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Multiple dielectric loaded perforated screens as 
frequency selective surfaces 

R. Orta 
R. Tascone 
R. Zich 

Indexing term: Antennas (reflectors) 

Abstract: Perforated screens can be used as fre- 
quency selective surfaces when a high pass fre- 
quency response is required. In this paper, a 
spectral characterisation of perforated screens is 
presented. The analysis yields the generalised scat- 
tering matrix of each screen, which is a useful tool 
for studying composite structures. Numerical 
results, relative to single and double screens with 
periodical distributions of circular apertures, are 
discussed. 

1 Introduction 

Modern reflector antenna systems make use of frequency 
selective surfaces (FSSs) as free-space diplexers. Two 
classes of FSS exist: one class has the form of a periodic 
distribution of conducting patches, sandwiched between 
dielectric support structures, and has a low pass fre- 
quency response, the other class consists of a periodically 
perforated metallic screen, and has a dual frequency 
behaviour. 

Approximate analyses of these structures have 
appeared in the literature C1-41, but a complete charac- 
terisation can be obtained only through the solution of a 
boundary value problem. In principle, either the current 
induced on the conductors, or the aperture electric field 
can be assumed as the unknown of the problem. Gener- 
ally, FSSs of the first class are more easily studied using 
the induced current approach [S-lo], while the converse 
is true for FSSs of the second class [11-131. However, in 
some cases, perforated screens have been studied by the 
induced current approach [14]. The choice of the 
approach depends essentially on the availability of a con- 
venient set of basis functions to expand the unknown. In 
this paper, we apply the aperture approach to the 
analysis of high pass structures, consisting of periodically 
perforated metallic screens embedded in a stratified 
dielectric medium. 

The problem of the scattering from isolated screens 
has been addressed by several authors in the past [ l l -  
131. Free-standing double screen structures have been 
studied by the mutual impedance method [lS]. The effect 
of dielectrics was first taken into account in Reference 16, 
by a mode matching analysis in the case of a biplanar 
slot array in a symmetrical configuration. An alternative 
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approach to the scattering analysis of free-standing 
double arrays, based on a system of coupled integral 
equations was proposed in Reference [17]. These 
methods are not satisfactory since the formulation must 
be modified in the case of more complex structures 
(nonsymmetrical configurations or more than two 
arrays). A better procedure consists in characterising each 
array with a well defined standard loading, as it is 
implicit in the definition of the scattering matrix. In this 
way, the analysis of a multiple grid structure is reduced 
to the cascading of a number of N-port blocks by circuit 
techniques. According to this approach, one can define 
the free-standing grids and the dielectric layers separately 
as blocks, using the free-space Green function for the 
characterisation of each grid [18]. However, in this way, 
the cascading procedure is computationally inefficient 
when the grids are etched on a dielectric support, because 
it requires the inversion of large matrices, with size equal 
to the number of Floquet modes used for the character- 
isation of the grids. To increase the efficiency, that is, to 
reduce the size of the matrices to be inverted, one must 
consider the presence of the dielectric layers directly in 
the characterisation of each grid. A step in this direction 
was taken by Johansson [19]. but he considered each 
grid with a dielectric layer on one side only as a block. 

Our effort has been to develop a general formulation, 
based on the transmission line technique [20], which 
leads to the definition of the generalised scattering matrix 
(GSM) of elementary blocks, constituted by each grid 
with its embedding dielectric layers. The presence of the 
dielectrics on both sides of the grid is taken directly into 
account in the definition of the relevant Green function. 
In this way, the number of ports to be connected is 
greatly reduced, since only the lowest order Floquet 
modes take part effectively in the interaction between the 
grids. 

2 Formulation 

Let us consider a metallic screen, with an arbitrary dis- 
tribution of apertures, covered on both sides with a strat- 
ified dielectric medium (see Fig. 1). The case of a periodic 
arrangement of identical apertures will be treated as a 
special case of the general formulation. This kind of 
structure can be seen as a transversal discontinuity in an 
open waveguide with homogeneous cross section, and the 
scattering problem can be attacked by modal techniques. 
As is well known, the mode eigenfunctions are exponen- 
tials which constitute a continuous spectrum of plane 
waves. As a consequence, the modal voltages and cur- 
rents are the polar components of the Fourier transform 
of the transverse electric and magnetic fields. This 
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implies the possibility of solving the scattering problem 
directly in the spectral domain using a vector formula- 
tion. 

Fig. 1 Perforated screen geometry, front and side views 

Assuming an arbitrary field incident from the left side 
of the structure shown in Fig. 1, we obtain, by the trans- 
mission line formalism [20], the equivalent circuit of Fig. 

0- 0' 

Fig. 2 Vector equivalent circuit of the structure of Fig.  I for a generic 
free-space mode 
The source is assumed to be on the left hand side. The equivalence theorem is 
used to substitute the metallic screen with a distribution of electric currents. and 
1 are the 2 x 2 dyadic scattering matrices of the dielectric layers. go is the free- 
space dyadic modal impedance 

2 relative to a generic value of the spectral variable k 
(conjugate to the transversal coordinate e). We have 
applied the Equivalence Theorem to substitute the metal- 
lic screen with an unknown distribution of electric cur- 
rents .I(p). Voltages and currents in this circuit are vector 
functions of k and are the Fourier transforms of the 
transverse electric (E,)  and magnetic ( H ,  x 2) field, respec- 
tively. With these definitions, TM and TE modes can be 
treated simultaneously. Impedances and admittances are 
dyadic operators and, for example, the modal free-space 
dyadic impedance is defined as 

ZO(k) = P / ( O E O )  k^k  ̂ + (O/*o)/P (k^ x %k^ x 2) 

P = JW) 

(1) 

where 

k^ = k / l k l  
The voltage generator has strength 21/' where r(k) is the 
Fourier transform of the incident electric field at section 
z = zl. The current generator at section z = 0 has 
strength i(k) equal to the Fourier transform of the sum of 
the electric currents induced on both sides of the screen 
J(p) .  The presence of this current generator is directly 
connected to the existence of a magnetic field discontin- 
uity at z = 0, [20]. The dielectric stratifications on the left 
and right side of the screen are characterised by their 
2 x 2 scattering matrices S(&) and S(k), respectively, 
whose elements are dyadic operators. 

Both the total voltage at  z = 0 Y(k) and the impressed 
current i(k) are unknown, and satisfy the following equa- 
tion which can be easily obtained from the circuit of Fig. 
2: 

(2) -L-f(k) + kjk)l-' . i(k) + E ( k )  . _vi&) = Y(k)  
76 

&), f(k) are the load admittances seen by the current 
generator looking to the left and to the right, respectively. 
T ( k )  is a transmission operator linking the incident 
ioltage to the total voltage at section z = 0, when the 
screen is removed. We use the symbols and - to  denote 
quantities relative to the left and right region with respect 
to the screen, respectively. Eqn. 2 describes completely 
the scattering problem, even if it contains two unknowns. 
This is due to the analytical properties of the two func- 
tions Y(k) and i(k) that are transforms of functions with 
complementary supports : &,(e) vanishes on the conduct- 
ing surface whereas &) vanishes on the apertures. These 
properties can be exploited to solve the problem directly 
in the spectral domain by the Galerkin method of 
moments. Since we want to use the aperture approach, 
and hence expand _V(k) on a set of basis functions, it is 
convenient to rewrite eqn. 2 in the form : 

-CP(k) + m1 . Y(k)  + CP(k) 
+ P(k)l . 2x1 . Yi(@ = i(k) ( 3 )  

Incidentally, it is interesting to note that this equation 
can also be derived by using the Equivalence Theorem in 
a different form. In particular, one can substitute the per- 
forated screen with a solid one on the left and right side, 
of which two distributions of equivalent magnetic current 
of value E x ( - 2 )  and & x 2, respectively, are present in 
place of the apertures. Equivalent electric currents do not 
radiate any field since they are short circuited by the 
metal plate, and hence they are disregarded. In this way, 
one arrives at the equivalent circuit of Fig. 3, constituted 

- 
I - 

f 

21 0- 0' 21 

Fig. 3 Alternative equivalent circuit of the structure of Fig. I 
In this case the equivalence theorem is used to substitute the perforated screen 
with a solid one on which a magnetic current distribution is placed 

by two disconnected parts, because of the presence of the 
solid metallic plate. However, the strengths of the voltage 
generators at sections z = 0- and z = 0' are identical 
because the transversal electric field is continuous. From 
this equivalent circuit we easily obtain the following: 

( 4 4  

(4b) 
where &(k) is a transadmittance operator linking the inci- 
dent voltage to the total current at z = 0 when the 
voltage generator 1/(k) is short-circuited. As previously 
stated, the function i(k) is the Fourier transform of the 
transversal magnetic field jump, and hence can be written 
as follows : 

I(k) = i ( k )  . Yi (k )  - P(k) . Y(k)  
L(k) = P(k) . Y(k)  

i(k) = Z(k) - &k) 

- [&) + j(k)l . Y(k)  + g(k) . YYk) = i(k) 

( 5 )  

(6) 
which is identical to eqn. 3. In fact, it can be proved by 
simple circuit considerations that 

By substituting eqns. 4a and b into eqn. 5 we get 

= cm + m l  . Z ( k )  
To solve eqn. 6 by Galerkin method of moments, we 
introduce a set of vector basis functions {g,,(k)}, to 
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expand the Fourier transform of the aperture electric 
field as follows: 

Y(k) = C Xn g n ( k )  (7) 

Then we equate to zero the projections of the unknown 
function i(k) given by eqn. 6 on the same set { g , ( k ) } .  The 
problem is now reduced to the solution of a linear system 
of equations in the unknown coefficients {X,} 

A X = B  (8) 

n 

where 

A,, = 

B,  = 

&(k) . CY(k1 + r (k) l  . g, (k)  dk (94 

(9b) 

s 
s gXk) . &k) . _Vi(@ dk 

A way to construct the set { g n ( k ) } ,  is to Fourier transform 
a complete set of functions defined on the aperture. After 
solving the linear system, eqn. 8, the total voltage _V(k) at 
section z = 0 is known, and the scattered voltages on 
both sides of the structure, at z = z, and z = zr ,  can be 
computed by circuit considerations as: 

P(k) = %,(k) . + f(k) ' Y(k)  (104 
Ps(4 = f l k )  . _V(k) (lob) 

where f,(k) is the dyadic reflection coefficient of the com- 
plete structure looking from the left side when the perfor- 
ated screen is substituted with a solid one. $(k) and r(k) 
are dyadic transmission coefficients of the dielectric 
layers, relating the scattered voltages to the total voltage 
at z = 0. The expressions of these operators are readily 
found by transmission line techniques. I n  particular, in 
the cas: of a free-standing screen, = -2 and r(k) = r(k) = f, where 2 is the unit dyadic. 

These equations yield the complete solution of the 
scattering problem for an arbitrarily perforated metallic 
screen in a stratified dielectric medium. 

We now particularise the results for the case of a 
periodic arrangement of apertures on a lattice, defined by 
the basis vectors dl, d 2 .  To obtain a spectral character- 
isation of this kind of structure, we assume that the inci- 
dent field is a plane wave with a transverse wave vector 
IC, and arbitrary polarisation. Under this assumption, the 
unknown function _V(k) can be written as 

Y(k)  = Yo&) 6(k - Kpq)  (1 1) 

K P 4  = K ,  + P K ,  + 4K2 

P4 

where 

(12) 
and K1, K 2  are the basis vectors of the reciprocal lattice 
[SI and yo&) is the Fourier transform of the transverse 
electric field on the central aperture. Eqn. 1 1  points out 
that the structure excites a discrete spectrum of plane 
waves, characterised by transverse wavevector K P 4  
(Floquet modes). The unknown of the problem is now 
Yo(@, and this is the function to be expanded on the set 
{ g , ( k ) } ,  the inverse Fourier transforms of which, in this 
case, have support on the central aperture only since, in 
eqn. 7, we may factor out the same Dirac comb as in eqn. 
11. Owing to the fact that the Floquet modes constitute a 
discrete spectrum, the integrals of eqns. (9a and b) are 
converted into summations on the indices p ,  q :  

A m ,  = 1 g ; Z ( K p q )  ' C f ( K p q )  + Z(Kpq)l . g n ( K p q )  (1 3 ~ )  
P4 

B m  = 1 g X K p q )  & ( K p q )  Y i ( K p q )  (1 3b) 
P4 
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Theoretically, eqn. 8 is an infinite system of linear equa- 
tions, the coefficients of which are expressed as double 
infinite summations over the points of the reciprocal 
lattice. To obtain a numerical solution, the number of 
expansion functions has to be limited to N ,  and the 
number of points of the reciprocal lattice must be trun- 
cated to N , .  These two truncations are not independent, 
and can cause convergence problems, as discussed in the 
following section. 

Eqn. 13 can be written more concisely with a matrix 
formalism. Let us define a N ,  x N ,  abstract matrix Q 
whose element Q,, is the nth vector basis function g,(@ 
evaluated in the mth point of the reciprocal lattice. 
Notice that the subscript m stands for the couple ( p ,  q) 
introduced before. Likewise, let us in_troduce_ the ( N ,  
x N , )  abstract diagonal matrices Y ,  Y and x ,  whose 

e!ements are the previously defined dyadic operators 
_Y(k), Y(k) and x ( k )  evaluated in the points of the recipro- 
cal lattice. With these definitions, the ( N ,  x N,) system 
matrix A and the (N,)  column vector B, given by eqn. 13, 
can be rewritten in the compact form 

where + denotes complex conjugate and transposition. 
The elements of A and B are scalars, whereas those of the 
( N , )  column vector are two-dimensional vectors since 
it represents the Fourier transform of the transverse inci- 
dent electric field at z = z,. This vector represents also 
the field excited by an adjacent screen with the same 
lattice, but possibly with apertures of different shape. 

Taking into account that eqn. 7 can be written in 
terms of the projection matrix Q as 

V = Q X  (15) 
the solution of the scattering problem, given by eqn. 10, 
can now be expressed in matrix form as follows: 

P = [fc + $WU;]p' 

8. = i?.wg pi 
( 164 
( 16b) 

where 

w = QA-'Q+, 

and f , ,  ?, 7 are ( N ,  x N , )  abstract dia8onal-matrjces 
having as elements the dyadic operators T&), r(k), T(k) 
evaluated in the points of the reciprocal lattice. 

In order to compute the GSM of the structure, we 
must consider also the case where a field, with the same 
discrete spectrum, is incident on the right side (VI). It is 
easy to see that the solution in this case is obtained by 
exchanging the superscripts *and *in eqns. 16a and b. 
Notice that the matrix W is the same in both cases 
because it depends only on the structure, and not on the 
excitation. In conclusion, the GSM can be written as 

The GSM so obtained can be seen as the sum of two 
terms. The first is the GSM of the structure, where the 
metallic discontinuity has been substituted with a solid 
metallic plate (W = 0 in eqn. 18). The second takes into 
account the effect of the apertures, and is related to the 
radiation of the equi_valent magnetic currents placed on a 
solid metallic plate (r, = f, = 0 in eqn. 18). 

Once the GSM of each screen in its dielectric 
environment is known, the GSM of structures constituted 
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by several screens with the same lattice can be derived by 
standard cascading procedure. To  this end, it is conve- 
nient to classify the (2NJ Floquet modes (TE, TM) used 
to construct the relevant Green function as ‘accessible’ or 
‘localised’, according to their attenuation in the dielectric 
layers [21]. The former, either propagating or cutoff, are 
responsible for the interaction through adjacent discon- 
tinuities, while the latter are so attenuated that they do -, - not ‘see’ the other screens, and give rise only to energy 
storage if the dielectric are lossless. In cascading the 
various GSM’s, only the accessible mode ports are s 
involved, whereas the localised mode ports can be ter- 
minated with the input impedances of the dielectric loads. - 
In this way, multiple screen structures are characterised 
with great efficiency by reducing to the minimum the size 
of the matrices to be inverted. 

the spectral bandwidth of the representation in terms of 
basis functions, which in principle is infinite, can be 
defined in practice so as to include the main lobe of the 
highest order basis function considered. Fig. 4 shows a 
plot of the normalised susceptance of a perforated screen 

E 
3 
Z 
Z 

S 

E : - 2 -  

3 Results 

In this Section, we report on the application of the 
general formulation that we have described previously to 
the case of metallic screens periodically perforated with 
circular apertures of radius a. We choose as basis func- 
tions {gn(k)}  the Fourier transforms of the mode func- 
tions of a circular waveguide of radius a. In this way, the 
basis functions can be expressed in closed form. Although 
this set does not satisfy the edge condition, the elements 
of the scattering matrix are computed with adequate 
accuracy because they are related to variational quan- 
tities. 

When we use a numerical technique to solve a scat- 
tering problem where more than one expansion set is 
involved, we must address the problem of relative con- 
vergence, which arises when the series are truncated to a 
finite number of terms [22-261. As is well known, the key 
point is the correct choice of the ratio between the 
number of terms retained in the expansions. The criteria 
based on the conservation of complex power through the 
discontinuity, on the reciprocity theorem, or on the fact 
that the fundamental mode equivalent circuit of the 
screen must be constituted by a purely imaginary shunt 
admittance [4, 121 are automatically satisfied for any 
projection Q matrix such that the system matrix A in 
eqn. 14a is invertible. In other words, these conditions 
reflect intrinsic properties of the modal formalism, and 
hence can be exploited only to check the numerical 
implementation, and not to verify the accuracy of the sol- 
ution. The correct criterion, although valid only for rec- 
tangular lattice and apertures, was given in Reference 11 .  
Recently, the truncation process of the Floquet spectrum 
has been interpreted as being equivalent to modifying the 
used basis functions [26]. However, the relative con- 
vergence problem can be solved directly in the spectral 
domain for general geometries, for example circular aper- 
tures and triangular lattice, by introducing the concept of 
spectral bandwidth. In fact, we must recognise that the 
aperture electric field is represented by means of two sets, 
that in our case are the inverse Fourier transforms of the 
basis functions { g , ( k ) }  and the Floquet modes. To have a 
well conditioned system matrix A, it is important that the 
accuracies of the two approximations are comparable. In 
other words, the spectral bandwidths of the two represen- 
tations must be identical. This criterion gives the number 
of Floquet modes as a function of the number of basis 
functions involved. The basis functions chosen have an 
oscillatory behaviour with a maximum (main lobe) in 
correspondence of the circular waveguide cutoff wave- 
number, and decreasing amplitude beyond it. Therefore, 

s=-1 I 
I I  I I I I 

1 5 10 15 20 
no. of basis functions 

Fig. 4 Relative convergence ofthe numerical solution 
Normalised susceptance of a perforated screen for normal incidence against 
number of expansion functions for three truncation limits of the Floquet set 
a = 6 mm d = 17.3 mm 

for normal incidence at 14 GHz, against the number of 
basis functions used to represent the aperture field. The 
curves refer to three different choices for the truncation of 
the Floquet set. The figure shows that it is important to 
take into account all the Floquet modes with I ICPq I up to 
the main lobe (s = 0) of the highest order basis function. 
Inclusion of more Floquet modes up to the first sidelobe 
(s = 1) does not improve the results in a significant way. 
Exclusion of the main lobe contribution (s = - 1 )  gives 
rise to large errors because the Floquet modes considered 
cannot represent the aperture field with the same accu- 
racy as the basis function set. 

Perforated screens can be seen as high-pass structures 
with a frequency response characterised by a reflection 
band at low frequency, and a transmission band at the 
resonance frequency. This resonance frequency is very 
close to the grating lobe limit, and is strongly influenced 
by the mutual coupling among the apertures. Figs. 5a 
and b show a normalised plot of the resonance frequency, 
and of the -0.5 dB transmission bandwidth against the 
geometrical parameters for a free-standing screen 
(normally illuminated), with the apertures arranged in an 
equilateral triangular and square lattice, respectively. In 
the region to the left of the inclined straight line, grating 
lobes exist. 

As is well known, the equivalent circuit for the funda- 
mental mode of a perforated screen is a shunt admittance 
the value of which depends (apart from the frequency and 
the geometrical parameters) on the dielectric layers in 
which the screen is embedded. A suitable dielectric 
loading can be used to remove the transmission band 
from the grating lobe limit, if required by the FSS design 
specifications. As an example of this effect, Fig. 6 shows a 
plot of the first resonance frequency (zero of the screen 
admittance) as a function of the dielectric thickness, for 
several values of the dielectric constant. Since a dielectric 
layer is present, the zero of the grid admittance does not 
coincide with the zero of the reflection coefficient. The 
dependence of the resonance frequency on the dielectric 
thickness is related to the interaction between the dielec- 
tric free-space interface and the screen discontinuity 
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through the higher order Floquet modes. Although the 
first ones of these modes are propagating in the dielectric, 
they do not carry active power since they are reactively 

1.0 

x 
0 
. 
N 

0.5 

0.1 

a 

L 

i 
0.5 1 .o 

2 a/d 

r I I 
0.5 1.0 

b 2ald 
Fig. 5 Normalised resonance frequency and -0.5 dB transmission 
bandwidth of a perforated screen for normal incidence 
a Triangular lattice; b Square lattice. For 2ald = 1 the apertures are tangent 
hatched region shows transmission bandwidth 
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loaded. In other words, the screen equivalent circuit is 
still a pure susceptance even if grating lobes are present 
in the dielectric. 

The transmission bandwidth and the reflection/ 
transmission band spacing ratio of an FSS can be 
improved if multiple screen structures are used. To point 
out the essential role played by evanescent mode coup- 
ling between adjacent screens, we show the results rela- 
tive to a couple of identical perforated screens (square 
lattice, d = 20 mm, a = 8 mm), spaced 5 mm apart, in 
two configurations. In the first one (i), the apertures are 
superimposed, whereas in the second one (ii) there is a 
half period transversal shift. Fig. 7 shows plots of the 
reflection and transmission coefficient for normal inci- 
dence. As could be expected, the reflection bandwidth in 
configuration (ii) is larger than in configuration (i), and 
the opposite happens for the transmission bandwidths. It 
should be remarked that this behaviour is due to the 
interaction through the evanescent fields, since it can be 
proved that, if they are neglected, the frequency response 
of the complete structure does not depend on the trans- 
versal shift of the screens. 

It is interesting to note that, in a closely spaced multi- 
ple grid configuration, an active power flow is associated 
to the higher order modes, in the region between the 
screens only. This phenomenon is reflected in the pre- 
sence of screen admittances with positive and negative 
real parts in the equivalent circuit for the fundamental 
mode. Notice that these admittances are not the equiva- 
lent circuits of each screen, but the input admittances of a 
two-port network, connected in parallel to the fundamen- 
tal mode transmission line at the sections at which the 
screens are located. Hence, a reaction loop is established 
through the evanescent modes. It can be verified numeri- 
cally that the power dissipated by the first admittance is 
equal to that generated by the second one, as it is to be 
expected since the structure is lossless. Fig. 8 shows plots 
of the screen admittances at f =  10.2 GHz against the 
screen spacing for the same structure previously dis- 
cussed (configuration i). If the spacing is large, the admit- 
tances become purely imaginary because the interaction 
takes place only through the fundamental mode. More- 
over, the two imaginary parts asymptotically coincide, 
because the screens are identical. Conversely, when the 
spacing vanishes, the two admittances have a sum which 
is purely imaginary, and tends to the isolated grid value. 
In this case, all the Floquet modes are accessible. 

When perforated screens are used as diplexers, we 
must analyse their behaviour for oblique incidence. An 
example is shown in Fig. 9 where the reflection and trans- 
mission curves of a 45" incidence diplexer are reported. 
The structure, sketched in Fig. 10 consists of two identi- 
cal screens with circular apertures of radius 2.4 mm 
arranged in an equilateral triangular lattice of size 5 mm. 
The screens are covered with a 0.05 mm kapton film, and 
spaced with a 0.6 mm kevlar sheet. The analysis takes 
into account the fibre structure of these materials, which 
are characterised by a dyadic dielectric permittivity. In 
particular, we have assumed a transversal and longitudi- 
nal dielectric constants 3.2 and 2.8 for the kapton film, 
and 4.1 and 3.8 for the kevlar sheet. The curves presented 
are relative to three different planes of incidence (4 = O", 
15", 30") for TE and TM polarisation. The common 
-0.5 dB reflection band extends from low frequency up 
to 9 GHz and, as could be expected, is essentially inde- 
pendent of the plane of incidence. The tight coupling 
between the screens and the presence of the dielectric 
supports increases the spacing between the transmission 
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frequency and the grating lobe frequency (40.6 GHz for 
this incidence). In fact, in this case the common -0.5 dB 
transmission band is located between 24 and 29 GHz. 
The rather irregular behaviour of the curves above the 
transmission band is owing to the strong frequency varia- 
tion of the screen admittances. Notice that the plane at 
$I = 15" is not a plane of symmetry of the structure, and 
mode conversion between TE and TM polarisations 

occurs. Within the reflection and transmission bands, 
however, this mode conversion is lower than -30 dB. 
The presence of high polarisation conversion in the tran- 
sition band is indicated in Fig. 9 by the fact that the 
transmission and reflection curves for 4 = 15" are not 
complementary. 

The results we have presented have been obtained 
with a computer code which has been validated with the 

d=20rnrn 
a=8mm 

I I I I 
0.1 1 10 100 

dielectric thickness, m m  

Fig. 6 
a = 8 m m  d = 2 0 m m  

First resonance frequency of a dielectric backed screen against dielectric thickness (normal incidence) 

frequency, GHz frequency, GHz 

Fig. 7 
Circular apertures (a = 8 mm) in a square lattice (d = 20 mm); screen spacing 5 mm 
_____ no transverse shift between screens 
_ _ _ ~  half-period transverse shift between screens 

Frequency response o f a  double screen for normal incidence 

1 5 10 20 30 
L, rnrn 

Fig. 8 
Frequencyf= 10.2 GHz 
a = 8 m m  d = 2 0 m m  
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Screen admittances of a double screen structure against screen spacing at normal incidence 
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data published in the literature. Moreover, this code has 
been also validated by analysing a rectangular waveguide 
iris with circular apertures. As is well known, the iris 

Fig. 9 Frequency response for  T E  and T M  polarisations and three planes 
e = 450 

,$ = 30" -_ -_ -  

,$ = 15" _ _ -  
~ d = W  

Fig. 10 
a 0.6 mm-kevlar sheet, E ,  = 4.1; E, = 3.8 
b 0.05 mm-kapton films, E, = 3.2; E,  = 2.8 
c screens: a = 2.4 mm d = 5 mm 

Geometry of the 45" incidence diplexer, front and side view 

equivalent circuit can be derived from the study of a per- 
forated screen with lattice dimensions related to the 
waveguide dimensions. In particular, if the waveguide 
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discontinuity comprises more than one cell, the reflection 
coefficient for the TE,, waveguide mode, and for the 
TE,, Floquet mode, are identical. If the iris contains only 

b frequency, GHZ 

d frequency, GHz 

of incidence of the structure of Fig. 9 

one cell, the TE,, waveguide mode reflection coefficient 
is the sum of the reflection coefficient for the fundamental 
Floquet mode (TE,, incident, TE,, reflected) and the 
transreflection coefficient for the first higher order 
Floquet mode (TE- incident, TE,, reflected). This 
complication is owing to the fact that in this arrangement 
the first two TE Floquet modes have opposite transverse 
wavenumbers and hence are both propagating. 

4 Conclusions 

A spectral vector formulation of the electromagnetic scat- 
tering from multiple perforated screens has been present- 
ed. The analysis has been carried out for arbitrary 
perforations, and the results have been specialised to the 
periodic case. We may observe that it has been relatively 
easy to derive the functional equation of this problem, 
even for screens embedded in a general dielectric layered 
medium, by using the transmission line technique to 
obtain the relevant Green function. This fact shows the 
convenience of the spectral approach, with respect to a 
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direct one, in the spatial domain, where the relevant inte- 
gral equation cannot be obtained so simply when arbi- 
trary stratified dielectrics are present. 

As for the numerical solution of the problem, obtained 
by the Galerkin method of moments, a general trunca- 
tion criterion has been presented and applied to the case 
of circular apertures. 

The study of multiple screen structures has been 
carried out in circuit terms by cascading the generalised 
scattering matrix of each screen in its dielectric 
environment, exploiting the definition of accessible and 
localised modes to increase the efficiency. The interaction 
between closely spaced screens and the effect of a dielec- 
tric loading have been discussed in detail, pointing out 
the consequences on the screen equivalent circuits. 

An example of anisotropic kapton and kevlar sheets 
being used as loading dielectrics has shown the possi- 
bility of using perforated screens as diplexers. 

Finally, the good agreement between numerical and 
experimental results for an iris in rectangular waveguide 
confirms the validity of the approach presented. 
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