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ANALYSIS OF FACTORS AFFECTING THE SEVERITY OF CRASHES  

IN URBAN ROAD INTERSECTIONS 

 

ABSTRACT 

Road crashes are events which depend on a variety of factors and which exhibit different 

magnitudes of outputs when evaluated with respect to the effects on road users. Despite a lot of 

research into the evaluation of crash likelihood and frequency, only a few works have focused 

exclusively on crash severity with these limited to sections of freeways and multilane highways. 

Hence, at present there is a large gap in knowledge on factors affecting the severity of crashes for 

other road categories, facilities, and scenarios.  

The paper deals with the identification of factors affecting crash severity level at urban road 

intersections. Two official crash records together with a weather database, a traffic data source 

with data aggregated into 5 minute intervals, and further information characterising the 

investigated urban intersections were used. Analyses were performed by using a back propagation 

neural network model and a generalized linear mixed model that enable the impact assessment of 

flow and other variables. Both methods demonstrate that flows play a role in the prediction of 

severity levels. 

 

Key-words: urban roads, road intersection, crash severity level, 5-minute flow, short-term data, 

back-propagation neural network, generalized linear mixed model 

 

Highlights:  

 Severity level of 1,838 crashes at Turin’s intersections was investigated 

 Independent variables include 5-minute traffic flows and weather conditions  

 Back-propagation neural network and generalized linear mixed models were applied  

 Confusion matrixes show superiority in prediction of non-linear models 

 Both models showed the relevance of flows and weather conditions  
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1. INTRODUCTION 

In road safety research, analysts are interested in predicting road crashes in terms of location, 

frequency, pattern, and severity in order to ensure better traffic operations and save lives. A 

knowledge of the relationship between crash severity and the environmental and traffic conditions 

is fundamental to achieve this goal. 

Regarding weather, the most important factors influencing crashes are those that affect the 

available friction between wheel and pavement, and/or driver visibility, resulting in crashes when 

the driver is unable to avoid collisions with moving or fixed obstacles. The conclusions of Caliendo 

et al. (2007) and Theofilatos et al. (2012) confirm that in the case of rainfall, the frequency of 

severe crashes increases. Rainfall may change its intensity rapidly, hence average annual rainfall 

precipitation, and even hourly rainfall may not be sufficient to capture the real-time rainy weather 

conditions prior to or during crash occurrence. But weather data cannot always be collected in very 

short intervals and close to each crash location, so Jung et al. (2010) suggested taking into 

consideration interpolation techniques to derive unmeasured (or even unmeasurable) data. 

It is normally difficult to interpret and compare crash data in adverse weather conditions with 

those in good weather conditions. This is due to factors related to the ability of drivers to adapt 

their behaviour to weather conditions (Theofilatos and Yannis, 2014), and to possible changes in 

the composition of the driver population under adverse weather conditions where aggressive 

drivers (usually young males) tend to persist with their behaviour and speed, while the rest of the 

population tends to assume a more prudent attitude or avoid driving altogether (Hill and Boyle, 

2007). 

On the other hand, traffic flow can explain the number of conflicts between vehicles, hence if 

flow increases then the interferences between vehicles should increase, and their crash risk 

exposure as well. Theofilatos and Yannis (2014) stated that the influence of traffic flow has been 

considered more than other traffic related parameters such as speed, density and occupancy, 

mainly because it is simpler to measure. However, different circulation regimes are possible for 

the same vehicular volume (daily or even hourly), and this may lead to contrasting or difficult 

interpretations of crash outcomes. In the case of urban areas, Noland and Quddus (2005) observed 

that congestion does not significantly affect crash severity in the greater London metropolitan area. 

One way to overcome the effect of traffic variables is to avoid the use of aggregate traffic data 

(i.e., AADT, hourly flow) which are not consistent with the traffic flow levels at the time of 

crashes. In fact, they hide and smooth out volume peaks, and provide a brief reference to the 

volume of traffic characterizing a road section or intersection. Furthermore, neither hourly traffic 
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volumes, volume per lane, nor V/C (volume/capacity) ratio necessarily link the crash events to the 

explanatory traffic variables. This conclusion was also drawn for weather, therefore traffic and 

weather data available in an aggregated format cannot always depict the real event conditions. 

Xu et al. (2013) carried out a crash severity analysis along a 29-mile of a freeway segment using 

real-time traffic data on flow, occupancy, and speed. They used a sampling frequency of 30 s to 

calibrate and validate a sequential logit model, linking the likelihood of crash occurrences at 

different severity levels (SL) to the previously mentioned traffic flow characteristics. Results 

showed that property-damage only (PDO) crashes tend to take place in congested conditions with 

a highly variable speed and frequent lane changes. Injury and fatal crashes occur more often in 

less congested flow conditions, while fatal crashes occur under uncongested conditions as well as 

when there are large differences in speed between adjacent lanes. Similar conclusions were drawn 

by Christoforou et al. (2010) with traffic data records of 6 minutes each. Yu and Abdel-Aty (2014) 

conducted a SL analysis on a mountainous freeway on the basis of 6-min traffic and weather data, 

with the SL classified into two levels (severe injury and PDO). Steep grades, standard deviation 

of speed, temperature, and snow were found to be the most influential variables for this type of 

facility. Other authors used real-time traffic data for crash and safety analysis in urban arterials 

and urban expressways (Shi et al. 2016a, 2016b; Theofilatos and Yannis 2016; Hossain and 

Muromachi 2013a, 2013b). 

Shankar et al. (1996) observed that road safety studies were historically limited to the 

localization of fatalities, even though the estimation of consequences in terms of SL (from PDO 

to fatalities) could help in understanding the benefits accruing from countermeasures. 

Furthermore, at present there are no studies in literature that focus on the contributing causes to a 

specific SL in the event of a crash on urban road networks.  

To bridge this gap, the paper aims at providing knowledge on factors contributing to crash 

severity in urban road intersections. Crash, traffic and the weather databases of the Turin road 

network in the North-West of Italy were collected and used to calibrate and validate predictive 

models for crash SL. The Artificial Neural Network (ANN), a robust tool used to investigate 

complex phenomena without assuming any preliminary hypotheses on the model, was used. Since 

the ANN cannot provide an analytical formulation, a Generalized Linear Mixed Model (GLMM) 

was also applied. Both models were subjected to sensitivity analysis to comprehend the effects of 

each variable.  

The ANN method is well-known and there are many papers on its use for safety analysis in 

different scenarios (Karlaftis and Vlahogianni 2011). There are fewer works using GLMM on the 
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same subject. An example is the paper by Baily and Hewson (2004) which analyses the incidence 

of fatal and serious crashes for different types of road users by a multivariate GLMM (Bailey and 

Hewson 2004). Gargoum et al. (2016) explored the relationships between some features of road 

surroundings (geometric, temporal factors, and weather conditions), and driver compliance (a 

categorical variable) with speed limits by a GLMM (data are modelled using a cumulative logit 

model with random intercepts). A mixed logit model was also used by Milton et al. (2008) in an 

exploratory analysis of crash severity in highways. Similarly, Chen and Chen (2011) applied a 

mixed logit model to the study of the severity of traffic accidents involving trucks in single or 

multi-vehicle crashes. A comparison of three crash severity models, multinomial logit, ordered 

probit, and mixed logit with regard to crash data underreporting effects was proposed in Ye and 

Lord (2011). Qin et al. (2013) also compared the results obtained by three logistic regression 

models (multinomial logit, partial proportional odds and mixed logit) used to investigate the effects 

on crash severity of large trucks. With the aim of employing a multivariate approach to the 

investigation of crash severity, Ma and Kockelman (2006) proposed a Bayesian Poisson 

regression. Mat et al. (2008) introduced a multivariate Poisson approach to model injury counts 

by severity whereas Wang et al. (2017) identified the effects of a number of factors on different 

crashes by using a multivariate Poisson log-normal regression 

 

2. DATABASE FORMATION 

2.1 Crash and traffic data 

The crash data used in this research were obtained from the Istituto Nazionale di Statistica 

(ISTAT). The database contains details on crash dynamics and location, on vehicles and on the 

individuals involved, but it does not include PDO events in accordance with current Italian 

legislation, specifically articles number 582, 583 and 590 of the Italian Penal Code 2015 

(Repubblica Italiana, 2015). In fact, Italian law defines road accidents as crashes only when they 

result in at least one injury, and crash consequences are classified into five severity levels (SL) all 

of which refer to the most seriously injured road user in any particular crash: 

 very slight injuries (VSI), when the most seriously injured person has a prognosis of fewer 

than 20 days; 

 slight injuries (SLI), when the prognosis is between 21 and 40 days; 

 severe injuries (SEI), if the event causes an illness that endangers the life of the injured 

party, and/or if the event results in the permanent weakening of brain function or a body 

organ;  
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 guarded prognosis (GPR), if the doctor cannot determine the disability, and he issues a 

report of "guarded prognosis" (until his reservations can be resolved, the road crash must 

be considered and treated as a determining factor); and 

 fatalities (FAT), which include any injured persons who die within 30 days of the crash. 

The ISTAT database was matched up with information from Turin’s Municipal Police, to 

include: (a) historical data, in particular the time, to the nearest minute, day, month and year of the 

crash event; (b) locality data with the name of the street and house number where the crash took 

place along a road segment, or the denomination of two streets when it occurred at an intersection; 

and (c) generic information concerning crash SL. 

Traffic data were provided by the 5T Company which uses induction-loop traffic sensors, 

located along the exiting lanes of the monitored intersections, with flow data collected every 5 

minutes. Table 1 reports the crash data counts that were associated with 5-minute flow data, while 

Figure 1 shows the portion of the road network monitored by 5T in 2006, and includes the time 

scale used to estimate the seven 5-minute flows of the 35 minutes before, during and after the crash 

event. 

 

 
Figure 1. Turin’s traffic monitoring network operated by 5T in 2006 (highlighted in black), and 

time scale used to aggregate traffic flows (TF) in the seven 5-minutes periods across the crash 

event. 
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Table 1. Crash data characteristics (distinguished in terms of severity, day, hour, brightness, 

rainfall, road typology, pavement conditions, type of vehicle, gender and age of drivers). 

Data   Frequency 

 Crashes 

Severity 

Level (SL) 

VSI (SL = 2) 1531 (83.3%) 

SLI (SL = 3) 207 (11.3%) 

SEI (SL = 4) 49 (2.7%) 

GPR (SL = 5) 33 (1.8%) 

FAT (SL = 6) 18 (1.0%) 

Day 
Weekdays 1307 (71.1%) 

Weekend 531 (28.9%) 

Hours 

12.00 am – 6.59 am 239 (13.0%) 

7.00 am – 8.59 am 192 (10.4%) 

9.00 am – 10.59 am 182 (9.9%) 

11.00 am - 12:59 pm 209 (11.4%) 

1.00 pm – 3.59 pm 309 (16.8%) 

4.00 pm – 5.59 pm 208 (11.3%) 

6.00 pm – 11:59 pm  499 (27.1%) 

Brightness 
dark 963 (52.4%) 

bright 875 (47.6%) 

Rainfall 
not event 1709 (93.0%) 

event 129 (7.0%) 

Road  

typology  

 Unknown 497 (27.0 %) 

 One carriageway 208 (11.3 %) 

 Two or more carriageways 1133 (61.6 %) 

Pavement  

conditions 

 Unknown 497 (27.0 %) 

 Dry 1132 (61.6 %) 

 Wet (other) 209 (11.4 %) 

Type of  

vehicle A 

 Unknown 497 (27.0 %) 

 Passenger car 1111 (60.4 %) 

 Other 230 (12.5 %) 

Type of  

vehicle B 

 Unknown 704 (38.3 %) 

 Passenger car 869 (47.3 %) 

 Other 265 (14.4 %) 

Gender of 

 driver A 

 Unknown 500 (27.2 %) 

 Male 1021 (55.5 %) 

 Female 317 (17.2 %) 

Age of  

driver A 

 Unknown 540 (29.4 %) 

 18-24 233 (12.7 %) 

 25-64 973 (52.9 %) 

 > 64 92 (5.0 %) 

Gender of  

driver B 

 Unknown 704 (38.3 %) 

 Male 828 (45.0 %) 

 Female 306 (16.6 %) 

Age of  

driver B 

 Unknown 739 (40.2 %) 

 18-24 225 (12.2 %) 

 25-64 804 (43.7 %) 

 > 64 70 (3.8 %) 
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They are divided into function of SL, road typology, pavement conditions, vehicle type, gender 

and age of drivers (no more than two, and indicated as A and B). Variables relating to driver B 

have a relatively high percentage of unknowns since some crashes are single-vehicle collisions 

(e.g. rollover, roadway departure, collision with animals) thus involving only vehicle A. Driver B 

may be a pedestrian or even a child riding a bicycle. 

Table 2 reports the traffic flow (TF) as the number of vehicles counted in 5-minute intervals 

over a period of 35 minutes. Only crashes occurring along intersections yielding valid and reliable 

traffic data were extracted from the main database for further use. As a result, the database used 

for model calibration was obtained as a subset of the total number of crashes recorded in the official 

database, since only crashes that occurred on monitored roads were included (therefore it can be 

considered a random sample of crashes on monitored roads).  

 

Table 2. Descriptive statistics for traffic flow (TF) data included in the injury crash database. 

TF Description  Values 

1 
Traffic flow from -10 to -15 min  

before the 5 minutes that include the event (veh/5 min) 

Mean 201.0 

St. dev. 140.9 

Min 0 

Max 1019 

2 
Traffic flow from -5 to -10 min  

before the 5 minutes that include the event (veh/5 min) 

Mean 200.3 

St. dev. 141.6 

Min 0 

Max 1065 

3 
Traffic flow from -0 to 5 min  

before the 5 minutes that include the event (veh/5 min) 

Mean 198.6 

St. dev. 142.8 

Min 0 

Max 1218 

4 
Traffic flow in the 5 minutes that  

include the event (veh/5 min) 

Mean 196.6 

St. dev. 140.0 

Min 0 

Max 1175 

5 
Traffic flow from 0 to +5 min after the 5 minutes that 

include the event (veh/5 min) 

Mean 196.4 

St. dev. 139.6 

Min 0 

Max 1095 

6 
Traffic flow from +5 to +10 min after the 5 minutes that 

include the event (veh/5 min) 

Mean 196.3 

St. dev. 140.6 

Min 0 

Max 1009 

7 
Traffic flow from +10 to +15 min after the 5 minutes that 

include the event (veh/5 min) 

Mean 196.2 

St. dev. 140.2 

Min 0 

Max 990 
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2.2 Weather data 

The Environmental Protection Agency of the Piedmont Region (ARPA Piedmont) provided data 

on weather conditions from the Turin weather station. It is located in the city centre at 238 m a.s.l., 

1.5 m off the ground, and at a latitude of 45°.066667 and longitude of 7°.683333. The station 

collects hourly data on several variables, but the data used in this investigation and summarized in 

Table 3 were limited to air temperature in °C, total light radiation in W/m2, and rainfall intensity 

in mm/h. Each crash record was associated with the three weather data recorded in the hour of the 

event. 

 

Table 3. Descriptive statistics for weather conditions in the database. 

Weather variable Values 

Air temperature (°C) 

Mean +14.9 

St. dev. +9.2 

Min -5.6 

Max +36.4 

Total light radiation (W/m2) 

Mean 189.6 

St. dev. 249.0 

Min 0.0 

Max 966.0 

Rainfall intensity (mm/h) 

Mean 0.10 

St. dev. 0.7 

Min 0.0 

Max 24.2 

Wind speed (km/h) 

Mean 0.10 

St. dev. 0.7 

Min 0.0 

Max 24.2 

 

3. VARIABLES AND PRELIMINARY OPERATIONS 

Table 4 lists the independent variables, their numbering and labels, referring to injury crashes 

included in the database and used for model calibration and validation. The variables referring to 

the road conditions were: 

 road type (C1), indicating the organization of the carriageways and the directions served 

(0 = unknown; 1 = one carriageway, one way; 2 = one carriageway, two ways; 3 = two 

carriageways, two ways; 4 = more than two carriageways, two ways);  

 pavement conditions (C2), distinguished according to the presence of water, snow or ice (0 

= unknown, 1 = dry, 2 = wet, 3 = slippery, 4 = icy/frozen, 5 = snowy); and 
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 road signage (C3), indicating if it was absent (0), composed of vertical signs only (1), 

horizontal markings only (2), if both were present (3), or if a temporary construction 

signage was present (4). 

The vehicle characteristic variables were: 

 vehicle type (C4 for vehicle A, and C6 for vehicle B) ranging from 0 (passenger cars) to 20 

(quad), including the case of vehicles that fled the crash scene (19); and 

 vehicle category (C5 for vehicle A, and C7 for vehicle B) from 0 to 8, in which 1 represents 

cars, 2 buses, 3 trams, 4 heavy vehicles, 5 industrial vehicles, 6 bikes, 7 motorcycles, 8 

vehicles that fled the crash scene and 0 unclassified vehicles. 

The driver description variables were: 

 age (C8 for driver of vehicle A, and C11 for driver of vehicle B) ranging from a minimum 

of 10 (for driver B) to a maximum of 89 (for driver A); this variable also assumed the null 

value in cases of unknown/unrecorded age; 

 age class (C9 for driver of vehicle A, and C12 for driver of vehicle B) which groups the 

ages into 6 intervals ranging from 0 to 5: 0 in the case of unknown/unrecorded data, 1 for 

very young drivers (15-19 years old), 2 for young drivers (20-24 years old), 3 for adults 

(25-64 years old), 4 for elderly drivers (from 65 to 79), and finally 5 for very old drivers 

(over 80); and  

 gender of drivers (C10 for driver of vehicle A, and C13 for driver of vehicle B) which 

assumes the value 0 in cases of unknown/unrecorded data, 1 for males, and 2 for females. 

The lowest values of ‘age of driver A’ could refer to scooter drivers, while those of driver B 

may refer to pedestrians or cyclists. The measured wind speed, solar radiation, and rainfall 

precipitation values were numerical. 

The flow data are numerical and represent the volume of vehicles per hour (veh/h), while the 

standard deviation of the seven flow values is calculated and added to the list, in order to take flow 

fluctuations directly into account. Finally, the output variable indicating the severity is also 

reported in Table 4 as a number ranging from 2 (VSI) to 6 (FAT).  
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Table 4. Number and labels of variables. 

Variable label Description Type u.m. min max 

C1 Road type C - 0 4 

C2 Pavement conditions C - 0 5 

C3 Road signage C - 0 4 

C4 Vehicle type A C - 0 20 

C5 Vehicle category A C - 0 8 

C6 Vehicle type B C - 0 18 

C7 Vehicle category _B C - 0 7 

C8 Age of driver vehicle A N - 16 86 

C9 Age classes A N - 0 5 

C10 Gender of driver vehicle A C - 0 2 

C11 Age of driver vehicle B N - 10 80 

C12 Age classes B N - 0 5 

C13 Gender of driver vehicle B C - 0 2 

C14 Air temperature N °C -5.6 +36.4 

C15 Wind speed N m/s 0 9.10 

C16 Light radiation N W/m2 0 966 

C17 Light/dark (day/night) B - 0 1 

C18 Rainfall N mm/h 0 24.2 

C19 Traffic Flow #1 – TF1 (*) N veh/h 0 1129 

C20 Traffic Flow #2 – TF2 (*) N veh/h 0 1124 

C21 Traffic Flow #3 – TF3 (*) N veh/h 0 1118 

C22 Traffic Flow #4 – TF4 (*) N veh/h 0 1175 

C23 Traffic Flow #5 – TF5 (*) N veh/h 0 1095 

C24 Traffic Flow #6 – TF6 (*) N veh/h 0 1110 

C25 Traffic Flow #7 – TF7 (*) N veh/h 0 1075 

C26 Flow standard. deviation N veh/h 0 337 

C27 Severity level – SL  N - 2 6 
Notes: N indicates “numerical”, B indicates “Boolean”, C indicates “categorical”; u.m. stands for unit of 

measurement; (*) Refer to Table 2 for a complete description of the variables 

 

3.1 Introductory data analyses 

A correlation analysis was performed to assess the level of collinearity in input data for injury 

crashes. From variable C1 to C13, the set-up of road, vehicle, and driver variables showed high 

correlation values for each subset of variables (grouped by 3, 2, 2, 3, and 3 variables, respectively, 

referring to road, vehicle A, vehicle B, driver A, and driver B). From C14 to C18, the set of weather 

variables were only slightly correlated, while variable C18 (rainfall) showed no correlation with 

any other variable. The traffic flow variables from C19 to C25 and their standard deviation 

(variable C26) were highly correlated. The high correlation between TF variables would seem to 

preclude their contextual use. Since the aim was to investigate the role of flow values along the 

intervals around the crash event, and because the exact combinations of the seven flow values are 

generally not trivial (in the sense that their combination is not easily predictable), the authors 

decided to consider all of them in the calibration of models.  
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A cluster analysis using the SOM technique (Kohonen, 2001) was also performed to understand 

possible relationships between data, following the results of a previous research (Mussone and 

Kim, 2010). However, no specific relationship was discovered between these clusters and crash 

characteristics. 

Finally, the Principal Component analysis (PCA) (Lebart et al, 1977; Jolliffe, 1986) was 

conducted to investigate the information content of the database. Table 5 reports the variance 

explained by the first eight components that account for about 93% of the total variance for both 

databases, while the first two components account for about 62%. The variables most closely 

linked to the first component are signage, road type, and gender of drivers A and B (variables C3, 

C1, C10, C13, respectively); whereas those linked to the second component are light/dark, light 

radiation, and air temperature (variables numbers 17, 16, 14, respectively). Flow variables (TF1-

TF7) are all linked to the third component. As a result, the set of variables relating to road and 

driver can together account for about 46% of the variance; those related to meteorological 

conditions about 16%, and those related to flow about 7%. 

 

Table 5. Percentage of variance accounted for by the first eight components in PCA. 

Component 1 2 3 4 5 6 7 8 

Simple value 46.16 15.76 7.46 6.45 5.42 4.66 3.87 2.28 

Cumulative value 46.16 61.92 69.37 75.83 81.25 85.91 89.78 92.97 

 

3.2 Data treatment 

According to Table 1, the categories of crash SL are not equally represented with a high number 

of VSI and SLI injury crashes and a very low number of FAT crashes, so the dataset is unbalanced. 

This should not generally present a problem for logistic regression, but it certainly presents one 

for machine learning tools, and especially with artificial neural networks (ANN). With unbalanced 

datasets, ANN could not find the correct relationships between input and output for all categories 

present in the dataset. Therefore, the natural distribution of the dataset is not the best distribution 

for training a classifier. 

Since the focus of the paper is on the effect of weather and flow on crash severity, and 

considering that overfitting does not distort the relationships between input and output variables, 

the authors chose to oversample the data to run both the BPNN and GLMM codes (described in 

the next Section 4), in order to have only one reference database. The oversampling method 

proposed by Japkowicz (2000), which consists of the duplication of those data in the minority 

classes (in this case FAT, GPI, and SEI), was adopted. According to this approach, duplication 
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was carried out on the subset of data until their count was of the same dimension as that of the 

most populated class.  

Data was also normalized since this helps the learning machines working. Simple rescaling (or 

feature scaling, or unity-based normalization) was employed due to its simplicity. Assuming that 

Xmin and Xmax are the two extreme values (minimum and maximum) of a variable X, the normalized 

variable X’ will be: 

 𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

Only the input variables were normalized according to eq. 1, while the output variable (SL) 

remained numerical ranging from 2 to 6. 

 

4. MODELLING AND RESULTS 

In this paper, the authors have used two different modelling approaches: the Artificial Neural 

Network (ANN) model, and the Generalized Linear Mixed Model (GLMM). The ANN model 

provides a relatively good approximation of the relationship between input and output irrespective 

of linearity. The GLMM method provides the authors with a direct insight into the equations 

describing that relationship. Compared to other linear regression models, GLMM has certain 

advantages: it is an extension of logistic regression but with random effects on some grouping 

variables (overcoming some difficulties of GLM) and, apart from the Gaussian one, may have 

different distributions for the output variable. Their use has to be considered complementary. 

 

4.1 Back-Propagation Neural Network (BPNN) 

The BPNN is one of the ANN models, and has a classical multilayer topology with feed-forward 

connections. ANN models have already been used in contributions dealing with the problem of 

crash prediction or severity (Abdelwahab and Abdel-Aty, 2001; Chong et. al., 2004; Delen et al., 

2006; Baluni and Raiwani 2014). 

A BPNN does not need any a priori assumptions on relationships between linear or non-linear 

variables, and offers the opportunity to investigate and create the first discriminant analysis in 

problems where the phenomena (the relationships between input and output) are not well known 

and an analytical approach could be time consuming. A BPNN does not provide an analytical 

formulation between input and output, so the only way to understand the effects of input variables 

is to carry out a sensitivity analysis of the model. 
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In this investigation, the BPNN model was calibrated and validated with the 

Levenberg-Marquardt training algorithm, and performances were evaluated according to Mean 

Squared Errors (MSE) through the three phases of train, test, and validation. According to 

Figure 2, the model has an input layer of 26 independent variables listed in Table 5, a hidden layer, 

and an output layer corresponding to the SL (with one neuron according to the numerical output 

previously mentioned). Finally, the best model was found to be made up of 35 neurons in the 

hidden layer, with a MSE close to 0.08, which means, effectively, that there are at most 8 errors 

for every 100 classifications.  

The variables used in the model were selected through the backward procedure that involves 

the elimination of one variable at a time, while assessing whether or not it affects the overall 

performance of the neural network in predicting the output. However, it should be noted that this 

approach does not necessarily guarantee the best performance since the elimination of correlated 

variables depends on the order in which they are evaluated. 

 

One hidden layer  

Output  

Level of severity  
Input  

(26 variables) 

 

Figure 2. Back-propagation Neural Network structure for SL modelling. 

 

4.2 Generalized Linear Mixed Model 

For comparison purposes and in order to obtain an analytical relationship between input and 

output, a generalized linear mixed model (GLMM) was calibrated and validated. Mixed models 

for continuous normal outcomes have been developed since the seminal paper of Laird and Ware 

(1982). Many developments were also proposed for non-normal data (Booth and Hobert, 1998) 

and generically classified as generalized linear mixed models, an extension of generalized linear 

models (GLMs) that include random effects. Their inclusion leads to valid results and limits the 

extent to which variation can be attributed to variables (a normal distribution on random effects is 
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generally assumed). GLMM is a regression model of a response variable that comprises data, a 

model description, fitted coefficients, co-variance parameters, design matrices, residuals, residual 

plots, and other diagnostic information. Fixed-effects terms usually refer to the conventional linear 

regression part of the model, while random effects terms are associated with individual 

experimental units taken at random from a population, and account for variations between groups 

that might affect the response.  

The GLMM structure used for this investigation is made up of the following equations: 

 yi|b ∼ Distr (μi,
σ2

wi
) (2) 

 g(μ) = βX + bZ + δ (3) 

where yi is the i-th element (dependent variable) of the y response vector, b is the random-effects 

vector (complement to the fixed β), Distr is a specified conditional distribution of y given b, μ is 

the conditional mean of y given b, and μi is its i-th element, σ2 is the variance or dispersion 

parameter, w is the effective observation weight vector, and wi is the weight for observation i, g(μ) 

is a link function that defines the relationship between the mean response μ and the linear 

combination of the predictors, X is a fixed-effects design matrix (of independent variables), β is a 

fixed-effects vector, Z is a random-effects design matrix (of independent variables), and δ is a 

model offset vector (residuals). 

The model for the mean response μ is: 

 μ = g−1(η̂)  (4) 

where 𝑔−1 is the inverse of the link function g(μ), and 𝜂̂ is the linear predictor of the fixed and 

random effects of the generalized linear mixed-effects model: 

 η = βX + bZ + δ (5) 

The significant variables in the GLMM were selected through the maximization of the 

log-likelihood function. In the selection process, the Aikake Index Criterion (AIC), the Bayesian 

Information Criterion (BIC) and the Deviance (a combination of AIC and BIC) were also 

estimated. For the SL output, a log link function and the probability mass function (PMF) for the 

Poisson distribution were used. The fit method was the ‘Laplace’ one.  

Model building is a difficult task even with GLMM and, generally speaking, an investigation 

of the entire set of variable permutations and their reciprocal interactions is not feasible. In order 

to render the model complex enough to accommodate the data without over-fitting, and simple 

enough to interpret by smoothing out the data, we only investigated models with linear predictors 
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without mutual interactions, and random effects were investigated only for intercepts, leaving 

possible improvements for future research. 

Table 6 reports the fixed effect coefficients that were calculated with a 95% confidence interval 

and an estimate for the random parameter. All p-values for significant variables are lower than 

0.021, the standard error of estimates is generally much lower than the estimates, and lower and 

upper bonds of CI never include zero.  

The effect of flows (from C19 to C24) on the SL has a different sign, positive for C19, C20 and 

C21 (before the crash), negative for C22, C23, and C24 (during and after the crash). This result 

indicates that traffic flow after a crash depends on crash severity: the higher the crash severity the 

lower the subsequent traffic flow. Other significant variables are age and age class of vehicle B 

driver (C11 and C12) and air temperature (C14). The variables relating to driver B have opposite 

sign and this is a little surprising but since the significance and coefficients are very different (in 

favour of C12) it may be that this result is due to a non-homogenous distribution of samples by 

age. 

 

Table 6. Fixed effects coefficients estimates and Random effects covariance parameters at 95% 

CIs for the GLMM intersection model. 

Variable Description Estimate SE p-value Lower Upper 

Intercept - 0.90914 0.14495 3.76·10-10 0.625 1.1933 

C11 Age driver veh. B -0.00236 0.001023 0.020894 -0.00437 -0.00036 

C12 Age classes B 0.070388 0.019014 0.000216 0.033115 0.10766 

C14 Air temp. -0.00475 0.0007 1.24·10-11 -0.00612 -0.00338 

C19 TF1 0.000625 0.000177 0.000428 0.000277 0.000972 

C20 TF2 0.000684 0.000161 2.19·10-5 0.000368 0.001 

C21 TF3 0.001861 0.000214 4.53·10-18 0.001441 0.002281 

C22 TF4 -0.00106 0.000179 4.03·10-9 -0.00141 -0.0007 

C23 TF5 -0.00131 0.0002 6.49·10-11 -0.0017 -0.00091 

C24 TF6 -0.00078 0.000166 2.77·10-6 -0.0011 -0.00045 

Group variable  Estimate    

C3 (Intercept) Road signage 0.094612    

C4 (Intercept) Vehicle type A 0.21884    

C6 (Intercept) Vehicle type B 0.26757    

C10 (Intercept) Gender driver veh. A 0.069366    

C13 (Intercept) Gender driver veh. B 0.10736    

Indexes  

LogLikelihood  -13538    

AIC 27107    

BIC 27211    

Deviance 27077    

R2 adjusted 0.2684    
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Therefore, the most likely conclusion is that severity increases with age of driver B. An increase 

in air temperature is related to a decrease in crash severity. It is important to highlight the relevance 

of grouping variables, which explain random effects and demonstrate the complexity and 

variability of crash data: C3 (signage), C4 (vehicle type A), C6 (vehicle type B), C10 (sex of driver 

A), and C13 (sex of driver B). 

 

5. MODEL OUTPUTS ASSESSMENT 

According to Powers (2011), the results provided by classifiers can be evaluated by confusion 

matrix (or “contingency table” or “error matrix”), which represents, for each output, the number 

of predicted cases (aij) in the reference databases. In the two modelling techniques used in this 

investigation, the output is the SL and the number of predicted cases (aij) is calculated from the 

resampled databases (as discussed in Section 3.4). 

It is also interesting to measure the ability to predict the percentage of correct data (i.e., 

precision), and the percentage of corrected data in respect of the total to be predicted (i.e., recall), 

with the goal of improving the recall measurement without weakening the precision one. Tables 7 

and 8 include the “a priori” rate (PR) corresponding to the percentage of the predicted crashes to 

the total to be predicted for each SL (which also indicates the complement of the recall rate), and 

the “a posteriori” rate (PO) which is the complement of the precision rate, according to the 

following equations:  

 PRi = 1 - aii/(ai1+…+ain) (9) 

 POi = 1 - aii/(a1i+...+ani) (10) 

where n is the matrix dimension. Furthermore, comments to the results are also supported by the 

estimate of the accuracy (A):  

 A = (a11+a22+ …+ann)/aij (11) 

Table 7 reports the confusion matrix for the BPNN model. SL values lower than 2 

(corresponding to the PDO crash type) and greater than 6 (which are unrealistic values) have also 

been included in the table considering that the model output can fall outside the range of numerical 

values associated with each SL. The 93% accuracy rate for the BPNN model is certainly very high. 

PR and PO rates are low with the exception of SL 2 and 3, thus suggesting that the results 

pertaining to either of these two SLs can overlap. SL 2 is the more difficult to predict while SL 3 

has the largest number of wrong cases assigned to it. 

Table 8 contains the confusion matrix for the model calibrated with the GLMM. With this 

model, the SL prediction capacity is significantly lower than that for the BPNN model as indicated 
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by the accuracy rate of 30%. The GLMM is better at generating results within the SL limits of 2 

and 6, as confirmed by the fact that only eight values fall outside these limits. PR and PO rates are 

constantly low, showing how difficult it is to predict every SL.  

 

Table 7. BPNN model confusion matrix (percentage values in brackets), and “a priori” (PR) and 

“a posteriori” (PO) rates. 

Real SL 

Predicted SL Number of crash  

data in the 

re-sampled 

database 

PR 
< 2 2 3 4 5 6 > 6 

2 (VSI) 
33 

(2%) 

1098 

(72%) 

247 

(16%) 

48 

(3%) 

29 

(2%) 

64 

(4%) 

12 

(1%) 

1531 

(100%) 
28% 

3 (SLI) 0 
63 

(4%) 

1372 

(95%) 

7 

(0.5%) 
0 

7 

(0.5%) 
0 

1449 

(100%) 
5% 

4 (SEI) 0 0 0 
1519 

(100%) 
0 0 0 

1519  

(100%) 
0% 

5 (GPR) 0 0 0 0 
1518 

(100%) 
0 0 

1518 

(100%) 
0% 

6 (FAT) 0 0 0 0 0 
1512 

(100%) 
0 

1512 

(100%) 
0% 

PO  5% 15% 3% 2% 4%    

 

Table 8. GLMM model confusion matrix (percentage values in brackets), and “a priori” (PR) and 

“a posteriori” (PO) rates. 

Real SL 

Predicted SL Number of crash  

data in the 

re-sampled database 

PR 
< 2 2 3 4 5 6 > 6 

2 (VSI) 
0 

 

121 

(8%) 

673 

(44%) 

645 

(42%) 

80 

(5%) 

11 

(0.7%) 

1 

(0.1%) 

1531 

(100%) 
92% 

3 (SLI) 0 
56 

(4%) 

483 

(33%) 

721 

(50%) 

175 

(12%) 

7 

(0.5%) 

7 

(0.5%) 

1449 

(100%) 
67% 

4 (SEI) 0 0 
310 

(20%) 

1054 

(69%) 

155 

(10%) 
0 0 

1519  

(100%) 
31% 

5 (GPR) 0 0 
46 

(3%) 

828 

(55%) 

506 

(33%) 

138 

(9%) 
0 

1518 

(100%) 
67% 

6 (FAT) 0 0 0 
1092 

(72%) 

336 

(22%) 

84 

(6%) 
0 

1512 

(100%) 
94% 

PO  32% 68% 76% 60% 65%    

 

6. DISCUSSION 

A sensitivity analysis was carried out on the BPNN model to assess how output changes by varying 

input normalized variable values in the range [0,1] one by one. A first set of scenarios referring to 

a particular set of input variables was prepared. In scenario S1 all variables were set to zero, in 

scenario S2 all variables were set to 0.5; while in scenario S3 all variables were set to 1. In addition, 

six other scenarios (4a,4b,4c,4d,4e, and 4f) were considered to study particular combinations of 
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variable values, as reported in Table 9. These scenarios aim to consider some possible and typical 

crash situations involving male (4a, 4c, 4e, 4f), or female drivers (4b, 4d), during daytime (all 

except 4e) or at night-time (4e), with rainy weather (4c, 4d) or dry road surface (4a, 4b, 4e, 4f), or 

with elder drivers (4f). 

 

Table 9. Variable values for some of the investigated scenarios (4a-4f). 

Variable 

no. 
Description 

Scenario 

4a 4b 4c 4d 4e 4f 

1 Road type Two way 

2 Pavement conditions Dry Dry Wet Wet Dry Dry 

3 Road signage Present 

4 Vehicle type A Light vehicle 

5 Vehicle category A 1 

6 Vehicle type B Light vehicle 

7 Vehicle category _B 1 

8 Age of driver vehicle A 20 20 20 20 20 70 

9 Age classes A 2 2 2 2 2 5 

10 Gender of driver vehicle A Male Female Male Female Male Male 

11 Age of driver vehicle B 20 20 20 20 20 70 

12 Age classes B 2 2 2 2 2 5 

13 Gender of driver vehicle B Male Female Male Female Male Male 

14 Air temperature 20°C 

15 Wind speed Weak 

16 Light radiation [W/m2] 740 740 480 480 0 740 

17 Light/dark (day/night) 1 1 1 1 0 1 

18 Rainfall [mm] 0 0 3 3 0 0 

19 Traffic Flow 1 – TF1 60%* 60%* 60%* 60%* 30%* 60%* 

20 Traffic Flow 2 – TF2 60%* 60%* 60%* 60%* 30%* 60%* 

21 Traffic Flow 3 – TF3 60%* 60%* 60%* 60%* 30%* 60%* 

22 Traffic Flow 4 – TF4 60%* 60%* 60%* 60%* 30%* 60%* 

23 Traffic Flow 5 – TF5 60%* 60%* 60%* 60%* 30%* 60%* 

24 Traffic Flow 6 – TF6 60%* 60%* 60%* 60%* 30%* 60%* 

25 Traffic Flow 7 – TF7 60%* 60%* 60%* 60%* 30%* 60%* 

26 Flow std. dev. 20%* 20%* 20%* 20%* 40%* 20%* 
Note: (*) Referred to the maximum observed 

 

Table 10 reports the results of the sensitivity analysis of BPNN, with numbers at the top of 

columns referring to the scenario, whereas numbers in the table refer to the maximum range 

observed in the SL fluctuation when varying the considered variable from 0 to 1 (by steps of 0.1). 

Outputs do not generally change monotonically when varying the input variable from 0 to 1, as a 

result of the complex interactions between variables represented by BPNN: the output values turn 

out to be concave, convex, or exhibit even more complex trends. The maximum SL fluctuation is 

4 and the minimum is 0, hence a value of 4 in the table indicates the maximum possible effect 

produced by that variable in that scenario; a value of zero means that the input variable does not 
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affect SL. Table 10 cannot show the elasticity of variable sensitivity which is graphically 

illustrated later. 

The average SL (ASL) is calculated for both the columns and rows in Table 10 that is for each 

scenario and variable. This index measures the (average) impact of a variable or of a scenario on 

SL. It is difficult to find a meaning for ASL in itself (as an absolute value) but, certainly, it can be 

used for comparison purposes, since the ASL is determined by the overall values used for the input 

variables.  

 

Table 10. Sensitivity analysis of BPNN model (the SL fluctuation values ranging from 0 to 4 are 

observed by varying the reference variable from 0 to 1 by step of 0.1; ASL is the average SL 

calculated on all values of the scenario). 

Variable 
 Scenarios 

 1 2 3 4a 4b 4c 4d 4e 4f ASL 

Road type  3 4 0 4 4 0 4 0 4 3.31 

Pavement conditions  1 4 1 2 4 0 4 0 0 2.97 

Road signage  4 4 4 2 0 2 0 4 1 3.17 

Vehicle type A  1 4 0 2 2 0 4 0 2 3.24 

Vehicle category A  3 4 0 4 4 2 2 4 3 2.97 

Vehicle type B  4 4 0 0 2 0 4 0 0 3.42 

Vehicle category B  0 2 0 4 4 2 2 2 2 2.97 

Age of vehicle A  1 4 0 2 4 2 4 2 0 3.42 

Age classes A driver  3 4 0 4 4 0 4 0 4 3.06 

Gender of vehicle A driver  4 4 0 4 4 2 4 2 0 2.95 

Age of vehicle B driver  0 4 0 4 4 2 4 2 0 3.61 

Age classes B  3 4 0 2 4 0 4 2 4 3.34 

Gender of vehicle B driver  0 2 0 2 0 2 4 0 0 3.78 

Air temperature  2 4 1 4 0 4 4 0 1 3.46 

Wind speed  2 4 1 2 0 2 4 0 0 3.11 

Light radiation  4 4 1 2 4 2 4 2 1 3.53 

Light/dark (day/night)  1 4 0 0 4 0 4 0 4 3.44 

Rainfall  4 4 1 0 2 0 4 0 3 3.64 

TF1  1 4 1 4 4 0 2 2 2 3.08 

TF2  1 4 0 4 4 2 2 2 4 3.81 

TF3  4 4 1 2 1 4 2 4 2 3.25 

TF4  3 4 0 4 4 0 4 0 2 3.43 

TF5  4 4 3 2 4 2 4 0 2 3.17 

TF6  3 4 1 2 2 2 4 4 1 2.96 

TF7  3 4 0 4 4 4 2 2 4 3.29 

Flow std. dev.  0 4 1 4 4 4 4 2 3 2.95 

ASL  3.22 4.25 2.91 3.52 2.98 3.79 3.10 3.86 2.39 - 
Note: ASL = Average Severity Level; (*) concerning driver A or B, accordingly 

 

The BPNN model is very sensitive to flow variables and less sensitive to meteorological ones. 

Some other detailed results, such as examples of possible results achievable by ANN models, are 
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illustrated in Figure 3, where the sensitivity to some flow changes is considered for the scenarios 

4a-4e.  

(a) 

(b) 

(c) 

Figure 3. BPNN sensitivity analysis of TF1 (a), TF4 (b), and TF7 (c) on SL for different flow 

values. 
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In Figure 3, the three different flow values for TF1, TF4 (when the crash occurred), and TF7, 

are considered in order to evaluate the effect of light, medium, and heavy traffic conditions. It must 

be emphasized that only one variable at a time changes while the others are fixed (in these cases 

other flows are set to 0.6). 

The effect of flow varies a lot by scenario. When TF4 is high (continuous line curves in Figure 

3b), the SL is generally high for most of the scenarios, except for scenario 4f (elderly driver). Other 

results are difficult to interpret but what appears evident from the intersection model for TF7 (10 

to 15 minutes after the crash) is that the higher the flow the lower the SL. This is reasonable since 

in the case of crashes with a low SL, vehicles involved in the crash do not need the intervention of 

emergency vehicles and so no significant disturbance is caused to the traffic. 

The BPNN model shows a prevailing relationship between high flow and high SL, especially 

for TF4 (when the crash occurred). TF7 clearly indicates an inverse relationship between SL and 

flow: when a crash occurs, incoming flow is impeded and, therefore, is low.  

One criticism arising from the use of flow data after the crash event (TF5-TF7) regards the 

reversal of the causality of variables: in fact, the crash event itself becomes the cause of alteration 

of flow. A possible justification is that there is an interest not only in the causality relationship but 

in the whole time series pertaining to the same process (such as occurs in incident detection). 

The effect of driver A age (C8) is proposed in Figure 4. The highest SL is attained by young 

female drivers for both dry pavement and rainy conditions (scenarios 4b and 4d). In general, for 

ages up to 30 years the SL is higher. Finally, light radiation has a limited impact on SL: the most 

relevant effect is with a quite low light radiation on female drivers with both dry pavement and 

rainy conditions. Generally, low radiation is more related to high SL than high radiation. 

Flow plays a relevant role in the GLMM model, with only variable TF7 (flow from 15 to 20 

minutes after crash) resulting as insignificant. The analysis of coefficient signs shows that it is 

negative for TF4, TF5, and TF6 which indicates that when the flow increases after a crash the SL 

is low. This result is comparable with that obtained by BPNN and shown in Figure 3. In this figure 

three different flow values of TF1, TF4 and TF7 (0.1, 0.5, 0.9) are used to calculate SL. From 

Figure 3c we can see that an increase in TF7 leads to a decrease in SL for most of the considered 

scenarios. TF1 and TF4 affect SL only for some scenarios and show more complex trends with 

respect to driver gender and age. 
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Figure 4. Effect of driver A age on SL. 

 

In order to complete an investigation of the models, a sensitivity analysis of GLMM, similar to 

that performed for BPNN, was also carried out, and reported in Table 11. It is based on the same 

scenarios (and predictor values) used for BPNN (Table 10) and, instead of marginal effects, the 

conditional means of response is considered here. This table shows the highest sensitivity of flow 

variables, particularly TF3, TF4, TF5 which are centred around the crash time. Some scenarios 

show a higher sensitivity to variable changes and a higher ASL than others, especially 4a and 4c 

which are focused on the role of male drivers in dry and wet pavement conditions. 

 

Table 11. Sensitivity analysis of GLMM model (the SL fluctuation values ranging from 0 to 4 are 

observed by varying the reference variable from 0 to 1 by step of 0.1; ASL is the average SL 

calculated on all values of the scenario). 

Variable 
 Scenarios 

 1 2 3 4a 4b 4c 4d 4e 4f ASL 

Age of vehicle B driver  1 0 0 1 0 1 0 1 2 2.65 

Age classes B  2 1 1 1 1 1 1 1 1 2.94 

Air temperature  1 0 0 1 0 1 0 1 1 2.71 

TF1  4 1 1 2 1 2 1 2 2 2.78 

TF2  4 2 1 2 2 2 2 2 2 2.78 

TF3  4 4 2 4 4 4 4 4 4 2.91 

TF4  3 3 4 4 4 4 3 3 4 3.05 

TF5  3 4 4 4 4 4 4 3 4 3.12 

TF6  2 2 3 3 2 3 2 2 2 2.85 

ASL  4.12 2.60 2.90 3.37 2.70 3.37 2.70 2.92 3.13  
Note: ASL = Average Severity Level; (*) 

 

 



 

24 

 

Comparisons between road, driver, and environmental variables in the two modelling 

approaches is more difficult. The BPNN model shows the importance of all considered variables, 

though limited to some scenarios, while GLMMs consider a relatively limited set of significant 

variables for fixed effects but some others for random effects (in particular for vehicle type B) as 

already mentioned in Section 4.2.  

 

7. CONCLUSIONS 

The paper aims were the evaluation of crash severity level (SL) at intersections using 

environmental and traffic variables (some of which, like short-term flow, are new in this research 

area), through a back-propagation neural network model (BPNN) which uses a computational 

approach, and the generalized linear mixed model (GLMM) which uses an analytical approach. 

Flow measurements can be used to quantify the number of potential conflicts occurring on the 

monitored road intersections. In this investigation, hourly weather parameters were also 

considered. These data made it possible to investigate how both flow and weather conditions are 

related to each other and to the other driver characteristic variables (and those of road users in 

general) involved in the crash. The results presented here, address a gap in the knowledge acquired 

from the number of studies on rural freeways and expressways repeatedly reported in literature. 

BPNN models evidenced better performance in the prediction of the SL than those obtained by 

the GLMMs, according to the results obtained from the confusion matrixes. In fact, it is worth 

noting that BPNN models are able to accurately estimate any continuous and non-linear 

relationship between variables. However, BPNN does not allow a readier interpretation of model 

results, which instead is possible using GLMM. To have a clear idea of the pros and cons of 

statistical and neural network methods, the readers could refer to the already mentioned work of 

Karlaftis and Vlahogianni (2011). The authors are convinced that the main limit of GLMMs for 

these applications is represented by the linearity of the function. Kashani and Mohaymany (2011), 

as well as Yu and Abdel-Aty (2014), came to the same conclusion. In addition, missing data may 

have contributed to facilitate BPNN. 

The BPNN and GLMM approaches show how underlying processes are likely to have different 

prevailing and concurrent causes. Both methods demonstrate that flows have a relevant role in 

predicting severity: this role is not limited to the flow when the crash occurred (TF4), but also 

extends to the other crash flow data (TF1-TF3 before crash occurrence, TF5-TF7 after crash 

occurrence). This finding may be controversial since it involves data gathered after the crash event 
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but it merits greater attention in on-going research, for example working out an algorithm capable 

of confirming or identifying the real time interval when the crash occurred. 

Unfortunately, the set of selected variables do not facilitate the assumption of specific 

countermeasures to reduce crash severity, since a high SL may be obtained by a combination of 

variables that cannot be avoided on the road, such as flow and light radiation. This suggests that 

information on some variables could be the basis for a future work investigating possible 

interventions. 

Future research will include the application of generalized non-linear models and the study of 

higher order effects and the interaction between variables; then the use of GNLMM (Generalized 

Non Linear Mixed Model) will be considered. What is more, a mixed approach, using both 

short-term flow and AADT values, could be of some interest in order to extend the creation of 

models over a mid-long term period and investigate the relationship between them. Finally, future 

investigation should consider the possibility of calibrating and validating new models 

distinguishing the different types of intersection, corresponding to different types of manoeuvres 

and different effects of the variables already considered in the present investigation. 
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