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Abstract

Today a large volume of energy-related data have been continuously collected. Extracting actionable knowledge from such data

is a multi-step process that opens up a variety of interesting and novel research issues across two domains: energy and computer

science. The computer science aim is to provide energy scientists with cutting-edge and scalable engines to effectively support them

in their daily research activities. This paper presents SPEC, a scalable and distributed predictor of fine grain energy consumption

in buildings. SPEC exploits a data stream methodology analysis over a sliding time window to train a prediction model tailored

to each building. The building model is then exploited to predict the upcoming energy consumption at a time instant in the near

future. SPEC currently integrates the artificial neural networks technique and the random forest regression algorithm. The SPEC

methodology exploits the computational advantages of distributed computing frameworks as the current implementation runs on

Spark. As a case study, real data of thermal energy consumption collected in a major city have been exploited to preliminarily assess

the SPEC accuracy. The initial results are promising and represent a first step towards predicting fine grain energy consumption

over a sliding time window.

c© 2016 The Authors. Published by Elsevier Ltd.
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1. Introduction

In the last few years, data generation capability has increased at an unprecedented rate, to such an extent that

data rapidly scales towards big data. The abundance of collected information provide an unprecedented opportunity

to tackle interesting challenges and add intelligences in real-world applications. The importance of the ability to

transform huge data collections into knowledge is indicated by the number of companies and researchers involved

in the field of big data. A good example of data producer is represented by energy-related applications which are

able to generate large volumes of data that reveal hidden actionable knowledge (e.g., detailed patterns and models to

characterize and predict energy consumption) for different interested users (e.g., energy managers, energy analysts,

consumers, users living in the building). Since the reduction of wasteful energy consumption is a growing policy
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priority for many countries, innovative systems should be designed to continuously monitor a smart city environment

and provide all stakeholders with the tools required to improve energy efficiency.

Being able not only to collect but also to deep analyze large energy-related data volumes could bring to the surface

actionable value to support a variety of interested end-users in the decision-making processes. Furthermore, since

energy-related applications are good producers of big data collections, analyzing such data opens up a variety of inter-

esting research issues across two research domains: energy and computer science. Extracting actionable knowledge

from large volumes of data is a multi-step process that requires considerable interaction between an energy scientist

and a computer scientist. Both scientists assume a key role in the analytics process and should be very closely in-

volved in designing innovative and efficient algorithms. The energy scientist needs to define the end-goal, to support

the data pre-processing phase, and to assess extracted knowledge. Furthermore, he/she is more strongly involved in

the algorithm definition phase which should respect physical laws and correctly model physical events. The computer

scientist tackles the task of developing innovative and efficient algorithms, selecting the optimal techniques to achieve

the end-goal, looking for a good trade-off between knowledge quality and execution time.

From the computer scientist’s point of view, in the data analytics domain, most of the technologies and algorithms

involved in big data processing have to be redesigned and adapted to the main features of big data, as well as tailored

to the specific features of energy-related data (e.g., heterogeneous data, variable data distribution, data at different

abstraction levels, such from fine to coarse grain). In general, applying data mining techniques to big data collec-

tions has often entailed coping with a critical bottleneck represented by computational costs. To address this issue,

distributed and parallel approaches have been proposed, including such frameworks as Hadoop [1] – the most widely

diffused MapReduce implementation – and the Apache Hadoop platform, together with its extensions, such as Apache

Spark [2]. MapReduce [3] was designed to cope with very large datasets: its main idea is to break down the process-

ing of the data into independent tasks. Apache Spark [2] is considered the most promising foundation for building an

effective data analytics framework. It outperforms Hadoop performance thanks to its distributed memory abstraction.

Together with Hadoop and Spark, there are other frameworks supporting the parallelization of data mining algorithms

(e.g., GraphLab [4], Google Pregel [5], SimSQL [6]. The exploitation of the above distributed frameworks in the

energy domain is challenging because it requires a high level of expertise in computer science and also in the energy

domain.

This paper proposes SPEC (Scalable Predictor of Energy Consumption), a data mining-oriented engine aimed at

predicting and characterizing energy consumption in buildings. The energy consumption over a sliding time window

is analyzed by means of different regression techniques to build a model aimed at predicting the upcoming energy

consumption at a time instant in the near future (i.e., a limited time horizon). Each prediction model is tightly

tailored to the building efficiency. Both the Artificial Neural Networks (ANN) and the Random Forest Regression

(RFR) algorithms have been integrated in SPEC to perform this task of prediction analysis which is computational

expensive. The SPEC methodology exploits the computational advantages of distributed computing frameworks as

the current implementation runs on Spark to effectively analyze very large data collections.

As a case study, we focus on thermal energy consumption collected in a major city enriched with meteorological

conditions. The preliminary performance evaluation demonstrates the effectiveness of the proposed methodology in

predicting fine grain energy consumption with a limited average error.

This paper is organized as follows. Section 2 briefly introduces the most used distributed and parallel frameworks.

Section 4 proposes the main building blocks of the SPEC engine and thoroughly discusses system exploitation in

energy-related applications. Section 5 presents a preliminary evaluation of the SPEC engine on real thermal energy

data. Section 3 compares our approach with related works, while Section 6 draws conclusions and presents future

work.

2. Distributed frameworks

In recent years, we have been witnessing the diffusion of distributed and parallel approaches, often accompanied

with cloud-based services (e.g. Platform-as-a-Service tools) [7] due to the increasing volume of collected data as

well as the horizontal scaling in hardware. MapReduce [3] and Apache Spark [2] frameworks provide the high level

programming environment allowing programmers to focus only on the algorithmic issues, disregarding low-level

details.
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MapReduce [3], proposed by Google, has been designed to cope with very large datasets. Thanks to the Hadoop

Distributed File System (HDFS), MapReduce takes advantage of data locality, allowing the nodes to process only the

data they store. The MapReduce paradigm is designed for batch processing: iterative processes do not fit efficiently

since each iteration often requires a new reading phase from the disk. This feature is critical when dealing with huge

datasets. Hadoop supports only Java as development language.

Apache Spark [2], instead, has become the favourite platform for large scale data analytics because it overcomes

the limitations of the MapReduce paradigm, although it maintains full compatibility with the latter. Spark is a general

purpose in-memory distributed platform and it supports Java, Python and Scala as development languages. Differently

from MapReduce, Spark enables machines to cache data and intermediate results in memory through the introduction

of Resilient Distributed Datasets (RDD), instead of reloading them from the disk at each iteration.

In recent years the success of these distributed platforms has been supported by the diffusion of open source

libraries including a wide range of machine learning algorithms. Mahout [8] for Hadoop has been one of the most

popular collections of Machine Learning algorithms, containing implementations in the areas such as clustering,

classification, and recommendation systems. All the current implementations are based on Hadoop MapReduce.

MLlib [9] is the Machine Learning library developed on Spark, and it is rapidly growing. MLlib allows researchers

to exploit Spark special features to implement all those applications that can benefit from them, e.g., fast iterative

procedures. A variety of machine learning algorithms have already been included in MLlib.

3. Related work

In the last few years the analysis of energy data has received increasing attention from the different and cross re-

search communities, including energy, data mining, databases and statistics communities. The wide exploitation of

small and smart sensor devices monitoring indoor and outdoor environmental parameters has been effectively sup-

porting the collection of a large volume of measures with temporal and spatial references. These big data collections

have a great potential, because when they are mined an interesting subset of actionable knowledge can be discovered

to support the decision making process of facility managers.

A variety of research contributions on these large data volumes of energy related data have been carried out for:

(i) identifying the main factors that increase energy consumption (e.g., location [10]); (ii) characterizing consumption

profiles among different users [10,11]; (iii) supporting data visualization and warning notification [12]; (iv) efficient

storing and retrieval operations based on NoSQL databases [13];

Many research efforts, carried out by computer science researchers, have been devoted to designing and developing

systems to provide novel and widespread analytics services based on Big Data technologies. Proposed solutions are

general purpose [14] or tailored to a given application domain, such as thermal energy consumption [15], residential

energy use [16], renewable energy [17], air pollution levels [18]. The work in [15] discusses the key features of an

Energy Management System to support frequent pattern discovering on event streams. A Data Stream Management

System (DSMS) is exploited to efficiently support the execution of typical queries of real-time EMSs on time-varying

data streams.

Some research efforts have been devoted to characterizing energy consumption at a large scale [19] as well as en-

ergy efficiency [20]. The research project described in [19] exploits a NoSQL technology to collect, store and analyze

large volumes of energy-related data. In [19], MongoDB [21] has been used as a datawarehouse engine and the Map-

Reduce paradigm has been exploited to compute a variety of basic key performance indicators (KPIs) (e.g., energy

consumption per unit of volume) to characterize the energy consumption of single buildings and groups of buildings in

the same neighborhood, by considering only the consumption during specific outdoor conditions (temperature range).

One step towards the computation of more complex KPIs has been proposed in [20]. The authors in [20] proposed the

Energy Signature Analysis (ESA) system which exploits a big data methodology, based on Map-Reduce paradigm,

to efficiently compute KPIs to characterize the building’s energy efficiency through the energy signature. Two main

KPIs were presented: (i) The intra-building KPI to compare latest observations with past energy demand in the same

conditions, for example in a similar outdoor temperature and indoor temperature; and (ii) the inter-building KPI to

rank the overall building performance with respect to nearby and similarly characterized buildings by considering

spatial co-location, building size, and usage patterns (e.g., residential, office, public building). Both KPIs exploit the

energy signature of a building that estimates the total heat loss coefficient of a building. The latter is computed by
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Fig. 1. The SPEC architecture

a linear regression of the power used for heating on the difference between the internal temperature and the external

temperature. Instead, the work in [22] presented a centralized engine exploiting exploratory data mining algorithms

such as association rules and clustering to characterize energy consumption in buildings. Differently from the above

research works [19,20,22], this paper proposes a distributed data mining engine exploiting data mining algorithms

to predict fine grain energy consumption. The works cited prevously have a completely different target and analysis

approach, and a substantially different architecture (the only similarity lies in the datawarehouse design). Specifically,

the target of [19] and [22] is power consumption characterization and the target of [20] is the characterization of

energy efficiency to define a building ranking. Whereas this current work aims at predicting energy consumption over

a sliding time window. Furthermore, the methodology proposed in [19] and [20] exploits the Map-Reduce paradigm,

while this work exploits the Apache Spark implementation.

4. The SPEC engine

SPEC is a distributed engine designed to predict and characterize energy consumption over a sliding time window

through data mining. SPEC can be easily exploited in many different energy-related applications including thermal

energy consumption, electricity consumption, and other energy-related data. In this paper SPEC is discussed in the

context of thermal energy consumption to analyze a variety of energy-related data (e.g., thermal energy consumption,

meterological data) as modeled in [19]. Thus, the Data collection and integration component collects thermal energy

consumption, roughly every 5 minutes, from a large number of smart meters deployed in a smart city. As proposed

in [19], energy consumption data are enriched with different meteorological data released as open data through web

services. Meteorological data include temperature, relative humidity, precipitation, wind direction, UV index, solar

radiation and atmospheric pressure.

To better focus the analysis end-goal (e.g., prediction of fine grain energy consumption in buildings), only a portion

of data (e.g., 5-minute energy consumption in a winter season) can be considered. The SPEC components, addressing

the main phases of the analysis process, are described in the next sections and shown in Figure 1.

4.1. Data preprocessing

Extracting actionable knowledge from data is a multi-step process, including a preprocessing phase to smooth

the effect of possibly unreliable measurements. Preprocessing in SPEC entails three steps: (i) outlier detection and

removal, (ii) missing value handling, and data normalization (if necessary).
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Outlier detection and removal. An outlier is an observation that lies outside the expected range of values. It may

occur either when a measurement does not fit the model under study or when an error in measurement happens (e.g.,

faulty sensors may provide unacceptable measurements for the thermal energy consumption). To address this issue,

SPEC exploits two strategies. (i) Interquartile range models the frequency distribution through the computation of

median, quartiles, min and max values. The median summarizes the central tendency of the distribution and compared

to quartiles provides information about the asymmetry of the distribution. The quartiles give an indication of the

variability through the difference interquantile. Values outside the first and third interquartile are not considered in the

subsequent analysis steps. (ii) Leverage is a coefficient based on the Mahalanobis distance to define whether an energy

consumption observation (Xi) is different from the others. For each observation Xi, SPEC computes the leverage as

proposed in [23], that is:

Hi = Mahalanobis2(Xi) +
1

N
(1)

where N is the number of energy consumption samples, and the Mahalanobis distance, in our study, is computed as

follows:

Mahalanobis(Xi) =

√

(Xi − mean(E))2

∑

j(X j − mean(E))2
(2)

where mean(E) is the mean of all energy samples, while
∑

j(X j − mean(E))2 is the the total square difference

between all samples in energy consumption and the corresponding mean.

Only the observations Xi with a leverage value greater than the CutOff threshold are processed in the next analytics

step. The CutOff value is calculated as follows:

CutO f f =
2(K + 1)

N
(3)

where K is the number of variables under analysis.

Missing value handling is an important step that significantly affects the mining process. Since we focus on the

characterization and the prediction of thermal energy consumption, records with a consumption value equal to zero

are disregarded. Instead, to handle missing values on other considered features (e.g., meteorological data), instead,

SPEC exploits two strategies: (i) replace them with the daily average value or (ii) replace them with the hourly average

value computed in the last week. The choice is mainly driven by the physical meaning of each attribute. For example,

case (i) is exploited for the precipitation and wind direction attributes, while case (ii) is for the solar radiation and UV

index attributes.

Data normalization When dealing with time series, such as the sequences of thermal energy consumption together

with meteorological series, differences in scale and measurement unit exist. Since the normalization technique allows

preserving the original data distribution, SPEC integrates two normalization techniques: min-max and z-score. Since

the results of the analysis process can also be affected by the selected normalization step, the end-user can iteratively

perform different analysis sessions to identify the strategy that yields better results.

4.2. Data analysis

The core of the data analysis phase in SPEC includes three main blocks: (i) data stream processing, (ii) prediction

analysis, and (iii) prediction validation.

4.2.1. Data stream processing

Since thermal energy consumption is monitored roughly every 5 minutes in the district heating system, a large

volume of energy data is continuously collected for each building. To efficiently analyze such data the SPEC engine

has been designed to perform the energy consumption prediction task for each building separately through the data

stream analysis over a sliding time window. Specifically, every time that energy consumption is collected one single

sliding time window over the data stream is considered for the prediction task. This window contains a snapshot of

the energy consumption monitored in the last instants. It describes the recent past consumption of the building, and
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consequently predicts the upcoming energy of the building in the near future. The sliding time window approach

requires the definition of the sliding time window size parameter (wlength), which determines the temporal context

of interest for the analysis. If the time window is very short, then almost instantaneous evaluation of the building’s

consumption is performed. Instead, a too large time window allows analyzing many data on past building energy

performance, but it may introduce noisy information in the prediction analysis. SPEC performs the prediction of

energy consumption roughly every 5 minutes. The time window moves jointly with the prediction of the upcoming

energy consumption.

4.2.2. Prediction analysis

Different data mining algorithms can be chosen for the prediction analysis of energy consumption. This kind of

prediction is a regression task. The aim is to create a model for data under analysis and exploit it for forecasting

the upcoming energy consumption at a time instant in the near future. Different methods can be exploited to achieve

this, including decision tree, naive Bayes, neural networks, and support vector machines techniques. Each technique

employs different learning algorithms to build data models providing a great number of accurate predictions. In SPEC

a different data model is created for every time window over the time series considered. To assess the performance of

the prediction model, the data under analysis are split into training and test sets. The first is used to build the model,

while the second to assess its quality.

Among the available techniques suited to the regression problem (i.e., the prediction of a real value of energy

consumption as in this study) we selected Random forest regression (RFR) and Artificial Neural Networks (ANN).

Both techniques have been widely exploited in many different applications yielding good accuracy performance. The

two techniques are briefly presented below by referencing the Apache Spark implementation.

Random forest regression (RFR) is an ensemble learning method easily exploited for regression. Given a training

set (i.e., set of records characterized by different input variables with known target values) a multitude of decision

trees (data model) is created to support the prediction of the target value. This method significantly reduces the risk of

overfitting. In MLlib [9], the RFR algorithm injects randomness into the training process to create a variety of different

decision trees minimizing overfitting. The randomness is introduced by (i) performing N subsampling of the original

training set to get different training sets (i.e., bootstrapping) to build trees independently, (ii) considering different

random subsets of input variables to split at each tree node. Then, the training phase can be performed in parallel.

To predict a new record in the test set, a random forest must aggregate the predictions from its set of decision trees

assigning a prediction independently. For regression task, each tree predicts a real value. The final predicted value

is computed as the average of the independent tree predictions. This strategy reduces the variance of the predictions,

improving the performance on test data.

RFR exploits as building blocks the traditional method to create a decision tree and exploit it during the prediction

task. We present below the main features of these basic steps. The construction of each decision tree (in a specific

data sample) works in a top-down manner, by choosing an attribute test condition at each step that best splits the

records. The Gini index impurity-based criterion has been exploited to identify the best way to split the records during

the growing of the tree. Each node in the tree specifies a test on an attribute, each branch descending from that node

corresponds to a range of possible values for that attribute. Each leaf represents a given value for the target attribute.

Starting from the root node of the tree, each node splits the instance space into two or more sub-spaces according to

an attribute test condition. Then moving down the tree branch corresponding to the value of the attribute, a new node

is created. This process is then repeated for the subtree rooted at the new node, until all records in the training set have

been processed. During the prediction phase, each tree model is exploited. Instances in the test set are predicted by

navigating the tree from the root down to a leaf, according to the outcome of the tests along the path. The predicted

value for a given tree corresponds to the value characterizing the reached leaf of the tree.

Artificial Neural Networks (ANN) simulate biological neural systems. In SPEC we integrated the Scala imple-

mentation of ANN allowing the execution and the training of a multi-layer perceptron with two or three levels without

restrictions1. It includes an input layer, n hidden layers, and an output layer. Each layer is made up of nodes. Each

node in a layer takes as input a weighted sum of the outputs of all the nodes in the previous layer, and it applies a

nonlinear activation function to the weighted input. The network is trained with backpropagation and learns by itera-

1 The source code has been downloaded from https://github.com/yannart/Scala-Neural-Network.
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tively processing the set of training data records. The network predicts the target value for each training data record.

Then weights in the network nodes are modified to minimize the mean squared prediction error. These modifications

are made in the backwards direction, that is, from the output layer through each hidden layer down to the first hidden

layer.

4.2.3. Prediction validation

This block measures the ability of the SPEC engine to correctly predict the energy consumption values achievable

by a building in an upcoming time instant. To this aim SPEC integrates three metrics: (i) Mean absolute percentage

error (MAPE), (ii) Weighted Absolute Percentage Error (WAPE), and (iii) Symmetric mean absolute percentage error

(SMAPE). The three corresponding expressions are reported below.

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

Ai − Pi

Ai

∣

∣

∣

∣

∣

(4)

WAPE =

∑n
i=1 |Ai − Pi|
∑n

i=1 Ai

(5)

S MAPE =
1

n

n
∑

i=1

|Ai − Pi|

|Ai| + |Pi|
(6)

In all formulas, Ai is the actual energy consumption at time ti while Pi is the corresponding predicted value.

In statistics, MAPE, also known as mean absolute percentage deviation (MAPD), is exploited to evaluate the quality

of a predictor. However, since MAPE represents a percentage error, it is not very suited to model energy prediction

error because of a high data distribution variability. Specifically, energy consumption may vary in very long intervals,

thus the MAPE error may significantly increase in presence of high energy consumption, and have a limited impact

otherwise. The WAPE and SMAPE metrics have been proposed to address this issue. WAPE suffers from not having

a specific meaning as an error on the single prediction but only on all the forecasts, while SMAPE is able to correctly

model the prediction error for each forecast individually. The only drawback of SMAPE is that it is not symmetric.

Thus, overestimated forecasts and underestimated forecasts do not have the same impact. Specifically, for the same

value of error prediction the underestimated forecast has a great impact on the overall SMAPE value. Since each

metric has benefits and drawbacks, SPEC integrates all of them and leaves the selection to the energy analyst.

5. Preliminary experimental results

We performed a preliminary analysis of energy consumption on a real dataset, including energy consumption of 12

residential buildings, using the SPEC engine. The energy data are related to a complete winter period from October

15th to April 15th. Energy consumption values have been integrated with meteorological information collected from

the Weather Underground web service2 [24]. SPEC creates a predicting model for each building separately.

The datasets have been stored in a cluster at our University running Cloudera Distribution of Apache Hadoop

(CDH5.3.1). All experiments have been performed on our cluster, which has 8 worker nodes, and runs Spark 1.2.0,

HDFS 2.5.0, and Yarn 2.5.0. The current implementation of SPEC is a project developed in Scala exploiting the

Apache Spark framework.

For the prediction task we consider as input variables full time, full date, temperature, humidity, precipitations,

pressure, dew point, wind direction, energy consumption in the considered time window to support the prediction

of the upcoming energy consumption in the near future (target). For the results reported in this study, the SPEC

engine has been configured as follows: Normalization and outlier detection have been performed through the MinMax

technique and the Leverage approach respectively. We set the time window size (wlength) to 3, and consider only energy

consumption in the time frame from 5:00p.m. to 10:00p.m.. To configure the Random forest regressor in MLlib, we

2 The Weather Underground web service gathers meteorological data from Personal Weather Stations (PWS) registered by users.



T. Cerquitelli / Energy Procedia 00 (2016) 000–000

set numTrees = 20, featureSubsetStrategy = all, impurity = variance, maxDepth = 4, maxBins = 100. To configure

the ANN regressor we set perceptronInputNum= 6 and neuronLayerNum = Array[10, 2, 1].

Preliminary experimental results have been performed to measure the ability of the SPEC engine in correctly pre-

dicting the energy consumption values roughly every 5 minutes by analysing the prediction error. Tables 1 and 2

report the MAPE, WAPE, SMAPE values for each monitored building obtained through the artificial neural network

(ANN) model and the Random Forest Regression (RFR) model respectively. Since SPEC performs the prediction task

roughly every 5 minutes, both predicition models yield good performance. The ANN model trained for each building

performs the complex prediction task with a limited error (i.e., MAPE between 6-19%, WAPE 6-10%, SMAPE 3-5%

in Table 1). Also the performances of RFR are quite good (i.e., MAPE between 9-20%, WAPE 9-14%, SMAPE 5-7%

in Table 2), although slightly worse than the ANN model. These results are promising and demonstrate the potential

of the proposed methodology in addressing the cumbersome task of predicting fine grain energy consumption over

a sliding window. These results are a first attempt towards the continuous prediction of fine grain energy consump-

tion. There is wide room for improvements: (1) significantly reduce the prediction error and (2) tailor the proposed

methodology to predict energy consumption in the transitory time frame (TTF). This TTF is characterized by a large

variability of energy consumption spikes which significantly increases the complexity of predicting models.

Table 1. Prediction error for each building: Artificial neural network model.

Building identifier MAPE WAPE SMAPE

B1 0.10412 0.08456 0.03977

B2 0.06391 0.06316 0.03137

B3 0.10046 0.08417 0.04086

B4 0.18848 0.09913 0.04905

B5 0.09055 0.07866 0.03641

B6 0.07931 0.07715 0.03570

B7 0.09087 0.07325 0.03597

B8 0.06407 0.06481 0.03128

B9 0.15671 0.08637 0.04174

B10 0.12616 0.08984 0.04310

B11 0.15229 0.09846 0.04856

B12 0.12401 0.09224 0.04412

Table 2. Prediction error for each building: Random Forest Regression model.

Building identifier MAPE WAPE SMAPE

B1 0.13288 0.11463 0.05578

B2 0.10368 0.10333 0.05129

B3 0.13287 0.11239 0.05576

B4 0.19807 0.11120 0.05797

B5 0.11149 0.10513 0.05194

B6 0.12187 0.12022 0.05903

B7 0.11505 0.09560 0.04743

B8 0.09280 0.09409 0.04621

B9 0.19006 0.11874 0.06082

B10 0.14574 0.11261 0.05553

B11 0.19298 0.13445 0.06539

B12 0.16939 0.13896 0.06958

6. Conclusions

As researchers in data mining algorithms and technologies we believe that statistics, data mining and machine

learning techniques provide tools that have a great potential to discover interesting and actionable knowledge. The

ability of algorithms to effectively support the decision-making process increases when applied to rich and interesting
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data, such as energy-related data. In this paper, we have presented the preliminary version of the SPEC (Scalable

Predictor of Energy Consumption) engine to address the fine grain prediction of energy consumption over a sliding

time window. Preliminary results, achieved on real data, demonstrate the potential of the proposed approach in

generating an interesting and quite accurate prediction model. Currently, we are extending the current version of the

architecture towards a cross-building model to perform more accurate fine grain predictions. Furthermore, we are

working on adapting the prediction models to a longer time frame, including the first hours of the morning when a

large number of energy consumption spikes occur. Finally, we are tailoring the SPEC engine to other energy-related

applications (e.g., electricity applications).
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