ScuDo

Scuola di Dottorato - Doctoral School
WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation

Doctoral Program in Electronics Engineering (29" cycle)

Energy-efficient hardware design
based on high-level synthesis

By

Fahad Bin Muslim

skoskoskokoskok

Supervisor(s):
Prof. Luciano Lavagno, Supervisor

Doctoral Examination Committee:

Prof. Roberto Guerrieri, Universita’ di Bologna
Prof. Antonio Abramo, Universita’ di Udine
Ing. Davide Quaglia, Universita’ di Verona
Prof. Leonardo Reyneri, Politecnico di Torino

Prof. Claudio Passerone, Politecnico di Torino

Politecnico di Torino
2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Fahad Bin Muslim
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents

Acknowledgements

First and foremost, I would like to thank Allah-the Almighty for all His blessings

bestowed upon me. Without His will, I would not have made it this far.

I would like to express a special gratitude to my supervisor and mentor Prof.
Luciano Lavagno for the excellent ideas that he proposed for me to work on. The
work was challenging but it was through his commendable guidance which enabled
me to get some useful results eventually. He was always there to address my work-
related as well as other general queries even with his extremely busy schedule.
Besides, I would like to thank all the faculty members and researchers from the
department of electronics and telecommunications (DET) at Politecnico di Torino,

who supported me in any way during the course of my PhD.

I would also like to thank my several friends that [made during my stay here
in Turin for making my stay extremely pleasant and memorable. I would also like
to take this opportunity to acknowledge the support of my group mates (past and
present) at the High-level synthesis group at Polito. The discussions with them have
always been extremely rewarding and I learnt a lot from them.

A special word of appreciation for my family members including my parents,
wife, siblings and others for their unconditional support and prayers. They always

had extremely encouraging words for me especially, when the chips were down.

Finally, I am extremely thankful to the higher education commission (HEC)
Pakistan for funding my doctorate at the Politecnico di Torino. This is a great
initiative by the government of Pakistan to create a pool of high quality researchers
who can ultimately contribute to the prosperity of the nation. I find myself more

equipped after my PhD to contribute to this goal.

Abstract

This dissertation describes research activities broadly concerning the area of High-
level synthesis (HLS), but more specifically, regarding the HLS-based design of
energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented
on FPGAs, are integral to the heterogeneous architectures employed in modern high
performance computing (HPC) systems due to their ability to speed up the execution
while dramatically reducing the energy consumption of computationally challenging
portions of complex applications. Hence, the first activity was regarding an HLS-
based approach to directly execute an OpenCL code on an FPGA instead of its
traditional GPU-based counterpart. Modern FPGAs offer considerable computational
capabilities while consuming significantly smaller power as compared to high-end
GPUs. Several different implementations of the K-Nearest Neighbor algorithm were
considered on both FPGA- and GPU-based platforms and their performance was
compared. FPGAs were generally more energy-efficient than the GPUs in all the
test cases. Eventually, we were also able to get a faster (in terms of execution time)
FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing
suitable HLS directives.

The second activity was targeted towards the development of a methodology
complementing HLS to automatically derive power optimization directives (also
known as "power intent") from a system-level design description and use it to drive
the design steps after HLS, by producing a directive file written using the common
power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The
proposed LP-HLS methodology reduces the design effort by enabling designers to
infer low power information from the system-level description of a design rather than
at the RTL. This methodology required a SystemC description of a generic power
management module to describe the design context of a HW module also modeled
in SystemC, along with the development of a tool to automatically produce the CPF

file to accomplish PSO. Several test cases were considered to validate the proposed

vi

methodology and the results demonstrated its ability to correctly extract the low

power information and apply it to achieve power optimization in the backend flow.

Contents

List of Figures

List of Tables

Nomenclature

1 Introduction

1.1
1.2
1.3
1.4
1.5

FPGA based heterogeneous computing system

High-level synthesis based low power methodology

Problem Statement
Contribution

Organization of the thesis

2 Heterogeneous System Architecture

2.1
2.2
2.3
2.4

Why Heterogeneous architecture?
Multi-core processors
Graphics Processing Units . . .

Field Programmable Gate Arrays

3 Open Computing Language

3.1
32

Platform Model
Memory Model

xi

xiii

XV

10

13
13
15
15
16

viii Contents

3.3 SynchronizationinOpenCL 21
4 Battle of Accelerators: FPGA or GPU? 23
4.1 KNNAlgorithm 23
42 RelatedWork 24
4.3 Methodology 26
43.1 FPGA Implementation 26

432 PowerAnalysis Lo 27

4.4 Testcase implementations 29
4.4.1 Implementationl, 29

442 Implementation2 30

4.5 Experimental Setup 31
46 Results. 33
5 Power Management Module 39
5.1 Overview L 40
5.2 CMOS Power Optimization 41
5.2.1 Dynamic Power Optimization 41

5.2.2 Static Power Optimization 43

5.3 Common Power Format 44
54 Power-Aware System Model oo 44
54.1 Low Power Designflow 45

5.4.2 Power ManagementBlock 47

5.5 Integrated Clock gating and Power gating 49
5.6 System-level Power Management Module Validation 49
5.6.1 Inverse Discrete Cosine Transform 51

5.6.2 Experimental Setup 51

Contents ix
563 Results 52

6 High-Level Synthesis Based Automated Low Power Methodology 57
6.1 RelatedWork 57

6.2 Methodology Description 59
6.2.1 Power Intent Generation Tool 59

6.2.2 Complete DesignFlow 62

7 Design Test Cases for Methodology Validation 65
7.1 Structure of the testbench for design functional verification 65

7.2 DesignTestCases o 66
7.2.1 RippleCarry Adder. 67

7.2.2 Arithmetic and Logical Unit 67

723 JPEGIDCTdecoder 67

7.3 Results. L 70

8 Conclusions and Future Work 77
8.1 Conclusions L 77

82 FutureWork 79
References 81
Appendix A CPF file for IDCT 87

Contents

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
32

4.1
4.2
43
4.4

4.5

5.1
5.2
5.3
54

Power saving vs design effort over different levels of a design flow . 2
Power versus Technology inCMOS 6
Overview of HLS based low power design methodology 7
A Typical Heterogeneous System Architecture 14
FPGA Architecture 17
OpenCL for heterogeneous programming 20
Platform and Memory Model of OpenCL 20
[lustration of the KNN algorithm with k&=3 and n=20 24
SDAccel Based FPGA Design Methodology Flow 28
Power Estimation and AnalysisFlow 29

(a) Traditional global memory buffer vs (b) On-chip global memory

buffer 32
FPGA vs GPU execution time and energy-per-computation ratios

for several test case implementations 37
Flip flop with clock gating 42
Header switch implementation for power gatingaunit. 43
Complete low powerdesignflow 46

System with power optimization features 49

xii List of Figures
5.5 Power Up/Down Sequence 50
5.6 Illustration of CG and PG integration 50
5.7 JPEG decoder using IDCT module 52
5.8 Power Consumption for IDCT testcases 54
5.9 Area versus Power diagram for IDCT testcases 55
6.1 [Illustration of the CPF generationtool 60
6.2 CPFgenerationFlow 61
6.3 Complete Flow of Low Power High-level Synthesis methodology . . 63
7.1 General testbench structure for design validation. 66
7.2 Power Aware 32-bit Ripple Carry Adder 68
7.3 Power Aware Arithmetic and Logical Unit Processor 69
7.4 RCA Power curve wrt MSB_RCA workload 74
7.5 ALU Power curve wrt DIV-MULT workload 74
7.6 Power curve wrt IDCT workload 75

List of Tables

4.1
4.2
43
4.4

5.1
5.2

7.1
7.2
7.3
7.4

Target Platforms Comparison 33
Performance analysis of implementation 1 35
Performance analysis of implementation2 35

Summary of FPGA vs GPU performance results for various test cases 36

Power wrt area performance for IDCT testcases 53
Toggle rates for JPEGusage 53
Power versus AreaforRCA 73
Power versus Area for ALU processor 73
Power versus Area for IDCT 75

Complete IDCT design versus RAM wrt area and power consumption 75

Xiv List of Tables

Nomenclature

Acronyms / Abbreviations

ALU Arithmetic and Logic Unit

ASIC Application Specific Integrated Circuit
BRAM Block RAM

CG Clock Gating

CGIC Clock-Gated Integrated Cells

CMOS Complimentary Metal Oxide Semiconductor
CPF Common Power Format

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DRAM Dynamic RAM

DSE Design Space Exploration

DV FS Dynamic Voltage Frequency Scaling
FIFO First-In First-Out

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

XVi Nomenclature
HLS High-Level Synthesis
HPC High Performance Computing

IDCT Inverse Discrete Cosine Transform

KNN K-Nearest Neighbor

MSV

Multi-Supply Voltage

OpenCL Open Computing Language

PMB
PSO
QoR
RAM
RCA
RTL
SoC
TCF

UPF

Power Management Block
Power Shut-Off

Quality of Results
Random Access Memory
Ripple-Carry Adder
Register Transfer Level
System On Chip

Toggle Count Format

Unified Power Format

Chapter 1
Introduction

Modern electronic devices, driven by exceeding market requirements, are required
to perform a variety of tasks. Considering the example of mobile handsets; they
were initially meant to mainly support voice calls and text messaging i.e. short
messaging service (SMS). Modern smart phones, in comparison, are required to
support a variety of sophisticated features such as video calls, voice over IP (VoIP)
and multimedia messaging to name a few. The support for such increasing features
in modern electronic devices is provided by advanced system-on-chip (SoC) designs

consisting of heterogeneous system architectures.

Such heterogeneous systems essentially consist of a combination of multi-core
processors and hardware accelerators for speeding up the execution of compute in-
tensive operations while consuming considerably lower power [1], [2]. Traditionally,
graphics processing units (GPUs) have been used as accelerators in combination
with central processing units (CPUs) but unfortunately high performance computing
(HPC) systems based on GPUs are inefficient in terms of their power consumption
[3]. Modern field programmable gate arrays (FPGAs) fortunately have the ability to
offer considerable execution speed while consuming only a fraction of the power as
compared to several high-end GPUs [4]. These FPGAs, hence are strong competitors
to the traditional GPU-based accelerators and are part of heterogeneous systems in

modern HPC systems.

It can be concluded from the discussion above that power consumption in modern
SoCs is as critical as their computational abilities. Hardware designers are always

looking to develop designs which are optimal both in terms of power and timing

2 Introduction

Power reduction percentage

Optimization Effort

Physical
implementation

N High

Fig. 1.1 Power saving vs design effort over different levels of a design flow

which unfortunately are conflicting performance parameters. It is easier to achieve
pareto-optimality, if the power is considered at a higher level of abstraction i.e. at the
system-level of the design flow. This is because major architectural decisions related
to cost, performance and power consumption are made at higher abstraction level
[5]. The opportunity to save power decreases as we go down the design flow from
system-level to the register transfer level (RTL) and below, while the optimization
effort increases. This is depicted in Fig. 1.1.

1.1 FPGA based heterogeneous computing system

Modern HPC systems are meant to analyze diverse range of complex phenomena in
a variety of fields such as data mining, fault simulation and fluid dynamics to name a
few. This requires the modern computers to provide huge computational abilities in
a sustainable manner. There has been a general consensus since long that constant
performance improvements in modern computers can not be obtained merely by

increasing their operating parameters e.g. the processor clock speed. While such

1.1 FPGA based heterogeneous computing system 3

measures may yield performance enhancement, they also result in a higher power

consumption than is desirable for modern HPC systems [6].

One of the solutions to this issue is to deploy systems that utilize accelerators
e.g. GPUs and FPGAs, in combination with multi-core processors to speed up the
execution of compute-intensive operations while still consuming considerably less
energy. Additionally, it is desirable to expose parallelism in applications e.g. by
using various parallel programming languages, so as to better exploit the parallel
architectures offered by these accelerators. Such systems offer sufficient execution
speed along with providing better energy efficiency [2].

GPUs are known to provide huge computational power and hence have been
used extensively for HPC applications. However, with their continuously increasing
computational capabilities, GPUs are also known to be extremely inefficient as far
as their energy consumption is concerned [7]. The energy consumption can be
significantly reduced while still having a considerable amount of computational
power by utilizing FPGA-based accelerators. FPGAs are well known for their
reconfigurability as well as their energy efficiency. This fact has been recognized in
the industry as evident from the decisions by Microsoft and Baidu to use FPGAs as

accelerators rather than GPUs in their respective search engines [8],[9].

A major limitation while utilizing FPGAs in modern heterogeneous systems is
the complexity in programming them. Traditional FPGA programming requires
sufficient expertise in one of the several hardware description languages (HDL) e.g.
Verilog and VHDL. Hardware designers normally use these languages for FPGA
programming but several useful algorithms are usually written in non hardware-
specific languages e.g. C/C++. It requires a lot of effort on the part of hardware
designers to port the algorithms for implementing them on FPGAs [10]. Furthermore,
describing hardware at such low-level languages limits the designers to explore only
a limited number of architectural options due to their much slower design and

verification cycles [11].

These issues can be rectified by an approach called High-level Synthesis (HLS)
which enables the designers to implement their algorithms, written in several higher
level languages such as C, C++ and SystemC, directly on FPGAs. HLS causes a
significant reduction in both the design and verification time and effort as compared
to an HDL design. Additionally, it allows designers to have several considerably
different hardware implementations, satisfying a variety of design constraints, from

4 Introduction

a single high-level code by merely providing different directives to the HLS tool, a
process called design space exploration (DSE) [12], [13].

Recognizing the abilities of FPGAs as competitors to the traditional GPU-based
accelerators and the programming complexity affiliated with them, various HLS
tools have been developed recently by the leading FPGA manufacturers e.g. Xilinx
and Altera, for their respective devices. These HLS tools have been developed to
directly support the RTL synthesis starting from the description of an algorithm in a
parallel programming framework namely OpenCL developed by the Khronos group

to enable execution of applications on heterogeneous platforms.

OpenCL is based upon C/C++ and is used to expose parallelism in an application
to enable speed up by exploiting the concurrency offered by the hardware accelerators
e.g. GPUs. It holds an advantage over the very similar Compute Unified Device
Architecture (CUDA) programming framework by NVIDIA. This is due to the fact
that unlike CUDA being used to program NVIDIA GPUs only, OpenCL offers higher
execution portability thus enabling the execution of the same OpenCL code on a
variety of hardware platforms e.g. CPUs and GPUs. With the development of HLS
tools using OpenCL code as an input, the same code used to execute the application
on a CPU/GPU can now be used for FPGA implementation as well with the same
optimization effort as that on CPU/GPU-based platforms [14].

As mentioned before, OpenCL offers execution portability but unfortunately,
it does not offer performance portability. This implies that even though the same
OpenCL code can be executed on a variety of hardware platforms, the performance
would vary from one device to another. OpenCL implementation and optimization
support on Xilinx FPGAs is provided by the SDAccel™ tool chain from Xilinx,
utilizing tools from Vivado® design suite for RTL and logic synthesis [15], [16].

1.2 High-level synthesis based low power methodol-
ogy

Fig. 1.1 shows that maximum power can be saved by specifying power intent at
the system-level of the hardware design flow. This would also require the least
optimization effort as compared to the cases where optimization is considered at

lower levels of abstraction. In a conventional design flow, the designers must

1.2 High-level synthesis based low power methodology 5

optimize manually written RTL to satisfy strict power requirements by applying
numerous power optimization techniques to optimize both the leakage power as well
as the dynamic power. This process involves taking into account a complex multi-
dimensional problem space while considering a variety of low-level information
regarding the RTL design within a strict time limitation. This obviously becomes
extremely difficult and the solution is to raise the level of abstraction above the
RTL for easier power optimization and to utilize RTL synthesis automation tools
[17]. The power optimization techniques usually target supply voltage and clock
control methodologies e.g. power shut-off (PSO), dynamic voltage frequency scaling
(DVES), clock gating (CG) and multi-supply voltage (MSV). PSO is particularly
useful to reduce leakage power in hand-held devices which are usually powered by

energy sources (e.g. batteries) that can only provide a limited amount of energy [18].

Previously, the total power dissipation in a complimentary metal oxide semi-
conductor (CMOS) was dominated by the dynamic power but leakage power has
now become an equally significant contributor with the prevailing nanometric tech-
nologies. It can be assumed that this situation would continue to worsen with the
continuous scaling of technology. Fig. 1.2 clearly shows this trend [19]. Dynamic
power consumption in CMOS occurs during the active mode when the signals
through the CMOS toggle hence changing their logic states, resulting in the charging
and discharging of load capacitors [20]. Leakage power on the other hand consists
of active leakage and standby leakage. The standby leakage power consumption
occurs during circuit sleep mode while the active leakage is caused by the leakage
current that still flows even in the operation mode. The active leakage becomes a

significant contributor to the leakage power in deeply scaled devices [21].

As discussed before, HLS takes a high-level description of a design and automati-
cally generates several RTL descriptions satisfying different area/performance/power
constraints thus reducing both the design and verification time and effort. It certainly
is desirable to have a fully automated low power flow, enabling the incorporation
of both logic as well as power into the design starting from the system-level. This
would require a methodology to automatically capture the power intent of a de-
sign at the system-level while using HLS to achieve a broad set of target system

implementations.

A broad overview of such a methodology is shown in Fig. 1.3. Unlike the

traditional methodology involving power intent definition together with the RTL,

6 Introduction

1000
Dynamic Power B [eakage Power
800
600
E
2
=
400
] B
[
O T T T T 1
95nm 65nm 40nm 28nm 20nm

Fig. 1.2 Power versus Technology in CMOS

this methodology involves defining power intent directly using the system-level code
and using HLS to automatically generate the RTL. This is followed by applying the
already defined power intent in the later stages of the design flow to achieve power
optimization. High-level synthesis preserves the naming convention of the design
hierarchy including instances, signals and ports. This in turn enables designers to
directly define power intent on the system-level code, which is more convenient
to understand owing to its higher level of abstraction. Additionally, adding power
management logic at the system-level makes functional verification simpler via the
design-specific system-level testbench [5].

1.3 Problem Statement

This dissertation deals with some issues regarding high-level synthesis in general
and low-power hardware accelerator design in particular. FPGAs can be categorized
as reconfigurable digital hardware which have been used in a variety of applications

ranging from signal processing to high performance switches. They also represent

1.3 Problem Statement

Design objects

model I

---------- HLS ---------------——--- Power automation---

System-level

Fig. 1.3 Overview of HLS based low power design methodology

8 Introduction

excellent options as accelerators due to their flexibility, energy efficiency and high
performance. FPGAs are usually programmed using hardware description languages
like verilog or VHDL. To be proficient in these languages, one needs to have
considerable knowledge about computer architecture and hardware design [10]. This
programming complexity affiliated with FPGAs has been the reason for reluctance
shown by designers in using FPGAs as accelerators. HLS, however, gives us a way
around this issue by allowing us to program the FPGAs directly through C/C++ and
other programming frameworks based on them e.g. SystemC and OpenCL. With this
issue being taken care of, FPGAs can be strong competitors to the prevailing trend
of using GPUs as hardware accelerators.

With regards to obtaining energy-efficient application specific integrated circuit
(ASIC) designs, describing power intent at the system-level is still a stiff challenge
for system architects and designers. Power optimization is usually considered at
the RTL in a conventional design flow when most of the architectural decisions
have already been made. It is thus desired to have a methodology that enables the
description of both the behavioral functionality as well as the power intent at a higher
level of abstraction while using HLS tools at the front end of the proceeding design
flow. There, however, exists no commercial tools or methodology presently for this
purpose and the required effort must still be done manually. A brief overview of the

methodology which can yield this automation has been shown in Fig. 1.3.

1.4 Contribution

One of the goals of the thesis is to explore a methodology using HLS to imple-
ment an application written in OpenCL on an FPGA-based accelerator. The main

contributions from this activity are:

* investigation of the issues encountered when implementing and optimizing
a code, written in non-hardware specific OpenCL on a Xilinx FPGA device.
The methodology is based on HLS and it is intended to apply a variety of HLS
optimization attributes and techniques and see how an OpenCL code responds

to them to yield the desired performance on an FPGA.

 secondly, it is also intended to emphasize on the difference in compilation of
an OpenCL code to be executed on a GPU and an FPGA, stemming mainly

1.4 Contribution 9

due to their different architectures. While GPUs due to their fixed architecture,
support just-in-time compilation, the FPGAs due to their flexible architec-
ture, allow a more thorough exploration of various code optimizations than
allowed by just-in-time compilation. The OpenCL standard thus, allows offline

compilation of the OpenCL code to be executed on an FPGA.

* finally, it is shown by comparing the performance of multiple algorithm im-
plementations on various platforms that the code executing efficiently on an
FPGA is very different from the one leading to the best implementation on a
GPU.

The thesis also deals with the development of a methodology based on HLS to
automatically generate power optimization directives to achieve PSO (leading to
reduced leakage power) in an ASIC design in the form of a common power format
(CPF) file by using the relevant information, extracted from the system-level design
e.g. the module to be shut-off, as well as other important information e.g. technology
specifications. CPF is a standard endorsed by the low power coalition at Silicon

Integration Initiative (Si2) and can be used to describe power intent for a design [22].

It should be noted that large FPGAs (with several transistors) also suffer from
huge leakage power consumption. This is because of the increase in leakage compo-
nent of each of the several transistors embedded into modern heavily scaled FPGAs.
Furthermore, in large FPGAs, a sizeable portion of the available resources may
remain unutilized if the design does not fill up the device completely. This would
result in leakage power due to both the utilized and unutilized parts of the FPGA
[23].

The authors in [24] have proposed a method to reduce the leakage power sig-
nificantly in FPGAs by shutting down individual accelerators dynamically during
idle periods at run-time through a technique called dynamic power-gating. The
same authors in [25] also present a technique to achieve fine-grained power gating
by shutting down selected portions of hierarchical designs with large accelerators
i.e. sub-accelerators, while the rest of the sub-accelerators are still running. The
identification of idle states along with their duration however, in FPGAs is very
difficult to achieve thus discouraging designers to make the required effort. Power
gating in ASIC designs however is much more common, wherein, the opportunities

for power gating can be identified manually and exploited using standard file formats

10 Introduction

such as unified power format (UPF) or CPF [23]. Hence, it is worthwhile to note
that while many of the optimizations used during the course of the first activity
are relevant both for ASIC and FPGA designs, the second activity (concerned with
using CPF for power gating) pertains exclusively to an ASIC design. The main

contributions from this activity are:

 exploring issues encountered while obtaining a fully automated low power
ASIC design flow starting from the system-level description to the physi-
cal design. This would involve the development of a generic system-level
power management module to enable firstly the specification and later on the

application of the power intent to achieve a power efficient design.

* development of a tool that can automatically generate the power optimization

directives to achieve PSO for a given system design context.

1.5 Organization of the thesis

This thesis presents a collection of the work done in the field of electronic design
automation using high-level synthesis with an emphasis on power/energy efficient
designs. The first activity deals with an exploration of the prospects of using FPGAs
as accelerators in modern heterogeneous systems by utilizing HLS along with their
performance comparison with some high-end GPUs. This activity is covered in this
document from chapters 2 to 4. The second activity explores the idea of developing
a fully automated low power design methodology complementing the HLS to obtain
power-efficient ASIC designs. The details can be found in chapters 5, 6 and 7.
Chapter 8 concludes the work along with mentioning some future directions in which
both the activities can be pursued. A brief description of each chapter is presented

here.

Chapter 2: Basic theory regarding heterogeneous system architectures is pre-
sented here with reference to both GPU- and FPGA-based acceleration.

Chapter 3: This chapter gives a description of OpenCL programming language
which is a parallel programming framework and enables execution portability over a
variety of device platforms.

1.5 Organization of the thesis 11

Chapter 4: This chapter compares FPGAs versus GPUs in terms of execution
speed, power and energy consumption. This is done by utilizing a widely used
classification algorithm i.e. K-Nearest Neighbor (KNN), as a test case.

Chapter 5: This chapter explains the details regarding system-level power
management module which enables the provision of signals necessary to achieve

power gating thus yielding a power-efficient ASIC design.

Chapter 6: The description of our proposed low power HLS-based methodology
(LP-HLYS) is presented here along with a description of the tool that we developed to

automatically derive the power optimization directives necessary to achieve PSO.

Chapter 7: This chapter presents the design test cases that were used to validate
our LP-HLS methodology. The results validating our proposed methodology are

also presented.

Chapter 8: The work is finally concluded along with a brief description of the

future directions in which the activities can be pursued.

A sample CPF file used for power gating one of our test cases i.e. an Inverse
Discrete Cosine Transform (IDCT) design in a JPEG IDCT decoder is provided in
Appendix A.

12

Introduction

Chapter 2
Heterogeneous System Architecture

A heterogeneous system refers to a system comprising of several different processors
and cores. Such multi-core architectures offer high performance along with better
power efficiency by not only using additional processor cores but by using specialized
hardware called accelerators to handle certain computationally challenging portions

of the applications.

2.1 Why Heterogeneous architecture?

Besides the complexity i.e. the number of transistors per square inch of a processor,
the processor frequency also traditionally follows the Moore’s low very closely. This
trend of a continuous increase in the frequency has however been hindered by certain
physical constraints e.g. the power density [26]. The equation for power density
specifically depicting the influence of frequency is given by (2.1):

P=CpfVi 2.1)

where P is the power density i.e. the power dissipated per unit area, C represents the
total capacitance, p is the transistor density i.e. the number of transistors per unit

area, f represents the processor frequency and V,; is the supply voltage [27].

It should be noted that (2.1) ignores the leakage power which contributes signifi-

cantly to the over all power consumption in CMOS sub-micron technologies [28].

14 Heterogeneous System Architecture

Processor <4—» Memories
Host

< PCI express >
Compute Compute -
Unit Unit

Kernel
Compute PE PE

GPU

Fig. 2.1 A Typical Heterogeneous System Architecture

As evident from (2.1), the clock frequency of the processor can not be increased

unbounded due to the so called power wall.

One of the solutions to improve performance while still keeping the power
consumption in check, is to use multi-core processors running at lower frequencies
and supply voltages than the single core processors. For example, a dual core design
running at 85% of the supply voltage and frequency offers 180% better performance
while still consuming approximately the same power as a single core design [26].
The issue with the multi-core processors in use presently though, is that most of their
resources are spent on logic and cache thus, resulting in majority of the power being

consumed by non-computational units.

Heterogeneous architectures give us an alternative solution to this issue. These
architectures utilize the multi-core processors in combination with high performance
accelerators for a given power or transistor budget. This essentially means that the
accelerators use fewer transistors and operate at lower frequencies as compared to
the CPUs hence consuming lower power/energy. These accelerators typically do not
operate standalone and rely on traditional processors to manage them. This implies
that the CPUs are responsible to explicitly manage data transfer and execution while
using the accelerator cores [26], [29]. The accelerators used in such heterogeneous
systems may be GPUs, FPGAs or a combination of both. In the terminology of
heterogeneous system architecture, the multi-core processor is typically called a host
while the hardware platforms used to accelerate certain portions of the applications
are called devices. A typical heterogeneous system is shown in Fig. 2.1. The various
important components of such a heterogeneous system are described here briefly.

2.2 Multi-core processors 15

2.2 Multi-core processors

As mentioned earlier, increasing clock frequency to achieve better processor per-
formance is not a viable option due to the corresponding significant increase in
energy, heat dissipation e.t.c as represented by (2.1). One way of countering this is
to lower the clock frequency while packing more processor cores in a chip i.e. the
multi-core processors. These multiple cores will share some resources e.g. memory,
network etc but are still capable of handling independent operations. Such processors
enable the developers to exploit both data-level and task-level parallelism. To fully
exploit the capabilities of such multi-core processors, the programmers may need to
write multi-threaded codes, utilize libraries offering shared memory parallelism e.g.
OpenMP or use a message passing library e.g. MPI [10].

2.3 Graphics Processing Units

Another option to speed up the execution of parallelizable portions of the algorithms
is to use GPU-based accelerators as co-processors. A GPU is in principle a device
consisting of an extremely parallel microprocessor and a private memory with a very
high access bandwidth. They were originally developed to cater to the increasing
demand for hardware accelerated 3D graphics. The interest in the use of GPUs
for HPC applications started developing with the introduction of CUDA parallel
programming framework by NVIDIA in 2007. GPUs are meant to execute in
parallel, the same set of instructions on different data in single instruction multiple
data (SIMD) fashion. Unlike multi-core CPUs, the GPUs are designed in such a
way so as to devote more transistors to data operations instead of data caching and
control [26].

A GPU consists of several parallel processing elements called streaming multi-
processors to execute the kernel functionality in a parallel manner. Each streaming
multiprocessor further consists of multiple cores, with each core made up of sev-
eral components such as arithmetic and logical units (ALUs), thread-schedulers,
load/store units, scratchpad memories, caches etc. The cache size in GPUs is much
smaller as compared to the CPUs as they are designed for stream or throughput
computing involving smaller data reuse as compared to the CPUs. A GPU always

acts as a device in combination with a CPU being used as a host for loading data

16 Heterogeneous System Architecture

intensive tasks on the GPU and offloading the results along with managing the data
transfers involved in the process. A GPU consists of its own device memory of a few
gigabytes (GBs) and is connected to the host through a PCI-Express (PCle) bus as
shown in Fig. 2.1 [7].

2.4 Field Programmable Gate Arrays

While GPUs offer great computational abilities that can be exploited while using
them as accelerators, they unfortunately have a very poor power efficiency [7], [3].
FPGAs provide an alternate option as accelerators offering considerable computa-
tional abilities while still consuming considerably small amount of power/energy
as compared to the several modern high end GPUs. This is mainly because of the
control systems in FPGAs being hardwired hence, eliminating the need to fetch,
decode and execute instructions. Furthermore, the on-chip SRAM in case of FPGAs
are better customizable to the specific applications, thereby cutting on the multi-
plexing energy costs. While FPGAs were initially used for discrete logic, there
has been a drastic expansion in their fields of usage ranging from signal processing
to high performance embedded computing and more recently in high performance

computing [26]

FPGAs offer a highly parallel architecture which can be used to achieve a
considerable amount of acceleration. A typical FPGA consists of logic blocks,
memory blocks and DSP slices each surrounded by programmable interconnects as
shown in Fig. 2.2. The FPGAs offer high performance along with high versatility
and power efficiency owing to their conceptually simpler design [26]. The idea of
using FPGAs as accelerators normally suffers due to the complexity involved in
programming them. This issue however, can be resolved by using e.g. SDAccel™
tool chain from Xilinx which enables us to program Xilinx FPGAs directly using the
OpenCL parallel programming language. The tool chain includes both the Vivado
high-level synthesis tool as well as the logic and physical design tools from the

Vivado® design suite [15], [16].

2.4 Field Programmable Gate Arrays

Memory blocks
Logic locks
DSP blocks \

Py o (N

- .

YIR YL}
\\\

?IIIIIII

r
vo blOCkS_>:I Programmable
| : interconnects

Fig. 2.2 FPGA Architecture

18

Heterogeneous System Architecture

Chapter 3
Open Computing Language

OpenCL is a parallel programming framework for programming multi-core and
heterogeneous compute platforms [30], [31]. Thus, it lies at the intersection of
the programming languages corresponding to the individual computing platforms
constituting a heterogeneous system as shown in Fig. 3.1. OpenCL offers execution
portability thus enabling code execution on various supporting devices through
minimal modifications to the host code. The programming language is based on C99
and supports both data-parallel and task-parallel programming models [26].

3.1 Platform Model

The OpenCL platform model mainly consists of a multi-core CPU called a host.
Host is responsible for setting up the environment to enable an OpenCL program
to execute on one or more devices. In terms of OpenCL, a device represents any
supported hardware platform that can be used to accelerate the compute intensive
portions of an application referred to as the kernels. An OpenCL device consists of
compute units (CU) each further divided into processing elements (PE) as shown
in Fig. 3.2. Several concurrent executions of the kernel body (called work-items)
takes place on multiple processing elements. The work-items are further grouped

into work-groups which are being executed by multiple compute units.

20 Open Computing Language

CPU
Multi-cores giving
performance increase

GPU
Data-parallel
computing

Emerging
Intersection

OpenCL
Heterogeneous
Computing

Multi-processor
programming

Graphics APIs

Fig. 3.1 OpenCL for heterogeneous programming

» Host Memory

CPU

Global/Constant

— > Memory
CU CuU ~—1—» Local Memory
Kernel
PE PE | p .
CU PE PE Private Memory
Device

Fig. 3.2 Platform and Memory Model of OpenCL
3.2 Memory Model

The memory is broadly divided into host (i.e. CPU) memory and device (i.e. GPU or
FPGA) memory. The device memory is further divided into private memory (specific
to each work-item). This memory is the smallest i.e. O(10) words per work-item
but is the fastest to access at the same time. Local memory is shared by all the
work-items in a work-group and is around O(1-10) kbytes per work-group. This is
also slower than the private memory. Global/constant memory is shared by all the
work-groups. Global memory is around O(1-10) Gbytes while constant memory is
around O(10-100) Kbytes. Access to the global memory is the slowest among all
the device memories. Finally, the host memory resides on the CPU and can be few
Gbytes in size. The OpenCL memory model is also shown in Fig. 3.2. It should be
noted that memory management in OpenCL is done explicitly i.e. by moving data

from host memory to global memory to local memory and then back.

3.3 Synchronization in OpenCL 21

3.3 Synchronization in OpenCL

The work-items in an OpenCL kernel are executed in an out-of order manner to ensure
high performance by relieving the programmer i.e. by extracting parallelism from
the code automatically and speeding it up on a given hardware platform [32]. Since
the execution order of work-items across different devices can not be ascertained,
OpenCL standard introduces the concept of barriers to ensure memory consistency.
A barrier represents a check point with in a work-group such that all the work-
items belonging to that work-group must reach this point before any of them can
proceed with the rest of the computations [15]. Synchronization in the execution of
work-items belonging to different work-groups is not possible in OpenCL.

22

Open Computing Language

Chapter 4

Battle of Accelerators: FPGA or
GPU?

This chapter describes the adopted HLS-based methodology to implement a popular
classification algorithm i.e. the K-Nearest Neighbor algorithm, on Xilinx FPGAs.
Multiple implementations of the algorithm are considered and their performance on
FPGA and GPUs is compared as well.

4.1 KNN Algorithm

K-Nearest Neighbor (KNN) algorithm is an important algorithm for classification
finding applications in a diverse range of fields such as computer vision, pattern
recognition and machine learning etc. KNN can be used to detect the k nearest
neighbors of a specific query point among severel reference data points. Usually, the
training datasets are very large, thus causing the computation cost of the algorithm to
be very large [33]. Fortunately, the algorithm consists of a high level of parallelism
and hence, we can accelerate it considerably by utilizing the parallel architectures of
GPUs or FPGAs. The algorithm consists of the following steps:

1. For given n number of points in the reference data set R and a specified query
point ¢, find the n distances between the query point and each point in the

reference data set. Squared Euclidean distance is used here i.e. for two bi-

24 Battle of Accelerators: FPGA or GPU?

L L L
* * ¢
¢
‘ ‘ ///’ ‘\\\ ‘
R ¢
L ' K ¢

L 2 V'S ‘__,‘/ .

L

Fig. 4.1 Illustration of the KNN algorithm with k=3 and n=20

dimensional points (x1,y;) and (x2,y2), the Squared Euclidean distance is
given by (4.1).

d = (x1 —x2)* + (y1 —y2)* (4.1)

2. Sort the n distances calculated in step 1 while maintaining the corresponding
indices of the points in the reference data set R.

3. Return the & points in the reference data set R relative to the k smallest distances
obtained from step 2.

For a set R of n reference (training) data points in a d-dimensional space and
a query point g, the k-nearest neighbor algorithm returns the k£ points in R that are
closest to the query point g. This is illustrated for k = 3 and n = 20 in Fig.4.1. The
red sphere represents the query point while the blue diamonds represent the points
of the reference data set.

4.2 Related Work

The use of FPGAs as an alternative option to the traditional GPUs for acceleration
has already been highlighted before. Some relevant work in this domain is presented
here. In addition, this section of the thesis also mentions some work done previously
to accelerate the KNN algorithm.

A thorough performance comparison between a CPU, a GPU and an FPGA
implementation of a complex computer vision algorithm targeting linear structure
detection has been presented in [34]. The authors in that work demonstrated that

4.2 Related Work 25

the FPGA used i.e. the Xilinx Spartan LX150 FPGA outperformed both the AMD
Radeon HD6870 GPU and the Intel Core i7 processor in terms of both the power
consumption and the execution speed. OpenCL was used in that activity to port
the code from CPU to GPU while VHDL was used for the implementation on their
FPGA counterpart. The manual effort for this translation was also studied. This
effort was certainly found to be higher for the VHDL-based FPGA implementation
than for the OpenCL-based GPU implementation. We however, used an HLS-based
approach for FPGA implementation starting directly from the OpenCL-based GPU
implementation. This certainly causes a considerable reduction in the overall design
effort along with giving us the ability to generate multiple hardware implementations
from a single high-level OpenCL code merely by providing different directives to
the HLS tool.

The authors in [10] have performed a very detailed performance comparison of
multiple hardware accelerators for several implementations of the quantum Monte
Carlo application. Numerous programming languages i.e. CUDA, OpenCL, C++,
Brook+ and VHDL, have been used for various hardware platforms such as Intel
multi-core CPUs, several GPUs from Radeon and NVIDIA and a Xilinx Virtex 4
LX160 FPGA. The analysis carried out in that paper for a large number of computa-
tions resulted in the combination of CUDA and NVIDIA GPUs providing the best
performance while the FPGA performed the worst. The authors identified the main
reason for this, as using older FPGA against extremely powerful GPUs and CPUs.
The authors in that work also described their experience regarding the complexity of

programming FPGAs through VHDL which took them about an year to perform.

An FPGA-based heterogeneous platform for KNN implementation was presented
in [35]. Compilation of the OpenCL code onto the FPGA was carried out by using
Altera’s OpenCL compiler. A variety of hardware platforms were considered e.g.
an Intel Core 17-3770 processor, an AMD Radeon HD7950 GPU and a Stratix IV
4SGX530 FPGA from Altera. The authors in that paper managed to obtain an FPGA
implementation that outperformed both the GPU and CPU in terms of power/energy
consumption per computation. The GPU implementation however was found to be
faster than the FPGA implementation, most probably due to the GPU’s higher global
memory access bandwidth.

Various parallelization techniques corresponding to the nearest neighbor algo-

rithm were surveyed in [36]. The author strongly emphasized both the requirement as

26 Battle of Accelerators: FPGA or GPU?

well as the opportunity to parallelize such algorithms. Acceleration of a brute force
nearest neighbor algorithm through GPUs (while utilizing CUDA and CUBLAS
library) was proposed in [33],[37]. Obviously, a huge increase in execution speed as

compared to a highly optimized C++ library was obtained as a result.

It can thus be concluded that FPGA can be a favorable option in comparison to
GPU for acceleration especially, when energy-per-computation is the main deciding
factor. The designers in Baidu are thus weighing their options to use FPGAs as
accelerators for their deep learning models for image search [8]. Microsoft also
recently announced their decision of using FPGAs as accelerators in combination
with Intel processors in their Bing search engine [38]. Considering the demand
for FPGA-based acceleration in combination with their programming complexity,
main FPGA manufacturers i.e. Altera and Xilinx, have also recently developed HLS
tools enabling designers to implement the OpenCL codes directly on their respective
FPGAs [15], [39]. This is hence, a hot topic for the design community at present

and hence this motivated us to carry out an extensive research work in this regard.

4.3 Methodology

This section describes our adopted methodology to implement the algorithm on an
FPGA starting from its OpenCL code. The power analysis flow is presented as well.

4.3.1 FPGA Implementation

Fig. 4.2 depicts the various steps performed by the SDAccel tool from Xilinx for
direct FPGA implementation of an input OpenCL code. The flow begins with the
functional verification of the OpenCL code through a software (SW) based simulation
called CPU emulation in the context of an SDAccel-based flow. CPU emulation
represents the fastest step of this design flow enabling a quick verification of the
design functionality. An x86-based CPU is used in this step to execute both the host
and kernel codes [15].

This step normally consists of adding a testbench to the host code, which performs
the same functions in software as done in hardware and then compares the results
from both. The testbench setup generates stimuli to drive the data and control ports of

4.3 Methodology 27

the design under test (DUT). Furthermore, it monitors the output thereby validating
the functionality of the DUT. Once the functionality is verified, the performance of
each individual kernel i.e. the performance of an individual compute unit (in case of
OpenCL, it is a work-group) and its resource usage are estimated. This gives an early
estimate of the eventual performance gains by considering the targeted hardware
platform along with the generated compute units for executing the application.

This is followed by RTL simulation using the same testbench that was used
for CPU emulation. This step in the SDAccel-based flow is called hardware (HW)
emulation and is used for functional verification of the compute units which are
created for all the kernels and for their overall performance analysis. While CPU
emulation ensures the functional accuracy of the application, its functionality on
the hardware is verified by HW emulation. SDAccel needs to generate the logic
implementation for each compute unit before HW emulation. This step hence, takes
longer to complete in comparison with the CPU emulation. Vivado HLS is run under
the hood in this step for custom logic generation corresponding to the application
hence maximizing performance and minimizing resource utilization at the same time.
Vivado™ Integrated Design Environment (IDE) is utilized afterwards in the build
application step for connecting the generated custom units to the infrastructure IPs
provided by the target hardware, such as the interface for the processor which is
used to pass arguments to the kernel to start its execution and wait for its completion
and the DDR DRAM interface [15]. Finally the generated system is packaged to be
deployed on the supported FPGA-based boards.

4.3.2 Power Analysis

The power consumption in case of the FPGA implementation is estimated by utilizing
the power analysis capabilities of Vivado®. Vivado supports power estimation
through all the steps encompassing the FPGA design beginning with the logic
synthesis up to the "place and route" stage. We perform power estimation in this
work after the design is routed. This is because, the power analysis at this stage is
the most accurate as it is based on the exact logic and routing resources being read
from the already implemented design database [40]. The complete power analysis

flow based on the Vivado power analysis features is shown in Fig. 4.3.

28 Battle of Accelerators: FPGA or GPU?

A

OpenCL Code

A 4

Functional
Verification

CPU Emulation

System Estimate
Report

\4

A 4

HW emulation

HW Emulation

Build
Application

System Run v

Package Results

Fig. 4.2 SDAccel Based FPGA Design Methodology Flow

The power analysis can either be performed by using the default switching
probabilities assigned to the design primary inputs by Vivado. The tool propagates
these values to all the internal signals as well. This method is not as accurate as
the vector-based power estimation. The vector-based estimation consists of RTL
simulation and extraction of switching information of the design by performing
activity profiling using test vectors provided to the design input ports as stimuli. The
vector-based estimation is more accurate but the process takes considerably longer
time to complete. In comparison, power estimation, based on default switching
probabilities, provides a good trade-off between the accuracy in power estimation
and the compute efficiency [40].

We used the vector-based approach to estimate power more accurately in the case
of FPGA implementation. Switching Activity Interchange format (SAIF) file was
used to capture the switching activities for the design which were then utilized to
obtain accurate power reports. The GPU power on the other hand was estimated by
using the NVIDIA system interface utility (nvidia-smi) that exploits the NVIDIA
Management Library (NVML) and can be used to profile and manage all the NVIDIA
GPUs installed on a specific platform [41].

4.4 Test case implementations 29

RTL Design
Specification

A 4

Design Synthesis [f----------------

1
1
I
R 2 3 X
1 1 :
1 . ! 1
1 Design ! 1
1 P . [——-———====- | 1
| Optimization 1 X X
1 g 1 | |
[t ! 1 1
5 | o
H é A 4 \ A 4 A 4
1 1
I © ! i P
! Placement 1T p| Vivado ower
L E ! Analysis
L5 i A
[1
& Y :
1 1
H Routing "
' i
1 1
Y
Bitstream
Generation

Fig. 4.3 Power Estimation and Analysis Flow
4.4 'Test case implementations

The baseline code in this activity is based on the parallel implementations from
[42], [43]. Two significantly different versions of the KNN algorithm are considered
and their GPU- and FPGA-based implementations compared in terms of execution
speed, energy and power performances. The implementations differ mainly based
on whether the neighbor estimation is performed on the processor or on the accel-
erator. In case where the CPU estimates the neighbors, the CPU execution time
is also considered while calculating the execution time of the algorithm. The two

implementations are presented here.

4.4.1 Implementation 1

This implementation uses a parallel execution of the distance calculation task of the
KNN algorithm on the device (GPU/FPGA), while the nearest neighbor estimation
is performed on the host. The distance calculation task is readily parallelizable,

as distinct independent points are read from the reference data set for calculating

30 Battle of Accelerators: FPGA or GPU?

several distances. The implementation utilizes global memory accesses only and
hence its performance mainly depends on the global memory access bandwidth of

the various accelerators. It is illustrated in Implementation 1.

Implementation 1: Distance calculation on device and neighbors on host
Input: A query point g and R, a set of reference points;
Output: Indices of the k reference points with the smallest distance from g;
Begin
On device:
function DISTANCE CALCULATION
for each reference point r € R do
compute the floating-point distances between ¢ and all points r € R;
end
end function
On host:
function NEIGHBOR ESTIMATION
fori=0tok—1do
print the index in R of the i —th smallest element of the sorted distance

vector;
end

end function
End

O 0 NN N T R W N

—
- o

—
A W N

4.4.2 Implementation 2

This implementation performs both the distance calculation as well as the neighbor
estimation task on the device in two separate kernels namely "DISTANCE CALCU-
LATION" and "NEIGHBOR ESTIMATION" respectively. It utilizes an automatic
optimization offered by SDAccel called "On-chip global memories". This option
automatically maps the global memory buffers used merely for inter-kernel com-
munication, to the on-chip block RAMs. This optimization is depicted in Fig. 4.4.
It should be noted that the global memory buffers are normally mapped to exter-
nal slower DRAMs. This is shown in Fig. 4.4 as well. The pseudocode for this

implementation is given in Implementation 2.

This implementation makes sense with reference to acceleration of the KNN
algorithm only for the dimensionality of each point of R being high, thus making

4.5 Experimental Setup 31

the distance computation task more dominant as compared to finding the k£ smallest

distances.

Implementation 2: KNN on device using multiple kernels
Input: A query point ¢ and R, a set of reference points;
Output: £ smallest floating-point distances with their indices in a single
work-group;

1 Begin
2 On device:
3 declare a floating-point global distance array "dist" for inter-kernel
communication;
4 function KERNEL1: DISTANCE CALCULATION
s for each reference point r € R do
6 compute all the floating-point distances between ¢ and all points » € R and
save in "dist";
7 end
8 end function
9 function KERNEL2: NEIGHBOR ESTIMATION
10 fori=0t0k—1do
11 print the index in R of the i — th smallest element of the distance vector;
12 end
13 end function
14 End

4.5 Experimental Setup

The experimental setup consists of three target devices shown in Table. 4.1. The
first device is an NVIDIA GeForce GTX960 GPU with 1024 cores and a maximum
operating frequency of 1178MHz. The device has about 2GB GDDRS5 of global
memory, with 112GB/s of memory bandwidth. It is accessible from the host through
a PCle 3.0 interface with 16 lanes. The second device is an NVIDIA Quadro
K4200 GPU with 1344 CUDA cores and a maximum clock frequency of 784MHz.
The device has about 4GB of GDDRS global memory, with 172.8GB/s of memory
bandwidth. It is accessible from the host through a PCle Gen?2 interface with 16 lanes.
The third device is an Alpha data ADM-PCIE-7V3 FPGA board with a Virtex-7 690t.
The global memory consists of two DDR3 memories with 21.3GB/s of bandwidth.

The host can access it through a PCle Gen3 interface with 8 lanes.

32

Battle of Accelerators: FPGA or GPU?

Host

FPGA

PCle

A 4

Kernel 1 Kernel 2

Host

PCle
FPGA
On chip Global Memory
Lot
Kernel 1 Kernel 2
b

Fig. 4.4 (a) Traditional global memory buffer vs (b) On-chip global memory buffer

4.6 Results

33

Table 4.1 Target Platforms Comparison

Device | Global Bandwidth| Bus In-| min t.; | Datasheet| Idle
Memory | (GB/s) terface Power Power
Size W) (W)

GTX960 | 2GB 112.0 PCIe 3.0 | 0.85ns | 120 8

GDDR5 x16

K4200 | 4GB 172.8 PCle 2.0 | 1.27ns | 108 13
GDDR5 x16

FPGA | Two 8GB | 21.3 PClIe 3.0 * - -
SODIMMs x8

* See the rest of the tables for the reported clock and the actual power values in
each test case.

4.6 Results

The experiments with the KNN algorithm use the data set from [44]. It contains
data from "Unisys corporation" consisting of locations (latitudes and longitudes)
of a number of hurricanes and is used by the KNN algorithm to find the locations
corresponding to k nearest hurricanes to a given query point. The value of k is
typically very small as compared to the number of points » in the reference data set.
k has been set to 5 in all our experiments. The number of points in the reference data

set is about 0.3 million.

In case of the FPGA implementation, the concurrency offered by the FPGA
is utilized by using several HLS-based optimizations offered by SDAccel. The
(reqd_work_group_size) attribute described by the OpenCL standard has been used
in both implementations to specify the number of work-items in a single work-group.
This in turn specifies the iteration count of the work-item loop which enables the HLS
tool to optimize performance while the custom logic for the kernel is being generated.
2-element vector data types were used in both cases (rather than the C structs) to
read the 2-dimensional data points, thereby causing the memory access throughput
to be improved. Another optimization which was used in both the implementations
is the use of burst transfers between the the off-chip global memory and the on-chip
local memory. Large bursts improve efficiency as the memory access overhead is

shared across large amounts of data being transferred [14].

Moreover, loop pipelining was used as well to improve throughput. The SDAccel-

based flow can pipeline both the work-item loops as well as any explicit loops in the

RY Battle of Accelerators: FPGA or GPU?

kernel. Pipelining overcomes the limitations of loop unrolling for loops accessing
global memory as in our case, by better matching the limited number of global
memory ports available. The limited number of global memory ports may result
in data access conflicts thereby limiting the performance gains obtained by loop

unrolling by serializing potentially parallel loop iterations [45].

The GPU versus FPGA results in terms of execution time, energy and power
consumption for Implementation 1 are presented in Table 4.2. The resource uti-
lization in case of FPGA is also given in the table. This implementation utilizes
the accelerators merely for distance calculation between the query point and all the
points of reference data set. The nearest neighbor estimation on the other hand is
performed by the host i.e. processor, hence the CPU time is added as well to the
table as a part of the total KNN execution time. The reported clock frequency by
Vivado HLS in this case is 240MHz.

As clear from Table 4.2, both GPUs in Implementation 1 are faster than the FPGA
due to their comparatively higher DRAM access bandwidth. The FPGA however,
consumes significantly smaller energy/power in comparison to both the GPUs. As
mentioned before, power analysis in case of FPGA is done by using power analysis
features of Vivado. The reported power in case of the GPUs is based on the results

we obtained by utilizing the NVIDIA system management interface utility.

The performance comparison for Implementation 2 is shown in Table 4.3 This
implementation is also operating at 240MHz clock frequency. This implementation
uses the "on-chip global memories" optimization option offered by SDAccel to map
the global memory buffers used for communication between multiple kernels to the
block RAMs. A global memory buffer called "dist" as shown in Implementation 2
has been used for inter-kernel communication. This is an automatic optimization
provided by SDAccel for the cases where it detects a global memory buffer which is
not required to be visible to the host.

The FPGA implementation in this case is significantly faster than both the GPUs.
The two kernels are executed sequentially on the GPUs and the slower DRAM is
utilized. Reasons contributing to the high latency of DDR lies in the complexity. The
DDR interface uses a controller to manage the refresh cycles, address multiplexing
and interface timing [46]. In addition to latency, these frequent refresh cycles cause
a higher power overhead as well [47]. These kernels on FPGA however, utilize the
block RAMs (i.e on-chip global memories) and are executed in a pipelined manner.

4.6 Results 35

Table 4.2 Performance analysis of implementation 1

Parameters/Devices FPGA GTX960 | K4200
Device time 1.24ms (t., =4.17ns) | 0.0dms | 0.05ms
CPU sort time 3.0ms 3.0ms 3.0ms
Total time 4.24ms 3.04ms | 3.05ms
Power (Device) 0.346W 30W 40W
Energy (Device) 0.43mJ 1.2mJ 2mJ
BRAMs =0
e DSPs =12 (0.33%)
Utilization FFs = 3109 (0.36%) NA
LUTs =2006 (0.46%)

Table 4.3 Performance analysis of implementation 2

Parameters/Devices FPGA GTX960 | K4200
Total time 1.23ms (¢t = 4.17ns) 0.93s 3.11s
Power 2.56W 90w 60W
Energy 0.003J 84J) 187J

BRAMs = 512 (34.83%)
DSPs = 12 (0.33%)

FFs = 23892 (2.78%) NA

LUTSs = 11838 (2.76%)

Utilization

Considering that the on-chip global memory is implemented on the FPGA itself, it
has low latency and high throughput. Moreover, the NEIGHBOR ESTIMATION
kernel also performs faster on FPGA than on the GPU. This is because, GPUs
do not handle conditionals very efficiently, while they can still be pipelined on an
FPGA. These conditionals on the GPUs create the so-called "thread divergence"
problem. This issue arises due to the fact that on such Single Instruction Multiple
Data processors, the work-items, for which the condition is adjudicated as false,
must stall while the rest of the work-items are executed and vice-versa. The FPGA
also out-performs both GPUs in terms of power and energy consumption. The FPGA
power consumption in this case however, is around seven times higher than the
FPGA implementation of Implementation 1. This is because of the excessive block

RAM accesses that were not present in Implementation 1.

The FPGA vs GPU performance comparison for few other important algorithms,
i.e. Montecarlo methods for financial models and bitonic sorting algorithms, has

36 Battle of Accelerators: FPGA or GPU?

Table 4.4 Summary of FPGA vs GPU performance results for various test cases

Test cases Criticality B?St case FPGA B.est case GPU .
Time Energy Time Energy | Time Energy

ratio ratio

KNN Impl 1 Mem access 4.24ms 0.43mJ | 3.04ms 1.2mJ] | 14 0.36
KNN Impl 2 1.23ms 0.003) 0.93s 84] 0.0013 | 3E-05

BS Eur 0.0788ns | 1.67nJ | 0.164ns | 14.76nJ | 0.48 0.11

BS Asian FP arithmetic 0.0815ns | 1.96nJ | 0.168ns | 15.12nJ | 0.45 0.13
Heston Eur 0.157ns 3.33nJ | 0.604ns | 48.32n] | 0.26 0.069
Heston barrier 0.158ns | 4.917n) | 0.813ns | 65.04nJ | 0.19 0.076

Bit Sort no HLS Opt Mem access 152ms 760m)J 16ms 480mJ | 9.5 1.58

Bit Sort with HLS Opt 17ms 272mJ 16ms 480mJ | 1.06 0.57

* BS Eur (Black Scholes Model European Option), BS Asian (Black Scholes Model Asian
Option), Heston Eur (Heston Model European Option), Heston barrier (Heston Model European
Barrier Option), FP (Floating-point), Bit Sort (Bitonic-sort).

been added for reference in tabulated form in Table 4.4. The optimal execution time

and energy consumption in each case are also indicated in bold font in Table 4.4.

A graphical representation of the performance comparison is presented as well in
Fig 4.5, where all the bars below unity show the cases where FPGA wins in terms of
execution time and energy-per-computation while the rest of the bars indicate the
test cases where the GPU outperforms the FPGA.

Although these results were obtained by other members of the research team,
they are significant because they show the effectiveness of our adopted HLS-based
FPGA design methodology for a diverse range of applications dominated by different
aspects, e.g. by memory accesses or by floating point computations.

37

4.6 Results
10 9.5
1.06
1 —
a i oy, 6
0. 36%! 1 Moi5 008000 CPea,, 0. 45"/ " Eur, I fura ”’frh 0 §?’f -‘ftso Ptim
i ap:
0.1 0.26 0.19 ity ton
0.069 0.076
2
= 0.01
oo
0.002 0.001
0.0001
0.000036
0.00001
Algorithms

H Time Ratio m Energy Ratio

Fig. 4.5 FPGA vs GPU execution time and energy-per-computation ratios for several test

case implementations

38

Battle of Accelerators: FPGA or GPU?

Chapter 5
Power Management Module

As discussed earlier, power gating can be employed to save static power both for
ASIC- and FPGA-based designs by turning off parts of the designs when they are
idle. Dynamic power gating of FPGA logic blocks is still a fresh concept and needs
further research before it is supported by commercial FPGAs. The power gating for
other embedded blocks e.g. BRAMs, phase locked loops (PLLs) and unused 1/0s
however, is supported by FPGAs from both Xilinx and Altera [48]. The authors
in [49] have used a Xilinx Spartan-3 FPGA as a baseline hardware platform and
modified it to achieve power gating. Similarly, the authors in [23] have implemented
dynamic power gating targeted towards Cyclone-II FPGA on an Altera DE2 board.
Power gating in commercial FPGAs however, is not as common as in ASIC designs
due to various reasons such as the area overhead corresponding to the power gating
logic, lack of knowledge of the application during FPGA architecture design and
the resulting performance penalty [23]. Moreover, routing of signals (including
the power gating signals) using available routing resources on an FPGA fabric is
tricky as some of the available routing resources may get into an idle state during the
power OFF process. This chapter hence, presents a system-level power management
module that is necessary to provide the power gating logic in order to achieve PSO
in an ASIC design.

It is possible to power gate an ASIC implementation starting from its OpenCL
representation and using the design flow as presented in Section 4.3.1. The Vivado
HLS adds block-level start (ap_start) and done (ap_done) interfaces to the generated
RTL. The start interface indicates when a block can start processing the data and

40 Power Management Module

the done interface indicates the completion of all the operations by that block [16].
These interfaces can be used to drive the power management block to enforce PSO

in ASIC-based accelerators.

The final target here however, is to implement a fully automated low power
design methodology starting from the system-level description of the design. This
would require the description of a power management block at a level of abstraction
higher than the RTL i.e. at the system-level. In order to accomplish this, we use
SystemC which is a C++ class library that allows us to create a cycle-accurate model
of our software model, hardware architecture and interfaces corresponding to SoC
and system-level designs [50]. Hence, SystemC allows us to model hardware using
software programming languages. SystemC allows system-level hardware design
by enabling support for various features that are pertinent to HW e.g. concurrency
support, the notion of time and the support for hardware data types etc. Thus, this
activity regarding system-level low-power design is based on SystemC programming

framework rather than the OpenCL.

5.1 Overview

A continuous surge in the demand of electronic devices offering multiple sophisti-
cated features necessitates the development of SoCs that can offer high performance
along with reasonable power efficiency. For example, the modern smart phones are
required to have extensive features such as high data bandwidth (3G, WCDMA, and
EDGE), high quality picture, audio and video support (MP3, AAC, JPEG, MPEG,
and H.264), Wi-Fi, GPS function, multiple band and network support. Additionally,
longer talk time and standby time i.e. longer battery life, are other important selling
features in the modern smart phone market [51]. The smart phones are already
energy limited as the power is mainly provided by an on-unit battery that can pro-
vide only a limited amount of energy. This energy has to be distributed among the
various components of the phone and thus each component will have access to only
a small portion of the overall supplied energy. Power budgeting hence, is of prime

importance in SoCs used in such portable devices.

Additionally, the largest power saving opportunities (with the smallest optimiza-
tion efforts) are offered by the highest-level of design abstraction i.e. the system-level
of design flow as depicted in Fig 1.1. Moreover HLS, due to its benefits e.g. faster

5.2 CMOS Power Optimization 41

simulation run-time, greater re-use of the design and superior quality of results
(QoR), is desired to be used at the front end of the design flow while describing the
power intent for the design at the system-level [S]. A brief illustration of such a

design flow is depicted is Fig 1.3.

The fact that the naming convention of a design hierarchy including ports, in-
stances and signals is preserved while the design undergoes HLS, is exploited by
defining th