
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sensorless self-commissioning of synchronous reluctance motors at standstill without rotor locking / Hinkkanen, Marko;
Pescetto, Paolo; Molsa, Eemeli; Saarakkala, Seppo E.; Pellegrino, GIAN - MARIO LUIGI; Bojoi, IUSTIN RADU. - In:
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. - ISSN 0093-9994. - ELETTRONICO. - 53:3(2017), pp. 2120-
2129. [10.1109/TIA.2016.2644624]

Original

Sensorless self-commissioning of synchronous reluctance motors at standstill without rotor locking

Publisher:

Published
DOI:10.1109/TIA.2016.2644624

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2660144 since: 2017-05-29T16:15:15Z

IEEE



1

Sensorless Self-Commissioning of
Synchronous Reluctance Motors at Standstill

Without Rotor Locking
Marko Hinkkanen, Senior Member, IEEE, Paolo Pescetto, Eemeli Mölsä, Seppo E. Saarakkala,

Gianmario Pellegrino, Senior Member, IEEE, and Radu Bojoi, Senior Member, IEEE

Abstract—This paper proposes a standstill method for identi-
fication of the magnetic model of synchronous reluctance motors
(SyRMs). The saturation and cross-saturation effects are properly
taken into account. The motor is fed by an inverter with a short
sequence of bipolar voltage pulses that are first applied on the
rotor d- and q-axes separately and then simultaneously on both
the axes. The stator flux linkages are computed by integrating
the induced voltages. Using the current and flux samples, the
parameters of an algebraic magnetic model are estimated by
means of linear least squares. The proposed method is robust
against errors in the stator resistance and inverter voltage, due
to the high test voltages (of the order of the rated voltage). The
fitted model matches very well with the reference saturation
characteristics, measured using a constant-speed method, and
enables extrapolation outside the sample range. The method was
tested with a 2.2-kW SyRM, whose shaft was uncoupled from
any mechanical load, which is the most demanding condition for
this method. The proposed method can be used for automatic
self-commissioning of sensorless SyRM drives at standstill.

Index Terms—Flux maps, identification, linear least squares
(LLS), saturation characteristics.

I. INTRODUCTION

Synchronous reluctance motors (SyRMs) are simple to
manufacture, mechanically robust, and comparatively cheap.
If properly controlled using the maximum-torque-per-ampere
(MTPA) principle, their efficiency is better (or their frame size
is smaller) than that of the corresponding induction motor. In
order to be able to replace general-purpose induction motor
drives in simple applications (pumps, fans, conveyors, etc.), the
SyRM drives should be sensorless. The MTPA principle and
sensorless control require a magnetic model, where the cross-
saturation must be properly taken into account. For general-
purpose applications, the magnetic model of any unknown
SyRM should be automatically identified at standstill during
the drive start-up, using its power converter and embedded
controller. This is a common practice in the case of induction
motor drives, where various standstill self-commissioning al-
gorithms have been available for the last 20 or more years, cf.
e.g., [1], [2].
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An accurate way to identify the magnetic model of a
SyRM is to rotate it at a constant speed in a test rig by
another speed-controlled motor drive. The machine under test
is current-controlled, and the flux linkages are calculated by
means of the steady-state voltage equation. Such a constant-
speed identification method can be considered as a reference
method [3], [4], requiring a suitable test rig and off-line data
processing. Based on similar principles as the constant-speed
test, a self-commissioning procedure in [5] uses accelerations
and decelerations to emulate loading conditions.

Dealing with standstill test conditions, several identification
and self-commissioning methods for SyRMs and interior-
permanent-magnet motors have been proposed recently [6]–
[13]. The methods in [6]–[8] apply voltage (or current) steps
to the machine under test and compute the stator flux linkage
by integrating the induced stator voltage. Considering the d-
axis as an example, the flux linkage ψd at standstill is

ψd(t) =

∫
[ud(t)−Rsid(t)]dt (1)

where ud is the voltage, id is the current, and Rs is the stator
resistance. In [6]–[8], the applied voltage steps are selected so
low that the steady state ud = Rsid is reached, making the
flux computation based on (1) highly sensitive to the stator
resistance and inverter voltage.

In [12], the operating-point incremental inductances are ex-
plored using an AC current signal, superimposed to a DC bias
emulating different operating points. The saturation curves are
constructed from the estimated incremental inductances and
the polarity of the DC bias is switched to achieve zero mean
torque and no motion.

The method proposed in [13] is very simple and fast. It
resembles the ones in [6]–[8], but uses bipolar voltage steps of
much larger magnitude (up to the rated voltage), thus making
the flux estimate practically insensitive to the stator resistance
and offset errors. During a single voltage step, the whole
range of currents is scanned and, unlike in [6]–[8], the steady
state is not reached. In [13], the linear least squares (LLS)
method was used to fit a piecewise-defined mathematical
model to the measured samples. The cross-saturation effect
is taken into account by dividing the cross-axis into segments,
each of which has its own saturation curve and a set of
fitted parameters. Overall, the method in [13] works well
with self-axis identification, but the cross-saturation model is
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impractical for its high number of parameters and its moderate
accuracy.

In this paper [14], we propose a standstill identification
method, which uses a similar excitation signal as the method
in [13], with emphasis on improving the magnetic model.
The algebraic magnetic model from [15] is adopted here,
having a good trade-off between the number of parameters
and accuracy. The standard LLS method is used for estimating
the model parameters from the scattered current and flux
data coming from the self-commissioning tests. The modelling
approach was validated using the experimental data of five
other SyRMs. Detailed simulation and experimental results
are provided for the 2.2-kW SyRM drive to demonstrate
the effectiveness of the proposed method. The saturation
curves and MTPA trajectory obtained with the proposed self-
commissioning method are compared with the reference data
from constant-speed identification.

II. MOTOR MODEL

A. Fundamental Equations

The SyRM model in rotor coordinates is considered. The
stator voltage equations are

dψd

dt
= ud −Rsid + ωmψq (2a)

dψq

dt
= uq −Rsiq − ωmψd (2b)

where ψd and ψq are the flux-linkage components, ud and
uq are the voltage components, ωm is the electrical angular
speed of the rotor, and Rs is the stator resistance. The current
components

id = id(ψd, ψq) iq = iq(ψd, ψq) (3)

are generally nonlinear functions of the flux components.
They are the inverse of the flux maps extensively used in
the literature [4]–[8], [12], [13], often represented by two-
dimensional look-up tables. Here, the modelling approach (3)
is chosen, because it is more favourable towards representation
in the algebraic form. Since the nonlinear inductor should
not generate or dissipate electrical energy, the reciprocity
condition [16]

∂id(ψd, ψq)

∂ψq
=
∂iq(ψd, ψq)

∂ψd
(4)

should hold. Typically, the core losses are either omitted or
modelled separately using a core-loss resistor in the model.
The produced torque is

Te =
3p

2
(ψdiq − ψqid) (5)

where p is the number of pole pairs. If the functions (3) and the
stator resistance are known, the machine is fully characterized
both in the steady and transient states. For example, the MTPA
trajectory can be resolved from (3) and (5).
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Fig. 1. Typical d-axis saturation characteristics at iq = 0: (a) flux linkage
ψd = ψd(id); (b) current id = id(ψd). In (a, b), the measured data points
and the fitted model (7) for S = 5 are the same. In (a), the unsaturated induc-
tance as well as the chord-slope inductance (8) and incremental inductance
(9) at ψd = 1.3 Vs are shown. In (b), the rms residuals of the fitted models
are 0.33 A (S = 4), 0.14 A (S = 5), and 0.36 A (S = 6).

B. Algebraic Magnetic Model

The use of a suitable algebraic magnetic model for (3) in-
stead of look-up tables makes the self-commissioning problem
easier. The number of parameters to be identified is reduced.
The parameters are extracted by fitting the model to the data
from a reduced number of tests, which reduces the duration
of the commissioning and simplifies data processing. In the
following, algebraic magnetic models will be introduced using
the d-axis as an example. Then, the cross-saturation effect is
included in the model.

1) Self-Axis Model: Fig. 1 shows typical d-axis saturation
characteristics, when the q-axis current is zero. The data points
shown in the figure have been measured from the 2.2-kW
SyRM using the constant-speed method. The measured flux
linkages as a function of the measured currents are shown in
Fig. 1(a). The same measured data points are shown in the
inverted coordinates in Fig. 1(b).

The characteristics ψd = ψd(id) shown in Fig. 1(a), where
the current id is the independent variable, are difficult to
model with simple algebraic functions. Rational functions
generally fit well to the measured data, but they may also
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show vertical asymptotes or nonmonotonic behaviour, making
the fitted function noninvertible.

For modeling the characteristics id = id(ψd) shown in Fig.
1(b), a simple polynomial function could be used

id(ψd) = (ad0 + ad1|ψd|+ . . .+ adn|ψd|n)ψd (6)

where ad0. . .adn are the coefficients and n is the highest expo-
nent. The model is linear with respect to its coefficients, which
makes it easy to use the LLS method. If n is high enough
(typically n = 4. . .7 suffices), the polynomial function fits well
to measured saturation data. Typically, some of the coefficients
of the fitted polynomial tend to be negative, which may result
in a nonmonotonic function outside the measured data range.
To prevent this problem, more complicated constrained fitting
methods could be used.

The polynomial function (6) can be simplified as [15], [17]

id(ψd) =
(
ad0 + add|ψd|S

)
ψd (7)

where ad0 is the inverse of the unsaturated inductance, S is a
positive exponent determining the shape of the saturation char-
acteristics, and add is a nonnegative coefficient. This function
is monotonic and (numerically) invertible. The exponent S
can be fixed and the LLS method can then be directly used.
Rational numbers for S could be used, but integers were found
out to give sufficient fit. Fig. 1(b) illustrates the effect of S
on the LLS fit of (7) to the measured data. It can be seen
(and calculated from the residuals) that S = 5 gives the best
fit in this example. However, also S = 4 and S = 6 provide
sufficient fit for practical purposes.

If needed, the model (7) can be expressed as an inductance
function

Ld(ψd) =
ψd

id(ψd)
=

1

ad0 + add|ψd|S
(8)

which yields the chord-slope inductance as a function of ψd.
The model (7) also inherently includes information of the
incremental inductance

Ldi(ψd) =

[
∂id(ψd)

∂ψd

]−1
=

1

ad0 + (S + 1)add|ψd|S
(9)

Examples of the chord-slope inductance (8) and incremental
inductance (9) are shown in Fig. 1(a). To avoid confusions
relating to various definitions of the inductances, the saturation
characteristics are modeled using the form (3) in this paper.

The self-axis saturation characteristics of the q-axis can be
modeled using the same function (with different parameters),

iq(ψq) =
(
aq0 + aqq|ψq|T

)
ψq (10)

Since the effective airgap is large along the q-axis, the expo-
nent T = 1 typically suffices.

2) Inclusion of the Cross-Saturation: A form analogous to
(7) is applied for modeling also the cross-saturation effect,

id(ψd, ψq) = id(ψd, 0) + a′dq|ψd|U |ψq|V
′
ψd (11a)

iq(ψd, ψq) = iq(0, ψq) + a′qd|ψd|U
′
|ψq|V ψq (11b)

where a′dq and a′qd are nonnegative coefficients and U , U ′, V ,
and V ′ are nonnegative exponents. The functions id(ψd, 0)

TABLE I
BEST FIT INTEGER EXPONENTS OF (12) FOR SIX SYRMS

Motor Power (kW) Speed (r/min) S T U V

CMP 0.9 3 600 6 1 1 0
EA3 2.2 1 500 5 1 1 0
EA4 4.0 1 500 5 1 1 0
ABB 6.7 1 500 6 1 1 0
PMP 7.5 1 500 8 1 3 0
Sicme 250 1 000 5 1 1 0

and iq(0, ψq) describe the self-axis saturation characteristics,
here modeled by (7) and (10), respectively. When taking the
reciprocity condition (4) into account, the algebraic model (11)
reduces to [15]

id(ψd, ψq) =

(
ad0 + add|ψd|S +

adq
V +2

|ψd|U |ψq|V+2

)
ψd

(12a)

iq(ψd, ψq) =

(
aq0 + aqq|ψq|T +

adq
U+2

|ψd|U+2|ψq|V
)
ψq

(12b)

where ad0, add, aq0, aqq, and adq are nonnegative coefficients
and S, T , U , and V are nonnegative exponents. There are
three parameters for the d-axis, three for the q-axis, and three
for the cross-saturation. The model is invertible, which makes
it convenient to use. If desired, it could be expressed as
inductance functions in a manner similar to (8) and (9).

The algebraic model (12) was further simplified by using
only selected integers as exponents. In order to study the
typical range of the exponents, the model was fitted to the
saturation data of six different SyRMs, measured using the
constant-speed method. The best fit exponents are given in
Table I. It can be noticed that T = 1 and V = 0 hold for all
the motors and U = 1 holds for five motors out of six. Optimal
values of S vary between 5 and 8. Furthermore, a choice of
S is not critical: the deviation of ±1 from the optimal value
still gives a good fit, as already illustrated in Fig. 1(b).

III. IDENTIFICATION METHOD AND MEASURED
WAVEFORMS

A. Test Sequences

The test procedure proposed in [13] is briefly reviewed and
illustrated with measured waveforms of a 2.2-kW SyRM drive.
The rated line-line rms voltage of the motor is 400 V and
the rated rms current is 5.1 A. Fig. 2 shows the sensorless
controller used in the tests. The control scheme has been
implemented on a dSPACE DS1103 board. The sampling of
the currents is synchronized with the PWM operation. The
sampling and switching period is Ts = 100 µs. In all the tests,
the shaft of the motor was free (without any additional inertia
connected to it) and no motion sensor was used. This condition
is considered as the worst case for sensorless identification
at standstill, since it is challenging to avoid that the current
excitation makes the rotor move.

Only the initial position of the d-axis should be known,
since it is assumed that the rotor does not considerably move
during the test. If moving the rotor is possible, the DC-current
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Fig. 2. Sensorless identification setup. The white blocks represent the control
algorithm. The grey blocks model the plant: motor, converter, PWM, sampling,
and computational time delay z−1. The vector representation is used: is =
[id, iq]T, us = [ud, uq]T and similarly for other vectors.

vector can be fed to the desired direction (e.g. the a-phase
magnetic axis) before the test, which causes the rotor to rotate
into this direction. Alternatively, the initial rotor position can
be found using a signal-injection method, without causing the
rotor movement. The results shown in the following were
measured after parking the rotor using the DC current. The
signal-injection method was also tested, as commented in the
following.

1) d-Axis Test: A simple hysteresis controller is used. In
the d-axis test, the control law is

ud,ref(k) =


ud,out if id(k) < −id,max

−ud,out if id(k) > id,max

ud,ref(k − 1) otherwise
(13a)

uq,ref(k) = 0 (13b)

where ud,out is the test-voltage magnitude, id,max is the
current limit, and k is the discrete-time index. The current
limit defines the current span, i.e. the range of identification.
It can be selected to be, e.g., twice the rated current. In the
d-axis test, the torque is ideally zero and the operating point
is stable even at free shaft.

Fig. 3(a) shows the measured waveforms of the d-axis test.
The samples of two complete cycles, shown in the figure, are
used in the identification. The zero-crossings are detected from
the reference voltage ud,ref(k). The data of one complete cycle
would suffice for identification, but two cycles are used here
for better illustration. The test voltage is ud,out = 200 V and
the current limit is id,max = 20 A (which is almost three times
the rated current).

2) q-Axis Test: The control law in the q-axis test is anal-
ogous to (13). The torque is ideally zero also in the q-axis
test, but the operating point is only marginally stable. If the
rotor is free to rotate, the current limit iq,max should be
selected low enough to avoid the rotor movement. Fig. 3(b)
shows the measured waveforms of the q-axis test. As in the
case of the d-axis test, the samples of two complete cycles
are shown and used in the identification. The test voltage
is uq,out = 200 V and the current limit is iq,max = 14 A.
As the rotor was positioned with the DC current before the
test, this test condition could be used for several seconds
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Fig. 3. Measured self-axis test waveforms: (a) d-axis; (b) q-axis. The upper
subplots show the voltages. The lower subplots show the measured currents
and the calculated fluxes. The parameters are ud,out = uq,out = 200 V,
id,max = 20 A, and iq,max = 14 A. The number of samples is Nd = 624 in
the d-axis test and Nq = 264 in the q-axis test.

without the rotor movement. Instead, when the initial rotor
position was estimated using signal injection and iq,max =
14 A was used, the rotor moved less than five electrical degrees
during the first two complete cycles, due to inaccuracies in the
initial position estimate and the voltage production. The rotor
movement can be decreased or avoided by decreasing the limit
iq,max. Alternatively, if the rotor moves during the q-axis test,
it means that the rotor can be parked into a more stable initial
position, and the test can be repeated using the full current
range (14 A in this case).

3) Cross-Saturation Test: The hysteresis controllers corre-
sponding to (13a) are simultaneously used in the d- and q-
axes. The torque varies during the test, but the average torque
is approximately zero. Fig. 4 shows the measured waveforms
of the cross-saturation test. The samples of two complete d-
axis cycles are used in the identification. The test voltages are
200 V and the current limits are id,max = 20 A and iq,max

= 8 A. During the sequence shown in Fig. 4, the rotor angle
varied less than 10 electrical degrees. When the initial rotor
position was detected using signal injection, the same current
limits could be used.

The test-voltage magnitude is limited by the DC-bus voltage
Udc of the inverter, i.e., u2d,out + u2q,out < U2

dc/3. The higher
is the test voltage, the less variation there will be in the rotor
speed and angle during the cross-saturation test (for the same
current limits). This effect of the test-voltage magnitude on
the rotor movement is also verified by means of simulations
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Fig. 4. Measured waveforms of the cross-saturation test, where both the axes
are simultaneously excited. The first two subplots show the data for the d-
axis and the last two subplots show the data for the q-axis. The parameters
are ud,out = uq,out = 200 V, id,max = 20 A, and iq,max = 8 A. The
number of samples is Ndq = 621. The average value of the q-axis flux was
calculated from the complete cycles (the interval t = 2.0. . .61.8 ms marked
in the figure).

in Section V. It is worth noticing that bigger machines have
higher per-unit rotor inertia, which helps reducing the variation
of the rotor during the test.

B. Flux Calculation

The flux linkages are calculated using the forward Euler
approximation

ψd(k + 1) = ψd(k) + Ts[ud(k)− R̂sid(k)] (14)

In order to compensate for the computational time delay of one
sampling period, the voltage ud(k) = ud,ref(k− 1) is used in
the flux calculation. The analogous equation is used for the
q-axis. The estimate R̂s for the stator resistance is obtained
simply by feeding the DC current into the stator before the test
sequences. Unless otherwise noted, the measured value R̂s =
3.6 Ω is used. Inverter nonlinearities could be identified and
compensated for, but they are omitted in this paper because the
proposed method works fine also without the compensation.

In the self-axis tests, the samples consist of complete cycles.
The average of the flux samples is calculated and removed
from the samples. Fig. 3 shows the waveforms of the calcu-
lated flux samples after the average value has been removed.
Using the same data, the currents are plotted as functions
of the fluxes in Fig. 5. It can be seen that the two cycles
almost perfectly overlap. The dashed lines in the figure show
the reference saturation curves, which have been measured
using the constant-speed method [4]. For R̂s = 3.6 Ω, the
hysteretic behavior mainly originates from the core losses of
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Fig. 5. Measured self-axis saturation characteristics, when R̂s = 0 and R̂s =
3.6 Ω are used in the flux calculation (14). In neither cases are the inverter
nonlinearities compensated for. The data of the curves for R̂s = 3.6 Ω is the
same as in Fig. 3. The dashed lines show the reference saturation curves,
measured using the constant-speed method.

the motor and from the uncompensated inverter nonlinearities.
If R̂s = 0 is used in (14), the hysteresis loops become slightly
thicker, but their shape remains similar, as also shown in Fig.
5. The hysteretic behaviour, however, has a minor effect on
the accuracy of the identified magnetic model, as will be seen
later in the paper.

In the cross-saturation test, the d-axis samples have com-
plete cycles, but the q-axis samples generally include an in-
complete cycle (in addition to several complete cycles), which
may distort the average. Hence, to minimize this distortion,
the average value of the q-axis flux is calculated using only
the complete cycles (cf. the interval marked with the vertical
dashed lines in Fig. 4) and removed from all the samples.

C. LLS Method

If the exponents of the magnetic model (12) are fixed, the
remaining five parameters can be conveniently estimated using
the standard LLS method. The estimation problem reduces to
solving a set of linear equations: there is a unique solution and
neither initial values nor cost functions are needed. A recursive
variant [18] of LLS can be easily implemented in embedded
processors used in converters. Since the amount of feasible
integer exponents is limited, as discussed in Section II-B, the
parameters can be solved for different sets of exponents, which
have been chosen in advance. Then, the set of exponents (and
the corresponding fitted parameters) leading to the smallest
sum of the squared residuals can be chosen. The data collected
during the three tests (d-axis, q-axis, and cross-saturation tests)
are used in three consecutive fits, as explained below.

1) d-Axis Fit: Assuming positive current and flux samples,
the model (12) for the d-axis reduces to

id = ad0ψd + addψ
S+1
d (15)

when only the d-axis is excited. If the exponent S is fixed,
this model is linear with respect to the unknown parameters
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TABLE II
FITTED PARAMETERS GIVEN IN SI UNITS

S T U V ad0 add aq0 aqq adq

5 1 1 0 2.41 1.47 12.8 17.0 13.2

ad0 and add. The LLS problem in a vector form is
id(1)
id(2)

...
id(Nd)


︸ ︷︷ ︸

yd

=


ψd(1) ψd(1)S+1

ψd(2) ψd(2)S+1

...
...

ψd(Nd) ψd(Nd)S+1


︸ ︷︷ ︸

Xd

[
ad0
add

]
︸ ︷︷ ︸
βd

+


εd(1)
εd(2)

...
εd(Nd)


︸ ︷︷ ︸

εd
(16)

where yd is the vector of the current samples, Xd is regressor
matrix, βd is the parameter vector, εd is the residual vector,
and Nd is the number of samples. The sum of the squared
residuals is

Jd(βd) = εTd εd (17)

The parameter vector minimizing Jd is

βd = (XT
dXd)−1XT

d yd (18)

The fitting can be carried out using pre-selected values for the
exponent S, and the best value can be chosen based on (17).

2) q-Axis Fit: The parameters estimation procedure for
the q-axis is fully analogous to the that of the d-axis. The
parameter vector is βq = [aq0, aqq]T and the number of
samples is Nq.

3) Cross-Saturation Fit: The model (12) can be rewritten
as

id − ad0ψd − addψS+1
d =

adq
V + 2

ψU+1
d ψV+2

q (19a)

iq − aq0ψq − aqqψT+1
q =

adq
U + 2

ψU+2
d ψV+1

q (19b)

Since the parameters ad0, add, aq0, and aqq are known, the
output vector

ydq =


id(1)− ad0ψd(1)− addψd(1)S+1

iq(1)− aq0ψq(1)− aqqψq(1)T+1

...
id(Ndq)− ad0ψd(Ndq)− addψd(Ndq)S+1

iq(Ndq)− aq0ψq(Ndq)− aqqψq(Ndq)T+1

 (20)

is chosen, where Ndq is the number of samples. The regressor
matrix is

Xdq =


1

V+2ψd(1)U+1ψq(1)V+2

1
U+2ψd(1)U+2ψq(1)V+1

...
1

V+2ψd(Ndq)U+1ψq(Ndq)V+2

1
U+2ψd(Ndq)U+2ψq(Ndq)V+1

 (21)

The cross-saturation parameter is estimated as

adq = (XT
dqXdq)−1XT

dqydq (22)

ψd (Vs)ψq (Vs)
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Fig. 6. Currents as functions of the fluxes: (a) id; (b) iq. The mesh surfaces
correspond to the fitted model (12). The red stars show the measured samples
from the self-axis saturation tests, cf. Fig. 3. The blue circles show the
measured samples from the cross-saturation test, cf. Fig. 4.

IV. EXPERIMENTAL RESULTS

A. Fitting

Using the proposed method, the magnetic model (12) was
fitted to the measured current and flux samples, shown in Figs.
3 and 4 in the time domain. When R̂s = 3.6 Ω is used, the
fitted parameters are given in Table II. Fig. 6 shows the mesh
surfaces, which have been plotted using the fitted parameters
in the model (12). Also the measured samples are shown in
Fig. 6.

Fig. 7 compares the fitted model with the reference data
from the constant-speed method [4]. It can be seen that the
fitted model for R̂s = 3.6 Ω matches very well with real
saturation characteristics also in the cross-saturation region.
The results for R̂s = 0 are also shown; it can be seen that the
method is comparatively robust against the stator resistance
error.

As a comparison, the method [13] would need tens of
parameters to model the cross-saturation and separate post-
processing and interpolation algorithms should be imple-
mented. On the contrary, only one parameter, adq, is needed
in the proposed method to model the effect of the cross-
saturation (since the exponents U = 1 and V = 0 can be
typically used). The application of the proposed model and
identification method is also more straightforward.
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Fig. 7. Currents as functions of the fluxes: (a) id as a function of ψd for
ψq = 0 and ψq = 0.6 Vs; (b) iq as a function of ψq for ψd = 0 and ψd =
1.2 Vs. The dashed lines show the reference data, which has been measured
using constant-speed identification. The solid lines show the results from the
proposed standstill method.

B. MTPA as an Application Example

Fig. 8(a) shows three MTPA trajectories for the motor
under test. The stars represent the reference MTPA trajectory,
measured using the constant-speed method. The red line shows
the MTPA trajectory calculated using the magnetic model (12)
and the fitted parameters in Table II. The blue dashed line
represents the trajectory, which is also calculated using the
model (12), but the cross-saturation is omitted by setting adq
= 0. It can be seen that the proposed method gives a trajectory,
which is very close to the reference one. Fig. 8(b) compares
the torque factors related to these three trajectories. The torque
factor corresponding to the proposed method agrees very well
with the the reference trajectory, also in overload conditions.

It is also worth noticing that the magnetic model (12) has
been used in sensorless control, e.g., in [15], [19], [20]. Hence,
the proposed self-commissioning method can be directly used
in connection with these methods.

V. DISCUSSION

Only experimental results were shown in the previous
sections. Here, we elaborate on some robustness aspects of
the proposed identification method by means of simulations.
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Fig. 8. Comparison of MTPA characteristics: (a) control trajectories; (b)
torque factors. The legends given in (b) hold for (a) as well. The current
magnitude is denoted by is. The stars show the reference data from the
constant-speed method. The red solid curves are calculated using the model
(12) and the fitted parameters. In the case of the blue dashed curves, the
cross-saturation is omitted by setting adq = 0.
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Fig. 9. Simulated self-axis saturation characteristics, corresponding to the
experimental results in Fig. 5.

The saturation of the 2.2-kW SyRM is modeled using (12)
with the parameters in Table II. The core losses are omitted.
The actual stator resistance is Rs = 3.6 Ω. The inertia of the
rotor is 0.007 kgm2 and the mechanical friction is omitted. The
sensorless controller and the computational delay are modelled
according to Fig. 2.

A. Self-Axis Characteristics

Fig. 9 shows the simulation results from the self-axis stand-
still tests, corresponding to the experimental results in Fig. 5.
It can be seen that using R̂s = 0 widens the hysteresis loop,
similarly to the experiment. The hysteresis loop disappears in
the ideal case R̂s = Rs, since the core losses and inverter
nonlinearities are not included in the simulation model.

B. Rotor Position Variation

The cross-saturation test was simulated using two different
test-voltage magnitudes. The results for ud,out = uq,out =
100 V are shown in Fig. 10(a) and the results for ud,out
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Fig. 10. Simulated cross-saturation test at two different voltages: (a) ud,out
= uq,out = 100 V; (b) ud,out = uq,out = 200 V, corresponding to the
measurement results shown in Fig. 4. The torque, electrical rotor speed, and
rotor angle in electrical degrees are shown.

= uq,out = 200 V in Fig. 10(b). Otherwise, the parameters
correspond to the measurement shown in Fig. 4. The torque
Te, rotor speed ωm (in electrical rad/s), and rotor angle ϑm (in
electrical degrees) are shown. It can be seen that the position
variation is less than three electrical degrees for the 200-V
test voltage while it is almost 30 electrical degrees for the
100-V test voltage. For the given machine, the time needed
for the cross-saturation test is much below 100 ms shown in
the figure. As mentioned before, bigger machines have higher
per-unit rotor inertia, reducing the rotor movement during the
test.

C. Robustness Against the Rotor Position Variation and Stator
Resistance Errors

The magnetic model (12) was fitted using the simulated
data from the standstill tests. The test conditions equal those
used in the experiments. The resulting fitted model is depicted
in Fig. 11, corresponding to the experimental results in Fig.
7. In the case R̂s = Rs, the saturation characteristics of the
identified magnetic model almost perfectly overlap with the
plant-model characteristics. The small, hardly visible, error
originates mainly from the rotor angle variation during the
cross-axes test, cf. Fig. 10. The case R̂s = 0 agrees well with
the experimental results and confirms the robustness against
the stator resistance error.
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Fig. 11. Simulation results from the proposed standstill method, correspond-
ing to the experimental results in Fig. 7: (a) id as a function of ψd for ψq = 0
and ψq = 0.6 Vs; (b) iq as a function of ψq for ψd = 0 and ψd = 1.2 Vs.
The dashed lines show the reference data (plant model).

VI. CONCLUSION

The identification method proposed in this paper combines
the test sequence of [13], the algebraic magnetic model of [15],
and the LLS method to determine the saturation characteristics
of SyRMs at standstill. The cross-saturation effect is included.
The method is robust against errors in the stator resistance and
inverter voltage, due to the high test voltages. The algebraic
magnetic model is physically feasible, it has few parameters,
it takes the cross-saturation inherently into account, and it
enables extrapolation outside the measured data range. The
accuracy of the method has been compared with the refer-
ence data from constant-speed identification. The fitted model
matches very well with real saturation characteristics also in
the cross-saturation region. The proposed method can be used
for automatic self-commissioning of sensorless SyRM drives.
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