
Doctoral Dissertation

Doctoral Program in Electronics Engineering (29thcycle)

Energy-efficient hardware design
based on high-level synthesis

By

Fahad Bin Muslim

Supervisor(s):
Prof. Luciano Lavagno, Supervisor

Doctoral Examination Committee:
Prof. Roberto Guerrieri, Universita’ di Bologna
Prof. Antonio Abramo, Universita’ di Udine
Ing. Davide Quaglia, Universita’ di Verona
Prof. Leonardo Reyneri, Politecnico di Torino
Prof. Claudio Passerone, Politecnico di Torino

Politecnico di Torino

2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Fahad Bin Muslim
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents

Acknowledgements

First and foremost, I would like to thank Allah-the Almighty for all His blessings
bestowed upon me. Without His will, I would not have made it this far.

I would like to express a special gratitude to my supervisor and mentor Prof.
Luciano Lavagno for the excellent ideas that he proposed for me to work on. The
work was challenging but it was through his commendable guidance which enabled
me to get some useful results eventually. He was always there to address my work-
related as well as other general queries even with his extremely busy schedule.
Besides, I would like to thank all the faculty members and researchers from the
department of electronics and telecommunications (DET) at Politecnico di Torino,
who supported me in any way during the course of my PhD.

I would also like to thank my several friends that I made during my stay here
in Turin for making my stay extremely pleasant and memorable. I would also like
to take this opportunity to acknowledge the support of my group mates (past and
present) at the High-level synthesis group at Polito. The discussions with them have
always been extremely rewarding and I learnt a lot from them.

A special word of appreciation for my family members including my parents,
wife, siblings and others for their unconditional support and prayers. They always
had extremely encouraging words for me especially, when the chips were down.

Finally, I am extremely thankful to the higher education commission (HEC)
Pakistan for funding my doctorate at the Politecnico di Torino. This is a great
initiative by the government of Pakistan to create a pool of high quality researchers
who can ultimately contribute to the prosperity of the nation. I find myself more
equipped after my PhD to contribute to this goal.

iv

Abstract

This dissertation describes research activities broadly concerning the area of High-
level synthesis (HLS), but more specifically, regarding the HLS-based design of
energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented
on FPGAs, are integral to the heterogeneous architectures employed in modern high
performance computing (HPC) systems due to their ability to speed up the execution
while dramatically reducing the energy consumption of computationally challenging
portions of complex applications. Hence, the first activity was regarding an HLS-
based approach to directly execute an OpenCL code on an FPGA instead of its
traditional GPU-based counterpart. Modern FPGAs offer considerable computational
capabilities while consuming significantly smaller power as compared to high-end
GPUs. Several different implementations of the K-Nearest Neighbor algorithm were
considered on both FPGA- and GPU-based platforms and their performance was
compared. FPGAs were generally more energy-efficient than the GPUs in all the
test cases. Eventually, we were also able to get a faster (in terms of execution time)
FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing
suitable HLS directives.

The second activity was targeted towards the development of a methodology
complementing HLS to automatically derive power optimization directives (also
known as "power intent") from a system-level design description and use it to drive
the design steps after HLS, by producing a directive file written using the common
power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The
proposed LP-HLS methodology reduces the design effort by enabling designers to
infer low power information from the system-level description of a design rather than
at the RTL. This methodology required a SystemC description of a generic power
management module to describe the design context of a HW module also modeled
in SystemC, along with the development of a tool to automatically produce the CPF
file to accomplish PSO. Several test cases were considered to validate the proposed

vi

methodology and the results demonstrated its ability to correctly extract the low
power information and apply it to achieve power optimization in the backend flow.

Contents

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

1.1 FPGA based heterogeneous computing system 2

1.2 High-level synthesis based low power methodology 4

1.3 Problem Statement . 6

1.4 Contribution . 8

1.5 Organization of the thesis . 10

2 Heterogeneous System Architecture 13

2.1 Why Heterogeneous architecture? 13

2.2 Multi-core processors . 15

2.3 Graphics Processing Units . 15

2.4 Field Programmable Gate Arrays 16

3 Open Computing Language 19

3.1 Platform Model . 19

3.2 Memory Model . 20

viii Contents

3.3 Synchronization in OpenCL . 21

4 Battle of Accelerators: FPGA or GPU? 23

4.1 KNN Algorithm . 23

4.2 Related Work . 24

4.3 Methodology . 26

4.3.1 FPGA Implementation . 26

4.3.2 Power Analysis . 27

4.4 Test case implementations . 29

4.4.1 Implementation 1 . 29

4.4.2 Implementation 2 . 30

4.5 Experimental Setup . 31

4.6 Results . 33

5 Power Management Module 39

5.1 Overview . 40

5.2 CMOS Power Optimization . 41

5.2.1 Dynamic Power Optimization 41

5.2.2 Static Power Optimization 43

5.3 Common Power Format . 44

5.4 Power-Aware System Model . 44

5.4.1 Low Power Design flow 45

5.4.2 Power Management Block 47

5.5 Integrated Clock gating and Power gating 49

5.6 System-level Power Management Module Validation 49

5.6.1 Inverse Discrete Cosine Transform 51

5.6.2 Experimental Setup . 51

Contents ix

5.6.3 Results . 52

6 High-Level Synthesis Based Automated Low Power Methodology 57

6.1 Related Work . 57

6.2 Methodology Description . 59

6.2.1 Power Intent Generation Tool 59

6.2.2 Complete Design Flow . 62

7 Design Test Cases for Methodology Validation 65

7.1 Structure of the testbench for design functional verification 65

7.2 Design Test Cases . 66

7.2.1 Ripple Carry Adder . 67

7.2.2 Arithmetic and Logical Unit 67

7.2.3 JPEG IDCT decoder . 67

7.3 Results . 70

8 Conclusions and Future Work 77

8.1 Conclusions . 77

8.2 Future Work . 79

References 81

Appendix A CPF file for IDCT 87

x Contents

List of Figures

1.1 Power saving vs design effort over different levels of a design flow . 2

1.2 Power versus Technology in CMOS 6

1.3 Overview of HLS based low power design methodology 7

2.1 A Typical Heterogeneous System Architecture 14

2.2 FPGA Architecture . 17

3.1 OpenCL for heterogeneous programming 20

3.2 Platform and Memory Model of OpenCL 20

4.1 Illustration of the KNN algorithm with k=3 and n=20 24

4.2 SDAccel Based FPGA Design Methodology Flow 28

4.3 Power Estimation and Analysis Flow 29

4.4 (a) Traditional global memory buffer vs (b) On-chip global memory
buffer . 32

4.5 FPGA vs GPU execution time and energy-per-computation ratios
for several test case implementations 37

5.1 Flip flop with clock gating . 42

5.2 Header switch implementation for power gating a unit 43

5.3 Complete low power design flow 46

5.4 System with power optimization features 49

xii List of Figures

5.5 Power Up/Down Sequence . 50

5.6 Illustration of CG and PG integration 50

5.7 JPEG decoder using IDCT module 52

5.8 Power Consumption for IDCT test cases 54

5.9 Area versus Power diagram for IDCT test cases 55

6.1 Illustration of the CPF generation tool 60

6.2 CPF generation Flow . 61

6.3 Complete Flow of Low Power High-level Synthesis methodology . . 63

7.1 General testbench structure for design validation 66

7.2 Power Aware 32-bit Ripple Carry Adder 68

7.3 Power Aware Arithmetic and Logical Unit Processor 69

7.4 RCA Power curve wrt MSB_RCA workload 74

7.5 ALU Power curve wrt DIV-MULT workload 74

7.6 Power curve wrt IDCT workload 75

List of Tables

4.1 Target Platforms Comparison . 33

4.2 Performance analysis of implementation 1 35

4.3 Performance analysis of implementation 2 35

4.4 Summary of FPGA vs GPU performance results for various test cases 36

5.1 Power wrt area performance for IDCT test cases 53

5.2 Toggle rates for JPEG usage . 53

7.1 Power versus Area for RCA . 73

7.2 Power versus Area for ALU processor 73

7.3 Power versus Area for IDCT . 75

7.4 Complete IDCT design versus RAM wrt area and power consumption 75

xiv List of Tables

Nomenclature

Acronyms / Abbreviations

ALU Arithmetic and Logic Unit

ASIC Application Specific Integrated Circuit

BRAM Block RAM

CG Clock Gating

CGIC Clock-Gated Integrated Cells

CMOS Complimentary Metal Oxide Semiconductor

CPF Common Power Format

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic RAM

DSE Design Space Exploration

DV FS Dynamic Voltage Frequency Scaling

FIFO First-In First-Out

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

xvi Nomenclature

HLS High-Level Synthesis

HPC High Performance Computing

IDCT Inverse Discrete Cosine Transform

KNN K-Nearest Neighbor

MSV Multi-Supply Voltage

OpenCL Open Computing Language

PMB Power Management Block

PSO Power Shut-Off

QoR Quality of Results

RAM Random Access Memory

RCA Ripple-Carry Adder

RT L Register Transfer Level

SoC System On Chip

TCF Toggle Count Format

UPF Unified Power Format

Chapter 1

Introduction

Modern electronic devices, driven by exceeding market requirements, are required
to perform a variety of tasks. Considering the example of mobile handsets; they
were initially meant to mainly support voice calls and text messaging i.e. short
messaging service (SMS). Modern smart phones, in comparison, are required to
support a variety of sophisticated features such as video calls, voice over IP (VoIP)
and multimedia messaging to name a few. The support for such increasing features
in modern electronic devices is provided by advanced system-on-chip (SoC) designs
consisting of heterogeneous system architectures.

Such heterogeneous systems essentially consist of a combination of multi-core
processors and hardware accelerators for speeding up the execution of compute in-
tensive operations while consuming considerably lower power [1], [2]. Traditionally,
graphics processing units (GPUs) have been used as accelerators in combination
with central processing units (CPUs) but unfortunately high performance computing
(HPC) systems based on GPUs are inefficient in terms of their power consumption
[3]. Modern field programmable gate arrays (FPGAs) fortunately have the ability to
offer considerable execution speed while consuming only a fraction of the power as
compared to several high-end GPUs [4]. These FPGAs, hence are strong competitors
to the traditional GPU-based accelerators and are part of heterogeneous systems in
modern HPC systems.

It can be concluded from the discussion above that power consumption in modern
SoCs is as critical as their computational abilities. Hardware designers are always
looking to develop designs which are optimal both in terms of power and timing

2 Introduction

Low

High

Fig. 1.1 Power saving vs design effort over different levels of a design flow

which unfortunately are conflicting performance parameters. It is easier to achieve
pareto-optimality, if the power is considered at a higher level of abstraction i.e. at the
system-level of the design flow. This is because major architectural decisions related
to cost, performance and power consumption are made at higher abstraction level
[5]. The opportunity to save power decreases as we go down the design flow from
system-level to the register transfer level (RTL) and below, while the optimization
effort increases. This is depicted in Fig. 1.1.

1.1 FPGA based heterogeneous computing system

Modern HPC systems are meant to analyze diverse range of complex phenomena in
a variety of fields such as data mining, fault simulation and fluid dynamics to name a
few. This requires the modern computers to provide huge computational abilities in
a sustainable manner. There has been a general consensus since long that constant
performance improvements in modern computers can not be obtained merely by
increasing their operating parameters e.g. the processor clock speed. While such

1.1 FPGA based heterogeneous computing system 3

measures may yield performance enhancement, they also result in a higher power
consumption than is desirable for modern HPC systems [6].

One of the solutions to this issue is to deploy systems that utilize accelerators
e.g. GPUs and FPGAs, in combination with multi-core processors to speed up the
execution of compute-intensive operations while still consuming considerably less
energy. Additionally, it is desirable to expose parallelism in applications e.g. by
using various parallel programming languages, so as to better exploit the parallel
architectures offered by these accelerators. Such systems offer sufficient execution
speed along with providing better energy efficiency [2].

GPUs are known to provide huge computational power and hence have been
used extensively for HPC applications. However, with their continuously increasing
computational capabilities, GPUs are also known to be extremely inefficient as far
as their energy consumption is concerned [7]. The energy consumption can be
significantly reduced while still having a considerable amount of computational
power by utilizing FPGA-based accelerators. FPGAs are well known for their
reconfigurability as well as their energy efficiency. This fact has been recognized in
the industry as evident from the decisions by Microsoft and Baidu to use FPGAs as
accelerators rather than GPUs in their respective search engines [8],[9].

A major limitation while utilizing FPGAs in modern heterogeneous systems is
the complexity in programming them. Traditional FPGA programming requires
sufficient expertise in one of the several hardware description languages (HDL) e.g.
Verilog and VHDL. Hardware designers normally use these languages for FPGA
programming but several useful algorithms are usually written in non hardware-
specific languages e.g. C/C++. It requires a lot of effort on the part of hardware
designers to port the algorithms for implementing them on FPGAs [10]. Furthermore,
describing hardware at such low-level languages limits the designers to explore only
a limited number of architectural options due to their much slower design and
verification cycles [11].

These issues can be rectified by an approach called High-level Synthesis (HLS)
which enables the designers to implement their algorithms, written in several higher
level languages such as C, C++ and SystemC, directly on FPGAs. HLS causes a
significant reduction in both the design and verification time and effort as compared
to an HDL design. Additionally, it allows designers to have several considerably
different hardware implementations, satisfying a variety of design constraints, from

4 Introduction

a single high-level code by merely providing different directives to the HLS tool, a
process called design space exploration (DSE) [12], [13].

Recognizing the abilities of FPGAs as competitors to the traditional GPU-based
accelerators and the programming complexity affiliated with them, various HLS
tools have been developed recently by the leading FPGA manufacturers e.g. Xilinx
and Altera, for their respective devices. These HLS tools have been developed to
directly support the RTL synthesis starting from the description of an algorithm in a
parallel programming framework namely OpenCL developed by the Khronos group
to enable execution of applications on heterogeneous platforms.

OpenCL is based upon C/C++ and is used to expose parallelism in an application
to enable speed up by exploiting the concurrency offered by the hardware accelerators
e.g. GPUs. It holds an advantage over the very similar Compute Unified Device
Architecture (CUDA) programming framework by NVIDIA. This is due to the fact
that unlike CUDA being used to program NVIDIA GPUs only, OpenCL offers higher
execution portability thus enabling the execution of the same OpenCL code on a
variety of hardware platforms e.g. CPUs and GPUs. With the development of HLS
tools using OpenCL code as an input, the same code used to execute the application
on a CPU/GPU can now be used for FPGA implementation as well with the same
optimization effort as that on CPU/GPU-based platforms [14].

As mentioned before, OpenCL offers execution portability but unfortunately,
it does not offer performance portability. This implies that even though the same
OpenCL code can be executed on a variety of hardware platforms, the performance
would vary from one device to another. OpenCL implementation and optimization
support on Xilinx FPGAs is provided by the SDAccelTM tool chain from Xilinx,
utilizing tools from Vivado® design suite for RTL and logic synthesis [15], [16].

1.2 High-level synthesis based low power methodol-
ogy

Fig. 1.1 shows that maximum power can be saved by specifying power intent at
the system-level of the hardware design flow. This would also require the least
optimization effort as compared to the cases where optimization is considered at
lower levels of abstraction. In a conventional design flow, the designers must

1.2 High-level synthesis based low power methodology 5

optimize manually written RTL to satisfy strict power requirements by applying
numerous power optimization techniques to optimize both the leakage power as well
as the dynamic power. This process involves taking into account a complex multi-
dimensional problem space while considering a variety of low-level information
regarding the RTL design within a strict time limitation. This obviously becomes
extremely difficult and the solution is to raise the level of abstraction above the
RTL for easier power optimization and to utilize RTL synthesis automation tools
[17]. The power optimization techniques usually target supply voltage and clock
control methodologies e.g. power shut-off (PSO), dynamic voltage frequency scaling
(DVFS), clock gating (CG) and multi-supply voltage (MSV). PSO is particularly
useful to reduce leakage power in hand-held devices which are usually powered by
energy sources (e.g. batteries) that can only provide a limited amount of energy [18].

Previously, the total power dissipation in a complimentary metal oxide semi-
conductor (CMOS) was dominated by the dynamic power but leakage power has
now become an equally significant contributor with the prevailing nanometric tech-
nologies. It can be assumed that this situation would continue to worsen with the
continuous scaling of technology. Fig. 1.2 clearly shows this trend [19]. Dynamic
power consumption in CMOS occurs during the active mode when the signals
through the CMOS toggle hence changing their logic states, resulting in the charging
and discharging of load capacitors [20]. Leakage power on the other hand consists
of active leakage and standby leakage. The standby leakage power consumption
occurs during circuit sleep mode while the active leakage is caused by the leakage
current that still flows even in the operation mode. The active leakage becomes a
significant contributor to the leakage power in deeply scaled devices [21].

As discussed before, HLS takes a high-level description of a design and automati-
cally generates several RTL descriptions satisfying different area/performance/power
constraints thus reducing both the design and verification time and effort. It certainly
is desirable to have a fully automated low power flow, enabling the incorporation
of both logic as well as power into the design starting from the system-level. This
would require a methodology to automatically capture the power intent of a de-
sign at the system-level while using HLS to achieve a broad set of target system
implementations.

A broad overview of such a methodology is shown in Fig. 1.3. Unlike the
traditional methodology involving power intent definition together with the RTL,

6 Introduction

0

200

400

600

800

1000

95nm 65nm 40nm 28nm 20nm

W
/c

m
2

Dynamic Power Leakage Power

Fig. 1.2 Power versus Technology in CMOS

this methodology involves defining power intent directly using the system-level code
and using HLS to automatically generate the RTL. This is followed by applying the
already defined power intent in the later stages of the design flow to achieve power
optimization. High-level synthesis preserves the naming convention of the design
hierarchy including instances, signals and ports. This in turn enables designers to
directly define power intent on the system-level code, which is more convenient
to understand owing to its higher level of abstraction. Additionally, adding power
management logic at the system-level makes functional verification simpler via the
design-specific system-level testbench [5].

1.3 Problem Statement

This dissertation deals with some issues regarding high-level synthesis in general
and low-power hardware accelerator design in particular. FPGAs can be categorized
as reconfigurable digital hardware which have been used in a variety of applications
ranging from signal processing to high performance switches. They also represent

1.3 Problem Statement 7

Power intent
RTL

model

Gate-level

netlist

Physical

implementati

on

HLS

Design objects System-level

model

Power automation

Backend flow

Fig. 1.3 Overview of HLS based low power design methodology

8 Introduction

excellent options as accelerators due to their flexibility, energy efficiency and high
performance. FPGAs are usually programmed using hardware description languages
like verilog or VHDL. To be proficient in these languages, one needs to have
considerable knowledge about computer architecture and hardware design [10]. This
programming complexity affiliated with FPGAs has been the reason for reluctance
shown by designers in using FPGAs as accelerators. HLS, however, gives us a way
around this issue by allowing us to program the FPGAs directly through C/C++ and
other programming frameworks based on them e.g. SystemC and OpenCL. With this
issue being taken care of, FPGAs can be strong competitors to the prevailing trend
of using GPUs as hardware accelerators.

With regards to obtaining energy-efficient application specific integrated circuit
(ASIC) designs, describing power intent at the system-level is still a stiff challenge
for system architects and designers. Power optimization is usually considered at
the RTL in a conventional design flow when most of the architectural decisions
have already been made. It is thus desired to have a methodology that enables the
description of both the behavioral functionality as well as the power intent at a higher
level of abstraction while using HLS tools at the front end of the proceeding design
flow. There, however, exists no commercial tools or methodology presently for this
purpose and the required effort must still be done manually. A brief overview of the
methodology which can yield this automation has been shown in Fig. 1.3.

1.4 Contribution

One of the goals of the thesis is to explore a methodology using HLS to imple-
ment an application written in OpenCL on an FPGA-based accelerator. The main
contributions from this activity are:

• investigation of the issues encountered when implementing and optimizing
a code, written in non-hardware specific OpenCL on a Xilinx FPGA device.
The methodology is based on HLS and it is intended to apply a variety of HLS
optimization attributes and techniques and see how an OpenCL code responds
to them to yield the desired performance on an FPGA.

• secondly, it is also intended to emphasize on the difference in compilation of
an OpenCL code to be executed on a GPU and an FPGA, stemming mainly

1.4 Contribution 9

due to their different architectures. While GPUs due to their fixed architecture,
support just-in-time compilation, the FPGAs due to their flexible architec-
ture, allow a more thorough exploration of various code optimizations than
allowed by just-in-time compilation. The OpenCL standard thus, allows offline
compilation of the OpenCL code to be executed on an FPGA.

• finally, it is shown by comparing the performance of multiple algorithm im-
plementations on various platforms that the code executing efficiently on an
FPGA is very different from the one leading to the best implementation on a
GPU.

The thesis also deals with the development of a methodology based on HLS to
automatically generate power optimization directives to achieve PSO (leading to
reduced leakage power) in an ASIC design in the form of a common power format
(CPF) file by using the relevant information, extracted from the system-level design
e.g. the module to be shut-off, as well as other important information e.g. technology
specifications. CPF is a standard endorsed by the low power coalition at Silicon
Integration Initiative (Si2) and can be used to describe power intent for a design [22].

It should be noted that large FPGAs (with several transistors) also suffer from
huge leakage power consumption. This is because of the increase in leakage compo-
nent of each of the several transistors embedded into modern heavily scaled FPGAs.
Furthermore, in large FPGAs, a sizeable portion of the available resources may
remain unutilized if the design does not fill up the device completely. This would
result in leakage power due to both the utilized and unutilized parts of the FPGA
[23].

The authors in [24] have proposed a method to reduce the leakage power sig-
nificantly in FPGAs by shutting down individual accelerators dynamically during
idle periods at run-time through a technique called dynamic power-gating. The
same authors in [25] also present a technique to achieve fine-grained power gating
by shutting down selected portions of hierarchical designs with large accelerators
i.e. sub-accelerators, while the rest of the sub-accelerators are still running. The
identification of idle states along with their duration however, in FPGAs is very
difficult to achieve thus discouraging designers to make the required effort. Power
gating in ASIC designs however is much more common, wherein, the opportunities
for power gating can be identified manually and exploited using standard file formats

10 Introduction

such as unified power format (UPF) or CPF [23]. Hence, it is worthwhile to note
that while many of the optimizations used during the course of the first activity
are relevant both for ASIC and FPGA designs, the second activity (concerned with
using CPF for power gating) pertains exclusively to an ASIC design. The main
contributions from this activity are:

• exploring issues encountered while obtaining a fully automated low power
ASIC design flow starting from the system-level description to the physi-
cal design. This would involve the development of a generic system-level
power management module to enable firstly the specification and later on the
application of the power intent to achieve a power efficient design.

• development of a tool that can automatically generate the power optimization
directives to achieve PSO for a given system design context.

1.5 Organization of the thesis

This thesis presents a collection of the work done in the field of electronic design
automation using high-level synthesis with an emphasis on power/energy efficient
designs. The first activity deals with an exploration of the prospects of using FPGAs
as accelerators in modern heterogeneous systems by utilizing HLS along with their
performance comparison with some high-end GPUs. This activity is covered in this
document from chapters 2 to 4. The second activity explores the idea of developing
a fully automated low power design methodology complementing the HLS to obtain
power-efficient ASIC designs. The details can be found in chapters 5, 6 and 7.
Chapter 8 concludes the work along with mentioning some future directions in which
both the activities can be pursued. A brief description of each chapter is presented
here.

Chapter 2: Basic theory regarding heterogeneous system architectures is pre-
sented here with reference to both GPU- and FPGA-based acceleration.

Chapter 3: This chapter gives a description of OpenCL programming language
which is a parallel programming framework and enables execution portability over a
variety of device platforms.

1.5 Organization of the thesis 11

Chapter 4: This chapter compares FPGAs versus GPUs in terms of execution
speed, power and energy consumption. This is done by utilizing a widely used
classification algorithm i.e. K-Nearest Neighbor (KNN), as a test case.

Chapter 5: This chapter explains the details regarding system-level power
management module which enables the provision of signals necessary to achieve
power gating thus yielding a power-efficient ASIC design.

Chapter 6: The description of our proposed low power HLS-based methodology
(LP-HLS) is presented here along with a description of the tool that we developed to
automatically derive the power optimization directives necessary to achieve PSO.

Chapter 7: This chapter presents the design test cases that were used to validate
our LP-HLS methodology. The results validating our proposed methodology are
also presented.

Chapter 8: The work is finally concluded along with a brief description of the
future directions in which the activities can be pursued.

A sample CPF file used for power gating one of our test cases i.e. an Inverse
Discrete Cosine Transform (IDCT) design in a JPEG IDCT decoder is provided in
Appendix A.

12 Introduction

Chapter 2

Heterogeneous System Architecture

A heterogeneous system refers to a system comprising of several different processors
and cores. Such multi-core architectures offer high performance along with better
power efficiency by not only using additional processor cores but by using specialized
hardware called accelerators to handle certain computationally challenging portions
of the applications.

2.1 Why Heterogeneous architecture?

Besides the complexity i.e. the number of transistors per square inch of a processor,
the processor frequency also traditionally follows the Moore’s low very closely. This
trend of a continuous increase in the frequency has however been hindered by certain
physical constraints e.g. the power density [26]. The equation for power density
specifically depicting the influence of frequency is given by (2.1):

P =Cρ fV 2
dd (2.1)

where P is the power density i.e. the power dissipated per unit area, C represents the
total capacitance, ρ is the transistor density i.e. the number of transistors per unit
area, f represents the processor frequency and Vdd is the supply voltage [27].

It should be noted that (2.1) ignores the leakage power which contributes signifi-
cantly to the over all power consumption in CMOS sub-micron technologies [28].

14 Heterogeneous System Architecture

Kernel

Compute

Unit

Compute

Unit

Compute

Unit

PE PE

PE PE

GPU FPGA

KernelInfrastructure IP

Memories

Kernel

PCI express

Processor

Host

Memories

Fig. 2.1 A Typical Heterogeneous System Architecture

As evident from (2.1), the clock frequency of the processor can not be increased
unbounded due to the so called power wall.

One of the solutions to improve performance while still keeping the power
consumption in check, is to use multi-core processors running at lower frequencies
and supply voltages than the single core processors. For example, a dual core design
running at 85% of the supply voltage and frequency offers 180% better performance
while still consuming approximately the same power as a single core design [26].
The issue with the multi-core processors in use presently though, is that most of their
resources are spent on logic and cache thus, resulting in majority of the power being
consumed by non-computational units.

Heterogeneous architectures give us an alternative solution to this issue. These
architectures utilize the multi-core processors in combination with high performance
accelerators for a given power or transistor budget. This essentially means that the
accelerators use fewer transistors and operate at lower frequencies as compared to
the CPUs hence consuming lower power/energy. These accelerators typically do not
operate standalone and rely on traditional processors to manage them. This implies
that the CPUs are responsible to explicitly manage data transfer and execution while
using the accelerator cores [26], [29]. The accelerators used in such heterogeneous
systems may be GPUs, FPGAs or a combination of both. In the terminology of
heterogeneous system architecture, the multi-core processor is typically called a host
while the hardware platforms used to accelerate certain portions of the applications
are called devices. A typical heterogeneous system is shown in Fig. 2.1. The various
important components of such a heterogeneous system are described here briefly.

2.2 Multi-core processors 15

2.2 Multi-core processors

As mentioned earlier, increasing clock frequency to achieve better processor per-
formance is not a viable option due to the corresponding significant increase in
energy, heat dissipation e.t.c as represented by (2.1). One way of countering this is
to lower the clock frequency while packing more processor cores in a chip i.e. the
multi-core processors. These multiple cores will share some resources e.g. memory,
network etc but are still capable of handling independent operations. Such processors
enable the developers to exploit both data-level and task-level parallelism. To fully
exploit the capabilities of such multi-core processors, the programmers may need to
write multi-threaded codes, utilize libraries offering shared memory parallelism e.g.
OpenMP or use a message passing library e.g. MPI [10].

2.3 Graphics Processing Units

Another option to speed up the execution of parallelizable portions of the algorithms
is to use GPU-based accelerators as co-processors. A GPU is in principle a device
consisting of an extremely parallel microprocessor and a private memory with a very
high access bandwidth. They were originally developed to cater to the increasing
demand for hardware accelerated 3D graphics. The interest in the use of GPUs
for HPC applications started developing with the introduction of CUDA parallel
programming framework by NVIDIA in 2007. GPUs are meant to execute in
parallel, the same set of instructions on different data in single instruction multiple
data (SIMD) fashion. Unlike multi-core CPUs, the GPUs are designed in such a
way so as to devote more transistors to data operations instead of data caching and
control [26].

A GPU consists of several parallel processing elements called streaming multi-
processors to execute the kernel functionality in a parallel manner. Each streaming
multiprocessor further consists of multiple cores, with each core made up of sev-
eral components such as arithmetic and logical units (ALUs), thread-schedulers,
load/store units, scratchpad memories, caches etc. The cache size in GPUs is much
smaller as compared to the CPUs as they are designed for stream or throughput
computing involving smaller data reuse as compared to the CPUs. A GPU always
acts as a device in combination with a CPU being used as a host for loading data

16 Heterogeneous System Architecture

intensive tasks on the GPU and offloading the results along with managing the data
transfers involved in the process. A GPU consists of its own device memory of a few
gigabytes (GBs) and is connected to the host through a PCI-Express (PCIe) bus as
shown in Fig. 2.1 [7].

2.4 Field Programmable Gate Arrays

While GPUs offer great computational abilities that can be exploited while using
them as accelerators, they unfortunately have a very poor power efficiency [7], [3].
FPGAs provide an alternate option as accelerators offering considerable computa-
tional abilities while still consuming considerably small amount of power/energy
as compared to the several modern high end GPUs. This is mainly because of the
control systems in FPGAs being hardwired hence, eliminating the need to fetch,
decode and execute instructions. Furthermore, the on-chip SRAM in case of FPGAs
are better customizable to the specific applications, thereby cutting on the multi-
plexing energy costs. While FPGAs were initially used for discrete logic, there
has been a drastic expansion in their fields of usage ranging from signal processing
to high performance embedded computing and more recently in high performance
computing [26]

FPGAs offer a highly parallel architecture which can be used to achieve a
considerable amount of acceleration. A typical FPGA consists of logic blocks,
memory blocks and DSP slices each surrounded by programmable interconnects as
shown in Fig. 2.2. The FPGAs offer high performance along with high versatility
and power efficiency owing to their conceptually simpler design [26]. The idea of
using FPGAs as accelerators normally suffers due to the complexity involved in
programming them. This issue however, can be resolved by using e.g. SDAccelTM

tool chain from Xilinx which enables us to program Xilinx FPGAs directly using the
OpenCL parallel programming language. The tool chain includes both the Vivado
high-level synthesis tool as well as the logic and physical design tools from the
Vivado® design suite [15], [16].

2.4 Field Programmable Gate Arrays 17

Memory blocks

Logic blocks

DSP blocks

I/O blocks Programmable

interconnects

Fig. 2.2 FPGA Architecture

18 Heterogeneous System Architecture

Chapter 3

Open Computing Language

OpenCL is a parallel programming framework for programming multi-core and
heterogeneous compute platforms [30], [31]. Thus, it lies at the intersection of
the programming languages corresponding to the individual computing platforms
constituting a heterogeneous system as shown in Fig. 3.1. OpenCL offers execution
portability thus enabling code execution on various supporting devices through
minimal modifications to the host code. The programming language is based on C99
and supports both data-parallel and task-parallel programming models [26].

3.1 Platform Model

The OpenCL platform model mainly consists of a multi-core CPU called a host.
Host is responsible for setting up the environment to enable an OpenCL program
to execute on one or more devices. In terms of OpenCL, a device represents any
supported hardware platform that can be used to accelerate the compute intensive
portions of an application referred to as the kernels. An OpenCL device consists of
compute units (CU) each further divided into processing elements (PE) as shown
in Fig. 3.2. Several concurrent executions of the kernel body (called work-items)
takes place on multiple processing elements. The work-items are further grouped
into work-groups which are being executed by multiple compute units.

20 Open Computing Language

CPU

Multi-cores giving

performance increase

GPU

Data-parallel

computing

Multi-processor

programming

Graphics APIs
OpenCL

Heterogeneous

Computing

Emerging

Intersection

Fig. 3.1 OpenCL for heterogeneous programming

CPU

Host

Kernel

CU

CU

CU

PE PE

PE PE

Device

Host Memory

Global/Constant

Memory

Local Memory

Private Memory

Fig. 3.2 Platform and Memory Model of OpenCL

3.2 Memory Model

The memory is broadly divided into host (i.e. CPU) memory and device (i.e. GPU or
FPGA) memory. The device memory is further divided into private memory (specific
to each work-item). This memory is the smallest i.e. O(10) words per work-item
but is the fastest to access at the same time. Local memory is shared by all the
work-items in a work-group and is around O(1-10) kbytes per work-group. This is
also slower than the private memory. Global/constant memory is shared by all the
work-groups. Global memory is around O(1-10) Gbytes while constant memory is
around O(10-100) Kbytes. Access to the global memory is the slowest among all
the device memories. Finally, the host memory resides on the CPU and can be few
Gbytes in size. The OpenCL memory model is also shown in Fig. 3.2. It should be
noted that memory management in OpenCL is done explicitly i.e. by moving data
from host memory to global memory to local memory and then back.

3.3 Synchronization in OpenCL 21

3.3 Synchronization in OpenCL

The work-items in an OpenCL kernel are executed in an out-of order manner to ensure
high performance by relieving the programmer i.e. by extracting parallelism from
the code automatically and speeding it up on a given hardware platform [32]. Since
the execution order of work-items across different devices can not be ascertained,
OpenCL standard introduces the concept of barriers to ensure memory consistency.
A barrier represents a check point with in a work-group such that all the work-
items belonging to that work-group must reach this point before any of them can
proceed with the rest of the computations [15]. Synchronization in the execution of
work-items belonging to different work-groups is not possible in OpenCL.

22 Open Computing Language

Chapter 4

Battle of Accelerators: FPGA or
GPU?

This chapter describes the adopted HLS-based methodology to implement a popular
classification algorithm i.e. the K-Nearest Neighbor algorithm, on Xilinx FPGAs.
Multiple implementations of the algorithm are considered and their performance on
FPGA and GPUs is compared as well.

4.1 KNN Algorithm

K-Nearest Neighbor (KNN) algorithm is an important algorithm for classification
finding applications in a diverse range of fields such as computer vision, pattern
recognition and machine learning etc. KNN can be used to detect the k nearest
neighbors of a specific query point among severel reference data points. Usually, the
training datasets are very large, thus causing the computation cost of the algorithm to
be very large [33]. Fortunately, the algorithm consists of a high level of parallelism
and hence, we can accelerate it considerably by utilizing the parallel architectures of
GPUs or FPGAs. The algorithm consists of the following steps:

1. For given n number of points in the reference data set R and a specified query
point q, find the n distances between the query point and each point in the
reference data set. Squared Euclidean distance is used here i.e. for two bi-

24 Battle of Accelerators: FPGA or GPU?

Fig. 4.1 Illustration of the KNN algorithm with k=3 and n=20

dimensional points (x1,y1) and (x2,y2), the Squared Euclidean distance is
given by (4.1).

d = (x1 − x2)
2 +(y1 − y2)

2 (4.1)

2. Sort the n distances calculated in step 1 while maintaining the corresponding
indices of the points in the reference data set R.

3. Return the k points in the reference data set R relative to the k smallest distances
obtained from step 2.

For a set R of n reference (training) data points in a d-dimensional space and
a query point q, the k-nearest neighbor algorithm returns the k points in R that are
closest to the query point q. This is illustrated for k = 3 and n = 20 in Fig.4.1. The
red sphere represents the query point while the blue diamonds represent the points
of the reference data set.

4.2 Related Work

The use of FPGAs as an alternative option to the traditional GPUs for acceleration
has already been highlighted before. Some relevant work in this domain is presented
here. In addition, this section of the thesis also mentions some work done previously
to accelerate the KNN algorithm.

A thorough performance comparison between a CPU, a GPU and an FPGA
implementation of a complex computer vision algorithm targeting linear structure
detection has been presented in [34]. The authors in that work demonstrated that

4.2 Related Work 25

the FPGA used i.e. the Xilinx Spartan LX150 FPGA outperformed both the AMD
Radeon HD6870 GPU and the Intel Core i7 processor in terms of both the power
consumption and the execution speed. OpenCL was used in that activity to port
the code from CPU to GPU while VHDL was used for the implementation on their
FPGA counterpart. The manual effort for this translation was also studied. This
effort was certainly found to be higher for the VHDL-based FPGA implementation
than for the OpenCL-based GPU implementation. We however, used an HLS-based
approach for FPGA implementation starting directly from the OpenCL-based GPU
implementation. This certainly causes a considerable reduction in the overall design
effort along with giving us the ability to generate multiple hardware implementations
from a single high-level OpenCL code merely by providing different directives to
the HLS tool.

The authors in [10] have performed a very detailed performance comparison of
multiple hardware accelerators for several implementations of the quantum Monte
Carlo application. Numerous programming languages i.e. CUDA, OpenCL, C++,
Brook+ and VHDL, have been used for various hardware platforms such as Intel
multi-core CPUs, several GPUs from Radeon and NVIDIA and a Xilinx Virtex 4
LX160 FPGA. The analysis carried out in that paper for a large number of computa-
tions resulted in the combination of CUDA and NVIDIA GPUs providing the best
performance while the FPGA performed the worst. The authors identified the main
reason for this, as using older FPGA against extremely powerful GPUs and CPUs.
The authors in that work also described their experience regarding the complexity of
programming FPGAs through VHDL which took them about an year to perform.

An FPGA-based heterogeneous platform for KNN implementation was presented
in [35]. Compilation of the OpenCL code onto the FPGA was carried out by using
Altera’s OpenCL compiler. A variety of hardware platforms were considered e.g.
an Intel Core i7-3770 processor, an AMD Radeon HD7950 GPU and a Stratix IV
4SGX530 FPGA from Altera. The authors in that paper managed to obtain an FPGA
implementation that outperformed both the GPU and CPU in terms of power/energy
consumption per computation. The GPU implementation however was found to be
faster than the FPGA implementation, most probably due to the GPU’s higher global
memory access bandwidth.

Various parallelization techniques corresponding to the nearest neighbor algo-
rithm were surveyed in [36]. The author strongly emphasized both the requirement as

26 Battle of Accelerators: FPGA or GPU?

well as the opportunity to parallelize such algorithms. Acceleration of a brute force
nearest neighbor algorithm through GPUs (while utilizing CUDA and CUBLAS
library) was proposed in [33],[37]. Obviously, a huge increase in execution speed as
compared to a highly optimized C++ library was obtained as a result.

It can thus be concluded that FPGA can be a favorable option in comparison to
GPU for acceleration especially, when energy-per-computation is the main deciding
factor. The designers in Baidu are thus weighing their options to use FPGAs as
accelerators for their deep learning models for image search [8]. Microsoft also
recently announced their decision of using FPGAs as accelerators in combination
with Intel processors in their Bing search engine [38]. Considering the demand
for FPGA-based acceleration in combination with their programming complexity,
main FPGA manufacturers i.e. Altera and Xilinx, have also recently developed HLS
tools enabling designers to implement the OpenCL codes directly on their respective
FPGAs [15], [39]. This is hence, a hot topic for the design community at present
and hence this motivated us to carry out an extensive research work in this regard.

4.3 Methodology

This section describes our adopted methodology to implement the algorithm on an
FPGA starting from its OpenCL code. The power analysis flow is presented as well.

4.3.1 FPGA Implementation

Fig. 4.2 depicts the various steps performed by the SDAccel tool from Xilinx for
direct FPGA implementation of an input OpenCL code. The flow begins with the
functional verification of the OpenCL code through a software (SW) based simulation
called CPU emulation in the context of an SDAccel-based flow. CPU emulation
represents the fastest step of this design flow enabling a quick verification of the
design functionality. An x86-based CPU is used in this step to execute both the host
and kernel codes [15].

This step normally consists of adding a testbench to the host code, which performs
the same functions in software as done in hardware and then compares the results
from both. The testbench setup generates stimuli to drive the data and control ports of

4.3 Methodology 27

the design under test (DUT). Furthermore, it monitors the output thereby validating
the functionality of the DUT. Once the functionality is verified, the performance of
each individual kernel i.e. the performance of an individual compute unit (in case of
OpenCL, it is a work-group) and its resource usage are estimated. This gives an early
estimate of the eventual performance gains by considering the targeted hardware
platform along with the generated compute units for executing the application.

This is followed by RTL simulation using the same testbench that was used
for CPU emulation. This step in the SDAccel-based flow is called hardware (HW)
emulation and is used for functional verification of the compute units which are
created for all the kernels and for their overall performance analysis. While CPU
emulation ensures the functional accuracy of the application, its functionality on
the hardware is verified by HW emulation. SDAccel needs to generate the logic
implementation for each compute unit before HW emulation. This step hence, takes
longer to complete in comparison with the CPU emulation. Vivado HLS is run under
the hood in this step for custom logic generation corresponding to the application
hence maximizing performance and minimizing resource utilization at the same time.
VivadoTM Integrated Design Environment (IDE) is utilized afterwards in the build
application step for connecting the generated custom units to the infrastructure IPs
provided by the target hardware, such as the interface for the processor which is
used to pass arguments to the kernel to start its execution and wait for its completion
and the DDR DRAM interface [15]. Finally the generated system is packaged to be
deployed on the supported FPGA-based boards.

4.3.2 Power Analysis

The power consumption in case of the FPGA implementation is estimated by utilizing
the power analysis capabilities of Vivado®. Vivado supports power estimation
through all the steps encompassing the FPGA design beginning with the logic
synthesis up to the "place and route" stage. We perform power estimation in this
work after the design is routed. This is because, the power analysis at this stage is
the most accurate as it is based on the exact logic and routing resources being read
from the already implemented design database [40]. The complete power analysis
flow based on the Vivado power analysis features is shown in Fig. 4.3.

28 Battle of Accelerators: FPGA or GPU?

OpenCL Code

Package Results

HW emulation

Build

Application

System Estimate

Report

Functional

Verification

CPU Emulation

HW Emulation

System Run

Fig. 4.2 SDAccel Based FPGA Design Methodology Flow

The power analysis can either be performed by using the default switching
probabilities assigned to the design primary inputs by Vivado. The tool propagates
these values to all the internal signals as well. This method is not as accurate as
the vector-based power estimation. The vector-based estimation consists of RTL
simulation and extraction of switching information of the design by performing
activity profiling using test vectors provided to the design input ports as stimuli. The
vector-based estimation is more accurate but the process takes considerably longer
time to complete. In comparison, power estimation, based on default switching
probabilities, provides a good trade-off between the accuracy in power estimation
and the compute efficiency [40].

We used the vector-based approach to estimate power more accurately in the case
of FPGA implementation. Switching Activity Interchange format (SAIF) file was
used to capture the switching activities for the design which were then utilized to
obtain accurate power reports. The GPU power on the other hand was estimated by
using the NVIDIA system interface utility (nvidia-smi) that exploits the NVIDIA
Management Library (NVML) and can be used to profile and manage all the NVIDIA
GPUs installed on a specific platform [41].

4.4 Test case implementations 29

RTL Design

Specification

Bitstream

Generation

Placement

Routing

Design

Optimization

Design Synthesis

D
es

ig
n
 I

m
p
le

m
en

ta
ti

o
n

Vivado Power

Analysis

Fig. 4.3 Power Estimation and Analysis Flow

4.4 Test case implementations

The baseline code in this activity is based on the parallel implementations from
[42], [43]. Two significantly different versions of the KNN algorithm are considered
and their GPU- and FPGA-based implementations compared in terms of execution
speed, energy and power performances. The implementations differ mainly based
on whether the neighbor estimation is performed on the processor or on the accel-
erator. In case where the CPU estimates the neighbors, the CPU execution time
is also considered while calculating the execution time of the algorithm. The two
implementations are presented here.

4.4.1 Implementation 1

This implementation uses a parallel execution of the distance calculation task of the
KNN algorithm on the device (GPU/FPGA), while the nearest neighbor estimation
is performed on the host. The distance calculation task is readily parallelizable,
as distinct independent points are read from the reference data set for calculating

30 Battle of Accelerators: FPGA or GPU?

several distances. The implementation utilizes global memory accesses only and
hence its performance mainly depends on the global memory access bandwidth of
the various accelerators. It is illustrated in Implementation 1.

Implementation 1: Distance calculation on device and neighbors on host
Input: A query point q and R, a set of reference points;
Output: Indices of the k reference points with the smallest distance from q;

1 Begin
2 On device:
3 function DISTANCE CALCULATION
4 for each reference point r ∈ R do
5 compute the floating-point distances between q and all points r ∈ R;
6 end
7 end function
8 On host:
9 function NEIGHBOR ESTIMATION

10 for i = 0 to k−1 do
11 print the index in R of the i− th smallest element of the sorted distance

vector;
12 end
13 end function
14 End

4.4.2 Implementation 2

This implementation performs both the distance calculation as well as the neighbor
estimation task on the device in two separate kernels namely "DISTANCE CALCU-
LATION" and "NEIGHBOR ESTIMATION" respectively. It utilizes an automatic
optimization offered by SDAccel called "On-chip global memories". This option
automatically maps the global memory buffers used merely for inter-kernel com-
munication, to the on-chip block RAMs. This optimization is depicted in Fig. 4.4.
It should be noted that the global memory buffers are normally mapped to exter-
nal slower DRAMs. This is shown in Fig. 4.4 as well. The pseudocode for this
implementation is given in Implementation 2.

This implementation makes sense with reference to acceleration of the KNN
algorithm only for the dimensionality of each point of R being high, thus making

4.5 Experimental Setup 31

the distance computation task more dominant as compared to finding the k smallest
distances.

Implementation 2: KNN on device using multiple kernels
Input: A query point q and R, a set of reference points;
Output: k smallest floating-point distances with their indices in a single

work-group;
1 Begin
2 On device:
3 declare a floating-point global distance array "dist" for inter-kernel

communication;
4 function KERNEL1: DISTANCE CALCULATION
5 for each reference point r ∈ R do
6 compute all the floating-point distances between q and all points r ∈ R and

save in "dist";
7 end
8 end function
9 function KERNEL2: NEIGHBOR ESTIMATION

10 for i = 0 to k−1 do
11 print the index in R of the i− th smallest element of the distance vector;
12 end
13 end function
14 End

4.5 Experimental Setup

The experimental setup consists of three target devices shown in Table. 4.1. The
first device is an NVIDIA GeForce GTX960 GPU with 1024 cores and a maximum
operating frequency of 1178MHz. The device has about 2GB GDDR5 of global
memory, with 112GB/s of memory bandwidth. It is accessible from the host through
a PCIe 3.0 interface with 16 lanes. The second device is an NVIDIA Quadro
K4200 GPU with 1344 CUDA cores and a maximum clock frequency of 784MHz.
The device has about 4GB of GDDR5 global memory, with 172.8GB/s of memory
bandwidth. It is accessible from the host through a PCIe Gen2 interface with 16 lanes.
The third device is an Alpha data ADM-PCIE-7V3 FPGA board with a Virtex-7 690t.
The global memory consists of two DDR3 memories with 21.3GB/s of bandwidth.
The host can access it through a PCIe Gen3 interface with 8 lanes.

32 Battle of Accelerators: FPGA or GPU?

Off-Chip Global MemoryHost Memory

Kernel 1 Kernel 2

Host PCIe

FPGA

Off-Chip Global MemoryHost Memory

On chip Global Memory

Kernel 1 Kernel 2

Host PCIe

FPGA

AXI

PCIe

a

b

PCIe

Fig. 4.4 (a) Traditional global memory buffer vs (b) On-chip global memory buffer

4.6 Results 33

Table 4.1 Target Platforms Comparison

Device Global
Memory
Size

Bandwidth
(GB/s)

Bus In-
terface

min tclk Datasheet
Power
(W)

Idle
Power
(W)

GTX960 2GB
GDDR5

112.0 PCIe 3.0
x16

0.85ns 120 8

K4200 4GB
GDDR5

172.8 PCIe 2.0
x16

1.27ns 108 13

FPGA Two 8GB
SODIMMs

21.3 PCIe 3.0
x8

* - -

* See the rest of the tables for the reported clock and the actual power values in
each test case.

4.6 Results

The experiments with the KNN algorithm use the data set from [44]. It contains
data from "Unisys corporation" consisting of locations (latitudes and longitudes)
of a number of hurricanes and is used by the KNN algorithm to find the locations
corresponding to k nearest hurricanes to a given query point. The value of k is
typically very small as compared to the number of points n in the reference data set.
k has been set to 5 in all our experiments. The number of points in the reference data
set is about 0.3 million.

In case of the FPGA implementation, the concurrency offered by the FPGA
is utilized by using several HLS-based optimizations offered by SDAccel. The
(reqd_work_group_size) attribute described by the OpenCL standard has been used
in both implementations to specify the number of work-items in a single work-group.
This in turn specifies the iteration count of the work-item loop which enables the HLS
tool to optimize performance while the custom logic for the kernel is being generated.
2-element vector data types were used in both cases (rather than the C structs) to
read the 2-dimensional data points, thereby causing the memory access throughput
to be improved. Another optimization which was used in both the implementations
is the use of burst transfers between the the off-chip global memory and the on-chip
local memory. Large bursts improve efficiency as the memory access overhead is
shared across large amounts of data being transferred [14].

Moreover, loop pipelining was used as well to improve throughput. The SDAccel-
based flow can pipeline both the work-item loops as well as any explicit loops in the

34 Battle of Accelerators: FPGA or GPU?

kernel. Pipelining overcomes the limitations of loop unrolling for loops accessing
global memory as in our case, by better matching the limited number of global
memory ports available. The limited number of global memory ports may result
in data access conflicts thereby limiting the performance gains obtained by loop
unrolling by serializing potentially parallel loop iterations [45].

The GPU versus FPGA results in terms of execution time, energy and power
consumption for Implementation 1 are presented in Table 4.2. The resource uti-
lization in case of FPGA is also given in the table. This implementation utilizes
the accelerators merely for distance calculation between the query point and all the
points of reference data set. The nearest neighbor estimation on the other hand is
performed by the host i.e. processor, hence the CPU time is added as well to the
table as a part of the total KNN execution time. The reported clock frequency by
Vivado HLS in this case is 240MHz.

As clear from Table 4.2, both GPUs in Implementation 1 are faster than the FPGA
due to their comparatively higher DRAM access bandwidth. The FPGA however,
consumes significantly smaller energy/power in comparison to both the GPUs. As
mentioned before, power analysis in case of FPGA is done by using power analysis
features of Vivado. The reported power in case of the GPUs is based on the results
we obtained by utilizing the NVIDIA system management interface utility.

The performance comparison for Implementation 2 is shown in Table 4.3 This
implementation is also operating at 240MHz clock frequency. This implementation
uses the "on-chip global memories" optimization option offered by SDAccel to map
the global memory buffers used for communication between multiple kernels to the
block RAMs. A global memory buffer called "dist" as shown in Implementation 2
has been used for inter-kernel communication. This is an automatic optimization
provided by SDAccel for the cases where it detects a global memory buffer which is
not required to be visible to the host.

The FPGA implementation in this case is significantly faster than both the GPUs.
The two kernels are executed sequentially on the GPUs and the slower DRAM is
utilized. Reasons contributing to the high latency of DDR lies in the complexity. The
DDR interface uses a controller to manage the refresh cycles, address multiplexing
and interface timing [46]. In addition to latency, these frequent refresh cycles cause
a higher power overhead as well [47]. These kernels on FPGA however, utilize the
block RAMs (i.e on-chip global memories) and are executed in a pipelined manner.

4.6 Results 35

Table 4.2 Performance analysis of implementation 1

Parameters/Devices FPGA GTX960 K4200
Device time 1.24ms (tclk = 4.17ns) 0.04ms 0.05ms

CPU sort time 3.0ms 3.0ms 3.0ms
Total time 4.24ms 3.04ms 3.05ms

Power (Device) 0.346W 30W 40W
Energy (Device) 0.43mJ 1.2mJ 2mJ

Utilization

BRAMs = 0

NA
DSPs = 12 (0.33%)
FFs = 3109 (0.36%)

LUTs = 2006 (0.46%)

Table 4.3 Performance analysis of implementation 2

Parameters/Devices FPGA GTX960 K4200
Total time 1.23ms (tclk = 4.17ns) 0.93s 3.11s

Power 2.56W 90W 60W
Energy 0.003J 84J 187J

Utilization

BRAMs = 512 (34.83%)

NA
DSPs = 12 (0.33%)

FFs = 23892 (2.78%)
LUTs = 11838 (2.76%)

Considering that the on-chip global memory is implemented on the FPGA itself, it
has low latency and high throughput. Moreover, the NEIGHBOR ESTIMATION
kernel also performs faster on FPGA than on the GPU. This is because, GPUs
do not handle conditionals very efficiently, while they can still be pipelined on an
FPGA. These conditionals on the GPUs create the so-called "thread divergence"
problem. This issue arises due to the fact that on such Single Instruction Multiple
Data processors, the work-items, for which the condition is adjudicated as false,
must stall while the rest of the work-items are executed and vice-versa. The FPGA
also out-performs both GPUs in terms of power and energy consumption. The FPGA
power consumption in this case however, is around seven times higher than the
FPGA implementation of Implementation 1. This is because of the excessive block
RAM accesses that were not present in Implementation 1.

The FPGA vs GPU performance comparison for few other important algorithms,
i.e. Montecarlo methods for financial models and bitonic sorting algorithms, has

36 Battle of Accelerators: FPGA or GPU?

Table 4.4 Summary of FPGA vs GPU performance results for various test cases

Test cases Criticality Best case FPGA Best case GPU
Time Energy Time Energy Time

ratio
Energy
ratio

KNN Impl 1 Mem access 4.24ms 0.43mJ 3.04ms 1.2mJ 1.4 0.36
KNN Impl 2 1.23ms 0.003J 0.93s 84J 0.0013 3E-05

BS Eur

FP arithmetic

0.0788ns 1.67nJ 0.164ns 14.76nJ 0.48 0.11
BS Asian 0.0815ns 1.96nJ 0.168ns 15.12nJ 0.45 0.13

Heston Eur 0.157ns 3.33nJ 0.604ns 48.32nJ 0.26 0.069
Heston barrier 0.158ns 4.917nJ 0.813ns 65.04nJ 0.19 0.076

Bit Sort no HLS Opt Mem access 152ms 760mJ 16ms 480mJ 9.5 1.58
Bit Sort with HLS Opt 17ms 272mJ 16ms 480mJ 1.06 0.57

* BS Eur (Black Scholes Model European Option), BS Asian (Black Scholes Model Asian
Option), Heston Eur (Heston Model European Option), Heston barrier (Heston Model European
Barrier Option), FP (Floating-point), Bit Sort (Bitonic-sort).

been added for reference in tabulated form in Table 4.4. The optimal execution time
and energy consumption in each case are also indicated in bold font in Table 4.4.
A graphical representation of the performance comparison is presented as well in
Fig 4.5, where all the bars below unity show the cases where FPGA wins in terms of
execution time and energy-per-computation while the rest of the bars indicate the
test cases where the GPU outperforms the FPGA.

Although these results were obtained by other members of the research team,
they are significant because they show the effectiveness of our adopted HLS-based
FPGA design methodology for a diverse range of applications dominated by different
aspects, e.g. by memory accesses or by floating point computations.

4.6 Results 37

Fig. 4.5 FPGA vs GPU execution time and energy-per-computation ratios for several test
case implementations

38 Battle of Accelerators: FPGA or GPU?

Chapter 5

Power Management Module

As discussed earlier, power gating can be employed to save static power both for
ASIC- and FPGA-based designs by turning off parts of the designs when they are
idle. Dynamic power gating of FPGA logic blocks is still a fresh concept and needs
further research before it is supported by commercial FPGAs. The power gating for
other embedded blocks e.g. BRAMs, phase locked loops (PLLs) and unused I/Os
however, is supported by FPGAs from both Xilinx and Altera [48]. The authors
in [49] have used a Xilinx Spartan-3 FPGA as a baseline hardware platform and
modified it to achieve power gating. Similarly, the authors in [23] have implemented
dynamic power gating targeted towards Cyclone-II FPGA on an Altera DE2 board.
Power gating in commercial FPGAs however, is not as common as in ASIC designs
due to various reasons such as the area overhead corresponding to the power gating
logic, lack of knowledge of the application during FPGA architecture design and
the resulting performance penalty [23]. Moreover, routing of signals (including
the power gating signals) using available routing resources on an FPGA fabric is
tricky as some of the available routing resources may get into an idle state during the
power OFF process. This chapter hence, presents a system-level power management
module that is necessary to provide the power gating logic in order to achieve PSO
in an ASIC design.

It is possible to power gate an ASIC implementation starting from its OpenCL
representation and using the design flow as presented in Section 4.3.1. The Vivado
HLS adds block-level start (ap_start) and done (ap_done) interfaces to the generated
RTL. The start interface indicates when a block can start processing the data and

40 Power Management Module

the done interface indicates the completion of all the operations by that block [16].
These interfaces can be used to drive the power management block to enforce PSO
in ASIC-based accelerators.

The final target here however, is to implement a fully automated low power
design methodology starting from the system-level description of the design. This
would require the description of a power management block at a level of abstraction
higher than the RTL i.e. at the system-level. In order to accomplish this, we use
SystemC which is a C++ class library that allows us to create a cycle-accurate model
of our software model, hardware architecture and interfaces corresponding to SoC
and system-level designs [50]. Hence, SystemC allows us to model hardware using
software programming languages. SystemC allows system-level hardware design
by enabling support for various features that are pertinent to HW e.g. concurrency
support, the notion of time and the support for hardware data types etc. Thus, this
activity regarding system-level low-power design is based on SystemC programming
framework rather than the OpenCL.

5.1 Overview

A continuous surge in the demand of electronic devices offering multiple sophisti-
cated features necessitates the development of SoCs that can offer high performance
along with reasonable power efficiency. For example, the modern smart phones are
required to have extensive features such as high data bandwidth (3G, WCDMA, and
EDGE), high quality picture, audio and video support (MP3, AAC, JPEG, MPEG,
and H.264), Wi-Fi, GPS function, multiple band and network support. Additionally,
longer talk time and standby time i.e. longer battery life, are other important selling
features in the modern smart phone market [51]. The smart phones are already
energy limited as the power is mainly provided by an on-unit battery that can pro-
vide only a limited amount of energy. This energy has to be distributed among the
various components of the phone and thus each component will have access to only
a small portion of the overall supplied energy. Power budgeting hence, is of prime
importance in SoCs used in such portable devices.

Additionally, the largest power saving opportunities (with the smallest optimiza-
tion efforts) are offered by the highest-level of design abstraction i.e. the system-level
of design flow as depicted in Fig 1.1. Moreover HLS, due to its benefits e.g. faster

5.2 CMOS Power Optimization 41

simulation run-time, greater re-use of the design and superior quality of results
(QoR), is desired to be used at the front end of the design flow while describing the
power intent for the design at the system-level [5]. A brief illustration of such a
design flow is depicted is Fig 1.3.

The fact that the naming convention of a design hierarchy including ports, in-
stances and signals is preserved while the design undergoes HLS, is exploited by
defining the power intent directly based on the SystemC code. The advantage of
doing so, is the relative ease of understanding the code thanks to its higher level of
abstraction. Moreover, adding power control logic at system-level makes functional
verification extremely simpler through the design-specific SystemC testbench.

It should be kept in mind while specifying the power at the system-level in an
HLS-based methodology that the HLS tools would generally delete any signal that
does not serve any functionality. The power control signal even if added at the
system-level won’t serve any functionality, until it is used later-on in the flow (during
logic synthesis) to commit the power related commands. This means that the HLS
tool would simply delete this signal unless it is directed to preserve it by setting
suitable attributes in the HLS tool.

5.2 CMOS Power Optimization

As stated earlier, it is important to optimize both the static and dynamic power in
modern SoCs. We use power gating to save static power while clock gating is used
to optimize the dynamic power. This section briefly describes the two techniques.

5.2.1 Dynamic Power Optimization

Dynamic power in CMOS mainly occurs due to the toggling of logic states and it
depends on the switching activity α , the clock frequency fc, the supply voltage VDD

and the load capacitance C [21], [20]. The dynamic power can mathematically be
represented by (5.1).

Pdynamic = αC fcV 2
DD (5.1)

42 Power Management Module

enable

clk CK

E CKD

DQd

Clock gate Cell

Low Activity

Fig. 5.1 Flip flop with clock gating

Dynamic power can be reduced by reducing any of the above mentioned factors.
The design-related parameters however, are α and fc while the rest of the parameters
are technology dependent and can not be controlled by the designer. Clock gating is
considered to be one of the most effective options to optimize dynamic power and
is thus supported by many commercial synthesis and optimization tools. In simple
words, this technique provides a mechanism to shut off the clock to the blocks of the
circuit when they are not performing any useful computations [52]. The technique
can save considerable amount of power depending upon how often a new value is
fed into the circuit. For example, it would be ineffective if a new value is fed every
clock cycle but would save 99% of the clock power if a new value is fed once in
100 cycles; by gating 99% of the clock cycles during the time of inactivity. Clock
gating is meant to reduce power but it additionally assists the data paths in meeting
the timing and results in saving silicon area as it eradicates the requirement of a
multiplexer along the data path [53]. A typical clock gating circuit preventing the
clocks from reaching the flip-flop while the enable is false is shown in Fig. 5.1.

5.2 CMOS Power Optimization 43

CMOS

Circuit

True -VDD

GND

CMOS

Circuit

GND

Sleep

Virtual -VDD

Fig. 5.2 Header switch implementation for power gating a unit

5.2.2 Static Power Optimization

Leakage power can be expressed in terms of the supply voltage VDD, the reverse
saturation current IS, the diode voltage V and the thermal voltage VT (equal to KT/q).
Leakage power is mathematically represented by (5.2).

Pleakage = ILVDD = IS(eV/VT −1)VDD (5.2)

The design dependent parameters for leakage power optimization are VDD and IL

(hi VT , low VT cells). Power gating is used to reduce the leakage power of modules
in a design by using a header cell to disconnect VDD, or a footer cell to disconnect
the VSS i.e. ground. Both have the same effect of switching off the power to a block
that is inactive for considerable amount of time using a control signal [53]. In case
of header cells, the supply net connecting the CMOS circuit to the switch is called
the virtual VDD. Header cells have been used in this work. A typical header cell is
show in the Fig. 5.2. The virtual VDD can be seen as well.

Power gating may be of fine-grain type in which several switches are used to
gate each individual cell or it may be of coarse-gating type in which a single switch
is used to control a complete block. The former technique offers higher optimization
potential at the cost of larger area overhead while the later is better in terms of area
overhead but the optimization potential also goes down [53].

44 Power Management Module

5.3 Common Power Format

The power intent for an ASIC design may be described using CPF standard from
the low power coalition at Si2 [22]. Unified power format (UPF) can also be used to
accomplish this. UPF is an IEEE standard developed by Accellera and it is essentially
equivalent to CPF [54]. CPF has been used in this work to describe power intent
without the loss of generality. CPF has the ability to provide an integrated power
intent that can be used at every stage of the design flow and hence automation of the
flow becomes easier. Without CPF, the power intent has to be written at each stage
of the design flow e.g. RTL, synthesis, formal verification etc. Even after so much of
manual work, the consistency in the flows is hard to guarantee and the flows cannot
be automated. CPF is a tool command language (TCL) based language operating
on specification objects and design objects. The design objects can be a module,
instance, net, a pin or a port appearing in the RTL. The power intent is represented
in terms of power logic, power domains and power modes [53]. Low power intent
represented by CPF is supported by several advanced low power SoC design tools. It
shall be noted that the RTL files do not get modified with the power intent, rather the
power intent is essentially separate from the design intent i.e. RTL files, and hence
captured separately using the CPF.

5.4 Power-Aware System Model

The system model consists of a SystemC implementation of the design under test
(DUT). The activity profile of the DUT is analysed through its simulation via a
dedicated SystemC testbench while observing its time-line trace. The activity profile
is required mainly to locate the idle periods in a design in order to shut it down during
significant duration of inactivity to save leakage power. Dynamic power optimization
is obtained by utilizing either the coarse-grained clock gating or fine-grained clock
gating. Fine-grained clock gating is implemented directly by the HLS tool and is
less effective in general. Coarse-grained clock gating on the other hand has been
used in this work, which is implemented by explicitly adding a CG block (written in
SystemC) to the system-level description of the design.

5.4 Power-Aware System Model 45

5.4.1 Low Power Design flow

SystemC is used to model the entire design which is then provided as an input to
the HLS tool to automatically generate the RTL. The main steps involved in HLS
are the target platform specification and making micro-architectural decisions to
satisfy various area, time and power constraints. This is followed by specifying
the scheduling constraints to finally obtain the RTL description of the design. The
switching information is obtained by simulating the generated RTL through the same
SystemC testbench, used for simulating the original system-level design, by making
use of the SystemC wrapper which is generated automatically by the HLS tool.

The switching activity includes the toggle rates and the static probabilities for
all the pins/nets of the module. Toggle rate specifies how often the pin or net
switches between logic-1 and logic-0 states during the specified duration. The static
probability on the other hand represents the probability of a net or a pin being high i.e.
in logic-1 state. Toggle Count Format (TCF) is a cadence standard used to represent
the switching information of a design. It can be obtained either through encounter
RTL compiler by using the write_tc f command or by simulating the design and
dumping the switching information by using the dumptcf command with cadence
NCSim [55], [56]. The TCF file in this work has been created by using the later
approach.

Power-aware logic synthesis is then done beginning with reading the target
libraries which in a CPF-based methodology are read from within the CPF file.
Clock gating is enabled by using the appropriate attribute to allow the utilization of
coarse-grained clock gating logic. This is followed by reading and elaborating the
RTL design. Technology mapping of the cells to be used as clock-gated integrated
cells (CGIC) is accomplished thereafter. This is followed by reading the power intent
that is specified in a separate CPF file along with setting the timing constraints and
synthesizing the design. Annotation of the switching activities is then performed
followed by application of the power intent. Power structure verification is performed
in order to validate the correct insertion of low power cells in accordance to the
rules specified in the CPF file. Incremental optimization is done and eventually the
gate-level netlist is obtained which is then validated for logic equivalence against the
input RTL [5]. The complete design flow is depicted in Fig. 5.3.

46 Power Management Module

System-level

model

RTL generation

Micro-

architectural

choices

Scheduling

constraints

Target HW

specification

HW refinement

Elaborate HDL

Read power

intent

Set timing

constraints

Design synthesis

Power intent

application

Verify power

structure

Towards place and route

Incremental

optimization

Generate gate-

level netlist

Check for logic

equivalence

Read target

libraries

Enable CG

attributes

HDL files

SDC file

CPF file

Annotate

switching

activities

Switching

activity profile

CPF file

H
ig

h
-l

ev
el

 s
y

n
th

es
is

Fig. 5.3 Complete low power design flow

5.4 Power-Aware System Model 47

5.4.2 Power Management Block

In an HLS-based low power design flow, the system model, to be used as an input to
the HLS tool, needs to be adapted by instantiating in it, a power management block
(PMB). This block is responsible to turn the power ON and OFF to the modules in
the switchable domain. This module is specified in SystemC and would obviously
reside in the always-on power domain. The complete power-aware system model
depicting the power management block is shown in Fig. 5.4.

A critical issue to consider while applying PSO is to prevent the propagation
of the floating states from the power gated domains to the active domains. It may
also be necessary to retain the states of some of the flip-flops before shutting down a
portion of the design. The former is done by using isolation cells (ISO) while state
retention cells (RET) are used for state retention of flip-flops. The isolation cells are
usually placed at the output of the switchable domain as shown in Fig. 5.4 which
also shows the state retention cells. Furthermore, header power switches are inserted
during physical implementation which enables the cutting-off of supply voltage to
the switchable domain.

Moreover, the PMB is required to generate the power control signals in the correct
sequence to power gate the desired module. During the power-down process, the
isolation must happen before state retention followed by the power shut-off while the
reverse sequence shall be followed during power-up process. Typical power-up and
power-down sequences are shown in Fig. 5.5. The enable signal in Fig. 5.5 indicates
the signal that would trigger the power ON/OFF sequences. This signal is identified
manually from the design during activity profiling and it indicates the inactivity
cycles in a design hence allowing us to activate the power OFF sequence during
those cycles. The isolation enable iso_enable, state retention enable ret_enable and
power shut-off enable pso_enable signals, as produced by the PMB can also be
seen in Fig. 5.5. A purely illustrative SystemC pseudocode of the PMB is given in
Algorithm 1.

To make sure that no data is lost during the power-up sequence, a separate first-in
first-out (FIFO) SystemC module is also added to the overall system-level design.
This is meant to operate as a buffer to save any computational data that might be
coming in during the power-on sequence while the power optimized module is still
asleep. Moreover, clock gating is achieved by using the SystemC clock gating

48 Power Management Module

Algorithm 1: PMB Algorithm
Input: PSO enable signal enable;
Output: Power Control signals pso_enable, iso_enable, ret_enable and

clock gating enable signal CG;
1 Initialization;
2 wait(); //wait for one clock cycle
3 PMB Logic
4 while true do
5 if (enable == 1) then
6 iso_enable = ON;
7 wait();
8 ret_enable = ON;
9 wait();

10 pso_enable = ON;
11 CG = ON;
12 else
13 CG = OFF;
14 pso_enable = OFF;
15 wait();
16 ret_enable = OFF;
17 wait();
18 iso_enable = OFF;
19 end
20 end

5.5 Integrated Clock gating and Power gating 49

Default domain (Always-ON)

CG

enable

CLK

FIFO

Buffer

iso_en

ret_en

PMB

I

n

p

u

t

P

o

r

t

s

ISO

RET

Power switchable domain

Hardware modules

Hardware module
O

u

t

p

u

t

P

o

r

t

s

enable

data

addr

data

addr

able

able

Fig. 5.4 System with power optimization features

module provided by [57]. The CG module used to introduce the clock gating logic
in the gate-level netlist can be seen in the Fig. 5.4.

5.5 Integrated Clock gating and Power gating

It is possible to integrate CG and PG to get maximum power reduction by using
the same signal to enforce both the techniques [21]. In our case, we have used the
same signal to drive both the power gating as well as the clock gating logic, hence,
gating the clocks for the instances when the design is powered down [5]. The idea is
depicted in Fig. 5.6.

5.6 System-level Power Management Module Valida-
tion

An inverse discrete cosine transform (IDCT) being used in JPEG decoder, has been
used as a design test case to validate the system-level description of the PMB. This

50 Power Management Module

iso_enable

ret_enable

pso_enable

enable

ON
Power

OFF
OFF Power ON ON

clk

Fig. 5.5 Power Up/Down Sequence

Virtual -VDD

IDCT

GND

Sleep

True -VDD

Gated clock

Global clock

Primary inputs

enable

Fig. 5.6 Illustration of CG and PG integration

5.6 System-level Power Management Module Validation 51

test case is briefly explained here. This section also presents the experimental
setup used during this activity along with the experimental results validating our
system-level PMB design methodology.

5.6.1 Inverse Discrete Cosine Transform

IDCT is a widely used algorithm for data compression and is used in several video
and image processing standards such as MPEG, JPEG and CCITT H.261 etc [58]. It
also finds an application in the hardware accelerators being used in heterogeneous
SoCs for smart phones [5]. A typical power-aware JPEG decoder utilizing IDCT
is shown in Fig. 5.7. The various modules used to optimize power can be seen as
well. Besides IDCT, a JPEG decoder performs several operations like variable length
decoding (VLD), zigzag scanning (ZZ), de-quantization (DQ), color conversion and
image re-ordering; which are shown in Fig. 5.7.

In our case, we have taken a synthesizable implementation of JPEG IDCT
decoder consisting of concurrent processes communicating between themselves at
the level of transactions. A 2D-IDCT is implemented by first executing a 1D-IDCT
over each column of the data matrix followed by another 1D-IDCT over each row of
the matrix. IDCT is the main contributor to the net complexity of a JPEG decoder
[59] and hence it is a strong contender to be considered for power gating.

5.6.2 Experimental Setup

A SystemC description of the JPEG decoder IDCT block is taken as a DUT. The
modules necessary to obtain power optimization are added and the functionality is
verified. This is followed by performing HLS to obtain the equivalent RTL design.
RTL simulation is then used to verify functionality by using the SystemC wrapper
created by the HLS tool. The power intent is specified and is later committed during
logic synthesis to get power aware gate-level netlist. Various tools are used during
the logic synthesis flow for logic equivalence checking as well as power structure
verification. The complete design flow is implemented using tools from Cadence.
These mainly include Cadence C-to-Silicon compiler for HLS and RTL compiler
for implementing the backend flow. Furthermore, Conformal® logic equivalence
checking tool [60] and Conformal® low power tool [61], both again from Cadence,

52 Power Management Module

Power Conscious IDCT Block

PMB.

IDCTCG

FIFO

Compressed

image data

VLD

DQ

ZZ

Re-order

Color

conversion

Reconstructed

image

Fig. 5.7 JPEG decoder using IDCT module

are used for RTL/gate-level netlist equivalence checking and low-power design
verification respectively. The design has been implemented using the Nangate 45nm
OpenCell library [62] with support for low power designs.

5.6.3 Results

Three contrasting implementations of the IDCT design have been considered to vali-
date our proposed system-level design methodology. They include the un-optimized
design, design with CG alone and design with both CG and PG. Moreover, various
toggle rates on the power control signals have been considered to evaluate the im-
pact of switching on the overall power consumption. The power and area reports
post-synthesis have been obtained for all the test cases and compared. The power
and area reports for all the test cases are given in Table 5.1 while the toggle rates
corresponding to the JPEG usage are given in Table 5.2.

It is clear from Table 5.1 that CG results in reduction of dynamic power by
around 10X due to reduction in toggling of the design clock signal resulting from
CG. The PG on the other hand reduces leakage power by more than 50%. This is
achieved by shutting down the IDCT module in cases where no useful computation
is taking place. Table 5.1 also shows the impact on power due to more toggling of

5.6 System-level Power Management Module Validation 53

Table 5.1 Power wrt area performance for IDCT test cases

Test Cases Pstatic
(µW)

Pdynamic
(µW)

Area
(µm2)

No Pwr Opt 572 12570 43919
CG only 503 1085 40299

CG and PSO 240 655 44124
CG and PSO (4X toggle) 240 680 44124
CG and PSO (8X toggle) 240 726 44124

CG and PSO (32X toggle) 240 849 44124

Table 5.2 Toggle rates for JPEG usage

Power Control pins Toggle Rate (tranistions/sec)
PSO enable pin 33333
ISO enable pin 106

RET enable pin 106

the power control signals. The baseline toggle rates as presented in Table 5.2 have
been obtained by simulating the RTL in JPEG decoder usage scenario and dumping
the signal switching values in the form of a TCF file. They are then incremented by
4X, 8X and 32X in order to see the impact of more switching of the IDCT module
on the net power consumption. As evident from Table 5.1, more toggling results in
more dynamic power consumption as the IDCT module is switched more frequently.
The static power on the other hands remains the same due to no change in the static
probability of the power control signals. This analysis is important mainly to estimate
the amount of switching beyond which any power saving resulting from optimization
efforts would become fruitless due to the additional dynamic power consumption
resulting from frequent switching of the HW module in the switchable domain. The
power consumption for the various test cases is shown graphically in Fig. 5.8.

Table 5.1 also shows that CG results in some area saving as it eliminates the
requirement of extra multiplexers on the data path thereby replacing them by clock
gating logic [53]. The power gating on the other hand causes an increase in the
overall chip area due to the additional low power cells added to the design. This is

54 Power Management Module

0

200

400

600

800

1000

1200

1400

1600

1800

CG only CG &

PG

CG &

PG with

4x

toggle

CG &

PG with

8x

toggle

CG &

PG with

32x

toggle

P
o

w
er

 (
µ

W
)

Leakage Power Dynamic Power

Fig. 5.8 Power Consumption for IDCT test cases

evident from Table 5.1 as well. The logarithmic power versus area diagram for the
different implementations is shown in Fig. 5.9.

Table 5.1, Fig. 5.8 and Fig. 5.9 show that our proposed methodology (concerning
system-level power management module description) manages to perform as ex-
pected. Leakage power saving is obtained by utilizing power gating while dynamic
power optimization is obtained by using clock gating. Furthermore, power gating
gives a slight area overhead as a trade-off due to the additional low power cells,
while clock gating helps in saving area by removing additional multiplexers and
replacing them by clock gating logic. The work presented in this chapter eventually
contributed to our final goal i.e. to obtain a fully automated methodology for power
intent specification using CPF right from the system-level description of the design.
This methodology is presented in the next chapter.

5.6 System-level Power Management Module Validation 55

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45

x 10
4

65

70

75

80

85

90

95

100

105

Area (µm
2
)

P
o

w
er

 (
µ

W
)

No CG & PG

CG only

CG & PG

Fig. 5.9 Area versus Power diagram for IDCT test cases

56 Power Management Module

Chapter 6

High-Level Synthesis Based
Automated Low Power Methodology

The methodology presented in chapter 5 dealt with describing the power management
module at the system-level rather than at the RTL as done in a traditional low power
digital design flow. The CPF file used to capture the power intent of a design so as
to power gate it, was still written manually. This chapter would complement the
work presented in chapter 5 by describing a methodology as well as a tool that we
developed to automatically generate the CPF file for a specific system-level design.

Specifying power intent at the system-level significantly reduces the design
effort as system-level model is significantly easier to understand as compared to
the RTL (which is normally used for defining power intent). Moreover, it would
result in a considerable reduction in the simulation and analysis time as compared
to that involved while specifying the power intent at lower levels of the design flow
[63]. Finally as mentioned before, it would also make the functional verification
considerably easier.

6.1 Related Work

A summary of relevant work previously done regarding power reduction strategies
in SoCs is presented here. It shall be noted that most of the work done previously
targets power optimization using CPF or UPF applied at the RTL description of the

58 High-Level Synthesis Based Automated Low Power Methodology

design. The idea regarding power intent description at the system-level has been
explored rather sparsely. One such example is the work presented in [64], where
the authors presented several techniques like sequential clock gating, power gating,
dynamic voltage scaling etc to save power at the RTL level. CPF and UPF were
identified as standards to be considered for unified power intent specification for all
stages of the design flow. The idea of specifying power intent at the system-level
was emphasized upon, but not considered in their work.

The authors in [65] presented a detailed survey of energy measurement and
estimation along with description of some common techniques to optimize power
above the RTL level. The authors used a JPEG decoder design to validate their work.
They emphasized on using system-level power optimization solutions early in the
design flow especially for data-flow dominated blocks and their affiliated memory
blocks.

A detailed research study regarding HLS-based power optimization strategies
proposed over the last decade was presented in [17]. The authors strongly recom-
mended raising the level of abstraction beyond RTL while using HLS tools in order
to obtain faster power optimization in modern digital designs. The authors were of
the view that this is the only option for modern day designers to meet the strict power
requirements accompanying modern hardware design. Several reasons have been
identified in this work to motivate this point. A multitude of low-level information
ranging from functional, structural, temporal to spatial details would need to be
considered together if the optimization was to be done considering manually written
RTL. This would obviously make the optimization process very difficult especially
considering the strict timing constraints accompanying modern digital designs. Ad-
ditionally, the authors argued that power scaling necessitates the evaluation and
optimization of system architecture as soon as possible in the design flow i.e. before
the RTL.

A detailed study of multiple energy efficient system-level design methods has
also been presented in [66]. The main hardware components consuming the most
energy as identified in this work are the computation, communication and storage
units and it is emphasized to consider system-level energy-efficient design techniques
in all of the three main hardware components.

Hence, it can be safely said that there exists a general consensus in the design
community regarding the importance of system-level power optimization techniques.

6.2 Methodology Description 59

Acknowledging this fact, many commercial tools have been developed in the recent
past e.g. Vista Architect from Mentor Graphics as well as Chip Vision’s Orinoco
and PowerOptTM. A couple of working groups were constituted by IEEE in 2014
to standardize system-level power modeling for SoC devices [67]. The proposition
of a fully automated design methodology consisting of power specification at the
system-level and its application in combination with HLS thus is a crucial but rather
rarely explored domain and is thus a theme of this research activity.

6.2 Methodology Description

This section describes our proposed LP-HLS flow in detail. It consists of an HLS-
based flow similar to the one presented in Fig. 1.3. A short overview of the methodol-
ogy is presented here. The power intent in our proposed flow is derived by extracting
the design related information from the system-level design description. This in-
formation is combined with the PSO specification rules as well as the technology
related information to generate the CPF file. The CPF rules describing low-power
design are then applied on the design during the later stages of the backend design
flow.

Besides the HLS flow, the LP-HLS methodology also consists of a power intent
generator tool (producing the CPF automatically) and a final fully integrated backend
design flow, both of which are explained here.

6.2.1 Power Intent Generation Tool

The developed CPF automation tool uses #pragma directives (in the SystemC design
file) in combination with specifications file written by the designer, to extract the
power intent for a specific design. The basic structure of our automated CPF genera-
tion tool is shown in Fig. 6.1 while the various steps involved in CPF generation are
depicted in the form of a flow chart in Fig. 6.2.

The technology related information e.g. the technology libraries (usually best,
worst and nominal cases), is provided by the (Tech. spec. file) as depicted in Fig. 6.1.
This file contains the relevant information expressed in a CPF compliant syntax. The
information regarding the power nets (created during physical implementation) and

60 High-Level Synthesis Based Automated Low Power Methodology

Data structure

System-level

model file/s
Tech. spec. file

Extract Design

Information

Intent

Spec. file

Extract Power Intent

Output Generation

Output CPF file

Fig. 6.1 Illustration of the CPF generation tool

their operating conditions e.g. their voltage levels, is also provided by this file. This
information is utilized later by the different power modes specified.

The rules required to implement PSO are provided using #pragma directives in
the (Intent Spec. file) as shown in Fig. 6.1. These rules are dependent on the design
specific parameters and include e.g. description of power rules such as power switch,
isolation and state retention rules.

Additionally, the CPF generation tool needs as an input, the files describing the
system-level model. It would extract the design related information from the model
files e.g. the modules belonging to the switchable and always ON domains, the
various signals needed to achieve isolation, state retention and PSO etc. This is
accomplished by again using #pragma directives before the name of the respective
instances. The tool looks for those unique pragmas thereby, creating token strings
for the succeeding instances and storing the information for later processing. The
power domain names may be specified by the designer or alternately, they may be
generated by the parser. Once the custom data structure gathers all the important
information from the input files, the power rules compliant with CPF standard are
generated corresponding to each pragma directive, while utilizing the information
specified in the configuration files.

6.2 Methodology Description 61

Initialize Tool

Read Technology

file

Missing

Read system-level

source code

Scan for

pragmas

Identify low power

signals & modules

Extract design info

Read low power

Intent Spec. file

Extract power

intent info

Comp pwr

template

Derive low pwr

design rules &

constraints

Output CPF file

Tech Spec . file

SystemC model

file

Intent Spec. file

Exit with error

Cu
st

om
da

ta

st
ru

ct
ur

e

Yes

No

No

Yes

No

Yes

Fig. 6.2 CPF generation Flow

62 High-Level Synthesis Based Automated Low Power Methodology

6.2.2 Complete Design Flow

The complete low power design flow beginning with a system-level design and ending
with a power-optimized gate-level implementation, while utilizing our proposed LP-
HLS methodology combined with the standard RTL-to-gates flow is depicted in
Fig. 6.3.

Most of the operational flow is similar to the standard HLS-based low-power
design flow as depicted in Fig. 5.3, however, few blocks representing a simplified
view of the steps involved in the automatic power intent generation have been added
here. The authors in [68] emphasize on the use of a "design improvement loop" at
each level of abstraction to assist in finding an optimal solution when the final target
is a low-power implementation. Such a loop typically uses a power analyzer (shown
shaded in Fig. 6.3) to rank different design, synthesis and optimization alternatives
thereby choosing the one that is potentially more effective from the point of view
of power consumption. The flip side of this approach however, is that it requires
the availability of power estimators in addition to synthesis and optimization tools
providing reliable results at different abstraction levels.

The necessary steps involved in the design flow can be briefly summarized here
again for completeness. The complete system-level design (with PMB instantiated)
goes through the various standard HLS steps e.g. target technology specification,
making micro-architecture choices and specifying scheduling constraints, thereby
giving the corresponding RTL implementation. This HLS process is accompanied in
parallel by our tool that generates the CPF file using the information extracted from
the system-level description and the configuration files, following the methodology
specified before. This is followed by power-aware logic synthesis which involves
several steps e.g. reading and elaborating the RTL design, enabling the application
of coarse-grained CG logic, reading the power intent, setting timing constraints
followed by design synthesis. Moreover, switching activities are annotated for
accurate power analysis and finally power structure verification is performed to
verify the correctness of power intent applied along with the logic equivalence check
for the gate-level netlist against the input RTL.

6.2 Methodology Description 63

To physical

implementation

System-Level

Power Analysis

Behavioral

Power Analysis

High-Level

Synthesis and

Optimization

System-Level

Specifications

Function

Partitioning and

HW/SW

Allocation

Model-based HW

Description

Automatic Power

Intent Generation

Low Power

Architecture

Choices

Power-Driven

Behavioral

Transformations

RT-Level

Descrip�on

Power

Intent

Descrip�on

Low Power

Logic synthesis

and Optimization

Power

Conscious

Gate-Level

Description

Logic

Equivalence

Check

Gate-Level

Power Analysis

RT-Level Power

Analysis

Fig. 6.3 Complete Flow of Low Power High-level Synthesis methodology

64 High-Level Synthesis Based Automated Low Power Methodology

Chapter 7

Design Test Cases for Methodology
Validation

This chapter presents the test cases which we considered to validate our LP-HLS
methodology. The testbench structure used for functional verification of all the
design test cases is discussed as well. The test cases range from low to medium level
in terms of complexity. The very first test case is a very simple 32 bit hierarchical
ripple-carry adder (RCA), wherein the block processing the 16 most significant bits
is selected for power optimization thus enabling a power-efficient processing of 16
bit values. This is followed by a comparatively more complex ALU processor design,
where we select the multiplication and division blocks for power optimization when
they are not in use. Our third case is even more complex JPEG IDCT decoder design
where we apply PG and CG to the IDCT block. This has been presented earlier in
Section 5.6.1.

7.1 Structure of the testbench for design functional
verification

A typical testbench structure used for the functional verification of the design test
cases is shown in Fig. 7.1. The testbench structure consists of a stimulus generator
used to provide control and data input signals to the DUT. The results are then
monitored for validity, as presented in Fig. 7.1. The general structure of DUT

66 Design Test Cases for Methodology Validation

Test vector (Stimulus) Generator

Test Bench

Design Under Test

Hardware

Module

Response Monitor

Fig. 7.1 General testbench structure for design validation

consists of a system model consisting of a description of all the modules required for
achieving power optimization i.e. the design test case along with other supplementary
modules, similar to the one depicted in Fig. 5.4.

We consider pseudo-random number generators (PRNGs) to provide both the
input data streams as well as random control logic for power gating the RCA and
ALU test cases. Obviously, we could have used probabilistic models to better
reflect the behavior of these modules under real life conditions. This is however, a
sufficiently explored topic and was beyond the scope of our intended research [69],
[70]. It must be noted that we used synthetic switching activity profile in the case of
RCA and ALU while the switching activity in case of IDCT design was extracted by
simulating it under the real-life JPEG IDCT decoder usage scenario.

7.2 Design Test Cases

The three design test cases used for validating our LP-HLS methodology are pre-
sented here.

7.2 Design Test Cases 67

7.2.1 Ripple Carry Adder

A hierarchical model of the RCA is described in SystemC in order to power gate
it. It is composed of two identical 16-bit RCAs indicated by MSB_RCA0-15 and
LSB_RCA16-31 representing the MSB and LSB processing respectively as illustrated
in Fig. 7.2. We chose to put MSB_RCA in the power switchable domain, hence
it consists of some additional ports to achieve PSO as can be seen in Fig. 7.2. A
Pshut-off signal is used as a trigger for the PSO operation and the same is provided to
the output multiplexers as well (as clear from the figure) in order to select between
the valid output signals. As mentioned before, a synthetic switching activity profile
is considered to estimate the power in the case of RCA. The RCA is considered to
be in the ON state starting from 30% of the time and various sweeps are given to the
ON state time up until 90% of the overall operational time.

7.2.2 Arithmetic and Logical Unit

The second test case is an ALU processor as depicted in Fig. 7.3 performing a variety
of arithmetic and logical operations e.g. addition, subtraction, bitwise AND/OR etc.
We chose to apply PSO on the MULTIPLY and DIVIDE blocks as they consume the
most hardware resources and hence are the most power consuming blocks [71]. They
are hence, kept in the switchable domain shown shaded in Fig. 7.3. A control signal
SEL is provided to the encoder as a stimulus to choose between unique opcodes
assigned to each individual operation. The same SEL signal is used to turn the power
switchable domains ON and OFF as well. The ON period for the power switchable
domains in the case of ALU varies between approximately 10% of the time and 90%
of the time.

7.2.3 JPEG IDCT decoder

The third test case is a JPEG IDCT decoder design as was presented in Section 5.6.1.
We power gate the IDCT module which is the most complex and power consuming
part of the overall JPEG decoder and hence it is a natural choice to be considered for
PSO optimization.

68 Design Test Cases for Methodology Validation

Cin

LSB_RCA0-15

Sout

MSB_RCA16-31

Power

Management

Cout

Pshut-off

Pshut-off
Pshut-off

A16-31 B16-31 A0-15 B0-15

MUXMUX

Fig. 7.2 Power Aware 32-bit Ripple Carry Adder

7.2 Design Test Cases 69

AND

OR

ADD

SUBTRACT

Shift_L

Shift_R

MULTIPLY

DIVIDE

Power

Mgt.

EncoderSEL

A

B

MP

DP

EN

EN

OUT

Fig. 7.3 Power Aware Arithmetic and Logical Unit Processor

70 Design Test Cases for Methodology Validation

Besides being the most complex case among our selected test cases, the IDCT
module consumes a considerable amount of the RAM resources, which makes it even
more desirable to validate our power optimization methodology. This is because
the memories in modern SoCs may be as much or sometimes even more hungry for
power when compared with the data path [17]. Their dynamic power consumption
may amount to around one-third of the overall SoC power, while the remaining
two-thirds coming from the data path and the clock-trees [72]. The system model
for a power-aware JPEG IDCT decoder is depicted in Fig. 5.7. Since, the switching
activity in this case comes from the real-time simulation of a JPEG-IDCT decoder,
this enables us to validate our methodology in a more realistic scenario.

7.3 Results

The general experimental setup utilizes a SystemC description of the design under
test i.e. the RCA, ALU processor and the IDCT design. Tool chain from Cadence, as
mentioned in Section 5.6.2, is used for high-level synthesis, backend implementation
as well as for logic equivalence check and power structure verification. Various
implementations of the algorithms have been considered for testing our methodology
i.e. unoptimized designs, optimized designs (with both PG and CG) and optimized
designs with various sweeps considered for the switching activities on the power
control signals. The main difference with the flow described before in Section 5.4.1 is
that our proposed LP-HLS methodology has been used here to automatically generate
the CPF file for power intent description along with generating RTL implementation
for each design test case. In comparison, the CPF file previously was written
manually while only the PMB was described in SystemC and synthesized as an
instantiation along with our design under test in a top-level module.

It should be noted that without utilizing our proposed methodology, the power
intent would need to be described manually at a lower level of abstraction e.g. RTL
(generated automatically in an HLS based flow). It normally consists of thousands of
lines of code, which is very difficult to understand and needs a considerable design
effort (for power intent description) as we experienced during the activity presented
in [5] and described before in Chapter 5. A huge amount of manual effort was put
into that activity, first to understand and then derive design related information from
an automatically generated RTL, in order to achieve a low power implementation.

7.3 Results 71

This was followed by manually writing a CPF file to achieve the intended low power
implementation. In contrast, our LP-HLS methodology and the accompanying tool
can automate this process by extracting the relevant information from the design and
generating the CPF file automatically. This would greatly reduce the effort both in
terms of design time as well as design understanding. The power analysis is based
on the power models incorporated in the standard cell libraries and it depends on the
expected state of the signal at the boundary of the standard cells and their rate of
toggling [53].

In order to validate our methodology, we took a range of values for the static
probabilities as well as the toggle rates of the power control pins corresponding to the
PMB. The static probability corresponds to the overall workload of an operation while
the toggle rate, as mentioned before, determines the number of signal transitions in
a unit time. The static probability affects the static power consumption while the
toggle rate influences the dynamic power consumption of the design.

As mentioned before, the switching activities corresponding to IDCT are ex-
tracted by performing the RTL simulation in real-time JPEG decoder usage scenario
while sweeps are applied only on the toggle rates to perform power analysis. In the
rest of the cases, synthetic input data is used and static probability i.e. utilization
for the switchable domain is specified as a factor of the utilization of the rest of the
design. The toggle rates for the power control pins on the other hand are specified
based on the utilization factor.

The power analysis for the RCA is represented in tabular form in Table. 7.1 and
depicted graphically in Fig. 7.4. The various test cases are determined based on
the operation workload (usage) of the MSB_RCA module. Our first test case is
an example with no power optimization and a 50% usage of the MSB_RCA. The
rest of the cases include both static and dynamic power optimizations through PG
and CG respectively, while using MSB_RCA usage of 90%, 70%, 50% and 30%
respectively. It is clear from the table that the power optimizations result in halving
of the static power and also result in dynamic power saving by around 2-3X even
with 90% MSB_RCA usage as compared to 50% usage in the unoptimized case. The
MSB_RCA takes around 31% of the overall chip area of the RCA test case hence
making it an acceptable choice to be considered for power optimization. Furthermore,
the static and dynamic power consumption of the optimized design reduces as the
workload corresponding to MSB_RCA is reduced due a reduction in the overall

72 Design Test Cases for Methodology Validation

static probability and toggling of the power control pins and hence a corresponding
reduction in the usage and toggling of modules in the switchable domain.

The second test case is an ALU processor in which we consider power gating
(and clock gating) the division (DIV) and multiplication (MULT) blocks. These
modules combined consist of a 48% of the overall chip area and hence form natural
choices to be considered for design power optimization. They are assigned to two
separate power switchable domains and assigned different usage percentages. The
usage percentages in case of power optimized designs range from 1% (for DIV) to
10% (for MULT) representing integer workload and sweeps are given from 10%-30%
(for DIV) and from 40%-60% (for MULT) corresponding to DSP operations. An
unoptimized ALU test case with 10% utilization for DIV module and 40% for MULT
is also considered. It is clear from Table. 7.2 as well as from Fig. 7.5 that we get
significant amount of saving in both static and dynamic power as we perform power
gating and clock gating. The savings are more profound for lower utilization values
as expected. The modules assigned to switchable domain represent almost half of
the overall chip area in this case, hence resulting in greater overall power saving as
compared to that achieved in the RCA case.

Our third and the most complex test case is an IDCT design of a JPEG IDCT
decoder. The IDCT module here represents around 96% of the overall chip area and
hence the power savings are even higher in this case than the previous two test cases.
Various implementations are considered which involve an unoptimized implementa-
tion, followed by optimized implementations with IDCT workload corresponding to
JPEG usage and finally by increasing the IDCT usage toggle rates by factors of 4X,
8X and 32X respectively. The results are presented in Table. 7.3 and also illustrated
in Fig. 7.6. We get a saving by almost 50% in terms of static power due to power
gating. We also obtain a 19X saving in dynamic power saving mainly due to clock
gating used in optimized implementations. As the amount of toggling increases, the
dynamic power increases due to more frequent switching of the IDCT module while
the static power remains the same as the static probability for the various test cases
remain the same.

This test case is important for validating our proposed methodology also because
it uses a considerable amount of memories, accessing which, normally consumes
considerable amount of power. We thus, performed an analysis by considering the
complete design and the corresponding memory modules involved in terms of total

7.3 Results 73

Table 7.1 Power versus Area for RCA

Activity Pstatic (µW) Pdynamic (µW) Area (µm2)
No opt @ 50% 70 255

MSB_RCA ⇒ 1051 (31%)
90% 35 104 Total ⇒ 3362
70% 31 97
50% 28 93
30% 25 90

Table 7.2 Power versus Area for ALU processor

Activity DIV-MULT Pstatic (µW) Pdynamic (µW) Area (µm2)
No opt @ 10%-40% 190 1072

MULT ⇒ 4790 (18%)

30%-60% 140 341 Total ⇒ 27361
20%-50% 133 283 DIV ⇒ 8219 (30%)
10%-40% 129 237
1%-10% 86 160

power consumption and chip area. This was necessary to demonstrate that the IDCT
design uses a considerable amount of RAM resources and hence is a good candidate
to demonstrate that our proposed methodology can be applicable to optimize designs
with memory accesses consuming significant amount of power. The results are given
in Table. 7.4. In case of JPEG usage, the static power due to memory accesses is
about 45% of the total power consumed by the module. The RAM dynamic power
on the other hand is around 36% of the total power while the area corresponding to
RAM is almost half of the overall chip area. These parameters show that the design
consists of a considerable amount of memory accesses and can help in verifying our
power optimization methodology for memory access intensive designs in general. It
shall be noted that the factor of RAM dynamic power versus total dynamic power
after optimizations is increased from 11% in unoptimized case to around 36% in
the optimized case. This may be because, we employ a very global form of CG in
our analysis which is not that effective as far as RAMs are concerned as their write
enable pin is already configured carefully to do an almost-perfect clock gating.

74 Design Test Cases for Methodology Validation

0

20

40

60

80

100

120

140

160

90% 70% 50% 30%

P
o
w

er
 (

µ
W

)

Static Power Dynamic Power

MSB_RCA workload

Fig. 7.4 RCA Power curve wrt MSB_RCA workload

0

100

200

300

400

500

600

30% - 60% 20% - 50% 10% - 40% 1% - 10%

P
o
w

er
 (

µ
W

)

Static Power Dynamic Power

DIV-MULT workload

Fig. 7.5 ALU Power curve wrt DIV-MULT workload

7.3 Results 75

Table 7.3 Power versus Area for IDCT

Activity Pstatic (µW) Pdynamic (µW) Area (µm2)
No opt 572 12570

IDCT ⇒ 42271 (96%)
32X toggle on enable 240 849 Total ⇒ 44124
8X toggle on enable 240 726
4X toggle on enable 240 680

JPEG case 240 655

Table 7.4 Complete IDCT design versus RAM wrt area and power consumption

Activity Pstatic Pdynamic Area (µm2)
Total RAM Total RAM Total RAM

No opt 572 280 12570 1396 43919 21156
32X toggle on enable 240 108 849 258 44124 21490
8X toggle on enable 240 108 726 250 44124 21490
4X toggle on enable 240 108 680 240 44124 21490

JPEG usage 240 108 655 237 44124 21490

0

200

400

600

800

1000

1200

32X Toggle 8X Toggle 4X Toggle JPEG usage

P
o
w

er
 (

µ
W

)

Static Power Dynamic Power

IDCT workload

Fig. 7.6 Power curve wrt IDCT workload

76 Design Test Cases for Methodology Validation

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis is a collection of activities carried out during my doctoral studies regarding
electronic design automation and methodology in general and power/energy-efficient
hardware design methodologies in particular. Specifically, it consists of a combi-
nation of two loosely bound research activities that were performed during this
duration.

The first activity was regarding the prospects of using FPGAs (rather than GPUs)
as hardware accelerators in future HPC systems. FPGAs can offer considerable oper-
ational capabilities while consuming only a fraction of the overall power consumed
by several high-end GPUs. This is mainly due to the fact that the control structure
in the case of FPGA is hardwired thereby eliminating the need to fetch, decode and
execute instructions. Furthermore, it is possible to customize the on-chip global
memory for applications merely by using some HLS directives, hence resulting in a
drastic reduction in multiplexing energy costs. The main hindrance however, in their
utilization as hardware accelerators is the complexity in programming them.

To counter this, we explored the idea of using HLS to implement a widely used
classification algorithm namely the KNN algorithm on an FPGA directly from its
OpenCL code, by utilizing the SDAccel tool from Xilinx. Our analysis showed
that, though FPGAs generally offer better power/energy efficiency as compared to
GPUs, yet by performing a thorough analysis of the algorithm characteristics, we
can have an FPGA implementation that is superior to the GPU even in terms of

78 Conclusions and Future Work

execution time. Thus, we were able to have an FPGA implementation that was
pareto-optimal in comparison to GPU implementations in terms of energy, power as
well as performance.

It exploited the notion that for an FPGA implementation to outperform GPU,
we must rely less on the off-chip DRAM and must use the on-chip BRAM more.
To that effect, we exploited an optimization offered by SDAccel called "On-chip
global memory" optimization to map buffers used for inter-kernel communications
to on-chip BRAMs as well as data streaming options. Both of them are very difficult
to realize in a GPU e.g. through OpenCL pipes, but are more conveniently available
on an FPGA. Moreover, the pareto-optimal implementation also had a kernel i.e.
the NEIGHBOR ESTIMATION kernel, consisting of large number of branching
operations. Algorithms with such large number of conditionals can adversely effect
the performance on a GPU-based platform due to the "thread divergence" problem
but they can still be pipelined on an FPGA-based platform.

Thus based on these findings, we can conclude that generally algorithms would
work efficiently on FPGAs in comparison to GPUs if they can exploit the compara-
tively flexible memory architecture of FPGAs in a better way. Local memory in a
GPU is managed by a full interconnect network with arbitration. As such, it performs
well only when access patterns by work items match its fixed bank structure well.
So the algorithmic code needs to be changed in order to adapt to the memory, and
it becomes GPU-specific. On the other hand, memory in case of an FPGA can be
partitioned based on directives, without the need to change the algorithmic code. It
can also assist in data streaming i.e. by utilizing the on-chip global memory buffers.
Additionally, algorithms with several conditionals can cause thread divergence on
GPUs but they can still be pipelined and hence executed very efficiently on an FPGA.

The second part of the research was pertaining to an HLS-based low power
methodology for an ASIC design flow. In particular, the target was to develop a
methodology to enable automatic extraction of relevant information for a given
design context in order to automatically write a CPF file to perform PSO at the
instances of design inactivity. This was accomplished by developing an LP-HLS
methodology. This methodology is essentially based on the description of a generic
power management module in SystemC to provide the signals necessary to achieve
PSO. Additionally, it also consists of a tool that can generate the necessary low power
directives (compliant to CPF syntax) to achieve PSO in a given design context.

8.2 Future Work 79

Multiple hardware accelerators ranging from simple designs to moderately com-
plex ones, were developed in SystemC as test cases to validate the proposed method-
ology. The design test cases considered were a 32-bit hierarchical RCA, an ALU
processor and an IDCT design normally used for data compression. Clock gating
was utilized as well to save dynamic power by gating clocks at the instances when
the design was being power gated. The main aim of this activity was to achieve a
significant reduction in design effort by enabling designers to extract power intent
automatically for modular designs, while still utilizing HLS to obtain a wide range
of target system implementations. IDCT design presented a test case utilizing signif-
icant memory modules which was important as it enabled us to validate our LP-HLS
methodology for designs containing considerable number of memory accesses (and
the corresponding higher power consumption). Power analysis after logic synthesis
(using RTL compiler from Cadence) was performed for a wide range of design
usage scenarios and the results validated the ability of our proposed methodology to
accurately derive the power intent for the example test cases.

8.2 Future Work

As a future extension of the former activity, we intend to use the findings from that
activity to develop an HLS-based methodology for accelerating OpenCL kernels
while minimizing energy consumption through FPGA implementation. This would
involve enhancing the level of automation in presently available HLS tools beginning
with a non hardware-specific OpenCL model. The findings from this intended
future activity will contribute significantly to the transition to exascale computing (in
modern HPC systems) by reducing the overall energy costs while keeping a check
on the algorithm design and optimization costs.

As far as the later activity is concerned, the developed methodology can be
extended to include the support for the UPF standard for low power architectures.
The work can also be extended to automatically generate CPF files for other power
optimization options e.g. multiple supply voltage and dynamic voltage frequency
scaling.

80 Conclusions and Future Work

References

[1] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it).
In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10–14. IEEE, 2014.

[2] Iakovos Mavroidis, Ioannis Papaefstathiou, Luciano Lavagno, Dimitrios S
Nikolopoulos, Dirk Koch, John Goodacre, Ioannis Sourdis, Vassilis Papaefs-
tathiou, Marcello Coppola, and Manuel Palomino. Ecoscale: Reconfigurable
computing and runtime system for future exascale systems. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 696–701.
IEEE, 2016.

[3] Christian De Schryver, Ivan Shcherbakov, Frank Kienle, Norbert Wehn, Hen-
ning Marxen, Anton Kostiuk, and Ralf Korn. An energy efficient fpga accelera-
tor for monte carlo option pricing with the heston model. In 2011 International
Conference on Reconfigurable Computing and FPGAs, pages 468–474. IEEE,
2011.

[4] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric S Chung. Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper, 2, 2015.

[5] Fahad Bin Muslim, Affaq Qamar, and Luciano Lavagno. Low power method-
ology for an asic design flow based on high-level synthesis. In Software,
Telecommunications and Computer Networks (SoftCOM), 2015 23rd Interna-
tional Conference on, pages 11–15. IEEE, 2015.

[6] Blaise Barney et al. Introduction to parallel computing. Lawrence Livermore
National Laboratory, 6(13):10, 2010.

[7] Sparsh Mittal and Jeffrey S Vetter. A survey of methods for analyzing and
improving gpu energy efficiency. ACM Computing Surveys (CSUR), 47(2):19,
2015.

[8] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang. Sda:
Software-defined accelerator for largescale dnn systems. In Hot Chips, vol-
ume 26, 2014.

82 References

[9] microsoft extends fpga reach from bing to deep
learning. http://www.nextplatform.com/2015/08/27/
microsoft-extends-fpga-reach-from-bing-to-deep-learning/, 2015. [On-
line; accessed 12-July-2016].

[10] Rick Weber, Akila Gothandaraman, Robert J Hinde, and Gregory D Peterson.
Comparing hardware accelerators in scientific applications: A case study. IEEE
Transactions on Parallel and Distributed Systems, 22(1):58–68, 2011.

[11] Luka Daoud, Dawid Zydek, and Henry Selvaraj. A survey of high level
synthesis languages, tools, and compilers for reconfigurable high performance
computing. In Advances in Systems Science, pages 483–492. Springer, 2014.

[12] Jason Cong. From design to design automation. In Proceedings of the 2014 on
International symposium on physical design, pages 121–126. ACM, 2014.

[13] Selvaraj Ravi and Michael Joseph. High-level test synthesis: A survey from
synthesis process flow perspective. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 19(4):38, 2014.

[14] Xilinx. SDAccel Development Environment Methodology Guide Performance
Optimization. Xilinx.

[15] Xilinx. SDAccel Development Environment User Guide. Xilinx.

[16] Xilinx. Vivado Design Suite User Guide High-Level Synthesis. Xilinx.

[17] Zhiru Zhang, Deming Chen, Steve Dai, and Keith Campbell. High-level
synthesis for low-power design. IPSJ Transactions on System LSI Design
Methodology, 8(0):12–25, 2015.

[18] Masanori Kurimoto, Takeshi Yamamoto, Satoshi Nakano, Atsuto Hanami,
and Hiroyuki Kondo. Verification work reduction methodology in low-power
chip implementation. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 18(1):12, 2013.

[19] Can "less than moore" fdsoi provide better roi for mobile ic? https:
//www.semiwiki.com/forum/content/2103-can-%C2%93less-than-moore%
C2%94-fdsoi-provides-better-roi-mobile-ic.html, 2013. [Online;accessed
30-August-2016].

[20] Preeti Ranjan Panda, BVN Silpa, Aviral Shrivastava, and Krishnaiah Gum-
midipudi. Power-efficient system design. Springer Science & Business Media,
2010.

[21] Li Li, Ken Choi, and Haiqing Nan. Effective algorithm for integrating clock
gating and power gating to reduce dynamic and active leakage power simul-
taneously. In Quality Electronic Design (ISQED), 2011 12th International
Symposium on, pages 1–6. IEEE, 2011.

http://www.nextplatform.com/2015/08/27/microsoft-extends-fpga-reach-from-bing-to-deep-learning/
http://www.nextplatform.com/2015/08/27/microsoft-extends-fpga-reach-from-bing-to-deep-learning/
https://www.semiwiki.com/forum/content/2103-can-%C2%93less-than-moore%C2%94-fdsoi-provides-better-roi-mobile-ic.html
https://www.semiwiki.com/forum/content/2103-can-%C2%93less-than-moore%C2%94-fdsoi-provides-better-roi-mobile-ic.html
https://www.semiwiki.com/forum/content/2103-can-%C2%93less-than-moore%C2%94-fdsoi-provides-better-roi-mobile-ic.html

References 83

[22] Silicon Integration Initiative et al. Common power format specification 2.0.
silicon integration initiative. Inc., Feb, 2012.

[23] Rehan Ahmed. Towards high-level leakage power reduction techniques for
FPGAs. PhD thesis, University of British Columbia, 2015.

[24] Rehan Ahmed, Assem AM Bsoul, Steven JE Wilton, Peter Hallschmid, and
Richard Klukas. High-level synthesis-based design methodology for dynamic
power-gated fpgas. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–4. IEEE, 2014.

[25] Rehan Ahmed, Steven JE Wilton, Peter Hallschmid, and Richard Klukas.
Hierarchical dynamic power-gating in fpgas. In International Symposium on
Applied Reconfigurable Computing, pages 27–38. Springer, 2015.

[26] Andre R Brodtkorb, Christopher Dyken, Trond R Hagen, Jon M Hjelmervik,
and Olaf O Storaasli. State-of-the-art in heterogeneous computing. Scientific
Programming, 18(1):1–33, 2010.

[27] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, W Carson,
William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill,
et al. Exascale computing study: Technology challenges in achieving exascale
systems. 2008.

[28] Paulo Francisco Butzen and Renato Perez Ribas. Leakage current in sub-
micrometer cmos gates. Universidade Federal do Rio Grande do Sul, pages
1–28, 2006.

[29] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa.
Heterogeneous Computing with OpenCL: Revised OpenCL 1. Newnes, 2012.

[30] Lee Howes and Aaftab Munshi. The opencl specification, 2015.

[31] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in science &
engineering, 12(1-3):66–73, 2010.

[32] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. Heteroge-
neous Computing with OpenCL 2.0. Morgan Kaufmann, 2015.

[33] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. K-nearest
neighbor search: Fast gpu-based implementations and application to high-
dimensional feature matching. In 2010 IEEE International Conference on
Image Processing, pages 3757–3760. IEEE, 2010.

[34] Lars Struyf, Stijn De Beugher, Dong Hoon Van Uytsel, Frans Kanters, and Toon
Goedemé. The battle of the giants: a case study of gpu vs fpga optimisation
for real-time image processing. In Proceedings PECCS 2014, volume 1, pages
112–119. VISIGRAPP, 2014.

84 References

[35] Yuliang Pu, Jun Peng, Letian Huang, and John Chen. An efficient knn algorithm
implemented on fpga based heterogeneous computing system using opencl. In
Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd
Annual International Symposium on, pages 167–170. IEEE, 2015.

[36] BERKAY Aydin. Parallel algorithms on nearest neighbor search. Survey paper,
Georgia State University, 2014.

[37] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor
search using gpu. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on, pages 1–6. IEEE,
2008.

[38] microsoft knows exactly where intel’s future is. http://www.wired.com/2015/
06/microsoft-knows-exactly-intels-future/, 2015. [Online; accessed 12-July-
2016].

[39] Deshanand Singh. Implementing fpga design with the opencl standard. Altera
whitepaper, 2011.

[40] Xilinx. Vivado Design Suite User Guide Power Analysis and Optimization.
Xilinx.

[41] Luciano Sánchez, Jose Ranilla, and Alberto Cocaña-Fernández. Eecluster: An
energy-efficient tool for managing hpc clusters. Annals of Multicore and GPU
Programming, 2(1):15–24, 2015.

[42] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, pages 44–54. IEEE, 2009.

[43] rodinia/opencl/nn. https://github.com/kkushagra/rodinia/tree/master/opencl/nn,
2012. [Online; accessed 12-July-2016].

[44] 2012 hurricane/tropical data for atlantic. http://weather.unisys.com/hurricane/
atlantic/2012/index.php, 2012. [Online;accessed 12-July-2016].

[45] Alessandro Cilardo and Luca Gallo. Interplay of loop unrolling and multidi-
mensional memory partitioning in hls. In 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 163–168. IEEE, 2015.

[46] Memory system design. https://www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/hb/nios2/edh_ed51008.pdf, 2010. [Online; ac-
cessed 11-August-2016].

[47] Amir Rahmati, Matthew Hicks, Daniel Holcomb, and Kevin Fu. Refreshing
thoughts on dram: Power saving vs. data integrity. In Workshop on Approximate
Computing Across the System Stack (WACAS), 2014.

http://www.wired.com/2015/06/microsoft-knows-exactly-intels-future/
http://www.wired.com/2015/06/microsoft-knows-exactly-intels-future/
https://github.com/kkushagra/rodinia/tree/master/opencl/nn
http://weather.unisys.com/hurricane/atlantic/2012/index.php
http://weather.unisys.com/hurricane/atlantic/2012/index.php
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/edh_ed51008.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/edh_ed51008.pdf

References 85

[48] Assem AM Bsoul, Steven JE Wilton, Kuen Hung Tsoi, and Wayne Luk. An
fpga architecture and cad flow supporting dynamically controlled power gating.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(1):178–
191, 2016.

[49] Tim Tuan, Sean Kao, Arif Rahman, Satyaki Das, and Steve Trimberger. A
90nm low-power fpga for battery-powered applications. In Proceedings of the
2006 ACM/SIGDA 14th international symposium on Field programmable gate
arrays, pages 3–11. ACM, 2006.

[50] Open SystemC Initiative et al. Systemc version 2.0 user’s guide, 2001.

[51] Tobing Soebroto, William Yung, and Andrew Chang. Reducing the dynamic
power and leakage power of a high performance soc. Cadence Design Systems,
Inc, 2006.

[52] Enrico Macii, Leticia Bolzani, Andrea Calimera, Alberto Macii, and Massimo
Poncino. Integrating clock gating and power gating for combined dynamic
and leakage power optimization in digital cmos circuits. In Digital System
Design Architectures, Methods and Tools, 2008. DSD’08. 11th EUROMICRO
Conference on, pages 298–303. IEEE, 2008.

[53] Rakesh Chadha and J Bhasker. Architectural techniques for low power. In An
ASIC Low Power Primer, pages 93–111. Springer, 2013.

[54] Shrenik Mehta. Industry standards from accellera. In 21st International
Conference on VLSI Design (VLSID 2008), pages 728–728. IEEE, 2008.

[55] Cadence. Low Power in Encounter RTL Compiler. Cadence.

[56] Cadence. Toggle Count Format Reference. Cadence.

[57] Cadence. Cadence C-to-Silicon Compiler User Guide. Cadence.

[58] Khalid Sayood. Introduction to data compression. Newnes, 2012.

[59] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis,
and machine vision. Cengage Learning, 2014.

[60] Cadence. Encounter Conformal Equivalence Checking User Guide. Cadence.

[61] Cadence. Encounter Conformal Low Power User Guide. Cadence.

[62] Nangate freepdk45 open cell library. http://projects.si2.org/openeda.si2.org/
projects/nangatelib, 2011. [Online;accessed 6-September-2016].

[63] Yasaman Samei and Rainer Dömer. Automated estimation of power con-
sumption for rapid system level design. In 2014 IEEE 33rd International
Performance Computing and Communications Conference (IPCCC), pages
1–8. IEEE, 2014.

http://projects.si2.org/openeda.si2.org/projects/nangatelib
http://projects.si2.org/openeda.si2.org/projects/nangatelib

86 References

[64] Anmol Mathur and Qi Wang. Power reduction techniques and flows at rtl and
system level. In 2009 22nd International Conference on VLSI Design, pages
28–29. IEEE, 2009.

[65] Frank Schirrmeister. Design for low-power at the electronic system level.

[66] Luca Benini and Giovanni de Micheli. System-level power optimization:
techniques and tools. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 5(2):115–192, 2000.

[67] Ieee forms two new working groups to standardize software and system-
level energy management and power modeling for system-on-chip devices.
http://standards.ieee.org/news/2014/ieee_p2415_p2416_wgs.html, 2014. [On-
line;accessed 6-September-2016].

[68] Enrico Macii, Massoud Pedram, and Fabio Somenzi. High-level power mod-
eling, estimation, and optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(11):1061–1079, 1998.

[69] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. The mcpat framework for multicore and manycore archi-
tectures: Simultaneously modeling power, area, and timing. ACM Transactions
on Architecture and Code Optimization (TACO), 10(1):5, 2013.

[70] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations, volume 28. ACM,
2000.

[71] Tung Thanh Hoang, Vineeth Saseendran, Donatas Siaudinis, and Per Larsson-
Edefors. Power gating multiplier of embedded processor datapath. In Ph. D.
Research in Microelectronics and Electronics (PRIME), 2011 7th Conference
on, pages 41–44. IEEE, 2011.

[72] Dominik Macko and Katarína Jelemenská. Managing digital-system power at
the system level. In AFRICON, 2013, pages 1–5. IEEE, 2013.

http://standards.ieee.org/news/2014/ieee_p2415_p2416_wgs.html

Appendix A

CPF file for IDCT

####################

Technology part of the CPF

####################

set_hierarchy_separator /

set_power_unit uW

Specify libraries

define_library_set -name lib_wc -libraries

"/tech_libs/nangate/NangateOpenCellLibrary_PDKv1_3_v2010_12/Low_

Power/Front_End/Liberty/ECSM/LowPowerOpenCellLibrary_slow_ecsm.lib

/tech_libs/nangate/NangateOpenCellLibrary_PDKv1_3_v2010_12/

/Front_End/Liberty/ECSM/NangateOpenCellLibrary_slow_ecsm.lib"

Specify special cells

Isolation Cells

define_isolation_cell -cells "ISO_FENCE0N_X*" -enable EN

-valid_location to

Power Switch Cells

define_power_switch_cell -cells "HEADER_X*" -power VDD

-power_switchable VVDD -type header -stage_1_enable SLEEP

Retention Cells

define_state_retention_cell -cells "DFFR_X*" -restore_function

RN

88 CPF file for IDCT

Always ON Cells

define_always_on_cell -cells "AON_BUF_X*"

####################

Design part of the CPF

####################

set_design topmodule_rtl

Declare power/ground nets

create_power_nets -nets TVDD -voltage 0.95

create_power_nets -nets VDD -internal

create_ground_nets -nets VSS -voltage 0

Specify power domains

create_power_domain -name PD_default -default

create_power_domain -name PD_xbus_hw_idct_rtl -instances

{XLXI_3} -shutoff_condition {!XLXI_2/pse}

Nominal operating conditions

create_nominal_condition -name off -voltage 0

create_nominal_condition -name on -voltage 0.95

Modes of operation

create_power_mode -name PM1 -domain_conditions {PD_default@on

PD_xbus_hw_idct_rtl@on} -default

create_power_mode -name PM2 -domain_conditions {PD_default@on

PD_xbus_hw_idct_rtl@off}

Design rules

Isolation rule

create_isolation_rule -name iso1 -from PD_xbus_hw_idct_rtl

-to

PD_default -isolation_condition {XLXI_2/iso_en} -isolation_output

low

-isolation_target from

89

Power switch rule

create_power_switch_rule -name psr1 -domain PD_xbus_hw_idct_rtl

-external_power_net TVDD

State retention rule

create_state_retention_rule -name st1 -domain PD_xbus_hw_idct_rtl

-restore_edge {!XLXI_2/ret_en}

####################

Update libraries

####################

Associate library sets with nominal conditions

update_nominal_condition -name on -library_set lib_wc

Update the isolation rules

update_isolation_rules -names iso1 -cells {ISO_FENCE0N_X1

ISO_FENCE0N_X2 ISO_FENCE0N_X4}

Update powerswitch rules

update_power_switch_rule -name psr1 -prefix CPF_PS_ -cells

{HEADER_X1 HEADER_X2 HEADER_X4}

Specify timing constraints

update_power_mode -name PM1 -sdc_files constraints/mmmc/idct.sdc

Describing power nets

create_global_connection -domain PD_default -net TVDD -pins

VDD

create_global_connection -domain PD_default -net VSS -pins

VSS

create_global_connection -domain PD_xbus_hw_idct_rtl -net

VDD -pins VDD

create_global_connection -domain PD_xbus_hw_idct_rtl -net

VSS -pins VSS

90 CPF file for IDCT

update Power Domain

update_power_domain -name PD_default -internal_power_net

TVDD

update_power_domain -name PD_xbus_hw_idct_rtl -internal_power_net

VDD

end_design

END

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 FPGA based heterogeneous computing system
	1.2 High-level synthesis based low power methodology
	1.3 Problem Statement
	1.4 Contribution
	1.5 Organization of the thesis

	2 Heterogeneous System Architecture
	2.1 Why Heterogeneous architecture?
	2.2 Multi-core processors
	2.3 Graphics Processing Units
	2.4 Field Programmable Gate Arrays

	3 Open Computing Language
	3.1 Platform Model
	3.2 Memory Model
	3.3 Synchronization in OpenCL

	4 Battle of Accelerators: FPGA or GPU?
	4.1 KNN Algorithm
	4.2 Related Work
	4.3 Methodology
	4.3.1 FPGA Implementation
	4.3.2 Power Analysis

	4.4 Test case implementations
	4.4.1 Implementation 1
	4.4.2 Implementation 2

	4.5 Experimental Setup
	4.6 Results

	5 Power Management Module
	5.1 Overview
	5.2 CMOS Power Optimization
	5.2.1 Dynamic Power Optimization
	5.2.2 Static Power Optimization

	5.3 Common Power Format
	5.4 Power-Aware System Model
	5.4.1 Low Power Design flow
	5.4.2 Power Management Block

	5.5 Integrated Clock gating and Power gating
	5.6 System-level Power Management Module Validation
	5.6.1 Inverse Discrete Cosine Transform
	5.6.2 Experimental Setup
	5.6.3 Results

	6 High-Level Synthesis Based Automated Low Power Methodology
	6.1 Related Work
	6.2 Methodology Description
	6.2.1 Power Intent Generation Tool
	6.2.2 Complete Design Flow

	7 Design Test Cases for Methodology Validation
	7.1 Structure of the testbench for design functional verification
	7.2 Design Test Cases
	7.2.1 Ripple Carry Adder
	7.2.2 Arithmetic and Logical Unit
	7.2.3 JPEG IDCT decoder

	7.3 Results

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	References
	Appendix A CPF file for IDCT

