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Abstract—Recently, distributed algorithms have been proposed
for the recovery of sparse signals in networked systems, e.g. wire-
less sensor networks. Such algorithms allow large networks to
operate autonomously without the need of a fusion center, and are
very appealing for smart sensing problems employing low-power
devices. They exploit local communications, where each node of
the network updates its estimates of the sensed signal also based
on the correlated information received from neighboring nodes.
In the literature, theoretical results and numerical simulations
have been presented to prove convergence of such methods to
accurate estimates. Their implementation, however, raises some
concerns in terms of power consumption due to iterative inter-
node communications, data storage, computation capabilities,
global synchronization, and faulty communications. On the other
hand, despite these potential issues, practical implementations on
real sensor networks have not been demonstrated yet. In this
paper we fill this gap and describe a successful implementation
of a class of randomized, distributed algorithms on a real
low-power wireless sensor network testbed with very scarce
computational capabilities. We consider a distributed compressed
sensing problem and we show how to cope with the issues
mentioned above. Our tests on synthetic and real signals show
that distributed compressed sensing can successfully operate in
a real-world environment.

I. INTRODUCTION

The recovery of sparse signals in distributed systems has
become an important topic in the last few years [1]. On one
hand, sparsity has attracted interest for its ubiquity in physical
problems (many signals have sparse representations), and due
to the advent of compressed sensing (CS) theory [2], [3], [4],
which states the conditions to recover sparse signals from com-
pressed measurements. On the other hand, distributed systems,
such as wireless sensor networks (WSNs), have become very
popular to deal with the necessity of extensive data acquisition
and monitoring. Merging sparse signal recovery and networks
has given rise to distributed compressed sensing (DCS), which
has the goal of increasing networks efficiency through CS.

Early DCS models [5], [6], [7] exploited CS to minimize
communications towards a fusion center (FC). Specifically,
they envisaged a network in which each node acquires and
compresses data according to the CS paradigm; after that,
each node transmits such compressed data to the FC, which
performs (centralized) sparse signal recovery. More recent
works [8], [9], [10], [11], [12], [13], instead, focus on the
fully distributed case where no FC is used: both acquisition
and recovery are performed in-network, leveraging on local
cooperation between nodes. This is a good choice when a
FC is not available or far to reach. For example, one can

think of WSNs deployed on the territory for monitoring
purposes, which collect (compressed) data, and at fixed time
intervals process them to detect anomalies (e.g., fires). In
such framework, recovery might be periodically performed in-
network, while transmission to an external FC is necessary
only when intervention is required.

DCS for WSNs without FC have other very interesting
applications, e.g., distributed spectrum sensing in cognitive
radio networks [14], [15] and wireless body area networks
[16], [17], [18]. In the first scenario, one aims at estimating the
occupied frequencies in cognitive radio networks, which can
be done without FC, exploiting DCS and distributed recovery
algorithms, as proposed in [14], [15] (here sparsity comes from
the fact the spectrum is often under-used). In wireless body
area networks, instead, very small sensors are applied on the
body for health monitoring purposes, and connected wirelessly
among them and to a FC (e.g., a smartphone). Applications of
DCS have been studied in this case to increase efficiency and
prolong network’s lifetime [16], [17], while solutions without
FC have been introduced very recently [18].

Distributed iterative algorithms for in-network recovery
(without FC) of sparse signals have been lately proposed and
theoretically analysed. In particular, there are methods based
on iterative thresholding [8], [10], [11], [13], alternating direc-
tion method of multipliers [12], [15], and greedy algorithms
[9]. In all these works, local cooperation is envisaged, that
is, each node of the network can share information with its
neighbors. Theoretical results and numerical simulations are
convincing about the efficiency of these methods in terms of
convergence to a stationary point and estimation accuracy.

However, a significant drawback of such in-network meth-
ods lies in the communication load: the local cooperation
exploited for recovery generally requires many transmissions
over the available communication links. In the mentioned
literature, transmissions between neighboring occur at each
iterative step, and the number of iterations may be very large,
which entails significant energy consumption.

For this motivation, solutions to decrease the transmission
load have been proposed, exploiting, e.g., randomization [10]
and binary messaging [12], [13]. These schemes have been
shown to dramatically reduce the number of required transmis-
sions with respect to earlier methods. However, their efficiency
has never been tested in real networks. Numerical tests in
[10], [12], [13] demonstrate that the proposed communication
protocols cut down the transmissions, but clearly do not



deal with real communications, synchronization, and storage
problems. They assume, in fact, that (a) there is no loss of
messages between nodes; (b) a global clock rules the updates
of the nodes; (c) the nodes have sufficient memory to store
the necessary data and perform computations.

The goal of this paper is to fill this gap, by proposing the
first design and implementation of in-network sparse recovery
methods in a real WSN. It is worth noting that practical
implementations of DCS on WSNs have already been pro-
posed in the literature, but only for the acquisition/compression
phase (recovery is performed in a centralized manner by
a powerful FC) [19], [20], [21], [22]. The novelty of our
contribution consists in the design and implementation of both
acquisition/compression and recovery phases on a real WSN,
trying to cope with real transmissions and recovery complexity
problems.

Specifically, we consider the algorithms proposed in [10] to
solve a CS problem, and we demonstrate that they can work ef-
ficiently even on very low-power hardware. We build a testbed
on STM32W boards [23], employing low-power and low-
memory sensor nodes locally interconnected via wireless links,
and we tailor the algorithms to handle the practical problems
that are not envisaged in the theoretical/numerical analysis
[10]. The algorithms in [10] have been conceived to reduce the
number of transmissions, which is a first step towards practical
feasibility. However, they rely on several assumptions, i.e.,
transmissions never fail and global synchronization rules the
WSN, such that communications never collide. Moreover, the
theoretical algorithms do not consider memory and computa-
tion restrictions for nodes. In practice, instead, WSN’s nodes
are endowed with very limited resources, e.g., a few kB of
RAM and no floating point unit. In this paper, we address
such complexity and storage problems, designing an efficient
CS sensing matrix, which minimizes the occupied storage
and simplifies the computations. Moreover, we manage the
communication losses and the lack of global synchronization,
by proposing an asynchronous scheme which is able to reduce
the number of transmission collisions to reasonably small
values.

The paper is organized as follows. In Section II, we review
the implemented algorithms and the related theoretical aspects.
In Section III, we describe our hardware and the WSN
settings. Section IV presents our optimization tools to make
the recovery efficient, while Section V illustrates the results of
our real experiments, both on synthetic and physical signals.
Finally, we draw some conclusions.

II. IMPLEMENTED RECOVERY ALGORITHMS

Let us consider a set V = {1, 2, . . . , V } of nodes, inter-
connected via local communication links. Let us call Nv the
neighborhood of node v ∈ V , that is, the subset of nodes
which can communicate with v. Each communication link is
assumed valid in both directions, that is, the associated graph is
undirected. Moreover, we assume that the graph is connected.

For our testbed, the goal of the network is to recover a k-
sparse common signal x ∈ Rn, that all the nodes acquire and

compress individually as prescribed by CS theory, that is:

yv = Avx ∈ Rm m� n, v ∈ V (1)

where the sensing matrices Av ∈ Rm,n can be different for
each node (their structure will be discussed later). The goal of
each v ∈ V is to recover x from yv , leveraging only local
communications. This model with common signal x could
be easily extended to more complicated joint sparsity models
and relative algorithms (e.g., JSM-2 [13] and JSM-3 [12]).
However, even in JSM-2 and JSM-3, the estimation of the
common component is the task that takes advantage of inter-
node correlations, therefore our model captures the key point
of the problem.

To this goal, we implement the asynchronous, broadcast,
and gossip hard thresholding algorithms (AHT, BHT, and
GHT, respectively) proposed in [11]. The common idea behind
these algorithms is the following: each node of the network
performs an iterative hard thresholding (IHT) [24], [25] intro-
ducing, at each step, information received from its neighbors.
More precisely, let σk be the best k-term approximation of x:

σk(x) := arg min
z∈Σk

‖x− z‖2

where Σk ⊂ Rn is the subset of the k-sparse signals, and let
xv(t) be the estimate of x held by v at time t. At each iteration
step t, according to the chosen procedure, the following task
is performed:

• AHT: a node v chosen uniformly at random wakes up,
collects the estimates xw(t) of x from its neighbors
w ∈ Nv , and performs the update: xv(t + 1) =

σk

[
1
|Nv|

∑
w∈Nv

xw(t)− τAT
v

(
yv −Avxv(t)

)]
;

• BHT: a node v chosen uniformly at random wakes
up, broadcasts its estimate xv(t) to its neighbors
w ∈ Nv , which perform the update: xw(t + 1) =

σk

[
xv(t)+xw(t)

2 − τAT
w

(
yw −Awxw(t)

)]
;

• GHT: a pair of neighboring nodes (v, w)
are chosen uniformly at random; v receives
xw(t) and performs the update: xv(t + 1) =

σk

[
xv(t)+xw(t)

2 − τAT
v

(
yv −Avxv(t)

)]
.

τ > 0 is the gradient parameter; the procedure is repeated
until convergence is obtained. AHT has been theoretically
proved to converge; for BHT and GHT the fixed points have
been theoretically characterized, while convergence has been
shown via numerical simulations. We refer the interested
reader to [11] for more details on convergence properties,
estimation accuracy, and problems that the three algorithms
can tackle (these are not limited to CS, but envisage wider
sparsity constrained optimization models).

III. WSN TESTBED

In this section, we illustrate the architecture of the WSN
that we use in our experiments.



A. Hardware

We use two types of boards, MB851 and MB954 from ST
Microelectronics [23]. Especially designed for WSNs, these
boards are composed by a series of peripherals, such as GPIO
ports, LEDs, a temperature sensor, and a STM32W SoC, which
provides both networking capabilities and computational en-
gine. This unit consists of a microcontroller with a 32 bit, 24
MHz, ARM Cortex-M3 CPU, a 265 kB eFlash, 8 kB RAM
memory, and a IEEE 802.15.4, 2.4 GHz radio transmitter.

B. Contiki OS

The sensors are equipped with Contiki, a lightweight event
driven open source operating system especially designed for
the Internet of Things, whose main purpose is to manage
connectivity for low cost small devices, such as our sen-
sors. Contiki provides a platform independent high level
programming framework, based on C language, coming with
lots of APIs to easily control the peripherals, as well as
the network stack. Moreover, it provides several options for
adding software features, e.g., a multi-threaded environment,
a graphical user interface, a file system. Our AHT, BHT and
GHT applications are generally organized as follows. On one
hand, a client process is used to perform the update phase,
during which the node can send or receive the estimated
signals from its neighbors, according to the specific algorithm
implementation. On the other hand, a server process is used to
wait for neighbors TCP connections. During this phase, nodes
can be actually contacted by neighbors. This mechanism is
independent from the specific algorithm. In AHT and GHT,
nodes connect to their neighbors and ask for estimates. In
BHT, nodes perform an active connection and spontaneously
send their estimates. An event driven mechanism is used to
exchange information between the client ad server process in
order to update reconstructed signals before each iteration.

IV. REAL RECOVERY IN WSN

Using the hardware and software described in the previous
section, we implement AHT, BHT, and GHT to perform on-
field tests and evaluate their practical feasibility in terms of
WSN computational capabilities, communication protocols,
and energy consumption. We assume that each node v ∈ V
acquires a sparse signal x ∈ Rn, and then compresses it via
its own sensing matrix Av ∈ Rm,n, obtaining the compressed
measurements vector yv = Avx.

Two main issues arise in this real implementation. The first
one is due to scarce memory: for compression and recon-
struction, the sensing matrix Av ∈ Rm×n, which may have
considerable size, has to be stored in the RAM of the node.
From CS theory, we know that random Gaussian, Rademacher,
circulant matrices [26] are suitable for reconstruction, with
slight different recovery performance. Different strategies can
be used to store efficiently such matrices, according to the
specific purpose. The extreme strategies are (a) store only
the seed and regenerate the matrix each time it is needed;
(b) generate the matrix once and store it. Clearly, (a) is
optimal from the memory occupation perspective, but requires

a number of extra computations in the recovery phase; (b)
minimizes the number of computations (and consequently used
energy) but requires considerable memory. For our setting, in
which both memory and computational capabilities are scarce,
after some tests, we have found that Rademacher, circulant
matrices are a good tradeoff. Rademacher matrices have entries
equal to ±1 (drawn uniformly at random); circulant matrices
are obtained by repeated circular shifts of the first row.
Therefore, a binary vector of length n then is sufficient to store
a Rademacher, circulant matrix. Hence, in our experiments,
each node generates its own Rademacher, circulant matrix
once and then keeps it stored in its RAM.

The second issue is related to the algorithms. In [11], a
common clock is assumed to be available in the network,
so that nodes wake up exclusively and uniformly at random.
This is a technical assumption that simplifies the theoretical
analysis, but in the practice, global synchronization is difficult
to maintain. Therefore, in our implementation nodes wake
up and communicate at random time instants, each of them
with its own clock. This may clearly cause collisions, loss
of messages, and reconstruction latency, whose consequences
have to be evaluated in our tests.

V. EXPERIMENTS

In this section, we present our in-field experiments in a
WSN composed by 5 nodes as described in Section III. We
illustrate the cases of complete and ring topologies, which
respectively represent the most and the least connected ones
among the connected topologies. For each node v ∈ V =
{1, . . . , 5} and its final estimate x̂v , we define the estimation
error as

ev =
‖x̂v − x‖22
‖x‖22

.

A. Synthetic signals

In the first experiment, we generate a synthetic signal of
length n = 100 and sparsity k = 5. Non-zero entries are
generated uniformly at random in [−3, 3]. The signal is sent
to all the nodes, which compress it to as in (1) to length
m = 20. At the end of the reconstruction, we recollect the
reconstructed signals for offline analysis. 5 runs are performed
for each algorithm.

In Figure 1, we show the estimation error of AHT, BHT,
GHT for each run and each node, assuming a complete
topology. In Figure 2, we show the corresponding average
communication error percentages, that is, the rate of lost
transmissions. We observe that the reconstruction error is small
(at most of order 10−4). The average communication error
percentage is 2% for AHT, while it is null for GHT. This
makes sense because GHT involves only one link at any
update, which reduces the probability of collisions.

In Figure 3, the error is shown in case of ring topology. The
error is about 10−4 for AHT, and 10−5 for BHT and GHT.
The average communication error percentages (Figure 4) are
below 0.5% for AHT and BHT, and null for GHT (again this
is due to the fact that GHT uses only one communication link
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Figure 1. Synthetic signals, complete topology: error for AHT, BHT, and GHT (from left to right)
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Figure 2. Synthetic signals, complete topology: average communication error percentages for AHT, BHT, and GHT (from left to right)

Run ID
0 1 2 3 4 5 6

E
rr

o
r

×10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Run ID
0 1 2 3 4 5 6

E
rr

o
r

×10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Run ID
0 1 2 3 4 5 6

E
rr

o
r

×10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3. Synthetic signals, ring topology: errors for AHT, BHT, and GHT (from left to right), in 5 different runs. Different markers indicate different nodes.
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Figure 4. Synthetic signals, ring topology: average communication error percentages for AHT, BHT, and GHT (from left to right)



at each iteration). We observe that the communication error
percentages for AHT and BHT are smaller for ring topologies
with respect to complete topologies, which is expected because
in complete topologies all the links are used at each update,
as the neighborhood of each node is the whole network.

To obtain these estimates, in both topologies, the algorithms
require about 20, 40, and 20 iterations for AHT, BHT and GHT
respectively. The average reconstruction time is 4 minutes
for AHT and BHT, and reduces to 1 minute for GHT. AHT
and BHT differ in the number of iterations, but the average
reconstruction time is quite similar. This is due to the doubled
update rate of BHT, where nodes compute a gradient step on
their own after having broadcast their estimated signal to their
neighbors.

B. Real signals: temperature in a room

As the used nodes embed a temperature sensor, we conduct
a test in which the WSN aims to recover the average tempera-
ture in a room. Each node is deployed in a different position of
the room, and small differences are then expected in the sensed
temperature values. We implement AHT, BHT, and GHT to
estimate the mean temperature in a collaborative way. The
sparsity here resides in the difference signal: we assume that
each node takes n = 50 temperature measurements x1, . . . , xn
at uniform unitary time intervals and iteratively computes the
difference vector (x1, x2 − x1, . . . , xn − x1). In absence of
abrupt changes, the temperature is almost constant, hence the
difference vector has non-exact sparsity k = 1. By non-exact
sparsity we mean that most of entries can be approximated
to zero, but are not exactly null. This is a typical real, noisy
model. After acquisition, the node compresses its temperature
readings via its Rademacher, circulant matrix to m = 5
measurements. Once finished, the sensors send both the initial
temperature signal measured and its reconstructed version for
comparison purposes.

In Figure 5 and 6, we show the results of such an experi-
ment, with complete and ring topologies, respectively. Dealing
with noise, we let the sensors perform 20 more iterations with
respect to the corresponding synthetic signal scenario. We also
depict the absolute value between the average temperature
sensed by all the nodes and their respective reconstructed
signals. Here we can see very small differences, as the error
is almost always smaller than 0.5 ◦C.

C. Energy consumption considerations

In this section, we analyze the energy consumption based
on current and energy measurements.

In the first test, we equip the sensors with new sets of
batteries and we monitor the time needed to deplete them.
In this configuration the boards are programmed to keep on
reconstructing a synthetic signal of length 100 for an infinite
number of AHT iterations. We observe approximately 39 hours
of continuous work for MB851 boards, and 32 hours for
MB954 boards. This difference in duration time is caused by
the power amplifier mounted by the latter type of boards,
which requires higher energy amounts. This aspect should

also highlight the large weight of radio transmissions in the
overall energy consumption, which should definitely clarify the
need for drastically reducing the amount of communications
among nodes in order to make DCS appealing in real WSN
contexts. The selected sensor parameter settings cause them
to perform 6 iterations per minute on average. This means
MB954 can iterate our algorithms approximately 11520 times
before needing to be fed with new batteries, while MB851
is able to last for about 14040 iterations. These numbers
are definitely larger than the observed number of iterations
per reconstruction, hence the boards can performs many runs
before needing batteries substitution.

We obtain a more in depth analysis of energy consumption
by measuring the energy absorbed by the boards. For this
purpose, we measure the current passing through the jumper
closing the circuit in battery mode. The current has been mea-
sured both through a digital multimeter and an oscilloscope for
better analyzing the impact of data transmissions on the overall
power absorption. Tests have demonstrated an average 25 mA
current during non-transmission interval, and an increment
in current flow during data exchanges. In particular, during
transmissions the total current increases to 30 mA for MB851
boards, and 160 mA for MB954 ones. Each transmission
lasts up to 8 ms and 2 ms on MB851 and MB954 boards,
respectively. Using 3V batteries, the total energy consumption
during a transmission is about 7 × 10−4 J and 9 × 10−4 J
for MB851 and MB954 boards, respectively. The differences
are again due to the presence of a power amplifier on MB954
boards.

We finally notice that no remarkable current variations
are observed through the oscilloscope when nodes perform
computations. This aspect confirms the extremely low impact
of calculations in our setup, obtained through the use of
Rademacher sensing matrices: hardware multiplications by -1
and +1 can be easily implemented, letting us save energy, as
also noticed in [19], [20].

VI. CONCLUDING REMARKS

In this paper, we have proposed the first real implemen-
tation of distributed sparse recovery algorithms in WSNs.
We have built a basic WSN, with very low-power and low-
memory hardware and we have implemented the algorithms
proposed in [11], based on iterative hard thresholding, to
solve a DCS problem. The result is encouraging: even though
computational capabilities are small and communications are
not always successful, we are able to accurately estimate the
signals and consensus is achieved between nodes. Tests have
been conducted both on synthetic and real temperature signals
measured by the WSN itself. Next tests will be conducted
on larger WSNs, and using different algorithms and sparsity
models, e.g., [13].
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Figure 5. Average temperature estimate (◦C) for AHT, BHT, and GHT (from left to right); complete topology
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