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This paper presents a general purpose, algebraic tool—named TMsim—for the combined parametric and worst-case analysis of
systems with bounded uncertain parameters.The tool is based on the theory of Taylormodels and represents uncertain variables on
a bounded domain in terms of a Taylor polynomial plus an interval remainder accounting for truncation and round-off errors.This
representation is propagated from inputs to outputs by means of a suitable redefinition of the involved calculations, in both scalar
and matrix form. The polynomial provides a parametric approximation of the variable, while the remainder gives a conservative
bound of the associated error. The combination between the bound of the polynomial and the interval remainder provides an
estimation of the overall (worst-case) bound of the variable. After a preliminary theoretical background, the tool (freely available
online) is introduced step by step along with the necessary theoretical notions. As a validation, it is applied to illustrative examples
as well as to real-life problems of relevance in electrical engineering applications, specifically a quarter-car model and a continuous-
time linear equalizer.

1. Introduction

With the ever-growing complexity of modern design scenar-
ios in every domain of engineering, today’s applications are
constantly facing the need for techniques that are capable
of taking parameter uncertainty into account. Researchers
in the field of uncertainty quantification have striven to
find alternatives to state-of-the-art approaches, which often
turn out to be computationally intensive or inaccurate. In
this framework, the strategies can be classified into two
groups: probabilistic approaches take the actual distribution
of uncertain parameters into account and seek for a statistical
characterization of the system variables of interest. A classical
example that has been utilized in virtually every engineering
problem is the Monte Carlo (MC) method [1]. An alternative
and more efficient probabilistic approach that was proposed
in relatively recent times is polynomial chaos [2, 3].

On the contrary, interval or worst-case (WC) approaches
assume bounded uncertain input parameters and provide

a conservative estimation of the lower and upper bounds
of the system variables without explicit information on the
actual distribution. The calculations involved in the analysis
are suitably modified to provide a conservative estimation
of the bound of the result. These methods include interval
arithmetic or interval analysis (IA) [4], which is however
rather basic and often results in large overestimation since it
is unable to track variable dependency [5]. Affine arithmetic
(AA) is an improved approach that takes variable depen-
dence into account by means of a linear parametrization
[6]. Finally, the Taylor model (TM) utilizes a higher-order
polynomial representation in conjunction with a residual
interval remainder that takes truncation and round-off errors
into account, yielding a well-defined and robust theoretical
framework [7–9]. TM calculations are carried out by using
standard operations over polynomials or, whenever a non-
linear operator occurs, by the rules of Taylor expansion. The
interval remainder is propagated and updated by means of
Taylor remainder theory and IA. The TM algebra combines
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the strength of a high-order parametric representation and
of IA, while limiting the overestimation issue to the interval
remainder. By adding the interval remainder to the bound of
the polynomial part, a rigorous and conservative estimation
of the overall (WC) bounds of the variable is obtained.

This paper presents an open source and general purpose
algebraic tool, named TMsim, that implements TM algebra
and proposes specific improvements in the calculation of
remainders and an extension to some matrix operations.
Specifically, the remainder of nonlinear operations, which is
usually computed in Lagrange form [7], is now calculated
also according to the Cauchy formulation. The tightness and
convergence differ between the Lagrange and Cauchy forms;
thus the best of the two is chosen. Moreover, for the special
case of the multiplicative inverse, an alternative and exact
formulation of the remainder is implemented. The tool also
handles basic matrix operations and implements a recently
proposed algorithm to implement in TM algebra the matrix
inversion [10], which is a critical operation in the solution of
many engineering problems.

A preliminary framework was introduced with specific
application to the frequency-domain analysis of circuits [10]
and transmission lines [11]. In the present paper, the tool is
further extended and presented in a more systematic and
comprehensive way. It is implemented inMATLAB andmade
available online [12].

2. Problem Statement

Given a set of 𝑑 independent input variables 𝑥 = [𝑥1, . . .,𝑥𝑑] ∈ 𝐷, with associated uncertainty bounds 𝐷 = [𝑎1, 𝑏1] ×⋅ ⋅ ⋅ × [𝑎𝑑, 𝑏𝑑] ⊂ R𝑑, the purpose of the proposed TMsim tool
is to algebrically and parametrically calculate a set of output
variables and their corresponding uncertainty bounds. Each
variable 𝑓 that depends on the inputs is understood to be
represented according to the TM formulation [7]

𝑓 (𝑥) ∈ 𝑇𝑓 fl 𝑃𝑛𝑓 (𝑥 − 𝑥0) + 𝐼𝑓, (1)

where 𝑥0 is the center of the domain𝐷,𝑃𝑛𝑓 is a 𝑛th-ordermul-
tivariate polynomial, and 𝐼𝑓 = [𝑎, 𝑏] is an interval remain-
der such that

𝑃𝑛𝑓 (𝑥 − 𝑥0) + 𝑎 ≤ 𝑓 (𝑥) ≤ 𝑃𝑛𝑓 (𝑥 − 𝑥0) + 𝑏 ∀𝑥 ∈ 𝐷. (2)

The TM of 𝑓(𝑥) is therefore guaranteed to lie between
the upper and lower bound defined by the value of the
polynomial 𝑃𝑛𝑓 and the corresponding remainder 𝐼𝑓. Ideally,
if 𝐼𝑓 = [0, 0], the polynomial 𝑃𝑛𝑓 provides an exact parametric
representation.

Moreover, the information on the overall (WC) bounds
of 𝑓(𝑥) is readily obtained as 𝐵(𝑃𝑓) + 𝐼𝑓, where 𝐵(⋅) denotes
the bound operator; that is,

𝐵 (𝑓 (𝑥)) = [min
𝑥
{𝑓 (𝑥)} ,max

𝑥
{𝑓 (𝑥)}] (3)

and the addition between intervals is intended in the IA-sense
[4]; that is,

[𝑎, b] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] . (4)

The determination of the bound of a multivariate polynomial
is a nontrivial task that is handled as detailed in Section 5.

In practice, a common maximum order 𝑛 is assumed
for each TM variable. Hence, for the ease of notation, the
superscript 𝑛 is dropped from now on when denoting the
polynomial part of a TM.

3. Basic Scalar Operations

With the previously introduced definitions, basic scalar oper-
ations like addition and subtraction between TMs are readily
computed as

𝑇𝑓 ± 𝑇𝑔 fl 𝑃𝑓 (𝑥 − 𝑥0) ± 𝑃𝑔 (𝑥 − 𝑥0) + 𝐼𝑓 ± 𝐼𝑔, (5)

where the operation over the remainders is again performed
according to the IA, with the subtraction being defined as

[𝑎, 𝑏] − [𝑐, 𝑑] fl [𝑎 − 𝑑, 𝑏 − 𝑐] . (6)

The multiplication between two TMs yields

𝑇𝑓 ⋅ 𝑇𝑔 fl 𝑃𝑓⋅𝑔 (𝑥 − 𝑥0) + 𝑃𝑒 (𝑥 − 𝑥0) + 𝑃𝑓 (𝑥 − 𝑥0) 𝐼𝑔
+ 𝑃𝑔 (𝑥 − 𝑥0) 𝐼𝑓 + 𝐼𝑓𝐼𝑔, (7)

where 𝑃𝑓⋅𝑔 is the part of the product 𝑃𝑓(𝑥 − 𝑥0) ⋅ 𝑃𝑔(𝑥 −𝑥0) up to order 𝑛, whereas 𝑃𝑒 is the remaining higher-order
contribution.The higher-order part and the remaining terms
are encompassed into an interval remainder calculated as

𝐼𝑓⋅𝑔 = 𝐵 (𝑃𝑒) + 𝐵 (𝑃𝑓) 𝐼𝑔 + 𝐵 (𝑃𝑔) 𝐼𝑓 + 𝐼𝑓𝐼𝑔, (8)

where the product of two intervals is defined in IA as

[𝑎, 𝑏] ⋅ [𝑐, 𝑑]
fl [min (𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑) ,max (𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)] . (9)

Complex calculations are handled by suitably operating
on the real and imaginary part with real-valued computations
[10].

4. TMsim Overview

TMsim is a MATLAB tool that implements TM algebra and
defines a specific class of variables for which the standard
basic operations (see Section 3) as well as other available
nonlinear functions or matrix operations (see Sections 6
and 7, respectively) are replaced by the corresponding TM
calculations.

The tool requires an initialization that defines the order 𝑛
of the TM representation and the number 𝑑 of independent
variables and creates some global auxiliary variables. An
independent input variable is defined by its upper and lower
bounds and the index 𝑖 ∈ {1, . . . , 𝑑}. Each variable is
represented as a structure with the field triplet (𝑃, 𝐵, 𝐼):

(i) 𝑃 is an array that collects the coefficients of the
multivariate polynomial;
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(ii) 𝐵 is an auxiliary two-element vector with the lower
and upper bound of the polynomial;

(iii) 𝐼 is a two-element vector containing the lower and
upper bound of the interval remainder.

To ease the calculation of the polynomial bounds (see
Section 5), the coefficients of the polynomial are given in
terms of rescaled variables𝑥𝑖 = (2𝑥𝑖−𝑎𝑖−𝑏𝑖)/(𝑏𝑖−𝑎𝑖) ∈ [−1, 1],∀𝑖 = 1, . . . , 𝑑, instead of the original variables 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖].

With the above definitions, the basic scalar operations
are readily implemented as described in Section 3.These also
include the raise to an integer power, which is implemented
by means of iterative multiplications.

As a brief example, the code below defines two variables𝑥1 = [2, 3] and 𝑥2 = [−1, 1] and calculates 𝑦1 = 𝑥21 + 𝑥2,𝑦2 = 𝑥1𝑥22, and 𝑧 = 𝑥2 ⋅ 𝑦1 + 𝑥1 ⋅ 𝑦2.
>> d = 2; % number of variables d_i=1,2
>> d_1 = 1; % index of variable x1

>> d_2 = 2; % index of variable x2

>> n = 3; % expansion order

>>
>> % Taylor model representation

>> initialize_TMsim(n,d);
>> x1=TaylorModel(2,3,d_1,'bounds');
>> x2=TaylorModel(-1,1,d_2,'bounds');
>> y1=x1∧2+x2;

>> y2=x1*x2∧2;

>> z=x1*y2+x2*y1;

The results are

𝑦1 =
{{{{{{{{{

𝑃 = 6.25 + 2.5𝑥1 + 𝑥2 + 0.25𝑥21,
𝐵 = [3, 10] ,
𝐼 = [0, 0]

𝑦2 =
{{{{{{{{{

𝑃 = 2.5𝑥22 + 0.5𝑥1𝑥22,
𝐵 = [−1, 3] ,
𝐼 = [0, 0]

𝑧

=
{{{{{{{{{

𝑃 = 6.25𝑥2 + 2.5𝑥1𝑥2 + 7.25𝑥22 + 0.25𝑥21𝑥2 + 2.5𝑥1𝑥22,
𝐵 = [−6.25, 18.75] ,
𝐼 = [−0.05, 0.25] .

(10)

It is worth noting that the third-order representation is suf-
ficient to represent 𝑦1 and 𝑦2 without error, but not 𝑧 whose
remainder is non-null (this would have been the case by
setting 𝑛 = 4). The estimated bound on 𝑧 is [−6.25, 18.75] +[−0.05, 0.25] = [−6.3, 19], which is a conservative estimation
of the true bound [−2.025, 19].

5. Polynomial Bounds

The exact calculation of the bounds of a multivariate polyno-
mials can be performed exactly only for order 𝑛 ≤ 2. No rig-
orous approach exists for higher-order polynomials. TMsim
implements a strategy, based on Bernstein polynomials, that
allows for a conservative estimation of the bounds [7, 10].
Bernstein polynomials have the notable property of being
bounded by their largest and smallest coefficient [13–16].

By means of a change of basis, a standard univariate
polynomial 𝑃(𝑥) = ∑𝑛𝑖=0 𝑝𝑖𝑥𝑖 in the variable 𝑥 ∈ [𝑎, 𝑏] is
converted into the Bernstein form

𝑃𝐵 (𝑥) = 𝑛∑
𝑖=0

𝑏𝑖𝐵𝑖 (𝑥) , (11)

where the Bernstein basis polynomials are defined as

𝐵𝑖 (𝑥) = ( 𝑛𝑖 )(𝑏 − 𝑎)𝑛 (𝑥 − 𝑎)𝑖 (𝑏 − 𝑥)𝑛−𝑖 , 0 ≤ 𝑖 ≤ 𝑛. (12)

The corresponding Bernstein coefficients are

𝑏𝑖 = 𝑖∑
𝑗=0

( 𝑖𝑗 )( 𝑛𝑗 ) (𝑏 − 𝑎)𝑗
𝑛∑
𝑘=𝑗

(𝑘𝑗) 𝑎𝑘−𝑗𝑝𝑘, (13)

from which

min
𝑖
{𝑏𝑖} ≤ min

𝑥
{𝑃 (𝑥)} ≤ 𝑃 (𝑥) ≤ max

𝑥
{𝑃 (𝑥)}

≤ max
𝑖
{𝑏𝑖} . (14)

The above expression emphasizes that the obtained bounds
are not necessarily exact, but rather a conservative estimation
of the actual bounds.

For the multivariate case, consider a polynomial in the
form

𝑃 (𝑥) = ∑
k
𝑝k 𝑑∏
𝑖=1

𝑥𝑘𝑖𝑖 , (15)

where 𝑥𝑖 ∈ [−1, 1] ∀𝑖 and k = [𝑘1, . . . , 𝑘𝑑] is a multi-index
defining the exponents of each monomial, with 0 ≤ 𝑘𝑖 ≤ 𝑛
and ∑𝑑𝑖=1 𝑘𝑖 ≤ 𝑛. The vector of multivariate Bernstein coef-
ficients is calculated as

b = ∑
k
𝑝k ⋅ (𝛽𝑘1 ⊗ 𝛽𝑘2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝛽𝑘𝑑) , (16)

where 𝛽𝑘 is a vector with entries

𝛽𝑖,𝑘 = min{𝑖,𝑘}∑
𝑗=0

( 𝑖𝑗 )( 𝑛𝑗 ) 2𝑗 (
𝑘
𝑗) (−1)𝑘−𝑗 . (17)

In order to conveniently calculate the Bernstein coeffi-
cients through (16), the independent variables are rescaled
into the domain 𝐷 = [−1, 1]𝑑. It is important to remark that,
for a given order 𝑛, the vectors 𝛽0 up to 𝛽𝑛 for the conversion
in (16) are predetermined and stored into a look-up table.
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6. Nonlinear Functions

TheTMresulting from the application of a nonlinear function𝑔(⋅) is calculated by considering the functional Taylor expan-
sion:

𝑔 (𝑇𝑓 (𝑥)) = 𝑃𝑔 (𝑥) + 𝐼𝑔
= 𝑛∑
𝑘=0

𝑔(𝑘) (𝑐𝑓)𝑘! (𝑇𝑓 (𝑥))𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑃𝑔(𝑥)+𝐼𝑝

+ 𝑅𝑛 (𝑇𝑓 (𝑥)) (18)

centered at 𝑐𝑓 = 𝑃𝑓(0). A shifted version 𝑇𝑓 = 𝑇𝑓 − 𝑐𝑓 of
the original TM has been introduced. Moreover, the function
derivatives are defined as

𝑔(𝑘) (𝑐𝑓) fl 𝑑𝑔 (𝑇𝑓 (𝑥))𝑑𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑐𝑓 (19)

and 𝑅𝑛(𝑇𝑓(𝑥)) is the pertinent remainder in Lagrange or
Cauchy formulation. It should be noted that the first term𝑃𝑔(𝑥) + 𝐼𝑝 in the r.h.s. of (18) merely involves sums and
products of TMs, which are computed with the rules out-
lined in Section 3. The remainder 𝐼𝑝, resulting from these
calculations, is added to the bound of the Lagrange/Cauchy
remainder 𝑅𝑛 to obtain the overall remainder 𝐼𝑔.

The Lagrange remainder of the 𝑛th-order Taylor expan-
sion centered in 𝑥0 of a function 𝑔(𝑥) ∈ 𝐶𝑛+1 on 𝑥 ∈ 𝐷 is
defined as [17–19]

𝑅𝐿,𝑛 (𝑔 (𝑥)) fl 𝑔(𝑛+1) (𝑥∗)
(𝑛 + 1)! (𝑥 − 𝑥0)𝑛+1

≡ 𝑔(𝑛+1) (𝑥0 + 𝜃𝑥)(𝑛 + 1)! 𝑥𝑛+1,
(20)

where 𝑥∗ ∈ [𝑥0, 𝑥] = 𝑥0 + 𝜃𝑥, with 𝑥 = 𝑥 − 𝑥0 and 𝜃 ∈ [0, 1].
An alternative formulation of the remainder is theCauchy

form, which reads [19]

𝑅𝐶,𝑛 (𝑔 (𝑥)) fl (𝑥 − 𝑥∗)𝑛𝑛! (𝑥 − 𝑥0) 𝑔(𝑛+1) (𝑥∗)
≡ (1 − 𝜃)𝑛𝑛! 𝑥𝑛+1𝑔(𝑛+1) (𝑥0 + 𝜃𝑥) .

(21)

It is important to remark that both the Lagrange and
the Cauchy remainder provide a conservative estimation of
the truncation error. However, as described in the following,
they have in general different bounds, and one of the two
may even diverge as the order 𝑛 is increased. Therefore, a
single definition of the remainder does not guarantee a tight
estimation of the error. For this reason, the TMsim tool
calculates the remainder in both Lagrange and Cauchy form
and selects the one with the smaller bound.

The remaining part of this section details the implemen-
tation of a representative set of general purpose nonlinear
functions, including the logarithm, the square root, the mul-
tiplicative inverse, and the sin and cosine functions. The

implementation of the exponential function is well doc-
umented in the literature [7–9]. All the aforementioned
functions are available in the current version of the tool.
Other nonlinear functions can be implemented by following
a similar procedure.

6.1. Logarithm. Consider the logarithmic function𝑔(𝑇𝑓(𝑥))=
log (𝑇𝑓(𝑥)). According to [7], the resulting TM 𝑇𝑔(𝑥) is com-
puted as

log (𝑇𝑓 (𝑥)) = log (𝑐𝑓) + 𝑛∑
𝑘=1

(−1)𝑘+1 1𝑘
𝑇𝑘𝑓 (𝑥)𝑐𝑘
𝑓

+ 𝑅𝑛 (𝑇𝑓 (𝑥)) ,
(22)

where the remainder is given in the Lagrange formulation
(20) as

𝑅𝐿,𝑛 (𝑇𝑓 (𝑥)) = (−1)𝑛+2𝑛 + 1
𝑇𝑛+1𝑓 (𝑥) /𝑐𝑛+1𝑓

(1 + 𝜃𝑇𝑓 (𝑥) /𝑐𝑓)𝑛+1 . (23)

The bound of the remainder is obtained by means of the
IA as follows:

𝐵 (𝑅𝐿,𝑛 (𝑇𝑓 (𝑥))) = (−1)𝑛+2𝑛 + 1
𝐵 (𝑇𝑓 (𝑥))𝑛+1 /𝑐𝑛+1𝑓
𝐵 (1 + 𝑇𝑓 (𝑥) /𝑐𝑓)𝑛+1 , (24)

which is equivalent to

𝐵 (𝑅𝐿,𝑛 (𝑇𝑓 (𝑥))) = (−1)𝑛+2𝑛 + 1
𝐵 (𝑇𝑓)𝑛+1
𝐵 (𝑇𝑓)𝑛+1 . (25)

Unfortunately, the Lagrange remainder does not always
converge to zerowhen the expansion order 𝑛 is increased [19].
In particular, from (24),

𝑅𝐿,𝑛 (𝑇𝑓 (𝑥)) 󳨀→𝑛→∞0 ⇐⇒󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐵(
𝑇𝑓/𝑐𝑓

1 + 𝑇𝑓 (𝑥) /𝑐𝑓)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1

(26)

which implies that the Lagrange remainder converges only if

0 ≤ 𝑇𝑓 (𝑥)𝑐𝑓 ≤ 1. (27)

However, since 𝑇𝑓(𝑥) represents the variation of a parameter
around its means value, its codomain can include negative
values.

The Cauchy remainder (21) allows extending the conver-
gence region, thus alleviating the limitations of the Lagrange
remainder. Starting with the simple equality

log (𝑇𝑓 (𝑥)) = log (𝑐𝑓) + log (1 + 𝑇̃𝑓 (𝑥)) , (28)



Mathematical Problems in Engineering 5

where 𝑇̃𝑓(𝑥) = 𝑇𝑓(𝑥)/𝑐𝑓, the Cauchy remainder is expressed
as

𝑅𝐶,𝑛 (𝑇𝑓 (𝑥)) = (−1)𝑛+1 [ (1 − 𝜃)
1 + 𝜃𝑇̃𝑓 (𝑥)]

𝑛 𝑇̃𝑛+1𝑓 (𝑥)
1 + 𝜃𝑇̃𝑓 (𝑥) . (29)

Since 0 < 𝜃 < 1 and under the (quite practical) assumption|𝑇̃𝑓| < 1 (i.e., the variation of a variable is smaller than its
central value) [19],

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝜃)

1 + 𝜃𝑇̃𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1 (30)

which leads to

𝑅𝐶,𝑛 (𝑇𝑓 (𝑥)) ≤ (−1)𝑛+1 𝑇̃
𝑛+1
𝑓 (𝑥)

1 + 𝜃𝑇̃𝑓 (𝑥) . (31)

From the above expression,

𝑅𝐶,𝑛 (𝑇𝑓 (𝑥)) 󳨀→𝑛→∞ 0 ⇐⇒󵄨󵄨󵄨󵄨󵄨𝑇̃𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 1
(32)

which implies that the convergence region is −1 ≤ 𝑇𝑓(𝑥)/𝑐𝑓 ≤ 1 as opposed to (27).
As in the case of the Lagrange remainder, the bound of

the Cauchy remainder is calculated using IA as

𝐵 (𝑅𝐶,𝑛) = (−1)𝑛+1 𝐵 (𝑇̃𝑓 (𝑥))
𝑛+1

𝐵 (1 + 𝑇̃𝑓 (𝑥)) . (33)

6.2. Square Root. Consider now the square root function
𝑔(𝑇𝑓(𝑥)) = √𝑇𝑓(𝑥). The resulting TM 𝑇𝑔(𝑥) is [7]

√𝑇𝑓 (𝑥) = √𝑐𝑓 + 𝑛∑
𝑘=1

(−1)𝑘−1√𝑐𝑓 (2𝑘 − 3) !!𝑘!2𝑘
𝑇𝑘𝑓 (𝑥)𝑐𝑘
𝑓

+ 𝑅𝑛 (𝑇𝑓 (𝑥)) ,
(34)

where the remainder in Lagrange form is

𝑅𝐿,𝑛 (𝑇𝑓 (𝑥)) = 𝐶𝐿 𝑇𝑛+1𝑓 (𝑥) /𝑐𝑛+1𝑓
(1 + 𝜃𝑇𝑓 (𝑥) /𝑐𝑓)𝑛+1/2 ,

𝐶𝐿 = ((−1)
𝑛√𝑐𝑓 (2𝑘 − 1)!!)((𝑛 + 1) !2𝑛+1) .

(35)

The bound of the above remainder is computed by mean
of IA as

𝐵 (𝑅𝐿,𝑛 (𝑇𝑓 (𝑥))) = 𝐶𝐿 𝐵 (𝑇𝑓 (𝑥))𝑛+1 /𝑐𝑛+1𝑓
(1 + 𝐵 (𝑇𝑓 (𝑥)) /𝑐𝑓)𝑛+1/2 . (36)

However, also in this case

𝑅𝐿,𝑛 (𝑇𝑓 (𝑥)) 󳨀→𝑛→∞ 0 ⇐⇒
0 ≤ 𝑇𝑓 (𝑥)𝑐𝑓 ≤ 1. (37)

The use of the Cauchy remainder, which reads [19]

𝑅𝐶,𝑛 (𝑇𝑓 (𝑥)) = 𝐶𝐶 𝑇̃𝑛+1𝑓 (𝑥)
√1 + 𝜃𝑇̃𝑓 (𝑥) (

1 − 𝜃
1 + 𝜃𝑇̃𝑓 (𝑥))

𝑛 , (38)

where

𝐶𝐶 = (−1)𝑛√𝑐𝑓 (2𝑛 − 1) !! (𝑛 + 1)(𝑛 + 1) !2𝑛+1 , (39)

allows again mitigating the convergence issue. Under the
assumptions that lead to (30), the corresponding bound is
obtained as

𝑅𝐶,𝑛 (𝑇𝑓 (𝑥)) = 𝐶𝐶 𝐵 (𝑇̃𝑓 (𝑥))
𝑛+1

√1 + 𝐵 (𝑇̃𝑓 (𝑥)) . (40)

6.3. Multiplicative Inverse. Consider the function 𝑔(𝑇𝑓(𝑥)) =1/𝑇𝑓(𝑥). The resulting TM 𝑇𝑔(𝑥) is [7]
1𝑇𝑓 (𝑥) =

𝑛∑
𝑘=0

(−1)𝑘 𝑇
𝑘

𝑓𝑐𝑘+1
𝑓

+ 𝑅𝑛 (𝑇𝑓 (𝑥)) , (41)

where in principle the remainder can be computed via either
the Lagrange or Cauchy formulation. However, in this special
case, an exact remainder is calculated based on the properties
of geometric series [17].

To begin with, the Taylor expansion of 1/(1−𝑥) up to the
order 𝑛 is considered

11 − 𝑥 =
𝑛∑
𝑘=0

𝑥𝑘 + 𝑅𝑛 (𝑥) . (42)

The exact remainder for |𝑥| < 1 is obtained via the iden-
tity

𝑅𝑛 (𝑥) = ∞∑
𝑘=𝑛+1

𝑥𝑘 = lim
𝑁→∞

𝑥𝑛+1 − 𝑥𝑁+11 − 𝑥 = 𝑥𝑛+11 − 𝑥 . (43)

The above equation is recast to obtain the remainder of1/𝑇𝑓(𝑥) as
𝑅𝑛 (𝑇𝑓 (𝑥)) = 1𝑐𝑓

𝑇̃𝑛+1𝑓 (𝑥)
(1 − 𝑇̃𝑓 (𝑥)) , (44)

where in this case 𝑇̃𝑓 = −𝑇𝑓/𝑐𝑓. The bound of the above
remainder is computed as

𝐵 (𝑅𝑛 (𝑇𝑓 (𝑥))) = 1𝑐𝑓
𝐵 (𝑇̃𝑓 (𝑥))𝑛+1
𝐵 (1 − 𝑇̃𝑓 (𝑥)) (45)

for |𝑇̃𝑓| < 1.
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6.4. Sine and Cosine. For the case of sine and cosine func-
tions, the coefficients 𝑔(𝑘)(𝑐𝑓) in (18) are given by [7]

𝑔(𝑘) (𝑐𝑓) = {{{
(−1)𝑘/2 sin (𝑐𝑓) 𝑘 even

(−1)(𝑘−1)/2 cos (𝑐𝑓) otherwise, (46)

𝑔(𝑘) (𝑐𝑓) = {{{
(−1)𝑘/2 cos (𝑐𝑓) 𝑘 even

(−1)(𝑘−1)/2+1 sin (𝑐𝑓) otherwise, (47)

respectively.
The bounds of the Lagrange remainder are calculated as

𝐵 (𝑅𝑛 (𝑇𝑓 (𝑥))) = 𝐵 (𝑔
(𝑛+1) (𝑇𝑓 (𝑥)))(𝑛 + 1)! 𝐵 (𝑇𝑓 (𝑥))𝑛+1 . (48)

By substituting (46) or (47) in (48), the determination of
the bounds requires the calculation of the bounds 𝐵(sin(𝑇𝑓))
or 𝐵(cos(𝑇𝑓)) in the pertinent domain of 𝑇𝑓(𝑥). The estima-
tion of these bounds is complicated by the periodic behavior
of the sine and cosine functions. Since the sine and cosine
are bounded functions, a naive solution would be to simply
assume 𝐵(sin(𝑇𝑓)) = 𝐵(cos(𝑇𝑓)) = [−1, 1]. However, tighter
bounds can be obtained by considering the function as locally
monotonic and by including the effect of a possible slope
change only when a stationary point falls into the domain of𝜁 ∈ 𝐵(𝑇𝑓(𝑥)). This leads to [11]

min {sin (𝜁)}
= {{{

−1 3𝜋2 + 2𝜋𝑘 ∈ 𝐵 (𝑇𝑓)
min {sin (𝐵 (𝑇𝑓 (𝑥)))} otherwise

(49a)

max {sin (𝜁)}
= {{{

+1 𝜋2 + 2𝜋𝑘 ∈ 𝐵 (𝑇𝑓)
max {sin (𝐵 (𝑇𝑓 (𝑥)))} otherwise

(49b)

min {cos (𝜁)}
= {{{

−1 𝜋 + 2𝜋𝑘 ∈ 𝐵 (𝑇𝑓)
min {cos (𝐵 (𝑇𝑓 (𝑥)))} otherwise

(49c)

max {cos (𝜁)}
= {{{

+1 2𝜋𝑘 ∈ 𝐵 (𝑇𝑓)
max {cos (𝐵 (𝑇𝑓 (𝑥)))} otherwise,

(49d)

with 𝑘 ∈ Z.
6.5. Illustrative Example. As an illustrative example, the func-
tion 𝑔(𝑥) = sin(1/ log(√𝑥))with 𝑥 ∈ [3, 9] is considered.The
corresponding TM is computed by means of the MATLAB
code

>> initialize_TMsim(9,1);

Exact
Poly (TM order 9)

Bounds (TM order 6)
Bounds (TM order 9)

0.75

0.8

0.85

0.9

0.95

1

1.05

g
(x

)

4 5 6 7 8 93

x

Figure 1: TM approximation of the function 𝑔(𝑥). Black line: actual
value; dashed red line: polynomial approximation provided by a
ninth-order TM; green and magenta lines: bounds obtained with
orders 6 and 9, respectively.

>> x=TaylorModel(3,9,1,'bounds');

>> g=sin(inv(log(sqrt(x))));

The result is shown in Figure 1. The black curve is the actual
value of the function 𝑔(𝑥). The dashed red curve is the
approximation provided by the polynomial part of a ninth-
order TM. Finally, the green and magenta lines are the upper
and lower bounds obtained with the inclusion of the interval
remainder for an expansion order of 𝑛 = 6 and 𝑛 = 9,
respectively. It is appreciated that increasing the order yields
tighter bounds. However, both bounds are conservative over
the entire domain𝐷 of the input variable 𝑥.
7. Matrix Operations

A matrix TM is a matrix where all the entries are defined
via the standard TM representation (1) and is here denoted
by means of bold quantities as T𝑓(𝑥) = P𝑓(𝑥) + I𝑓. The
basic scalar calculations introduced in Section 3 are readily
generalized to the corresponding matrix computations by
operating element-wise. For instance, the product of two
matrix TMs merely involves additions and multiplications of
scalar TMs.

On the other hand, despite a generalization of the Taylor
expansion to matrices being defined, the implementation of
nonlinearmatrix operations in the TM algebra is hindered by
the fact that no corresponding definition of the remainder is
available. A rigorous solution to handle the matrix inversion
was proposed in [10] based on the Sherman-Morrison (SM)
formula [20]. The implementation of other nonlinear matrix
operations, such as the exponentiation, is still under inves-
tigation. An envisaged approach is to seek for an eigenvalue
decomposition in TM algebra in order to reduce the problem
to a scalar nonlinear operation over the eigenvalues.
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7.1. Matrix Inversion. The SM formula provides an exact
solution for the computation of the inversion (A+B)−1 when
B has unitary rank. Under this assumption, the resulting
inverse matrix is

(A + B)−1 = A−1 − 11 + 𝛼 (A−1BA−1) , (50)

where 𝛼 = trace(A−1B) and only the inversion of matrix A is
required.

For its application to amatrix TM T𝑓, this is first split into
a constant matrix and a shifted TM, as was done in Section 6
for the scalar case:

T𝑓 = c𝑓 + [P𝑓 (𝑥 − 𝑥0) + I𝑓] = c𝑓 + T𝑓, (51)

where c𝑓 = P𝑓(0) is a standard matrix and P𝑓(𝑥 − 𝑥0) =
P𝑓(𝑥 − 𝑥0) − c𝑓. If the nonconstant part T𝑓 has unitary rank,
then (52) is applied directly and the inverse TM is

T𝑔 = T−1𝑓 = (c𝑓 + T𝑓)−1 = c−1𝑓 − 11 + 𝛼 (c−1𝑓 T𝑓c−1𝑓 ) , (52)

with 𝛼 = trace (c−1𝑓 T𝑓). Hence, the SM formula reduces the
inversion of a matrix TM to standard and available calcula-
tions, namely,

(1) sums and multiplications of matrix TMs;
(2) the inversion of the constant matrix c𝑓, which is

carried out according to classical algebra;
(3) the calculation of the trace operator, which merely

involves the scalar sum of the TMs on the matrix
diagonal;

(4) the calculation of the multiplicative inverse 1/(1 + 𝛼),
which is carried out as described in Section 6.3.

It is worth noting that in practice the matrix c𝑓 is always
invertible as it corresponds to the matrix for the central value
of the variable 𝑥.

The generalization of (52) to the case of full-rankmatrices
requires an iterative application of the algorithm [10]. The
matrix T𝑓 is first split into the sum of rank-one matrices:

T𝑓 = T𝑓,1 + T𝑓,2 + T𝑓,3 + ⋅ ⋅ ⋅ , (53)

where T𝑓,𝑖 is defined as a matrix TM with null entries except
for the 𝑖th column, which coincides with the 𝑖th column of
the original TM T𝑓, thus being rank-1 by construction. The
following iterative procedure is then put forward:

(1) the inversion (c𝑓 + T𝑓,1)−1 is computed via (50) by
considering A = c𝑓 and B = T𝑓,1;

(2) the inversion (c𝑓+T𝑓,1+T𝑓,2)−1 is calculated by letting
A = c𝑓+T𝑓,1 andB = T𝑓,2.The inverse ofA, as needed
in (50), is available from the previous step.

The above procedure is iterated until all terms in (53) are
accounted for, thus yielding the end result.

7.2. Illustrative Example. The outlined procedure is general
and allows inverting an arbitrary matrix whose elements are
nonlinear functions. As an example, consider the following
matrix:
M (𝑥)

=
[[[[[[
[

exp (1 + 0.3𝑥) log (3 + 𝑥) sin(𝜋 + 𝜋4 𝑥)
log (3 + 𝑥) exp (1 + 0.3𝑥) log(𝜋 + 𝜋4 𝑥)

sin(𝜋 + 𝜋4 𝑥) log(𝜋 + 𝜋4 𝑥) exp (1 + 0.3𝑥)

]]]]]]
]
, (54)

where 𝑥 ∈ 𝐷 = [−1, 1].
The abovematrix belongs to the class of Toeplitzmatrices,

which are rather common in many fields of engineering as
they result from Fourier expansions [21–23]. It is important
to remark that det (M(𝑥)) ̸= 0 ∀𝑥 ∈ [−1, 1].

The following MATLAB script calculates the inverse of
M(𝑥) by means of TMsim:

>> initialize_TMsim(3,1);>> x_TM = TaylorModel(-1,1,1,'bounds')>> a_TM = exp(1+0.3*x_TM);>> b_TM = log(3+x_TM);>> c_TM = sin(pi+pi/4*x_TM);>> M_TM = [a_TM,b_TM,c_TM;
b_TM,a_TM,b_TM;
c_TM,b_TM,a_TM];>> invM_TM = inv(M_TM);

The resulting matrix TM T−1𝑀(𝑥) provides a parametric
representation of the nonlinearmatrixM−1(𝑥) over the entire
domain 𝐷 and a conservative estimation of its upper and
lower bounds. The minimum and maximum values of the
entries ofM−1(𝑥), estimated based on 10’000MC samples, are

min (M−1 (𝑥)) = [[
[
0.3754 −0.2252 −0.1598−0.2252 0.4216 −0.2252−0.1598 −0.2252 0.3754

]]
]
,

max (M−1 (𝑥)) = [[
[
0.6055 −0.1534 0.1487−0.1534 0.6022 −0.1534−0.1487 −0.1534 0.6055

]]
]
,

(55)

respectively.
These bounds are also estimated from the TM by consid-

ering that [M(𝑥)−1]𝑖𝑗 ∈ 𝐵([T−1𝑀(𝑥)]𝑖𝑗). This, for an expansion
order 𝑛 = 6, leads to

min (𝐵 (T−1𝑀 (𝑥)))
= [[
[
0.3229 −0.2831 −0.1720
−0.2855 0.3967 −0.2820
−0.1795 −0.2863 0.3220

]]
]
,

max (𝐵 (T−1𝑀 (𝑥)))
= [[
[
0.6230 −0.1127 0.2542
−0.1103 0.6614 −0.1137
0.2617 −0.1095 0.6238

]]
]
.

(56)
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Furthermore, Figure 2 compares the behavior of[M−1(𝑥)]11 (black line) with the polynomial model provided
by a TM of order 𝑛 = 6 (dashed red line). The bounds
for expansion orders of 𝑛 = 3 and 𝑛 = 6 are indicated by
the green and magenta curves, respectively. This example
highlights the capability of TMsim to provide a parametric
approximation of the entries of the inverse of a matrix with
nonlinear elements as well as a conservative estimation of
their upper and lower bounds.

It is interesting to calculate the product between T𝑀 and
its inverse. In classical algebra, thiswould result in the identity
matrix. With the proposed TM framework and an expansion
order 𝑛 = 3, the result is
T𝑀 (𝑥) ⋅ T−1𝑀 (𝑥)

= [[
[
1 0 0
0 1 0
0 0 1

]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

P(𝑥)

+ [[
[
± [1.262] ± [1.226] ± [1.190]
± [1.306] ± [1.305] ± [1.274]
± [1.289] ± [1.268] ± [1.252]

]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

I

. (57)

It is remarkable that the polynomial part still defines an
identity matrix. This property stems from the exactness of
the SM formula. All the approximations arising from the
TM operations are included in the interval remainder. By
increasing the expansion order, the interval remainder is
reduced. For instance, using 𝑛 = 6 yields

I = [[
[
± [0.095] ± [0.086] ± [0.075]
± [0.108] ± [0.096] ± [0.086]
± [0.106] ± [0.095] ± [0.087]

]]
]
. (58)

8. Application Example

In this section, the accuracy and the strength of TMsim are
further investigated by considering two real-life application
examples, namely, a quarter-car model and a continuous-
time linear equalizer (CTLE). The code for these and other
application examples is available online [12].

8.1. Quarter-Car Model. The first example considers the
quarter-car model depicted in Figure 3 which is widely
used for the analysis of the dynamical behavior of vehicle
suspensions under the assumption that the front and the
rear part of the vehicle are uncoupled. The model has two
degrees of freedom, specifically, the vertical displacements of
the chassis 𝑧𝑠 and of the tire 𝑧𝑢 from the reference frame.The
road profile ℎ is considered as the excitation of the system.

The proposed quarter-car model is defined by the follow-
ing parameters, the masses of the chassis 𝑚𝑠 and of the tire𝑚𝑢, the spring coefficients of the suspension𝐾 and of the tire𝑃, and the damping coefficients of the suspension 𝐶 and of
the tire 𝐶𝑡.

Exact
Poly (TM order 6)

Bounds (TM order 3)
Bounds (TM order 6)

0.2
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−0.5 0 0.5 1−1
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−
1
(x

)]
11

Figure 2: TM approximation of [M−1(𝑥)]11. Black line: actual value;
dashed red line: polynomial approximation provided by a sixth-
order TM; green and magenta lines: bounds obtained with orders
3 and 6, respectively.
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Figure 3: Schematic of the quarter-car model considered in the first
application, with definition of parameters and state variables.

According to [24], the quarter-car model is described by
the following matrix equation:

[𝑚𝑠 00 𝑚𝑢][
𝑧̈𝑠 (𝑡)𝑧̈𝑢 (𝑡) ] + [

𝐶 −𝐶
−𝐶 𝐶 ][

𝑧̇𝑠 (𝑡)𝑧̇𝑢 (𝑡)]
+ [ 𝐾 −𝐾−𝐾 𝐾 + 𝑃] [ 𝑧𝑠 (𝑡)𝑧𝑢 (𝑡) ]

= [ 0
𝐶𝑡ℎ̇ (𝑡) + 𝑃ℎ (𝑡) ] ,

(59)
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Figure 4: Real and imaginary parts of the transfer function 𝑇(𝜔) = 𝑍𝑠(𝜔)/𝐻(𝜔). Gray area: spread of the response resulting from parameter
uncertainty and obtained with MC; magenta lines: WC bounds estimated from a fifth-order TM.

where 𝑧𝑠 and 𝑧𝑢 are the displacements from the static equi-
librium position with respect to an inertial frame.

After some straightforwardmanipulation, the above equa-
tion is rewritten in its state-space controllable form, which
reads

ẋ = Ax + Bu, (60)

where the column vector x(𝑡) = [V𝑠(𝑡), V𝑢(𝑡), 𝑧𝑠(𝑡), 𝑧𝑢(𝑡)]𝑇 ∈
R4 collects the state variables of the system and 𝑢(𝑡) =[ℎ(𝑡), ℎ̇(𝑡)]𝑇 ∈ R2 is a vector defining the sources of the sys-
tem. The matrix A ∈ R4×4 and the column vector B ∈ R4×2

are defined as

A = [ −M−1C −M−1K
I 0 ] ,

B = [M−1F0 ] ,
(61)

where I and 0 denote the identity matrix and the null matrix
of dimensions 2 × 2, respectively. The remaining terms are
defined as follows:

M = [𝑚𝑠 00 𝑚𝑢] (62a)

C = [ 𝐶 −𝐶
−𝐶 𝐶 + 𝐶𝑡] (62b)

K = [ 𝐾 −𝐾
−𝐾 𝐾 ] (62c)

F = [0 0
𝑃 𝐶𝑡] . (62d)

The frequency-domain response of the system, denoted as
X(𝜔), is obtained via the Fourier transform of (3) and by con-
sidering as excitation vector 𝑢(𝑡) = 1/(2𝜋) exp(𝑗𝜔𝑡)[1, 𝑗𝜔]𝑇:

X (𝜔) = (𝑗𝜔I − A)−1 BU (𝜔) , (63)

where U(𝜔) = [1, 𝑗𝜔]𝑇.
For the simulation, it is assumed 𝑚𝑠 = 332.5 kg, 𝑚𝑢 =38 kg, and 𝐶𝑡 = 0Ns/m. In addition, three independent un-

certainty variables are considered; that is, 𝐶 = (6000 ±20%)Ns/m, 𝐾 = (22000 ± 20%)N/m, and 𝑃 = (20000 ±20%)N/m.
Figure 4 shows the variation (gray area) of the real (top

panel) and imaginary (bottom panel) part of the transfer
function 𝑇(𝜔) = 𝑍𝑠(𝜔)/𝐻(𝜔), related to the state variable𝑍𝑠(𝜔), computed with 10’000MC samples over 100 frequency
points. The WC bounds obtained with a fifth-order analysis
in TMsim (magenta lines) compare very well with the spread
given by the MC samples. Figure 5 provides an analogous
comparison for the magnitude of the transfer function. The
excellent agreement validates the capability of TMsim to
accurately deal with large parameter variations in solving a
matrix system of equations.

8.2. Continuous-Time Linear Equalizer. The second proposed
application example deals with the analysis of three CTLEs
whose electrical circuits are depicted in Figure 6. CTLEs
are commonly used in telecommunications to compensate
for high-frequency channel losses with a “high-pass” type of
response.The impact of parameter uncertainty in these CTLE
configurations was analyzed in [25]. The circuit components
are as follows:

(a) 𝑅 = 35Ω ± 20%, 𝐶 = 1 pF ± 20%, 𝐿 = 3 nH ± 20%;
(b) 𝑅 = 100Ω ± 20%, 𝐶 = 1 pF ± 20%, 𝐿 = 3 nH ± 20%;
(c) 𝑅 = 100Ω ± 20%, 𝐶 = 1 pF ± 20%.
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Figure 5: Magnitude of the transfer function 𝑇(𝜔) = 𝑍𝑠(𝜔)/𝐻(𝜔). Line identification is as in Figure 4.
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Figure 6: Schematics of the three different CTLE configurations considered.

The impact of the uncertainty in the circuit components
on the transmission from the input port (left side) to the
output port (right side), commonly denoted in electrical
engineering as “𝑆21”, is investigated by analyzing the three
circuits of Figure 6 by means of the modified nodal analysis
(MNA) [10, 26]. The results for the real part, imaginary part,
and magnitude of 𝑆21 for the three CTLE configurations are
collected in the first, second, and third row of Figure 7,
respectively.Thegray areas indicate the spread of the response
resulting from a MC analysis with 10’000 samples, whereas
the magenta lines are the WC bounds computed from a
fourth-order TM.This second example confirms the excellent
accuracy provided by the TM analysis despite the large
variability of the circuit components.

9. Conclusions

This paper presents an open source and freely available alge-
braic tool, named TMsim, that allows for the parametric and
WC analysis of systems with bounded uncertain parameters.
TMsim implements TM algebra, which represents uncertain
variables as Taylor expansions complemented by an interval
remainder accounting for approximation errors. While the
Taylor expansion provides a parametricmodel of the variable,
the information on the remainder allows obtaining a conser-
vative estimation of the WC bounds. The TM representation
is propagated from input to output uncertainties via a suitable
redefinition of the linear and nonlinear operations involved
in the system analysis.
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Figure 7: Real part, imaginary part, and magnitude of the transmission coefficient 𝑆21 in the three CTLE configurations of Figure 6. Gray
area: spread of the response from a MC analysis. Magenta lines: WC bounds obtained with a fourth-order TM.

TMsim implements special improvements in the esti-
mation of remainders and extensions to matrix operations.
Specifically, a more accurate calculation of the remainders
is obtained by choosing the tightest option between the
Lagrange and Cauchy form. Moreover, an exact determina-
tion of the remainder is accomplished for the relevant case of
the multiplicative inverse function.The tool also implements
an effective algorithm for the inversion of a matrix TM.

The tool is validated by means of ad hoc illustrative
examples as well as real-life application examples, that is,
a quarter-car model and three CLTE electrical circuits.
Excellent accuracy in the conservative estimation of the WC
bounds of the output variables is achieved.
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