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Abstract—The so-called Loewner framework has been
recently revitalized, providing an alternative approch to
the more standard Vector Fitting scheme for building com-
pact macromodels of interconnect networks. The matrix
approximation process that is embedded in the Loewner
method produces however models whose accuracy cannot
be locally controlled at a desired frequency point. This
paper proposes a simple solution for constraining the model
response at any selected frequency value, with emphasis
on the DC point. Two application examples illustrate the
effectiveness of this approach.

I. INTRODUCTION AND MOTIVATION

The physical processes causing signal and power degra-
dation due to interaction between signals and fields
with complicated interconnect geometries and non-ideal
material characteristics can be effectively captured by
low-order dynamical models, expressed as ordinary dif-
ferential equations or equivalent circuits. Such compact
models are usually identified from tabulated frequency
responses available from full-wave field solvers, using
one of the many available macromodeling methods that
have been introduced and refined over the last two
decades. Once a macromodel is available, system-level
simulation becomes tractable using off-the-shelf circuit
solvers of the SPICE class. Hence, macromodeling
schemes form a basic functional block in most advanced
software packages for Signal and Power Integrity (SPI)
applications.

Vector Fitting (VF) [1] and its variants [2], [3] has
become the method of choice for macromodeling, due
to its exceptional robustness and versatility. Recently, the
Loewner framework [4], [5] has been revitalized as a
possible alternative to VF. Based on a solid theoretical
basis, this approach produces a macromodel in descriptor
form, whose transfer function interpolates exactly the
given frequency samples. To reduce the model order, a
truncated singular value decomposition is applied, yield-

ing an approximation error which cannot be controlled
directly at all frequencies (unless when processing noise-
free samples of purely rational transfer functions). This
is undesirable, since SPI simulations require a very
aggressive accuracy at specific frequencies, in particular
at the DC point.

This paper proposes a simple yet effective process
that, starting from a macromodel known via its state-
space (descriptor) realization, as usually obtained by
the Loewner method, produces a new macromodel char-
acterized by different state-space matrices, and whose
frequency response matches exactly a prescribed value
at a desired finite frequency point. The final result is a
macromodel that admits an approximation error at any
frequency, as implied by the order reduction process that
is applied in the model construction, but which is exact at
least at one frequency point. This model will then behave
more robustly in system-level simulations, especially in
the presence of nonlinear termination networks.

II. REVIEW OF THE LOEWNER FRAMEWORK

Given tabulated data (S-, Y- or Z- parameters)

(fi,Hi), i = 1, . . . , N, (1)

where Hi ∈ Cp×p is the multiport parameter measured
at fi, macromodeling seeks a rational model whose
transfer function evaluated at fi approximates Hi:

Hi ≈ C (j2πfiE−A)
−1

B + D, ∀i = 1, . . . , N.

The Loewner framework [4], [5] can be used to solve
this problem. We partition the set of frequencies

{f1, . . . , fN} =
{
λ1, . . . , λN/2

}
∪
{
µ1, . . . , µN/2

}
(2)

into right frequencies λk, k = 1, . . . , N2 and left frequen-
cies µh, h = 1, . . . , N2 . It is advised [6, Ch. 2.1] to use
odd frequencies and their complex conjugates as right
data and even frequencies with their complex conjugates



as left data. We select right tangential directions as
column vectors rk and left directions as row vectors `h.
They can be chosen, for simplicity, as vectors of the
identity matrix [5]. Matrix data (1) is converted to right
vector data Hkrk = wk and left vector data `hHh = vh.
These quantities are collected into the following matrices

Λ = diag
[
λ1 . . . λN

2

]
,M = diag

[
µ1 . . . µN

2

]
, (3)

R =
[
r1 . . . rN

2

]
,W =

[
w1 . . . wN

2

]
, (4)

L =

 `1...
`N

2

 ,V =

v1

...
vN

2

 . (5)

Next, the Loewner matrix is defined entry-wise as

Lhk =
vhrk − `hwk

µh − λk
(6)

and shifted Loewner matrix is defined as

Lshk
=
µhvhrk − λk`hwk

µh − λk
. (7)

We can immediately (with no required computation)
write a (non-minimal) descriptor realization

H(s) = W (Ls − sL)
−1

V (8)

satisfying the right and left interpolation conditions [4]
H(λk)rk=wk and `hH(µh)=vh. To obtain a minimal
realization, we perform a singular value decomposition

[Y,Σ,X] = svd(Ls − xL), x ∈ {fi}. (9)

Choosing n as the singular value where to truncate the
SVD (n is application-dependent), we define (in Matlab
notation) Xn = X(:, 1 :n) and Yn = Y(:, 1 :n)∗. The
model of size n in descriptor form is

E = −YnLXn = −Ln, (10)
A = −YnLsXn = −Lsn, (11)
B = YnV = Vn,C = WXn = Wn,D = 0. (12)

III. EXACT INTERPOLATION AT A FINITE POINT

A D term can introduced with the parametrization

Ed = −Ln, (13)
Ad = −Lsn+(YnL)D(RXn)=−Lsn+LnDRn, (14)
Bd = Vn − (YnL)D = Vn − LnD (15)
Cd = Wn −D(RXn) = Wn −DRn (16)
Dd = D, (17)

where D ∈ Cp×p is a free parameter matrix [4, Th. 5.2].
We wish to fix D to impose exact interpolation at a finite
point s0 (at DC or any arbitrary finite frequency):

Cd(s0Ed −Ad)−1Bd + Dd = H0. (18)

Using the quantities described in (13)-(17), we obtain:

(Wn −DRn) (Lsn − s0Ln − LnDRn)
−1

(Vn − LnD)

+ D = H0.

The Sherman Morrison Woodbury formula can be used
to compute the inverse of Lsn − s0Ln − LnDRn as a
rank p correction of Lsn − s0Ln

(Φ−LnDRn)
−1

=

Φ−1 + Φ−1LnD
(
I−RnΦ−1LnD

)−1
RnΦ−1,

where Φ =Lsn−s0Ln. We define ΦWL = WnΦ−1Ln,
ΦRV = RnΦ−1Vn, ΦRL = RnΦ−1Ln and ΦWV =
WnΦ−1Vn. After some matrix manipulations, we find

Dd =
[
(ΦWL − I) + (S0 −ΦWV ) (ΦRV − I)

−1
ΦRL

]−1

(S0 −ΦWV ) (ΦRV − I)
−1
. (19)

The final realization is computed from (13)-(17). The
interpolation condition (18) is verified by direct substi-
tution.

IV. NUMERICAL RESULTS

The performance of the proposed algorithm is illustrated
on two different interconnect examples. The first testcase
is a via field underneath an LGA connector, known
through 301 linearly spaced scattering frequency samples
(from DC to 30 GHz). We disregard the DC point and
use the remaining samples, together with their complex
conjugates, to build Λ, M , R, L, W, V, L and Ls in
the real approach [5, App. B].

The normalized singular values of the Loewner, the
shifted Loewner matrix and the linear combination Ls−
f301L are shown in Fig. 1. We truncate the SVD at
n = 94, yielding a model as in (10)-(12), which, when
plotted against the raw data (Fig. 2a), yields an error
below −20dB. After enforcing the exact value at DC as
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Figure 2: Responses of LGA via models of order 94

described in Sect. III, a model of the form (13)-(17) is
obtained (Fig. 2b) with an accuracy of −18dB.

The errors of the two models are plotted in Fig. 3a,
showing the singular values of the matrices obtained by
subtracting the model evaluated at each frequency from
the corresponding measurement. The error at DC for the
D 6= 0 model is below −300dB, as expected. Fig. 3b
shows the poles of the two systems, both being stable.
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Figure 3: LGA via model with DC constraint.

The second example is a 4-port package interconnect,
characterized through 467 samples of its S-parameters,
ranging from 0 to 30GHz, and computed via a field
solver. The samples are processed as for the LGA via
field. The normalized singular values of the Loewner,
the shifted Loewner matrix and the linear combination
Ls−f467L are shown in Fig. 4. We truncate the SVD to
n = 39, yielding a model as in (10)-(12), which, when
plotted against the measurements (Fig. 5a), yields an
error below −47dB. After enforcing the exact DC value
following Sect. III, a model as in (13)-(17) is obtained
(Fig. 5b), with an accuracy below −43dB.

The errors of the two models are shown in Fig. 6a.
The error at DC for the D 6= 0 model is below −300dB,
as expected. Fig. 6b shows the poles of the two systems.
Interestingly, for this example, the original system is
unstable, while after enforcing the DC condition, all
poles become stable.

V. CONCLUSION

We demonstrated how the state-space matrices of a
Loewner-based macromodel can be redefined to enforce
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Figure 5: Responses of interconnect models of order 39
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Figure 6: Package model with DC constraint.

exact interpolation conditions at DC (more generally, at
any arbitrary frequency point). This condition is crucial
whenever a very aggressive accuracy is desired, e.g.,
when the model is terminated with nonlinear device
models, whose bias level must be carefully controlled.
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[6] A. C. Ioniţă, “Lagrange rational interpolation and its applications
to approximation of large-scale dynamical systems,” Ph.D. disser-
tation, Rice University, Aug. 2013.

3


