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PERFORATED SCREENS AS FREQUENCY SELECTIVE SURFACES
A SCATTERING MATRIX APPROACH

R. Orta, R. Tascone, R. Zich
Dipartimento di Elettronica and CESPA (CNR)
Politecnico di Torino, ITALY

Modern reflector antenna systems make use of Frequency

Selective Surfaces (FSS) as free space diplexers. Two classes of
FSS exist. One class has the form of a periodic distribution of
conducting patches, sandwiched between dielectric support
structures, and has a low pass frequency response. The other
class consists of a periodically perforated metallic secreen and
has a dual frequency behaviour. The frequency responses of the
two complementary structures are related by the Babinet Principle
if the dielectric environment is symmetrical with respect to the
grid. In general however a direct formulation is needed for the
solution of the scattering problem. In principle either the the
currents induced on the conductors or the aperture fields can be
assumed as the unknowns of the problem. However it 1is obvious
that FSS of the first c¢lass are more easily studied using the
induced current formulation [1], while the converse 1s true for
FSS of the second class. In this paper we apply the aperture
formulation to the analysis of high pass structures consisting of
periodically perforated metallic screens embedded in a stratified
dielectric medium.
This problem has been addressed by several authors in the past
[2,31. Our effort has been to develop a more general formulation
which leads to the definition of a generalized scattering matrix,
a necessary concept for the analysis of multiple grid structures.

\
N
\
\
\
\
\
N
N
N
\
N

N

A
7
z
zZ
A
Z
zZ
z
Z
Z
Z
zZ
z
zZ
Z
%
Z
Z
Z
A
7
z
7
Z
z
Z
Z
A
2
Z
Z
7z
4

N

i3
5
&

Fig.1 Geometry of the structure
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Consider a periodically perforated metallic screen, defined by the
basis vectors 21, d>, embedded in a layered dielectric medium,
illuminated by an arbitrary plane wave with transversal wavevector
ki (see Fig. 1). In these conditions the fields in the regions
z<0 and z>0 can be represented in terms of a discrete spectrum of
plane waves (Flogquet modes). In virtue of the Equivalence Theorem
for the region z>0, the grid can be substituted by a solid
metallic plane, on the left side of which an unknown distribution
of magnetic currents (M = 2 x E) is present. By using a
transmission 1line formulation the original scattering problem can
be represented as indicated in Fig. 2, where the equivalent
circuits refer to a generic Floquet mode with modal impedance Z,.
From now on we use the symbols ~ and to denote the quantities
related to_ the regions 2<0 and z>0 respectively. The voltage
generators vl and U are the projections on the relevant Floquet
mode of the incident electric field at z=a and of the magnetic
current distribution at z=0 respectively. The two circuits a) and
b) are equivalent to the regions 2z<0 and z>0 respectively and
moreover the modal voltage V is equal to the impressed voltage V

because of the continuity of the
Notice that in the definition of
dielectric layers on both sides
a numerical point of view to use
for normalization. This means
can always be assumed to be free

tangential electric field at z=0.
the scattering matrices of the
of the grid it is convenient from
the free space modal impedances
that in the computations the grid
standing.

From circuit a) and b) we get the modal currents f and I at z=0

T-f, 980 I-17 (1a,b)
Notice that f « T because of the magnetic field discontinuity at
zZ=0. In order to proceed in the solution of our problem, we use
the standard mode matching technique. The tangential aperture
fields are expanded as follows

(2}

o (]
By = 2y Vi o Hy = 2y I i

where {¢,}
functions,

and {yy} are convenient sets of aperture expansion
which depend on the shape of the aperture.

-

b

Fig.2 Modal equivalent circuit of structure of Fig.1
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Enforeing the boundary conditions yields:

3 T e -2t e (32)
K ~k Sk n a" =n ‘ on the elementary cell

B Vi ey = 2n ¥y ¢n (30

SeIc2xex= 3nt (3
Kk _k 2K n o" n }on the aperture (A)

2k Ik 2xex = Zn In tn 3

where e, are the electric field eigenfunctions of the k-th Floquet
mode. Notice that k is here a multiple index and stands for (mpq)
where m=1,2 denotes TE and TM modes and p,q= 0,#1,+2,... identify
the order of the mode.

In order to obtain a matrix formulation, we project eqs.(3a,b) on
the set {gk} since these equations hold for every point of the
cell, and egs.(3c,d) on the set {y,} since these equations hold on
the aperture only. The result is

v=0f v=af (4a,b)
pI-t pIa=t e,d)

where Q and P are the projection matrices

Qij - E)J'E; ds (5a)
A
Py = j;: x eyed} ds (5b)

and the other quantities are column vectors, the elements of which
were introduced before. From a numerical point of view it is
convenient to assume Y, = 2 x ¢y, which implies that P = ot
where the symbol + denotes Hermitian adjoint._ ~ Notice that
Eqg.(1a,b) can be read as matrix equations if Y, Y and Yy are
interpreted as diagonal matrices. Hence by substituting these
equations into eqs.(4c,d) and eliminating I, we get an equation
containing the unknown vectors V and V. Finally, by using
eqs.(%a,b) we obtain a linear system of equations in the unknown
coefficients Vn

B¥-aqr ¥ ¥t (6)
where B=qt[¥+¥]q (7
By solving eq.(6) for ¥ and by substituting into eqs.(la,b), we
obtain the modal voltage vectors V and V at z=0. Hence the
scattered modal voltage vector at the sections z=a (VS8) and z=b

(V8) can be computed by solving an elementary transmission line
problem, as shown in Fig.2 :

s . [fefwigul Wsa. Twinvl (8a,b)

where Wa=0QB™Q* (9
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T is a diagonal matrix containing the reflection coefficients for
each Floquet mode of the structure constituted by the dielectric
layers of the region z<0 backed by a solid metallic plane. T and
T transmission diagonal matrices relating the scattered voltages
Vs and V8 at z=a and z=b respectively to the total voltages at
z=0,

In order to compute the Generalized Scattering Matrix (GSM) of the
structure we must consider also the case where the source is on
the right side (V ). It is easy to see that the solution in this
case is obtained by exchanging the symbols " and ~ in egs.(8a,b).
Notice that the system matrix B is the same in both case, because
it depends only on the structure and not on the excitation.

In conclusion, the Generalized Scattering Matrix can be written as
the sum of two terms, § = S_ + S5 « The first one is the GSM of
the structure where the perforated screen has been substituted
with a solid one; hence S, is a diagonal matrix. The second one
(Sa) takes into account the effect of the apertures and is related
to the radiation of the equivalent magnetic currents in presence
of the solid metallic screen. Its expression is

TWY, | TWTY
Sy = | (10)
THW Yt TW Yt

Obviously this decomposition is a consequence of our particular
application of the Equivalence Theorem.

This approach has been applied to the case of round apertures
arranged in a skewed lattice. We have chosen the mode functions
of a circular waveguide as aperture functions. 1In this case the
elements of the B matrix are given by double summations of terms
which decrease for large k (Floquet mode transversal wavenumber)
as fast as k™". Since this type of scattering problem can be given
a spectral interpretation, the relative convergence problem is
solved directly in the spectral domain taking into account the
spectral bandwidth of the aperture functions involved. Results
relative to this case will be presented.
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