Computer Vision (ECCV), 2002, pp. 282–296.

[111] T. Bianchi, V. Bioglio, and E. Magli, “Analysis of one-time random
projections for privacy preserving compressed sensing,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 2, pp. 313–327, 2016.

[112] L. Y. Zhang, K.-W. Wong, Y. Zhang, and J. Zhou, “Bi-level protected
compressive sampling,” arXiv preprint arXiv:1406.1725, 2014.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Graph-based image and video compression
	1.2 Directional transform
	1.3 Thesis organization
	1.4 Publications

	2 Graph signal processing
	2.1 Graph-based image processing

	3 Predictive graph construction for image compression
	3.1 Proposed graph construction technique
	3.1.1 Graph weight metric
	3.1.2 Quantization
	3.1.3 Graph edge prediction method
	3.1.4 Deletion of isolated edges

	3.2 Experimental results
	3.2.1 Edge weight metric evaluation
	3.2.2 Graph compression
	3.2.3 Image compression performance

	4 Graph Transform Learning for Image Compression
	4.1 Basic definitions on graphs
	4.2 Graph-transform optimization
	4.2.1 Rate-distortion tradeoff
	4.2.2 Distortion approximation
	4.2.3 Rate approximation of the transform coefficients
	4.2.4 Rate approximation of the graph description
	4.2.5 Graph learning problem

	4.3 Image compression application
	4.4 Experimental results
	4.4.1 Experimental setup
	4.4.2 Results

	5 Superpixel-driven graph transform for image compression
	5.1 Proposed technique
	5.1.1 Superpixel clustering
	5.1.2 Intra-region graph transform

	5.2 Experimental results

	6 Steerable Discrete Cosine Transform
	6.1 Preliminaries
	6.2 Analysis of the eigenvalues' multiplicity
	6.3 Transform definition
	6.4 Probabilistic interpretation of the SDCT

	7 SDCT: application to image and video compression
	7.1 SDCT-1
	7.1.1 Experimental Results

	7.2 Rate-distortion optimization
	7.2.1 RD model
	7.2.2 Proposed algorithms for RD optimization
	7.2.3 Image codec for SDCT-AM and SDCT-BT
	7.2.4 Experimental results

	7.3 Subspace-Sparsifying Steerable DCT
	7.3.1 Rate-Distortion Optimization
	7.3.2 Encoder
	7.3.3 Experimental results

	8 Steerable Discrete Fourier Transform
	8.1 SDFT - 1D case
	8.1.1 Relationships of the 1D-SDFT to other transforms

	8.2 SDFT - 2D case
	8.3 Applications of the SDFT

	9 Conclusions
	9.1 Future work

	References

